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Abstract

I mainly consider the task of learning classifiers from data in this thesis. In

this context, I propose a common framework that combines two different and

important paradigms in machine learning: global learning and local learn-

ing. Traditional global learning approaches focus on describing phenomena

by attempting to estimate a distribution from data. Based on the estimated

distribution, the global learning methods can then perform inferences, conduct

marginlizations, and make predictions. Although enjoying a long and distin-

guished history and containing many good features, e.g., a relatively simple

optimization, and the flexibility in incorporating global information such as

structure information and invariance etc, these learning approaches usually

have to assume a specific type of distribution a prior. Therefore, they are

widely argued for lacking the generality. On the other hand, local learning

methods do not estimate a distribution from data. Instead, they focus on

extracting only the local information, which is directly related to the learn-

ing task, i.e., the classification in this thesis. Recent progress following this

trend has demonstrated that local learning approaches, e.g., Support Vector

Machines (SVM), outperform the global learning methods in many aspects.
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Despite of the success, local learning approaches actually discard plenty of im-

portant global information on data, e.g., the structure information. Therefore,

this restricts the learning performance of this types of learning schemes.

In this thesis, I thus develop a hybrid model named Maxi-Min Margin

Machine (M4), which successfully combines two largely differently but com-

plementary paradigms. Within this new framework, I propose a hybrid model

named Maxi-Min Margin Machine (M4). This model is demonstrated to con-

tain both appealing features in global learning and local learning. It not only

captures the global structure information from data, but it also provides a

task-oriented scheme for the learning purpose and inherits the superior per-

formance from local learning. As a major contribution, M4 successfully unifies

many important learning models, including Support Vector Machines, Mini-

max Probability Machine (MPM), and Fisher Discriminant Analysis. Another

compelling feature of M4 is that it can be cast as a Sequential Second Order

Cone Programming problem, yielding a polynomial time complexity.

In addition, directly motivated from the Maxi-Min Margin Machine, I also

develop a regression model named Local Support Vector Regression (LSVR).

LSVR is demonstrated to provide a systematic and automatic scheme to locally

and flexibly adapt the margin, which is globally fixed in the standard Support

Vector Regression (SVR), a state-of-the-art regression model. Therefore, it

can tolerate the noise adaptively. The proposed LSVR is promising in the

sense that it not only adequately considers the local information of the data

in approximating functions, but more importantly, it includes special cases,

which enjoy a physical meaning very much similar to the standard SVR. Both

theoretical and empirical investigations demonstrate the advantages of this

new model.

Another important contribution of this thesis is that I also develop a novel

global learning model called Minimum Error Minimax Probability Machine

(MEMPM). Although still within the framework of global learning, this model
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does not need to assume any specific distribution beforehand and represents

a distribution-free Bayes optimal classifier in a worst-case scenario. This thus

makes the model distinguished from the traditional global learning models,

especially the traditional Bayes optimal classifier. One promising feature of

MEMPM is that it can derive an explicit accuracy bound under a mild condi-

tion, leading to a good generalization performance for future data.

The fourth critical contribution of this thesis is the development of the

Biased Minimax Probability Machine (BMPM) model. In spite of the fact

that it is a special case of MEMPM, I make this model distinguished because

BMPM provides the first systematic and rigorous approach for a kind of im-

portant learning tasks, namely, the biased learning or imbalanced learning.

Different from traditional imbalanced (biased) learning methods, BMPM can

quantitatively and explicitly incorporate a bias for one class and consequently

emphasizes the more important classes. A series of experiments demonstrate

that BMPM is very promising in imbalanced learning and medical diagnosis.
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Chapter 1

Introduction

The objective of this thesis is to establish a framework which combines two

different paradigms in machine learning: global learning and local learning.

The deriving combined model demonstrates that a hybrid learning of these

two different schools of approaches can outperform each isolated approach

both theoretically and empirically. Global learning focuses on describing a

phenomenon or modeling data in a global way. For example, a distribu-

tion over the variables is usually estimated for summarizing the data. Its

output can usually reconstruct the data. This school of approaches, includ-

ing Bayesian Networks [46, 54, 148], Gaussian Mixture Models [13, 103], and

Hidden Markov Models [8, 126], has a long and distinguished history, which

has been extensively applied in artificial intelligence [131], pattern recogni-

tion [47], computer vision [45], etc. On the other hand, local learning does

not intend to summarize a phenomenon, but builds learning systems by con-

centrating on some local parts of data. It lacks the flexibility yet surprisingly

demonstrates superior performance to global learning according to recent re-

searches [17, 70, 132]. In this thesis, a bridge has been established between

these two different paradigms. Moreover, the resulting principled framework

subsumes several important models, which respectively locate themselves into

the global learning paradigm and the local learning paradigm.

In this chapter, we address the motivations of the two different learning

1
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Figure 1.1: Two classes of two-dimensional data.

frameworks. As a summary, we present the objectives of this paper and outline

the contributions. Finally, we provide an overview of the rest of this thesis.

1.1 Learning and Global Modeling

When studying real world phenomena, scientists are always wondering whether

some underlying laws or nice mathematic formulae exist for governing these

complex phenomena. Moreover, in practice, due to incomplete information,

the phenomena are usually nondeterministic. This motivates to base proba-

bilistic or statistical models to perform a global investigation on sampled data

from the phenomena. A common way for achieving this goal is to fit a den-

sity on the observations of data. With the learned density, people can then

incorporate prior knowledge, conduct predictions, and perform inferences and

marginalizations. One main category in the framework of global learning is

the so-called generative learning. By assuming a specific mathematic model

on the observations of data, e.g., a Gaussian distribution, the phenomena can
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Figure 1.2: An illustration of distribution-based classifications (also known as
the Bayes optimal decision theory). Two Gaussian mixtures are engaged to
model the distribution of two classes of data respectively. The distribution can
then be used to construct the decision plane.

therefore be described or re-generated. Figure 1.1 illustrates such an example.

In this figure, two classes of data are plotted as ∗’s for the first class and ◦’s
for the other class. The data can thus be modeled as two different mixtures

of Gaussian distributions as illustrated in Figure 1.2. By knowing only the

parameters of these distributions, one can then summarize the phenomena.

Furthermore, one can clearly employ this information to distinguish one class

of data from the other class or simply know how to separate two classes. This

is also well-known as Bayes optimal decision problems [51, 38].

In the development of learning approaches within the community of ma-

chine learning, there has been a migration from the early rule-based meth-

ods [50, 156] wanting more involvement of domain experts, to widely-used prob-

abilistic global models mainly driven by data itself [24, 47, 62, 72, 117, 163].



Chapter 1 Introduction 4

However, one question for most probabilistic global models is what kind of

global models, or more specifically, which type of densities should be speci-

fied beforehand for summarizing the phenomena. For some tasks, this can be

prescribed by a slight introduction of domain knowledge from experts. Un-

fortunately, due to both the increasing sophistication of real world learning

tasks and active interactions among different subjects of research, it is more

and more difficult to obtain fast and valuable suggestions from experts. A

further question is thus proposed, i.e., what is the next stop in the community

of machine learning, after experiencing a migration from rule-based models

to probabilistic global models? Recent progress in machine learning seems to

imply a local learning as a solution.

1.2 Learning and Local Modeling

Global modeling addresses describing phenomena, no matter whether the sum-

marized information from the observations is applicable to specific tasks or

not. Moreover, the hidden principle under global learning is that informa-

tion can be accurately extracted from data. On the other hand, local learn-

ing [49, 138, 141], which recently attracts active attentions in the machine

learning community, usually regards that a general and accurate global learn-

ing is an impossible mission. Therefore, local learning focuses on capturing

only local yet useful information from data. Furthermore, recent research

progress and empirical study demonstrates that this much different learning

paradigm is superior to global learning in many facets.

In further details, instead of globally modeling data, local learning is more

task-oriented. It does not aim to estimate a density from data as in global

learning, which is usually an intermediate step for many tasks such as pattern

recognitions (note that the distribution or density obtained by global learn-

ing actually is not directly related to the classification itself); it also does not
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the decision plane

Figure 1.3: An illustration of local learning (also known as the Gabriel Graph
classification). The decision boundary is just determined by some local points
indicated as filled points.

intend to build an accurate model to fit the observations of data globally. Dif-

ferently, it only extracts useful information from data and directly optimizes

the learning goal. For example, when used in learning classifiers from data,

only those observations of data around the separating plane need to be accu-

rate, while inaccurate modeling over other data is certainly acceptable for the

classification purpose. Figure 1.3 illustrates such an problem. In this figure,

the decision boundary is constructed only based on those filled points, while

other points make no contributions to the classification plane (the decision

boundary is given based on the Gabriel Graph method [6, 73, 164]).

However, although containing promising performance, local learning ap-

pears to locate itself at another extreme end to global learning. Employing

only local information may lose the view of data. Consequently, sometimes,

it cannot grasp the data trend, which is critical for guaranteeing better per-

formance for future data. This can be seen in the example as illustrated in

Figure 1.4. In this figure, the decision boundary (also constructed by the

Gabriel Graph classification) is still determined by some local points indicated
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the decision plane

Figure 1.4: An illustration on that local learning cannot grasp data trend.
The decision boundary (constructed by the Gabriel Graph classification) is
determined by some local points indicated as filled points. It, however, loses
the data trend. The decision plane should be obviously closer to the filled
squares rather than locating itself in the middle of filled �’s and ◦’s.

as filled points. Clearly, this boundary does not grasp the data trend. More

specifically, the class associated with ◦’s is obviously more scattered than the

class associated with �’s in the axis indicated as dashed red line. Therefore,

a more promising decision boundary should lie closer to filled �’s than those

filled ◦’s instead of lying midway between filled points. A similar example

can also be seen in Chapter 2 on a more principled local learning model, i.e.,

the current state-of-the-art classifier, Support Vector Machines (SVM) [153].

Targeting this problem, we then suggest a hybrid learning in this thesis.

1.3 Hybrid Learning

There are complementary advantages for both local learning and global learn-

ing. Global learning summarizes data and provides practitioners with knowl-

edge on the structure, independence, trend of data etc, since with the precise

modeling of phenomena, the observations can be accurately regenerated and
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therefore can be studied or analyzed thoroughly. However, this also presents

difficulties in how to choose a valid model to describe all the information. In

comparison, local learning directly employs part of information, critical for the

specific oriented tasks, and does not assume models to re-synthesize/restore

the whole road-map of data. Although demonstrated to be superior to global

learning in many facets of machine learning, it may lose some important global

information. The question here is thus, can reliable global information, inde-

pendent of specific model assumptions, be combined into local learning? This

question clearly motivates a hybrid learning of two largely different schools of

approaches, which is also the objective of this thesis.

1.4 Contributions

In this thesis, we aim to propose a hybrid learning scheme to combine two

different paradigms, namely global learning and local learning. Within this

scheme, we propose a hybrid model, named the Maxi-Min Margin Machine

(M4), demonstrated to contain both merits of global learning in represent-

ing data and the advantages of local learning in handling tasks directly and

effectively. Moreover, adopting the viewpoint of local learning, we also de-

velop a global learning model, called the Minimum Error Minimax Probability

Machine (MEMPM), which does not assume specific distributions on data and

thus distinguishes itself from traditional global learning approaches. The main

contributions of this thesis are further described as follows in detail.

• Proposed the Maxi-Min Margin Machine model, a hybrid learning frame-

work successfully combining global learning and local learning

� A unified framework of many important models

As will be demonstrated, our proposed hybrid model successfully

unifies both important models in local learning, e.g., the Support
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Vector Machines [17], and significant models in global learning, such

as the Minimax Probability Machine (MPM) [85] and the Fisher

Discriminant Analysis (FDA) [47].

� With the generalization Guarantee

Various statements from many views such as the sparsity and Mar-

shall and Olkin Theory [101, 121] will be presented for providing

the generalization bound for the combined approach.

� A sequential Conic Programming solving method

Besides the theoretic advantages of the proposed hybrid learning,

we also tailor a sequential Conic Programming method [124, 144] to

solve the corresponding optimization problem. The computational

cost is shown to be polynomial and thus the proposed M4 model

can be solved practically.

• Developed a general global learning model, the Minimum Error Minimax

Probability Machine

� A worst-case distribution-free Bayes optimal classifier

Different from traditional Bayes optimal classifiers, MEMPM does

not assume distributions for the data. Starting with the Marshall

and Olkin theory, this model attempts to model data under the

minimax schemes. It does not intend to extract exact information

but the worst-case information from data and thus presents an im-

portant progress in global learning.

� Derived an explicit error bound for future data

Inheriting the advantages of global learning, the proposed general

global learning method contains an explicit worst-case error bound

for future data under a mild condition. Moreover, the experimental

results suggest that this bound is reliable and accurate.
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� Proposed a sequential Fractional Programming optimization

We have proposed a Fractional Programming optimization method

for the MEMPM model. In each iteration, the optimization is shown

to be a pseudo-concave problem, which thus guarantees that each

local solution will be the global solution in this step.

� Implemented a Matlab toolbox for this general global learning method

We have released a Matlab toolbox for the novel global model. De-

tailed comments, demos, and examples are provided for its easy

usage [160, 161].

• Developed a global learning method called Biased Minimax Probability

Machine (BMPM) for biased or imbalanced learning

� Presented a rigorous and systematic treatment for biased learning

tasks

Although being a special case of our proposed general global learn-

ing model, MEMPM, this model provides a quantitative and rig-

orous approach for biased learning tasks, where one class of data

are always more important than the other class. Importantly, with

explicitly controlling the accuracy of one class, this branch model

can precisely impose biases on the important class.

� Containing explicit generalization bounds for both classes of data

Inheriting the good feature of the MEMPM model, this model also

contains explicit generalization bounds for both classes of data.

This therefore guarantees a good prediction accuracy for future

data.

• Developed a novel regression model Local Support Vector Regression (LSVR)

� Provided a systematic and automatic treatment in adapting margins

Motivated from M4, LSVR focuses on considering the margin setting
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A: Local Learning
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C: Minimum Error Minmax Probability Machine
D: Biased Minimax Probability Machine
E: Maxi-Min Margin Machine
F: Local Support Vector Regression
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Figure 1.5: The relation among the developed models in this thesis

locally. When compared to the regression model of SVM, i.e., the

Support Vector Regression (SVR), this novel regression model is

shown to be more robust with respect to the noise of data in that

it contains the volatile margin setting.

� Incorporated special cases very much similar to the standard SVR

When considering a consistent trend for all data points, the LSVR

can derive special cases very much similar to the standard SVR. We

further demonstrate that in a meaningful assumption, the standard

SVR is actually the special case of our LSVR model.

In a summary, the relation among our developed models is described in

Figure 1.5.
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1.5 Scope

This thesis states and refers to the learning first as statistical learning, which

appears to be the current main trend of learning approaches. We then further

restrict the learning in the framework of classification, one of the main prob-

lems in machine learning. The corresponding discussion on different models

including the conducted analysis of the computational and statistical aspects

of machine learning are all subject to the classification tasks. Nevertheless, we

will also extend the content of this thesis to regression problems, although it

is not the focus of this thesis.

1.6 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2

We will review different learning paradigms in this chapter. We will

establish a hierarchy graph attempting to categorize various models in

the framework of local learning and global learning. We will then base

this graph to describe and discuss these models. Finally, we motivate

the Minimum Error Minimax Probability Machine and the Maxi-Min

Margin Machine.

• Chapter 3

We will develop a novel global learning model, called the Mininum Er-

ror Minimax Probability Machine. We will demonstrate how this new

model represents the worst-case Bayes optimal classifier. We will detail

its model definition, provide interpretations, establish a robust version,

extend to nonlinear classifications, and present a series of experiments

to demonstrate the advantages of this model.
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• Chapter 4

We will present the Maxi-Min Margin Machine, which successfully com-

bines two different but complementary learning paradigms, i.e., local

learning and global learning. We will show how this model incorporates

the Support Vector Machine, the Minimax Probability Machine, and the

Fisher Discriminant Analysis as special cases. We will also demonstrate

the advantages of Maxi-Min Margin Machine by providing theoretical,

geometrical, and empirical investigations.

• Chapter 5

An extension of the proposed MEMPM model will be discussed in this

chapter. More specifically, the Biased Minimum Minimax Probability

Machine will be discussed and applied into the imbalanced learning tasks.

We will review different criteria for evaluating imbalanced learning ap-

proaches. We will then base these criteria to tailor BMPM into this type

of learning. Both illustrations on toy data sets and evaluations on real

world imbalanced and medical data sets will be provided in this chapter.

• Chapter 6

A novel regression model called the Local Support Vector Regression,

which can be regarded as an extension from the Maxi-Min Margin Ma-

chine, will be introduced in detail in this chapter. We will show that

our model can vary the tube (margin) systematically and automatically

according to the local data trend. We will show that this novel regres-

sion model is more robust with respect to the noise of data. Empirical

evaluations on both synthetic data and real financial time series data will

be presented to demonstrate the merits of our model with respect to the

standard Support Vector Regression.

• Chapter 7

We will then summarize this thesis and conduct discussions on future
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work.

We try to make each of these chapters self-contained. Therefore, in several

chapters, some critical contents, e.g., model definitions or illustrative figures,

having appeared in previous chapters, may be briefly reiterated.



Chapter 2

Global Learning Vs. Local

Learning — A Background

Review

In this chapter, we conduct a more detailed and more formal review on two

different schools of learning approaches, namely, the global learning and local

learning. We first provide a hierarchy graph as illustrated in Figure 2.1 in

which we try to classify many statistical models into their proper categories,

either global learning or local learning. Our review will also be conducted

based on this hierarchy structure. To make it clear, we use filled shapes to

highlight our own work in the graph.

Global learning fits a distribution over data. If a specific mathematic

model, e.g., a Gaussian model, is assumed on the distribution, this is often

called generative learning, whose name implies that the mathematic formula-

tion of the assumed model governs the generation of data in the learning task.

To learn the parameters from the observations of data for the specific model,

several schemes have been proposed. This includes Maximum Likelihood (ML)

learning, which is easy to conduct but is less accurate, Conditional Likelihood

(CL) learning, which is usually hard to perform optimization but is more ef-

fective, and Bayesian Average (BA) learning, which has a comparatively short

14
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history but is more promising. As generative learning pre-assigns a specific

model before learning, it often lacks the generality and thus may be invalid

in many cases. This thus motivates the non-parametric learning, which still

estimates a distribution on data but assumes no specific mathematic genera-

tive models. The common way in this type of learning is to locally fit over

each observation a simple density and then sums all the local densities as the

final distribution for data. Although in some circumstances, this approach is

successful, it is criticized for requiring a huge quantity of training points and

containing a large space complexity. Differently, in this thesis, we will demon-

strate a novel global learning method, named Minimum Error Minimax Proba-

bility Machine (MEMPM). Although still in the framework of global learning,

it does not belong to non-parametric learning, therefore requiring no extremely

heavy storage spaces. Moreover, it does not assume any specific distribution

on data, which hence distinguishes itself from the traditional global generative

learning. As a critical contribution, MEMPM represents a distribution-free

Bayes optimal classifier in a worst-case scenario. Furthermore, we will show

that this model incorporate two important global learning approaches, Biased

Minimax Probability Machine (BMPM) and Minimax Probability Machine

(MPM) [85, 86]. Since all approaches within the paradigm of global learning

requires summarizing the data information completely and globally, it thus

may waste computational resources and is widely argued to be less direct.

This motivates the local learning, which makes no attempt to model the data

globally, but focuses on extracting only those information directly related to

the task. This type of learning is often refereed to as discriminative learning in

the context of classifications. One famous model among them is Support Vec-

tor Machine (SVM). With the task-oriented, robust, computationally tractable

properties, SVM has achieved a great success and is considered as the current

state-of-the-art classifier. Although local learning demonstrates superior per-

formance to traditional global learning, it appears to situate itself at another
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extreme end, which totally discards the useful global information, e.g., the

structure information of data.

Our suggestion is that we should combine these two different but comple-

mentary paradigms. Towards this end, we then propose a new model called

Maxi-Min Margin Machine (M4), which not only successfully employs the

global structure information from data but also holds merits of local learning

such as robustness and superior classification accuracies. As a critical contribu-

tion, M4, the hybrid learning model, represents a general model, successfully

shown to contain both local learning models and global learning models as

special cases. More specifically, it contains two significant and popular global

learning models, i.e., Fisher Discriminant Analysis (FDA) [47] and Minimax

Probability Machine [84, 85, 86] as special cases. Meanwhile, SVM, the local

learning model can also be considered as one of its branches. In addition, M4

also demonstrates a strong connection with MEMPM, the novel general global

learning model.

In the following, we first present the problem definition, which will be used

throughout this thesis. We then base Figure 2.1 to provide introductions and

comments for each type of learning model sequently. Finally, we summarize

the review and conclude with the proposition of the hybrid framework, the

objective of this thesis.

2.1 Problem Definition

Given a data set D consisting of N observations, where each observation is

of the form (z1, z2, . . . , zn, c) (zi ∈ R, for 1 ≤ i ≤ n, c ∈ F, where F is

a finite set), the basic learning problem is to construct a mapping rule or

a function f from {z1, z2, . . . , zn} called features or attributes to the output

c, denoted as the class variable, namely f(z1, z2, . . . , zn,Θ, D) → c, where Θ

means the function parameters. The function f should be not only as accurate
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as possible to fit the observations D, but also can robustly predict the class

for the new data. Sometimes, we also use Θ to denote the mapping model

f and its associated parameters. For simplicity, we often use z to denote

the n-dimensional variable {z1, z2, . . . , zn}. If we use zj, we refer it to the

j-th observation in D. Throughout this thesis, unless we provide statements

explicitly, bold typeface will indicate a vector or matrix, while normal typeface

will refer to a scale variable or the component of the vectors.

2.2 Global Learning

Global learning often describes the data by attempting to estimate a distribu-

tion over variables (z1, z2, . . . , zn, c), denoted as p(z, c,Θ|D). The estimated

distribution can then be used to make predictions by calculating the probabil-

ity that a specific value of c will occur, when given an instance of features z.

In more details, the decision rule or the mapping function can be described as:

c = arg max
ck∈F

p(ck|D, z) = arg max
ck∈F

∫
p(ck,Θ|D, z)dΘ. (2.1)

By employing Bayes theory, one can transform the above joint probability (the

item inside the integral) into the following equivalent forms:

p(ck,Θ|D, z) =
p(ck, z|D,Θ)p(Θ|D)∑

ck∈F
∫
p(ck, z|D,Θ)p(Θ|D)dΘ

. (2.2)

Since the denominator in the above does not influence the decision in practice,

the decision rule of (2.1) can be written into a relatively easily-calculated form:

c = arg max
ck∈F

∫
p(ck, z|D,Θ)p(Θ|D)dΘ. (2.3)

Depending on how the model Θ is assumed on D, global learning can

be further divided into generative learning and non-parametric learning as



Chapter 2 Global Learning Vs. Local Learning — A Background Review 19

elaborated in the following subsections.

2.2.1 Generative Learning

Generative learning often assumes a specific model on data D. For exam-

ple, a Gaussian distribution is assumed to be the underlying model to gen-

erate D. In this case, the parameters Θ refer to the mean and covariance

for the Gaussian distribution. There are many models, which belong to this

type of learning. Among them are Naive Bayes model [38, 78, 88], Gaussian

Mixture Model [10, 51, 56, 103], Bayesian Network [59, 60, 61, 63, 87, 117],

Hidden Markov Model [5, 143], Logistic Regression [71], Bayes Point Ma-

chine [58, 106, 130], Maximum Entropy Estimations [70] etc. The key problem

for generative learning is how to learn the parameters Θ from data. Generally,

in the literatures of machine learning, three schemes, Maximum Likelihood

learning, Conditional Likelihood learning, and Bayesian Average learning, are

engaged for estimating the parameters. We state these approaches one by one

in the following.

Maximum Likelihood Learning & Maximum A Posterior Learning

Considering that it is not always easy to calculate the integral in (2.3), ear-

lier researchers often try to compute some approximations of (2.3) instead.

This motivates the Maximum Likelihood learning and Maximum A Posterior

(MAP) learning [38, 117].

These learning methods replace (2.3) with the formulation below:

c = arg max
ck∈F

p(ck, z|D,Θ∗) , (2.4)

In the above, how Θ∗ are estimated thus discriminates MAP from ML. In
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MAP, Θ∗ are estimated as:

Θ∗ = arg max p(Θ|D) ; (2.5)

while in ML, the parameters are given as:

Θ∗ = arg max p(D|Θ) . (2.6)

Observing (2.3), one can see that MAP actually enforces the approximated

conditional distribution over parameters as a delta function situating itself at

the most prominent Θ. Namely,

p̂(Θ|D) =





1 if Θ = arg max p(Θ|D) ;

0 otherwise.
(2.7)

For ML, it is even simpler. This can be observed by looking into the relation

between MAP and ML:

arg max p(Θ|D) = arg max p(D|Θ)p(Θ). (2.8)

Thus, compared to MAP, ML omits the item p(Θ), the prior probability over

the parameters. In practice, a model with a more complex structure may be

more possible to cause over-fitting, which means the model can fit the training

data perfectly while having a bad prediction ability on the test or future data.

In this sense, discarding the prior probability, ML lacks the flexibility to favor

simple models by conditioning the prior probability [15, 150]. On the other

hand, MAP permits a regularization on the prior probability and thus contains

potentials to resist over-fitting problems.

When applied in practice, under independent, identically distributional

data (i.i.d.) conditions, rather than directly optimizing the original form, ML

estimations usually take the maximization on the log-likelihood , which can
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transform the multiplication form into an easily-solved additional one:

Θ∗ = arg max p(D|Θ) = arg max log p(D|Θ) = arg max
N∑

j=1

log p(zj|Θ). (2.9)

Maximum Conditional Learning

Rather than computing the integral form, both the above ML learning and

MAP learning seek to use one specific point Θ∗ to calculate (2.3). The differ-

ence between them lies in how they estimate the specific parameter Θ∗. Com-

pared with the long history in using ML and MAP estimations, Maximum

Conditional learning enjoys a short span of time but has achieved state-of-the-

art performance in many domains such as speech recognition [10, 127, 158].

Maximum Conditional learning also focuses on adopting one certain Θ∗ to

simplify the computation of (2.3). Differently, the selection of Θ∗ is based on

maximizing a conditional likelihood defined as follows:

Θ∗ = arg max p(C|Θ,Z) , (2.10)

where C = {c1, c2, . . . , cN} is the vector formed by the class label of each

observation in D, and Z = {z1, z2, . . . , zN} corresponds to the data of the

attributes (or features) part in D. Similar to the relation between ML and

MAP, MC can also plug in a prior probability into the above formulae for

resisting over-fitting problems, i.e.,

Θ∗ = arg max p(C|Θ,Z)p(Θ) , (2.11)

By maximizing the conditional likelihood, MC is thus more direct and

classification oriented. Note that only the conditional probability, which is

maximized above, is directly related to the classification purpose. Maximizing
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other quantities as done in ML or MAP, possibly optimizes unnecessary infor-

mation for classifications, which is wasteful and imprecise. However, although

MC appears to be more precise, it is usually hard to conduct the optimiza-

tion due to the involvement of the conditional item. Such an example can

be seen in optimizing a tree-based Bayesian Networks [46]. Moreover, when

there is missing information, the optimization of MC may even present a more

tough problem in general, while in such circumstances, powerful Expectation

Maximization (EM) techniques [82, 105] can easily be applied in ML.

Bayesian Average Learning

It is noted that in ML, MAP and MC, for the easy calculation of (2.3) one

certain Θ∗ is adopted for approximations. However, although one point esti-

mation enjoys computational advantages in approximating (2.3), in practice

it may be very inaccurate and in this sense may impair the prediction abil-

ity of global learning. Aiming to solve this problem, recent researches have

suggested to use the Bayesian Average learning approaches. This type of ap-

proaches facilitates the computation of (2.3) by changing the integral into a

summation form based on sampling methods, e.g., Markov Chain Monte Carlo

methods [48, 74, 110, 111, 118].

Following this trend, many models are proposed. Among them are Bayesian

Point Machine [58, 106, 130] and Maximum Entropy Estimation [70]. Bayes

Point Machine restricts the averaging of the parameters in the version space,

which denotes the space where the training data can be perfectly classified.

This proposed method is reported to contain a better generalization ability

within the global learning framework. But it is challenged to lack systematic

ways to extend its applications into non-separable data sets, where the version

space may include no candidate solutions. Maximum Entropy Estimation, on

the other hand, seems to provide a more flexible and more systematic scheme

to perform the averaging of models. By trying to maximize an entropy-like



Chapter 2 Global Learning Vs. Local Learning — A Background Review 23

objective, Maximum Entropy Estimation demonstrates some characteristics of

both global learning and local learning. However, this approach argues that

only two small data sets are used to evaluate its performance. Moreover, the

prior, usually unknown, plays an important role in this model, but has to be

assumed beforehand.

2.2.2 Non-parametric learning

In contrast with generative learning discussed in the above, non-parametric

learning does not assume any specific global models before learning. Therefore,

no risk will be taken on possible wrong assumptions on data. Consequently,

non-parametric learning appears to set a more valid foundation than generative

learning models. Typical non-parametric learning models in the context of

classifications consist of Parzen Window estimation [39] and the widely used

k-Nearest-Neighbor model [27, 129]. We will discuss these two models in the

following.

The Parzen Window estimation also attempts to estimate a density among

the training data. However it employs a totally different way. Parzen window

first defines an n-dimensional cell hypercube region RN over each observation.

By defining a window function:

w(u) =





1 |uj| ≤ 1/2 j = 1, 2, . . . , n

0 otherwise
(2.12)

the density is then estimated as

pN (z) =
1

N

N∑

i=1

1

hN
w(

z− zi

hN
) , (2.13)

where hN is defined as the length of the edge of RN .

From the above, one can observe that Parzen Window puts a local density
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Figure 2.2: An illustration of Parzen window estimation

over each observation, the final density is then the statistical result of averaging

all local densities. In practice, the window function can actually be general

functions including the most commonly-used Gaussian function. Figure 2.2

illustrates a density estimated by the Parzen window algorithm.

The k-Nearest-Neighbor method can be cast as designing a special cell over

each observation and then averages all the cell densities as the overall density

for data. More specifically, the cell volume VN is designed as follows: let the

cell volume be a function of the training data, by centering a cell around each

point zj and increasing the volume until kN samples are contained, where kN

depends on N . The local density for each observation is then defined as

pN (zj) =
kN/N

VN
. (2.14)

When used for classifications, the prediction is given by the class with the
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maximum posterior probability, i.e.,

c = arg max
ci∈F

pN(ci|z). (2.15)

Further, the posterior probability can be calculated as below:

pN(ci|z) =
pN (ci, z)∑
i∈F pN (z, ci)

=
ki/N
V∑

i∈F
ki/N
V

=
ki
k
. (2.16)

Therefore, the prediction result is just the class with the maximum fraction of

the samples in a cell.

These non-parametric methods make no underlying assumptions on data

and appear to be more general in real cases. However, using no parameters

actually means using many “parameters” so that each parameter would not

dominate other parameters (in the discussed models, the data points can be

in fact considered as the “parameters”). In such a way, if one parameter

fails to work, it will not influence the whole system globally and statistically.

However, using many “parameters” also results in serious problems. One of the

main problems is that the density is overwhelmingly dependent on the training

samples. Therefore, to generate an accurate density, the number of samples

needs to be very large (much larger than would be required if we perform the

estimation by generative learning approaches). What is even worse is that the

number of data will unfortunately increase exponentially with the dimension

of data. Another disadvantage caused is its severe requirement for the storage,

since all the samples need to be saved beforehand in order to predict new data.

2.2.3 Minimum Error Minimax Probability Machine

Within the context of global learning, a dilemma seems existing: If we assume

a specific model as in generative learning, it looses the generality; if we instead

use non-parametric learning, it is impractical for high-dimension data. One
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question is then proposed, can we have an approach, which does not require a

large number of training samples for reducing complexities and also does not

assume specific models for maintaining the generality? Towards this end, we

propose Minimum Error Minimax Probability Machine in this thesis.

Unlike generative learning or non-parametric learning, Minimum Error

Minimax Probability Machine does not try to estimate a distribution over

data. Instead, it attempts to extract reliable global information from data

and estimates parameters for maximizing the minimal possibility that a fu-

ture data will fall into the correct class. More precisely, rather than seeking

to find an accurate distribution, MEMPM focuses on studying the worst-case

probability (which is relatively robust) to predict data. In terms of the style

in making decisions, MEMPM is more like a local learning method due to its

direct optimization for classification and the task-oriented characteristic. How-

ever, because MEMPM only summarizes global information from data (not a

distribution) as well, we still locate it in the framework of global learning.

The proposed MEMPM contains many appealing features. Firstly, it rep-

resents a distribution-free Bayes optimal classifier in the worst-case scenario.

A perfect balance is achieved by MEMPM in this way: No specific model is

assumed on data, since it is distribution-free. At the same time, although in

the worst-case scenario, it is also the Bayes optimal classifier, which is only

originally applicable in the cases with a known distribution. Another critical

feature of MEMPM is that under a mild condition, it contains an explicit gener-

alization bound. Furthermore, by exploring the bound, the recently-proposed

promising model, Minimax Probability Machine is clearly demonstrated to be

its special case. Importantly, based on specifying a bound for one class of

data, a Biased Minimax Probability Machine is branched out from MEMPM,

which will be shown to provide a rigorous and systematic treatment for biased

classifications. We will detail the MEMPM model and BMPM model in the

next chapter.
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2.3 Local Learning

Local learning adopts a largely different way to construct classifiers. This type

of learning is even more task-oriented than Minimum Error Minimax Prob-

ability Machine and Maximal Conditional learning. In the context of classi-

fications, only the final mapping function from the features z to c is crucial.

Therefore, describing global information from data or explicitly summarizing

a distribution whatever is conditional or joint, is a roundabout or intermediate

step and therefore may be deemed wasteful or imprecise especially when the

global information cannot be estimated accurately.

Alternatively, recent progress has suggested a local learning method, or

well known as the discriminative learning method. The family of approaches

directly pin-points the most critical quantities for classifications, while all other

information less irrelevant to this purpose is simply omitted. Compared to

global learning, no model is assumed and also no explicit global information

will be engaged in this scheme. Among this school of methods are Neural

Networks [3, 42, 57, 104, 116, 129], Gabriel Graph methods [6, 73, 164], large

margin classifiers [30, 137, 139, 141] including Support Vector Machine, a state-

of-the-art classifier, which achieves superior performance in various pattern

recognition fields. In the following, we will focus on introducing SVM in details.

2.3.1 Support Vector Machines

Support Vector Machine is established based on minimizing the expected clas-

sification risk as defined as follows:

R(Θ) =

∫

z,c

p(z, c)l(z, c,Θ) , (2.17)
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Figure 2.3: An illustration of Support Vector Machine

where, l(z, c,Θ) is the loss function. Similar problems occur as in global learn-

ing, since generally p(z, c) is unknown. Therefore, in practice, the above ex-

pected risk is often approximated by the so-called empirical risk:

Remp(Θ) =
1

N

N∑

j=1

l(zj, cj,Θ) . (2.18)

The above loss function describes the extent on how close the estimated

class disagrees with the real class for the training data. Various metrics can

be used for defining this loss function, including the 0-1 loss and the quadratic

loss [152].

However, considering only the training data may lead to the over-fitting

problem again. In SVM, one big step in dealing with the over-fitting problem

has been made, i.e., the margin between two classes should be pulled away in

order to reduce the over-fitting risk. Figure 2.3 illustrates the idea of SVM.

Two classes of data, depicted as circles and solid dots are presented in this

figure. Intuitively observed, there are many decision hyperplanes, which can

be adopted for separating these two classes of data. However, the one plotted

in this figure is selected as the favorable separating plane, because it contains
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the maximum margin between two classes. Therefore, in the objective function

of SVM, a regularization term, representing the margin shows up. Moreover,

as seen in this figure, only those filled points, called support vectors, mainly

determine the separating plane, while other points do not contribute to the

margin at all. In another word, only several local points are critical for the

classification purpose in the framework of SVM and thus should be extracted.

Actually, a more formal explanation and theoretical foundation can be

obtained from the Structure Risk Minimization criterion [17, 154]. Therein,

maximizing the margin between different classes of data is minimizing an upper

bound of the expected risk, i.e., the VC dimension bound [154]. However, since

the focus of this thesis does not lie in the theory of SVM, we will not go further

to discuss the details about this. Interested readers can refer to [153, 154].

2.4 Hybrid Learning

Local learning (or simply regarded as SVM) has demonstrated its advantages,

such as its state-of-the-art performance (the lower generalization error), the

optimal and unique solution, and the mathematical tractability. However, it

does discard many useful information from data, e.g., the structure information

from data.

An illustrative example has been seen in Figure 1.4. In the current state-

of-the-art classifier, i.e., SVM, similar problems also occur. This can be seen

in Figure 2.4. In this figure, the purpose is to separate two catergories of

data x and y. As observed, the classification boundary is intuitively observed

to be mainly determined by the dotted axis, i.e., the long axis of the y data

(represented by �’s) or the short axis of the x data (represented by ◦’s).
Moreover, along this axis, the y data are more possible to scatter than the

x data, since y contains a relatively larger variance in this direction. Noting

this “global” fact, a good decision hyperplane seems reasonable to lie closer
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a more reasonable hyperplane

support vectors 
x 

y 

Figure 2.4: A decision hyperplane with considerations of both local and global
information.

to the x side (see the dash-dot line). However, SVM ignores this kind of

“global” information, i.e., the statistical trend of data occurrence: The derived

SVM decision hyperplane (the solid line) lies unbiasedly right in the middle

of two “local” points (the support vectors). The above considerations directly

motivate Maxi-Min Margin Machine.

2.5 Maxi-Min Margin Machine

After examining the road-map of the learning models, especially the global

learning and local learning, we have seen a strong motivation for combining

two different but complementary schemes. More specifically, borrowing the

idea from local learning by assuming no distribution on data would set a valid

foundation for the learning models. Meanwhile, fusing robust global informa-

tion, e.g., structure information, into learning models appears to benefit more

on refining decisions in separating data.

Our effort will be made in this direction. As will be detailed in Chap-

ter 4, the hybrid learning model, Maxi-Min Margin Machine successfully plugs
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the global information into the learning and enjoys good features from both

local learning and global learning. As seen in Figure 2.1, the Maxi-Min Mar-

gin Machine model has built up various connections with many models in the

literatures; it incorporates Support Vector Machine as a special case, which

lies in the framework of local learning; it also includes Minimax Probabil-

ity Machine and Fisher Discriminant Analysis as direct spin-offs. Moreover,

a strong link has been established between this model and Minimum Error

Minimax Probability Machine. Moreover, empirical investigations have shown

that this combined model outperforms both local learning model such as SVM

and global learning models, e.g., MPM.

In the next chapter, we will first present the Minimum Error Minimax

Probability Machine, which is a general global learning model. Following that,

we then introduce the Maxi-Min Margin Machine and demonstrate its merits

both theoretically and empirically.



Chapter 3

A General Global Learning

Model: MEMPM

Traditional global learning, especially generative learning, enjoys a long and

distinguished history, holding a lot of merits, e.g., a relatively simple optimiza-

tion, and the flexibility in incorporating global information such as structure

information and invariance etc. However, it is widely argued that this model

lacks the generality for having to assume a specific model beforehand. Assum-

ing a specific model over data is useful in some cases. However, the assumption

may not always coincide with the true data distribution in general and thus

may be invalid in many circumstances. In this chapter, we propose a novel

global learning model, named Minimum Error Minimax probability Machine

(MEMPM), which is directly motivated from Marshall and OlKin Probability

Theory [101, 121]. For classifying data correctly, this model focuses on es-

timating the worse-case probability, which is not only more reliable, but also

more importantly provides no need for assuming specific models. Furthermore,

this new model consists of several appealing features.

First, MEMPM acutally presents a novel general framework for classifica-

tions. As demonstrated later, MEMPM includes a recently-proposed promis-

ing model Minimax Probability Machine as its special case, which is reported

32
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to achieve comparable performance to SVM. Interpretations from both view-

points of the optimal thresholding problem and the geometry will be provided

to show the advantages of MEMPM. Moreover, this novel model branches out

another promising special case, named Biased Minimax Probability Machine

(BMPM) [65] and extends its application into a type of important classifica-

tions, i.e., biased classifications.

Second, this model derives a distribution-free Bayes optimal classifier in

the worst-case scenario. It thus distinguishes itself from the traditional global

learning methods, or more particularly, the traditional Bayes optimal classi-

fiers, which have to assume a distribution on data and thus lack the generality

in real cases. Furthermore, we will show that, under some conditions, e.g.,

when a Gaussian distribution is assumed on data, the worst-case Bayes opti-

mal classifier becomes the true Bayes optimal hyperplane.

Third, the MEMPM model contains an explicit performance indicator,

namely an explicit upper bound on the probability of misclassification of fu-

ture data. Moreover, we will demonstrate theoretically and empirically that

MEMPM attains a smaller upper bound of the probability of misclassification

than MPM, which thus implies the advantages of MEMPM over MPM.

Fourth, although in general the optimization of MEMPM is shown to be

a non-concave problem, empirically, it demonstrates a good concavity in the

main “interest” region and thus can be solved practically. Furthermore, we will

show that the final optimization problem involves solving a one-dimensional

line search problem and thus results in a satisfactory solving method.

This chapter is organized as follows. In the next section, we will first

introduce the Marshall and Olkin Theory. We then present the main content

of this chapter, the MEMPM model, including its definition, interpretations,

the practical solving method, and the sufficient conditions for the convergence

into the true Bayes decision hyperplane. Following that, we demonstrate a

robust version of MEMPM. In Section 3.4, we seek to kernelize the MEMPM
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model to attack nonlinear classification problems. We then, in Section 3.5,

present a series of experiments on synthetic data sets and real-world benchmark

data sets. In Section 3.6, we analyze the tightness of the worst-case accuracy

bound. In Section 3.7, we show that empirically MEMPM is often concave

in the main “interest” region. In Section 3.8, we present the limitations of

MEMPM and envision the possible future work. Finally, we summarize this

chapter in Section 3.9. We also develop a Matlab toolbox to build and evaluate

the MEMPM and BMPM classifiers [161, 160].

3.1 Marshall and Olkin Theory

The Marshall and Olkin Theory can be described as follows:

Theorem 1 [Marshall and Olkin Theory] The probability that a random

vector y belongs to a convex set S can be bounded by the following formulation

sup
y∼(y,Σy)

Pr{y ∈ S} =
1

1 + d2
, with d2 = inf

y∈S
(y − y)TΣ−1

y (y − y) , (3.1)

where the supremum is taken over all distributions for y containing the mean

as y and the covariance matrix as Σy. 1

The theory provides us with a possibility to assume no model, but bound

the probability of misclassifying a point and consequently develop a novel

classifier within the framework of global learning. More specifically, one can

design a linear separating plane by replacing S with a half space associated with

this linear plane. To take the supremum can then be considered to bound the

misclassification rate for one class of data. We in the following, first introduce

the model definition and then show how this theory can be applied therein for

deriving a distribution-free classifier.

1We assume Σy to be positive definite for simplicity. Otherwise, we can always add a
small positive amount to its diagonal elements to force its positive definition.
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3.2 Minimum Error Minimax Probability De-

cision Hyperplane

In this section, we first present the model definition of MEMPM while review-

ing the original MPM model. We then in Section 3.2.2 interpret MEMPM

with respect to MPM. In Section 3.2.3, we specialize the MEMPM model for

dealing with biased classifications. In Section 3.2.4, we analyze the MEMPM

optimization problem and propose a practical solving method. In Section 3.2.5,

we address the sufficient conditions when the worst-case Bayes optimal classi-

fier derived from MEMPM becomes the true Bayes optimal classifier. In Sec-

tion 3.2.6, we provide a geometrical interpretation for BMPM and MEMPM.

3.2.1 Problem Definition

The notation in this chapter will largely follow that of [85]. Let x and y denote

two random vectors representing two classes of data with means and covariance

matrices as {x,Σx} and {y,Σy}, respectively, in a two-category classification

task, where x, y, x, y ∈ Rn, and Σx, Σy ∈ Rn×n.

Assuming {x,Σx}, {y,Σy} for two classes of data are reliable, MPM at-

tempts to determine the hyperplane wTz = b (w ∈ Rn\{0}, z ∈ Rn, b ∈ R,

and superscript T denotes the transpose) which can separate two classes of

data with the maximal probability. The formulation for the MPM model is

written as follows:

max
α,β,w 6=0,b

θα + (1− θ)β s.t. (3.2)

inf
x∼(x,Σx)

Pr{wTx ≥ b} ≥ α, (3.3)

inf
y∼(y,Σy)

Pr{wTy ≤ b} ≥ β. (3.4)

where α and β indicate the worst-case classification accuracies of future
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data points for the class x and y, respectively, namely, the worst-case accu-

racy for classifying x data and y data. Future points z for which wTz ≥ b

are then classified as the class x; otherwise they are judged as the class y.

θ ∈ [0, 1] is the prior probability of the class x and 1 − θ is thus the prior

probability of the class y. Intuitively, maximizing θα + (1 − θ)β can be nat-

urally considered as maximizing the expected worst-case accuracy for future

data. In other words, this optimization leads to minimizing the expected upper

bound of the error rate. More precisely, if we change max{θα + (1 − θ)β} to

min{θ(1−α)+(1−θ)(1−β)} and consider 1−α as the upper bound probabil-

ity that an x data is classified into class y (1− β is similarly considered), the

MEMPM model exactly minimizes the maximum Bayes error and thus derives

the Bayes optimal hyperplane in the worst-case scenario. In comparison, MPM

assumes the equal worst-case probability for both classes, i.e., it forces α = β.

Obvisouly, this is inappropriate since it is unnecessary that the worst-case ac-

curacies are presumed equal. However, even in such a constrained way, MPM

is reported to achieve comparable performacne to SVM, a current state-of-the-

art classifier. Therefore, the generalized case of MPM, namely, MEMPM may

be expected to be more pomising. This will be empirically demonstrated in

the experimental part of this chapter.

3.2.2 Interpretation

We interpret MEMPM with respect to MPM in this section. First, it is evident

that if we presume α = β, the optimization of MEMPM degrades to the MPM

optimization. This would mean MPM is actually a special case of MEMPM.

An analogy to illustrate the difference between MEMPM and MPM can be

seen in the optimal thresholding problem. Figure 3.1 illustrates this analogy.

To separate two classes of one-dimensional data with density functions as p1

and p2, respectively, the optimal thresholding is given by the decision plane
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in Figure 3.1(a) (assuming the prior probabilities for two classes of data are

equal). This optimal thesholding corresponds to the point minimizing the

error rate (1−α) + (1−β) or maximizing the accuracy α+β, which is exactly

the intersection point of two density functions (1 − α represents the area of

135o-line filled region and 1 − β represents the area of 45o-line filled region).

On the other hand, the thresholding point to force α = β is not necessarily

the optimal point to separate these two classes.
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Figure 3.1: An analogy to illustrate the difference between MEMPM and MPM
with equal prior probabilities for two classes. The optimal decision plane
corresponds to the intersection point, where the error (1 − α) + (1 − β) is
minimized (or the accuracy α + β is maximized) as implied by MEMPM,
rather than the one, where α is equal to β as implied by MPM.

It should be clarified that the MEMPM model assumes no distributions.

This distinguishes the MEMPM model from the traditional Bayes optimal

thresholding method, which has to make specific assumptions on data distri-

bution. On the other hand, although MEMPM minimizes the upper bound of

the Bayes error rate of future data points, as shown later in Section 3.2.5, it

will represent the true Bayes optimal hyperplane under some conditions, e.g.,

when a Gaussian distribution is assumed on data.2

2Another interpretation of the difference between MEMPM and MPM can be stated from
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3.2.3 Special Case for Biased Classifications

The above discussion only covers the unbiased classification tasks, which does

not favor one class over the other class intentionally. However, another impor-

tant type of pattern recognition tasks, namely biased classification, arises very

often in practice. In this scenario, one class is usually more important than

the other class. Thus a bias should be imposed towards the important class.

Such typical example can be seen in the diagnosis of epidemical disease. Clas-

sifying a patient who is infected with a disease into an opposite class results in

serious consequence. Thus in this problem, the classification accuracy should

be biased towards the class with disease. In other words, we would prefer to

diagnose the person without the disease to be the infected case rather than

the other way round.

We in the following demonstrate that MEMPM actually contains a special

case we call Biased Minimax Probability Machine for biased classifications.

We formulate this special case as:

max
α,β,w 6=0,b

α s.t.

inf
x∼(x,Σx)

Pr{wTx ≥ b} ≥ α,

inf
y∼(y,Σy)

Pr{wTy ≤ b} ≥ β0,

where β0 is a pre-specified positive constant, which represents an acceptable

accuracy level for the less important class y.

The above optimization utilizes a typical setting in biased classifications,

the viewpoint of Game Theory. MPM can be regarded as a non-cooperative competitive
game. In this game, each player (class) tries to maximize its individual benefit, i.e., α. The
competition leads to each class obtaining the same benefit when all classes fulfill a kind
of equilibrium. However, in the game theory, many models, e.g., the prisoners’ dilemma,
Counot Model and the tragedy of the commons [108], have stated that maximizing individual
benefit does not lead to maximizing the global optimum. Our model, on the contrary, can
be considered as a kind of cooperative game. It achieves the global optimum through
cooperation.
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i.e., the accuracy for the important class (associated with x) should be as high

as possible, if only the accuracy for the less important class (associated with

y) maintains at an acceptable level specified by the lower bound β0 (which can

be set by users).

With quantitatively plugging a specified bias β0 into classifications and

also containing an explicit accuracy bound α for the important class, BMPM

provides a more direct and elegant way for biased classifications. Compar-

atively, to achieve a specified bias, traditional biased classifiers such as the

Weighted Support Vector Machine [115] and the Weighted k-Nearest Neigh-

bor method [99] usually adapt different costs for different classes. However,

due to the difficulties in building up quantitative connections between the cost

and the accuracy,3 for imposing a specified bias, these methods need resort

to the trial and error procedure to attain suitable costs, which are generally

indirect and lack rigorous treatments.

3.2.4 Solving the MEMPM Optimization Problem

In this section, we will propose to solve the MEMPM optimization problem. As

will be demonstrated shortly, the MEMPM optimization can be transformed

into a one-dimensional line search problem. More specifically, the objective

function of the line search problem is implicitly determined by dealing with

a BMPM problem. Therefore, solving the line search problem corresponds to

solving a Sequential Biased Minimax Probability Machine (SBMPM) problem.

Before we proceed, we first introduce how to solve the BMPM optimization

problem.

3Although cross validations could be used to provide empirical connections, they are
problem-dependent and are usually slow procedures as well.
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Solving the BMPM Optimization Problem

First, we describe Lemma 2, which is developed in [85].

Lemma 2 Given w 6= 0 and b, such that wTy ≤ b and β ∈ [0, 1), the

condition

inf
y∼(y,Σy)

Pr{wTy ≤ b} ≥ β,

holds if and only if b−wTy ≥ κ(β)
√

wTΣyw with κ(β) =
√

β
1−β .

The lemma can be proved according to the Marshall and Olkin Theory and

the Lagrangian Multiplier theory. We provide the detailed proof in Appendix A

of this thesis.

By using Lemma 2, we can transform the BMPM optimization problem as

follows:

max
α,w 6=0,b

α s.t. (3.5)

−b + wTx ≥ κ(α)
√

wTΣxw , (3.6)

b−wTy ≥ κ(β0)
√

wTΣyw , (3.7)

where κ(α) =
√

α
1−α , κ(β0) =

√
β0

1−β0
. (3.7) is directly obtained from (3.4) by

using Lemma 2. Similarly, by changing wTx ≥ b to wT (−x) ≤ −b, (3.6) can

be obtained from (3.3).

From (3.6) and (3.7), we get

wTy + κ(β0)
√

wTΣyw ≤ b ≤ wTx− κ(α)
√

wTΣxw . (3.8)

If we eliminate b from this inequality, we obtain

wT (x− y) ≥ κ(α)
√

wTΣxw + κ(β0)
√

wTΣyw . (3.9)
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We observe that the magnitude of w does not influence the solution of (3.9).

Moreover, we can assume x 6= y; otherwise, if x = y, the minimax machine

does not have a physical meaning. In this case, (3.9) may even have no solution

for every β0 6= 0, since the right hand side would be always positive provided

that w 6= 0. Thus in the extreme case, β and α have to be zero, which means

the worst-case misclassification are always zero.

Without loss of generality, we can set wT (x − y) = 1. Thus the problem

can be further changed as

max
α,w 6=0

α s.t. (3.10)

1 ≥ κ(α)
√

wTΣxw + κ(β0)
√

wTΣyw , (3.11)

wT (x− y) = 1. (3.12)

Since Σx can be assumed as positive definite (otherwise, we can always add

a small positive amount to its diagonal elements and make it positive definite),

from (3.11) we can obtain:

κ(α) ≤ 1− κ(β0)
√

wTΣyw√
wTΣxw

. (3.13)

Because κ(α) increases monotonically with α, maximizing α is equivalent

to maximizing κ(α), which further leads to

max
w 6=0

1− κ(β0)
√

wTΣyw√
wTΣxw

s.t. wT (x− y) = 1.

This kind of optimization is called Fractional Programming (FP) problem [68,

100, 134]. To elaborate further, this optimization is equivalent to solving the

following fractional problem:

max
w 6=0

f(w)

g(w)
, (3.14)



Chapter 3 A General Global Learning Model: MEMPM 42

subject to w ∈ A = {w|wT (x−y) = 1}, where f(w) = 1−κ(β0)
√

wTΣyw, g(w) =
√

wTΣxw.

Theorem 3 The Fractional Programming problem (3.14) associated with the

BMPM optimization is a pseudo-concave problem, whose every local optimum

is the global optimum.

Proof: It is easy to see that the domain A is a convex set on Rn, f(w)

and g(w) are differentiable on A. Moreover, since Σx and Σy can be both

considered as positive definite matrices, f(w) is a concave function on A and

g(w) is a convex function on A. Then f(w)
g(w)

is a concave-convex FP problem.

Hence it is a pseudo-concave problem [134]. Therefore, every local maximum

is the global maximum [134].

To handle this specific FP problem, many methods such as the parametric

method [134], the dual FP method [29, 133], and the concave FP method [28]

can be used. A typical Conjugate Gradient method [11] in solving this problem

will have a worst-case O(n3) time complexity. Adding the time cost to estimate

x, y, Σx, and Σy, the total cost for this method is O(n3 + Nn2), where N is

the number of data points. This complexity is in the same order as the linear

Support Vector Machines [138] and the linear MPM [85].

In this chapter, the Rosen gradient projection method [11] is used to find

the solution of this pseudo-concave FP problem, which is proved to converge

to a local maximum with a worse-case linear convergence rate. Moreover, the

local maximum will exactly be the global maximum in this problem.
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Sequential BMPM Optimization Method for MEMPM

We now turn to solving the MEMPM problem. Similar to Section 3.2.4, we

can base on Lemma 2 to transform the MEMPM optimization as follows:

max
α,β,w 6=0,b

θα + (1− θ)β s.t. (3.15)

−b + wTx ≥ κ(α)
√

wTΣxw , (3.16)

b−wTy ≥ κ(β)
√

wTΣyw . (3.17)

Using the similar analysis as in Section 3.2.4, we can further transform the

above optimization into

max
α,β,w 6=0

θα + (1− θ)β s.t. (3.18)

1 ≥ κ(α)
√

wTΣxw + κ(β)
√

wTΣyw , (3.19)

wT (x− y) = 1. (3.20)

In the following we provide a lemma to show that the MEMPM solution

is actually attained on the boundary of the set formed by the constraints of

(3.19) and (3.20).

Lemma 4 The maximum value of θα+(1−θ)β under the constraints of (3.19)

and (3.20) is achieved when the right hand side of (3.19) is strictly equal to 1.

Proof: Assume the maximum is achieved when 1 > κ(β)
√

wTΣyw +

κ(α)
√

wTΣxw. A new solution constructed by increasing α or κ(α) with a

small positive amount,4 and maintaining β, w unchanged will satisfy the con-

straints and will be a better solution.

By applying Lemma 4, we can transform the optimization problem (3.18)

4Since κ(α) increases monotonically with α, increasing α a small positive amount corre-
sponds to increasing κ(α) a small positive amount.



Chapter 3 A General Global Learning Model: MEMPM 44

under the constraints of (3.19) and (3.20) as follows:

max
β,w 6=0

θκ2(α)

κ2(α) + 1
+ (1− θ)β s.t. (3.21)

wT (x− y) = 1, (3.22)

where κ(α) =
1−κ(β)

√
wT

∑
y w√

wT
∑

x w
.

In (3.21), if we fix β to a specific value within [0, 1), the optimization is

equivalent to maximizing κ2(α)
κ2(α)+1

and further equivalent to maximizing κ(α),

which is exactly the BMPM problem. We can then update β according to

some rules and repeat the whole process until an optimal β is found. This is

also the so-called line search problem [11, 9]. More precisely, if we denote the

value of optimization as a function f(β), the above procedure corresponds to

finding an optimal β to maximize f(β). Instead of using an explicit function as

in traditional line search problems, the value of the function here is implicitly

given by a BMPM optimization procedure.

Many methods can be used to solve the line search problem. In this chap-

ter, we use the Quadratic Interpolation (QI) method [11]. As illustrated in

Figure 3.2, QI finds the maximum point by updating a three-point pattern

(β1, β2, β3) repeatedly. The new β denoted by βnew is given by the quadratic

interpolation from the three-point pattern. Then a new three-point pattern

is constructed by βnew and two of β1, β2, β3. This method can be shown to

converge superlinearly to a local optimum point [11]. Moreover, as shown in

Section 3.7, although MEMPM generally cannot guarantee its concavity, em-

pirically it is often a concave problem. Thus the local optimum will be often

the global optimum in practice.

Until now, we do not mention how to calculate the intercept b. From

Lemma 4, we can see that the inequalities (3.16) and (3.17) will become equal-

ities at the maximum point (w∗, b∗). The optimal b will thus be obtained
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3
 

Figure 3.2: A three-point pattern and Quadratic Line search method. A βnew
is obtained and a new three-point pattern is constructed by βnew and two of
β1, β2 and β3.

by

b∗ = wT
∗ x− κ(α∗)

√
wT
∗Σxa∗ = wT

∗ y + κ(β∗)
√

wT
∗Σya∗ . (3.23)

3.2.5 When the Worst-case Bayes Optimal Hyperplane

Becomes the True One?

As discussed, the MEMPM derives the worst-case Bayes optimal hyperplane,

thus it is interesting to dig out on what conditions the worst-case optimal one

changes into the true optimal one.

In the following we demonstrate two propositions: the first is that when

data are assumed under some distributions, e.g., Gaussian distribution, the

MEMPM leads to the Bayes optimal classifier; the second is that when applied

into high-dimensional classification tasks, the MEMPM can be adapted to
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converge into the true Bayes optimal classifier under the Lyapunov condition.

To introduce the first proposition, we begin with assuming data distribution

as a Gaussian distribution.

Assuming x ∼ N (x,Σx) and y ∼ N (y,Σy), (3.3) becomes:

inf
x∼N (x,Σx)

Pr{wTx ≥ b} = Prx∼N (x,Σx){wTx ≥ b}

= Pr{N (0, 1) ≥ b−wTx√
wTΣxw

}

= 1− Φ(
b−wTx√
wTΣxw

)

= Φ(
−b + wTx√

wTΣxw
) ≥ α, (3.24)

where Φ(z) is the cumulative distribution function for the standard normal

Gaussian distribution as defined as:

Φ(z) = Pr{N (0, 1) ≤ z} =
1√
2π

∫ z

−∞
exp(−s2/2)ds.

Due to the monotonic property of Φ(z), we can further write (3.24) as:

−b + wTx ≥ Φ−1(α)
√

wTΣxw .

Constraint (3.4) can be reformulated to a similar form. The optimization (3.2)

is thus changed as:

max
α,β,w 6=0,b

θα + (1− θ)β, s.t.

−b + wTx ≥ Φ−1(α)
√

wTΣxw , (3.25)

b−wTy ≥ Φ−1(β)
√

wTΣyw . (3.26)

The above optimization is nearly the same as (3.2) subject to the constraints

of (3.3) and (3.4) except that, κ(α) is equal to Φ−1(α), instead of
√

α
1−α . Thus,
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it can be similarly solved based on the Sequential Biased Minimax Probability

Machine method.

On the other hand, the Bayes optimal hyperplane corresponds to the one,

wTz = b, which minimizes the Bayes error:

min
w 6=0,b

θPrx∼N (x,Σx){wTx ≤ b}+ (1− θ)Pry∼N (y,Σy){wTy ≥ b}. (3.27)

The above is exactly the upper bound of θα + (1 − θ)β. From Lemma 4, we

can know (3.25) and (3.26) will eventually become equalities. Traced back

to (3.24), the equalities imply that α and β will achieve their upper bounds

respectively. Therefore, with the Gaussian distribution assumption on data,

the MEMPM derives the optimal Bayes hyperplane.

We propose Proposition 5 to extend the above analysis to general distribu-

tion assumptions.

Proposition 5 If the distribution of the normalized random variable wT x−wTx√
wTΣxw

,

denoted as NS, is independent of w, as the case in Gaussian distribution, the

similar MEMPM version as in Gaussian distribution assumption will be eas-

ily derived, except that Φ(z) is changed as Pr{NS(0, 1) ≤ z}. In such case,

minimizing the Bayes error bound will exactly minimize the true Bayes error.

Before presenting Proposition 7, we first introduce the Central Limit The-

orem under the Lyapunov condition [25].

Theorem 6 Let xn be a sequence of independent random variables defined

on the same probability space. Assume that xn has finite expected value µn

and finite standard deviation σn. We define s2
n =

∑n
i=1 σ

2
i . Assume that the

third central moment r3
n =

∑n
i=1 E(|xn − µn|3) are finite for every n, and that

limn→∞
rn
sn

= 0 (This is the Lyapunov condition). The sum Sn = x1 + ... + xn

converges towards a Gaussian distribution.
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One interesting finding directly elicited from the above Central Limit The-

orem is that, if the component variable xi of a given n-dimensional random

variable x satisfies the Lyapunov condition, the sum of weighted component

variables xi, 1 ≤ i ≤ n, namely, wTx tends to be a Gaussian distribution, as

n grows.5 This shows that, under the Lyapunov condition, when the dimen-

sion n grows, the hyperplane derived by MEMPM with Gaussian assumption

tends to be the true Bayes optimal hyperplane. In this case, the MEMPM us-

ing Φ−1(α) the inverse function of the normal cumulative distribution, instead

of
√

α
1−α , will converge to the true Bayes optimal decision hyperplane in the

high-dimensional space. We summarize the analysis into Proposition 7.

Proposition 7 If the component variable xi of a given n-dimensional random

variable x satisfies the Lyapunov condition, the MEMPM hyperplane derived

by using Φ−1(α), the inverse function of normal cumulative distribution, will

converge to the true Bayes optimal one.

The underlying justifications in the above two propositions root in the fact

that the generalized MPM is exclusively determined by the first and second

moments. These two propositions actually emphasize the dominance of the

first and second moments in representing data. More specifically, Proposition 5

hints that the distribution is only decided by up to the second moments. The

Lyapunov condition in Proposition 7 also implies that the second order moment

dominates the third order moment in the long run. It also deserves attentions

that with the fixed mean and covariance, the distribution of Maximum Entropy

Estimation is the Gaussian distribution [75]. This would once again suggest

the usage of Φ−1(α) in the high-dimensional space.

5Some techniques such as Independent Component Analysis [32] can be applied to decor-
relate the dependence among random variables beforehand.
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3.2.6 Geometrical Interpretation

In this section, we first provide a parametric solving method for BMPM. We

then demonstrate that this parametric method actually enables a nice geomet-

rical interpretation for both BMPM and MEMPM.

A Parametric Method for BMPM

According to the parametric method, the fractional function can be iteratively

optimized in two steps [134]:

Step 1. Find w by maximizing f(w)− λg(w) in the domain A, where λ ∈ R
is the newly introduced parameter.

Step 2. Update λ by f(w)
g(w)

.

The iteration of the above two steps will guarantee to converge to the local

maximum, which is also the global maximum in our problem. In the following,

we adopt a method to solve the maximization problem in Step 1. Replacing

f(w) and g(w), we expand the optimization problem as:

max
w 6=0

1− κ(β0)
√

wTΣyw − λ
√

wTΣxw s.t. wT (x− y) = 1. (3.28)

Maximizing (3.28) is equivalent to minw κ(β0)
√

wTΣyw + λ
√

wTΣxw under

the same constraint. By writing w = w0 +Fu, where w0 = (x−y)/ ‖ x−y ‖2
2

and F ∈ Rn×(n−1) is an orthogonal matrix whose columns span the subspace

of vectors orthogonal to x− y, an equivalent form (a factor 1
2

over each term

has been dropped) to remove the constraint can be obtained:

min
u,η>0,ξ>0

η +
λ2

η
‖Σx

1/2(w0 + Fu)‖2
2 + ξ +

κ(β0)2

ξ
‖Σy

1/2(w0 + Fu)‖2
2 , (3.29)
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where η, ξ ∈ R. This optimization form is very similar to the one in Minimax

Probability Machine [84] and can also be solved by using an iterative least-

squares approach.

A Geometrical Interpretation for BMPM and MEMPM

The parametric method actually enables a nice geometrical interpretation of

BMPM and MEMPM in a fashion similar to that of MPM in [85]. Similarly,

we assume x 6= y for the meaningful classification and assume that Σx and Σy

are positive definite for the purpose of simplicity.

By using the 2-norm definition of a vector z : ‖z‖2 = max{uTz : ‖u‖2 ≤ 1},
we can express (3.28) as its dual form:

τ∗ := min
w 6=0

max
u,v

λuTΣx
1/2w + κ(β0)vTΣy

1/2w + τ(1−wT (x− y))

s.t. ‖u‖2 ≤ 1, ‖v‖2 ≤ 1 .

We change the order of the min and max operators and consider the min:

min
w 6=0

λuTΣx
1/2w + κ(β0)vTΣy

1/2w + τ(1−wT (x− y))

=





τ if τx− λΣx
1/2u = τy + κ(β0)Σy

1/2v

−∞ otherwise

Thus, the dual problem can be further changed as:

max
τ,u,v

τ : ‖u‖2 ≤ 1, ‖v‖2 ≤ 1, τx− λΣx
1/2u = τy + κ(β0)Σy

1/2v . (3.30)

By defining ` := 1/τ , we rewrite the dual problem as:

min
`,u,v

` : x− λΣx
1/2u = y + κ(β0)Σy

1/2v, ‖u‖2 ≤ `, ‖v‖2 ≤ ` . (3.31)
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Figure 3.3: The Geometrical interpretation of MEMPM and BMPM. Finding
the optimal BMPM hyperplane corresponds to finding the decision plane (the
black dashed line) tangent to an ellipsoid (the inner red dashed ellipsoid on
the y side) , which is centered at y, shaped by the covariance Σy and whose
Mahalanobis distance to y is exactly equal to κ(β0) (κ(β0) = 1.28 in this
example). The worst-case accuracy α for x is determined by the Mahalanobis
distance κ (κ = 5.35 in this example), at which, an ellipsoid (centered at x
and shaped by Σx) is tangent to that κ(β0) ellipsoid, i.e., the outer red dahsed
ellipsoid on the x side. In comparison, MPM tries to find out the minimum
equality-constrained κ, at which two ellipsoids for x and y intersect (both
dotted red ellipsoids with κ = 2.77). For MEMPM, it achieves a tangent
hyperplane in a non-balanced fashion, i.e., two ellipsoids may not attain the
same κ but is globally optimal in the worst-case setting (see the solid blue
ellipsoids).

When the optimum is attained, we have

τ∗ = λ‖Σx
1/2w∗‖2 + κ(β0)‖Σy

1/2w∗‖2 = 1/`∗ . (3.32)

We consider each side of (3.31) as an ellipsoid centered at the mean x and y

and shaped by the weighted covariance matrices λΣx and κ(β0)Σy respectively:

Hx(`) = {x = x + λΣx
1/2u : ‖u‖2 ≤ `}, (3.33)

Hy(`) = {y = y + κ(β0)Σy
1/2v : ‖v‖2 ≤ `} (3.34)
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The above optimization involves finding a minimum ` for which two ellip-

soids intersect. For the optimum `, these two ellipsoids would be tangent to

each other. We further note that, according to Lemma 4, at the optimum, λ∗,

which is maximized via a series of the above procedures, would satisfy

1 = λ∗‖Σx
1/2w∗‖2 + κ(β0)‖Σy

1/2w∗‖2 = τ∗ = 1/`∗ (3.35)

⇒ `∗ = 1 . (3.36)

This means that the ellipsoid for the class y finally changes to the one

centered at y, whose Mahalanobis distance to y is exactly equal to κ(β0).

Moreover, the ellipsoid for the class x would be the one centered at x and tan-

gent to the ellipsoid for the class y. In comparison, for MPM, two ellipsoids

grow with the same speed (with the same κ(α) and κ(β)). On the other hand,

since MEMPM corresponds to solving a sequence of BMPMs, it similarly leads

to a hyperplane tangent to two ellipsoids, which achieves to minimize the max-

imum of the worst-case Bayes error. Moreover, it is not necessarily attained

in a balanced way as in MPM, i.e., two ellipsoids do not necessarily grow with

the same speed and hence probably contain the unequal Mahalanobis distance

from their corresponding centers. This is illustrated in Figure 3.3.

3.3 Robust Version

In the above, the estimates of means and covariance matrices are assumed

reliable. We now consider how the probabilistic framework in (3.2) changes

against the variation of the means and covariance matrices:

max
α,β,w 6=0,b

θα + (1− θ)β s.t. (3.37)

inf
x∼(x̄,Σx)

Pr{wTx ≥ b} ≥ α, ∀(x̄,Σx) ∈ X , (3.38)

inf
y∼(ȳ,Σy)

Pr{wTy ≤ b} ≥ β, ∀(ȳ,Σy) ∈ Y , (3.39)
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where X and Y are the sets of means and covariance matrices and are the

subsets of R×P+
n , where P+

n is the set of n×n symmetric positive semidefinite

matrices.

Motivated by the tractability of the problem and from the statistical view,

a specific setting of X and Y is proposed in [85]. However, they consider the

same variations of the means for two classes, which is easy to handle but less

general. Now, considering the unequal treatment of each class, we propose the

following setting, which is in a more general and complete form:

X =
{

(x̄,Σx) | (x̄− x̄0)Σ −1
x (x̄− x̄0) ≤ ν2

x, Σx ∈ ‖Σx − Σ 0
x ‖F ≤ ρx

}
,

Y =
{

(ȳ,Σy) | (ȳ− ȳ0)Σ −1
y (ȳ− ȳ0) ≤ ν2

y, Σy ∈ ‖Σy − Σ 0
y ‖F ≤ ρy

}
,

where x̄0, Σ0
x are the “nominal” means and covariance matrices obtained

through estimating. Parameters νx, νy, ρx, and ρy are positive constants. The

matrix norm is defined as the Frobenius norm: ‖M‖2
F = Tr(MTM).

With the assumption that variations of the means for two classes are the

same, the parameters νx and νy are required equal in [85]. This may enable the

direct usage of the MPM optimization into its robust version. However, the

assumption may not be true in real cases. Moreover, in MEMPM, this require-

ment is also not necessary and inappropriate. This will be later demonstrated

in the experiment.

By applying the results from [85], we obtain the robust MEMPM as:

max
α,β,w 6=0,b

θα + (1− θ)β s.t.

−b + wT x̄0 ≥ (κ(α) + νx)
√

wT (Σ 0
x + ρxIn)w,

b−wT ȳ0 ≥ (κ(β) + νy)
√

wT (Σ 0
y + ρyIn)w.
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Analogously, we transform the above optimization problem as:

max
α,β,w 6=0

θ
κ2
r(α)

1 + κ2
r(α)

+ (1− θ)β s.t. wT (x̄0 − ȳ0) = 1, (3.40)

where κr(α) = max

(
1−(κ(β)+νy)

√
wT (Σ 0

y +ρyIn)w√
wT (Σ 0

x +ρxIn)w
− νx, 0

)
and thus can be solved

by the SBMPM method. The optimal b is therefore calculated by

b∗ = a∗
T x̄0 − (κ(α∗) + νx)

√
a∗T (Σ 0

x + ρxIn)a∗

= a∗
T ȳ0 + (κ(β∗) + νy)

√
a∗T (Σ 0

y + ρyIn)a∗.

Remarks. Interestingly, if MPM is treated with unequal robust parame-

ters νx and νy, it leads to solving an optimization similar to MEMPM, since

κ(α) + νx will not be equal to κ(α) + νy. In addition, similar to the robust

MPM, when applied in practice, the specific values of νx, νy, ρx, and ρy can

be provided based on the Central Limit Theorem.

3.4 Kernelization

We note that, in the above, the classifier derived from MEMPM is given in

a linear configuration. In order to handle nonlinear classification problems,

in this section, we seek to use the kernelization trick [109] to map the n-

dimensional data points into a high-dimensional feature space Rf , where a

linear classifier corresponds to a nonlinear hyperplane in the original space.

Since the optimization of MEMPM corresponds to a sequence of BMPM

optimization problems, this model naturally inherits the kernelization ability of

BMPM. We thus in the following mainly address the kernelization of BMPM.

Assuming training data points are represented by {xi}Nx
i=1 and {yj}Ny

j=1 for



Chapter 3 A General Global Learning Model: MEMPM 55

the class x and y, respectively, the kernel mapping can be formulated as:

x→ ϕ(x) ∼ (ϕ(x),Σϕ(x)),

y→ ϕ(y) ∼ (ϕ(y),Σϕ(y)),

where ϕ : Rn → Rf is a mapping function. The corresponding linear clas-

sifier in Rf is wTϕ(z) = b, where w, ϕ(z) ∈ Rf , and b ∈ R. Similarly, the

transformed FP optimization in BMPM can be written as:

max
w

1− κ(β0)
√

wTΣϕ(y)w√
wTΣϕ(x)w

s.t. wT (ϕ(x)− ϕ(y)) = 1. (3.41)

However, to make the kernel work, we need to represent the final decision

hyperplane and the optimization into a kernel form, K(z1, z2) = ϕ(z1)Tϕ(z2),

namely an inner product form of the mapping data points.

3.4.1 Kernelization Theory for BMPM

In the following, we demonstrate that, although BMPM possesses a signifi-

cantly different optimization form from MPM, the kernelization theory pro-

posed in [85] is still viable, provided that suitable estimates for means and

covariance matrices are applied therein.

We first state a theory similar to Corollary 5 of [85] and prove its validity

in BMPM.

Corollary 8 If the estimates of means and covariance matrices are given in
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BMPM as

ϕ(x) =
Nx∑

i=1

λiϕ(xi), ϕ(y) =

Ny∑

j=1

ωjϕ(yj) ,

Σϕ(x) = ρxIn +
Nx∑

i=1

Λi(ϕ(xi)− ϕ(x))(ϕ(xi)− ϕ(x))T ,

Σϕ(y) = ρyIn +

Ny∑

j=1

Ωj(ϕ(yj)− ϕ(y))(ϕ(yj)− ϕ(y))T ,

where In is the identity matrix of dimension n, then the optimal w in problem

(3.41) lies in the space spanned by the training points.

Proof: Similar to [85], we write w = wp+wv, where wp is the projection

of w in the vector space spanned by all the training data points and wv is the

orthogonal component to this span space. It can be easily verified that (3.41)

changes to maximize the following:

1− κ(β0)
√

wT
p

∑Nx

i=1 Λi(ϕ(xi)− ϕ(x))(ϕ(xi)− ϕ(x))Twp + ρx(wT
p wp + wT

d wd)√
wT
p

∑Ny

j=1 Ωj(ϕ(yj)− ϕ(y))(ϕ(yj)− ϕ(y))Twp + ρy(wT
p wp + wT

d wd)

subject to the constraints of wT
p (ϕ(x)−ϕ(y)) = 1. Since we intend to maximize

the fractional form and both the denominator and the numerator are positive,

the denominator needs to be as small as possible and the numerator needs to

be as large as possible. This would finally lead to wd = 0. In other words,

the optimal w lies in the vector space spanned by all the training data points.

Note that the introduction of ρx and ρy actually enables a direct application

of the robust estimates into the kernelization.

According to Corollary 8, if appropriate estimates of means and covariance

matrices are applied, the optimal w can be written as the linear combination of

training points. In particular, if we obtain the means and covariance matrices
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as the plug-in estimates, i.e.,

ϕ(x) =
1

Nx

Nx∑

i=1

ϕ(xi) ,

ϕ(y) =
1

Ny

Ny∑

j=1

ϕ(yj) ,

Σϕ(x) =
1

Nx

Nx∑

i=1

(ϕ(xi)− ϕ(x))(ϕ(xi)− ϕ(x))T ,

Σϕ(y) =
1

Ny

Ny∑

j=1

(ϕ(yj)− ϕ(y))(ϕ(yj)− ϕ(y))T ,

we can write w as

w =
Nx∑

i=1

µiϕ(xi) +

Ny∑

j=1

υjϕ(yj), (3.42)

where the coefficients µi, υj ∈ R for i = 1, . . . , Nx and j = 1, . . . , Ny.

By simply substituting (3.42) and four plug-in estimates into (3.41), we

can obtain the Kernelization Theorem of BMPM.

3.4.2 Notations in Kernelization Theorem of BMPM

Before we present the main kernelization result, we first introduce the nota-

tions. Let {z}Ni=1 denote all N = Nx + Ny data points in the training set

where

zi = xi i = 1, 2, . . . , Nx ,

zi = yi−Nx i = Nx + 1, Nx + 2, . . . , N.

The element of the Gram matrix K in the position of (i, j) is defined as

Ki,j = ϕ(zi)
Tϕ(zj) for i, j = 1, 2, . . . , N . We further define Kx and Ky as the
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matrices formed by the first Nx rows and the last Ny rows of K, respectively,

namely,

K :=


 Kx

Ky


 .

By setting the row average of the Kx block and the Kx block to zero, the

block-row-averaged Gram matrix K̃ is thus obtained:

K :=


 K̃x

K̃y


 =


 Kx − 1Nx k̃Tx

Ky − 1Ny k̃Ty


 ,

where k̃x, k̃y ∈ RNx+Ny are defined as:

[k̃x]i :=
1

Nx

Nx∑

j=1

K(xj, zi) ,

[k̃y]i :=
1

Ny

Ny∑

j=1

K(yj, zi) .

In the above, 1Nx ∈ RNx and 1Ny ∈ RNy , which are defined as:

1i = 1, i = 1, 2, . . .Nx ,

1j = 1, j = 1, 2, . . .Ny .

Finally, we define vector formed by the coefficients of γ as

w = [µ1, µ2, . . . , µNx, υ1, υ2, . . . , υNy ]T . (3.43)

3.4.3 Kernelization Results

Theorem 9 [Kernelization Theorem of BMPM] The optimal decision

hyperplane of the problem (3.41) involves solving the Fractional Programming
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problem

κ(α∗) = max
w 6=0

1− κ(β0)
√

1
Ny

wT K̃T
yK̃yw

√
1
Nx

wTK̃T
xK̃xw

s.t. wT (k̃x − k̃y) = 1 .

The intercept b is calculated as

b∗ = wT
∗ k̃x − κ(α∗)

√
1

Nx
wT
∗ K̃T

xK̃xw∗ = wT
∗ k̃y + κ(β0)

√
1

Ny
wT
∗ K̃T

yK̃yw∗ ,

where κ(α∗) is obtained when (3.44) attains its optimum (w∗, b∗). For the

robust version of BMPM, we can incorporate the variations of the means and

covariances by conducting the following replacements:

1

Nx
wT
∗ K̃

T
xK̃xw∗ → wT

∗ (
1

Nx
K̃T

xK̃x + ρxK)w∗ ,

1

Ny
wT
∗ K̃

T
yK̃yw∗ → wT

∗ (
1

Ny
K̃T

yK̃y + ρyK)w∗ ,

κ(β0)→ κ(β0) + µy ,

κ(α∗)→ κ(α∗) + µx .

The optimal decision hyperplane can be represented as a linear form in the

kernel space

f(z) =
Nx∑

i=1

w∗iK(z,xi) +

Ny∑

i=1

w∗Nx+iK(z,yi)− b∗.

3.5 Experiments

In this section, we first evaluate our model on a synthetic dataset. Then we

compare the performance of MEMPM with that of MPM, on six real-world

benchmark data sets (since MPM is reported comparable to SVM, we do not

perform comparisons with SVM. To demonstrate BMPM is ideal for imposing
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a specified bias in classification, we also implement it on the Heart-disease

dataset. The means and covariance matrices for two classes are obtained di-

rectly from the training data sets by plug-in estimations. The prior probability

θ is given by the proportion of x data in the training dataset.

3.5.1 Model Illustration on a Synthetic Dataset

To verify that the MEMPM model achieves the minimum Bayes error rate

in the Gaussian distribution, we synthetically generate two classes of two-

dimensional Gaussian data. As plotted in Figure 3.4(a), data associated with

the class x are generated with the mean x as [3, 0]T and the covariance matrix

Σx as [4, 0; 0, 1], while data associated with the class y are generated with the

mean y as [−1, 0]T and the covariance matrix Σy as [1, 0; 0, 5]. The solved

decision hyperplane Z1 = 0.333 given by MPM is plotted as the solid blue line

and the solved decision hyperplane Z1 = 0.660 given by MEMPM is plotted

as the dashed red line. From the geometrical interpretation, both hyperplanes

should be perpendicular to the Z1 axis.

As shown in Figure 3.4(b), the MEMPM hyperplane exactly represents

the optimal thresholding under the distributions of the first dimension for two

classes of data, i.e., the intersection point of two density functions. On the

other hand, we find that, the MPM hyperplane exactly corresponds to the

thresholding point with the same error rate for two classes of data, since the

cumulative distribution Px(Z1 < 0.333) and Py(Z1 > 0.333) are exactly the

same.

3.5.2 Evaluations on Benchmark Data Sets

We next evaluate our algorithm on six benchmark data sets. Data for the

Twonorm problem were generated according to [16]. The rest five data sets
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including the Breast, Ionosphere, Pima, Heart-disease, and Vote data were ob-

tained from UCI machine learning repository [12]. Since handling the missing

attribute values is out of the scope of this chapter, we simply remove instances

with missing attribute values in these data sets.

We randomly partition data into 90% training and 10% test sets. The fi-

nal results are averaged over 50 random partitions of data. We compare the

performance of MEMPM and MPM in both the linear setting and Gaussian

kernel setting. The width parameter (σ) for the Gaussian kernel is obtained

via cross validations over 50 random partitions of the training set. The exper-

imental results are summarized in Table 3.1 and Table 3.2 for the linear kernel

and Guassian kernel respectively.

From the results, we can see that, our MEMPM demonstrates better per-

formance than MPM in both the linear and Gaussian kernel setting. Moreover,

as observed in these benchmark datasets, the MEMPM hyperplanes are ob-

tained with significantly unequal α and β except in the Twonorm set. This

further confirms the validity of our proposition, i.e., the optimal minimax ma-

chine is not certain to achieve the same worst-case accuracies for two classes.

For the Twonorm, it is also not an exception. The two classes of data in this

set are generated under the multivariate normal distributions with the same

covariance matrices. In this special case, the intersection point of two density

functions will exactly represent the optimal thresholding point and the one

with the same error rate for each class as well. Another important finding is

that, the accuracy bounds, namely θα+ (1− θ)β in MEMPM and α in MPM

are all increased in the Gaussian kernel setting when compared with those

in the linear setting. This shows the advantage of the kernelized probability

machine over the linear probability machine.

In addition, to clearly see the relationship between the bounds and the

test set accuracies (TSA), we plot them in Figure 3.5. As observed, the test

set accuracies including TSAx (for the class x), TSAy (for the class y), and
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the overall accuracies TSA are all greater than their corresponding accuracy

bounds both in MPM and MEMPM. This demonstrates how the accuracy

bound can serve as the performance indicator on future data. It is also observed

that the overall worst-case accuracies θα+(1−θ)β in MEMPM are greater than

α in MPM both in the linear and Gaussian setting. This again demonstrates

the advantages of MEMPM over MPM.

Dataset MEMPM MPM
α β θα+ (1− θ)β Accuracy α Accuracy

Twonorm(%) 80.3 ± 0.2% 79.9± 0.1% 80.1± 0.1% 97.9± 0.1% 80.1 ± 0.1% 97.9± 0.1%
Breast(%) 77.8 ± 0.8% 91.4± 0.5% 86.7± 0.5% 96.9± 0.3% 84.4 ± 0.5% 97.0± 0.2%

Ionosphere(%) 95.9 ± 1.2% 36.5± 2.6% 74.5± 0.8% 88.5± 1.0% 63.4 ± 1.1% 84.8± 0.8%
Pima(%) 0.9± 0.0% 62.9± 1.1% 41.3± 0.8% 76.8± 0.6% 32.0 ± 0.8% 76.1± 0.6%

Heart-disease(%) 43.6 ± 2.5% 66.5± 1.5% 56.3± 1.4% 84.2± 0.7% 54.9 ± 1.4% 83.2± 0.8%
Vote(%) 82.6 ± 1.3% 84.6± 0.7% 83.9± 0.9% 94.9± 0.4% 83.8 ± 0.9% 94.8± 0.4%

Table 3.1: Lower bound α, β, and test accuracy compared to MPM in the
linear setting.

Dataset MEMPM MPM
α β θα+ (1− θ)β Accuracy α Accuracy

Twonorm(%) 91.7 ± 0.2% 91.7± 0.2% 91.7± 0.2% 97.9± 0.1% 91.7 ± 0.2% 97.9± 0.1%
Breast(%) 88.4 ± 0.6% 90.7± 0.4% 89.9± 0.4% 96.9± 0.2% 89.9 ± 0.4% 96.9± 0.3%

Ionosphere(%) 94.2 ± 0.8% 80.9± 3.0% 89.4± 0.8% 93.8± 0.4% 89.0 ± 0.8% 92.2± 0.4%
Pima(%) 2.6± 0.1% 62.3± 1.6% 41.4± 1.1% 77.0± 0.7% 32.1 ± 1.0% 76.2± 0.6%

Heart-disease(%) 47.1 ± 2.2% 66.6± 1.4% 58.0± 1.5% 83.9± 0.9% 57.4 ± 1.6% 83.1± 1.0%
Vote(%) 85.1 ± 1.3% 84.3± 0.7% 84.7± 0.8% 94.7± 0.5% 84.4 ± 0.8% 94.6± 0.4%

Table 3.2: Lower bound α, β, and test accuracy compared to MPM with the
Gaussian kernel.

Since the lower bounds keep well with the test accuracies in the above

experimental results, we do not perform the robust version of both models for

the real-world data sets. To see how the robust version works, we generate two

classes of Gaussian data. As illustrated in Figure 3.6, the x data are sampled

from the Gaussian distribution with the mean as [3, 0]T and the covariance as

[1 0; 0 3], while the y data are sampled from another Gaussian distribution

with the mean as [−3, 0]T and the covariance as [3 0; 0 1]. We randomly select

10 points of each class for training and leave the rest points for test from the

above synthetic dataset. We present the result in the following.
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First, we calculate the corresponding means, x̄0 and ȳ0, covariance matri-

ces, Σ 0
x and Σ 0

y and plug them into the linear MPM and the linear MEMPM.

We obtain the MPM decision line (magenta dotted line) with a lower bound

(assuming the Gaussian distribution) being 99.1% and the MEMPM decision

line (black dash-dot line) with a lower bound as 99.7% respectively. However,

for the test set, we only obtain the accuracies 93.0% for MPM and 97.0% for

MEMPM, (see Figure 3.6(a)). This obviously violates the lower bound.

Based on our knowledge of the real means and covariance matrices in this

example, we set the parameters as

νx =
√

(x̄− x̄0)TΣ −1
x (x̄− x̄0) = 0.046,

νy =

√
(ȳ − ȳ0)TΣ −1

y (ȳ − ȳ0) = 0.496,

ρx = ‖Σx − Σ 0
x ‖F = 1.561,

ρy = ‖Σy − Σ 0
y ‖F = 0.972,

ν = max(νx, νy),

We then train the robust linear MPM and the robust linear MEMPM by

these parameters and obtain the robust MPM decision line (red dashed line),

the robust MEMPM decision line (blue solid line), as seen in Figure 3.6(a). The

lower bounds decrease to 87.3% for MPM and 93.2% for MEMPM respectively,

but the test accuracies increase to 98.0% for MPM and 100.0% for MEMPM.

Obviously, the lower bounds accord with the test accuracies.

Note that in the above, the robust MEMPM also achieves a better per-

formance than the robust MPM. Moreover, νx and νy are not necessarily the

same. To see the result of MEMPM when νx and νy are forced to be the same,

we train the robust MEMPM again by setting the parameters as νx = νy = ν

as used in MPM. We obtain the corresponding decision line (black dash-dot

line) as seen in Figure 3.6(b). The lower bound decreases to 91.0% and the

test accuracy decreases to 98.0%. The above example indicates how the robust
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MEMPM clearly improves over the standard MEMPM when a bias is incorpo-

rated by the inaccurate plug-in estimates and also validates that νx need not

be equal to νy.

3.5.3 Evaluations of BMPM on Heart-disease Dataset

To demonstrate the advantages of the BMPM model in dealing with biased

classifications, we implement BMPM on the Heart-disease dataset, where dif-

ferent treatments for different classes are necessary. The x class is associated

with data with heart diseases, whereas the y class corresponds to data without

heart diseases. Obviously, a bias should be considered for x, since misclassi-

fication of an x case into the opposite class would delay the therapy and is

more risky than the other way round. Similarly, we randomly partition data

into 90% training and 10% test sets. Also, the width parameter (σ) for the

Gaussian kernel is obtained via cross validations over 50 random partitions

of the training set. We repeat the above procedures 50 times and report the

average results.

By intentionally varying β0 from 0 to 1, we obtain a series of test accuracies,

including the x accuracy, TSAx, the y accuracy TSAy for both the linear and

Gaussian kernel. For simplicity, we denote the x accuracy in the linear setting

as TSAx(L), while others are similarly defined.

The results are summarized in Figure 3.5. Four observations are worth

highlighting. First, in both linear and Gaussian kernel settings, the smaller

β0, the higher the test accuracy for x. This indicates a bias can be indeed

embedded in the classification boundary for the important class x by specifying

a relatively smaller β0. In comparison, MPM forces an equal treatment on

each class and thus is not suitable for biased classification. Second, the test

accuracies for y and x are strictly lower bounded by β0 and α. This shows

how a bias can be quantitatively, directly, and rigorously imposed towards the
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important class x. Note that again, for other weight-adapting based biased

classifiers, the weights themselves lack accurate interpretations and thus cannot

rigorously impose a specified bias, i.e., they would try for different weights for

a specified bias. Third, when given a prescribed β0, the test accuracy for x

and its worst-case accuracy α in the Gaussian kernel setting are both increased

compared to the corresponding accuracies in the linear setting. Once again,

this demonstrates the power of the kernelization. Fourth, we note that β0

actually contains an upper bound, which is around 90% for the linear BMPM

in this dataset. This is reasonable. Observed from (3.11), the maximum β0,

denoted as β0m, is decided by setting α = 0, i.e.,

κ(β0m) = max
w 6=0

1√
wTΣyw

s.t. wT (x− y) = 1. (3.44)

It is interesting noting that when β0 is set to zero, the test accuracies for y

in the linear and Gaussian settings are both around 50% (see Figure 3.7(b)).

This seeming “irrationality” is actually reasonable. We will discuss this in the

next section.

3.6 How Tight Is the Bound?

A natural question for MEMPM is, how tight is the worst-case bound? In this

section, we present a theoretical analysis in addressing this problem.

In Marshall and Olkin Theory, if we define S = {wTy ≥ b}, the theorem

is changed to:

sup
y∼{y,Σy}

Pr{wTy ≥ b} =
1

1 + d2
, with d2 = inf

wT y≥b
(y − y)TΣ−1

y (y− y) .

Looking into the above equation and (3.4), for a given hyperplane {w, b},
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we can easily obtain

β =
d2

1 + d2
. (3.45)

Moreover, in [85], a simple closed-form expression for the minimum distance

d is derived:

d2 = inf
wTy≥b

(y− y)TΣy
−1(y− y) =

max((b−wTy), 0)

wTΣyw
. (3.46)

It is easy to see that when the decision hyperplane (w, b) passes the center

y, d would be equal to 0 and the worst-case accuracy β would be 0 according

to (3.45).

However, if we consider the Gaussian data (which we assume as y data)

in Figure 3.9(a), a vertical line approximating y would achieve about 50%

test accuracy. The large gap between the worst-case accuracy and the real

test accuracy seems strange. In the following, we construct an example of

one-dimensional data to show the inner rationality of this observation. We

attempt to provide the worst-case distribution containing the given mean and

covariance, while a hyperplane passing its mean achieves a real test accuracy

of zero.

Consider one-dimensional data y consist of N − 1 observations with values

as m and one single observation with the value as σ
√
N + m. If we calculate

the mean and the covariance, we obtain:

y = m +
σ√
N
,

Σy =
N − 1

N
σ2 .

When N goes to infinity, the above one-dimensional data have the mean as m

and the covariance as σ. In this extreme case, a hyperplane passing the mean
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will achieve a zero test accuracy, which is exactly the worst-case accuracy

given the fixed mean and covariance as m and σ respectively. This example

demonstrates the inner rationality of the minimax probability machines.

To further examine the tightness of the worst-case bound in Figure 3.9(a),

we vary β from 0 to 1 and plot against β the real test accuracy that a ver-

tical line classifies the y data by using (3.45). Note that the real accuracy

can be calculated as Φ(z ≤ d). This curve is plotted in Figure 3.8. Observed

from Figure 3.8, the smaller the worst-case accuracy, the looser it is. On the

other hand, if we skew the y data towards the left side, while simultaneously

maintaining the mean and covariance unchanged (see Figure 3.9(b)), even a

bigger gap will be generated when β is small; analogically, if we skew the

data towards the right side (see Figure 3.9(c)), a tighter accuracy bound will

be expected. This finding would mean that only adopting up to the second

order moments may not achieve a satisfactory bound. In other words, for a

tighter bound, higher order moments such as skewness may need to be con-

sidered. This problem of estimating a probability bound based on moments is

presented as the (n, k,Ω)-bound problem, which means “finding the tightest

bound for n-dimensional variable in the set Ω based on up to the k-th mo-

ments.” Unfortunately, as proved in [121], it is NP-hard for (n, k,Rn)-bound

problems with k ≥ 3. Thus tightening the bound by simply scaling up the

moment order may be intractable in this sense. We may have to exploit other

statistical techniques to achieve this goal. Certainly, this deserves a closer

examination in the future.

3.7 On the Concavity of MEMPM

We address the issue of the concavity on the MEMPM model in this section.

We will demonstrate that, although MEMPM cannot generally guarantee its

concavity, there is strong empirical evidence showing that many real-world
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problems demonstrates reasonable concavity in MEMPM. Hence, the MEMPM

model can be solved successfully by standard optimization methods, e.g., the

linear search method proposed in this chapter.

We first present a lemma on BMPM.

Lemma 10 The optimal solution for BMPM is a strictly and monotonically

decreasing function with respect to β0.

Proof: Let the corresponding optimal worst-case accuracies on x be α1

and α2 respectively, when β01 and β02 are set as the acceptable accuracy levels

for y in BMPM. We will prove that if β01 > β02, then α1 < α2.

This can be proved by considering the contrary case, i.e., we assume α1 ≥
α2. From the problem definition of BMPM, we have:

α1 ≥ α2 =⇒ κ(α1) ≥ κ(α2)

=⇒ 1− κ(β01)
√

a1
TΣya1√

a1
TΣxa1

≥ 1− κ(β02)
√

a2
TΣya2√

a2
TΣxa2

, (3.47)

where, w1 and w2 are the corresponding optimal solutions which maximize

κ(α1) and κ(α2) respectively, when β01 and β02 are specified.

From β01 > β02 and (3.47), we have

1− κ(β02)
√

a1
TΣya1√

a1
TΣxa1

>
1− κ(β01)

√
a1

TΣya1√
a1

TΣxa1

(3.48)

≥ 1− κ(β02)
√

a2
TΣya2√

a2
TΣxa2

. (3.49)

On the other hand, since w2 is the optimal solution of maxw
1−κ(β02)

√
wTΣyw√

wTΣxw
,

we have:

1− κ(β02)
√

a2
TΣya2√

a2
TΣxa2

≥ 1− κ(β02)
√

a1
TΣya1√

a1
TΣxa1

.

This is obviously contradictory to (3.49).
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From the sequential solving method of MEMPM, we know that MEMPM

actually corresponds to a one-dimensional line search problem. More specifi-

cally, it further corresponds to maximizing the sum of two functions, namely,

f1(β) + f2(β),6 where f1(β) is determined by the BMPM optimization and

f2(β) = β. According to Lemma 10, f1(β) strictly decreases as β increases.

Thus it is strictly pseudo-concave. However, generally speaking, the sum of

a pseudo-concave function and a linear function is not necessarily a pseudo-

concave function and thus cannot assure that every local optimum is the global

optimum. This can be clearly observed in Figure 3.10. In this figure, f1 is

pseudo-concave in three sub-figures; however, the sum f1 + f2 does not neces-

sarily lead to a pseudo-concave function.

Nevertheless, there is strong empirical evidence showing that for many

“well-behaved” real world classification problems, f1 is overall concave, which

results in the concavity of f1 + f2. This is first verified by the data sets used

in this chapter. We shift β from 0 to the corresponding upper bound and plot

out α against β in Figure 3.11. It is clearly observed that in all six data sets

including both kernel and linear cases, the curves of α against β are overall

concave. This motivates us to look further into the concavity of MEMPM.

As shown in the following, when two classes of data are “well-separated,” f1

would be concave in the main “interest” region.

We analyze the concavity of f1(β) by imagining that β changes from 0 to

1. In this process, the decision hyperplane moves slowly from y to x according

to (3.45) and (3.46). At the same time, α = f1(β) should decrease accord-

ingly. More precisely, if we denote dx and dy respectively as the Mahalanobis

distances that x and y are from the associated decision hyperplane with a

6For simplicity, we assume θ as 0.5. Since a constant does not influence the concavity
analysis, the factor of 0.5 is simply dropped.
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specified β, we can formulate the changing of α and β as:

α→ α− k1(dx)∆dx,

β → β + k2(dy)∆dy,

where k1(dx) and k2(dy) can be considered as the changing rate of α and β

when the hyperplane lies dx distance far away from x and dy distance far away

from y respectively. We consider the changing of α against β, namely, f ′1:

f ′1 =
−k1(dx)∆dx

k2(dy)∆dy
.

If we consider dx and ∆dy insensitively change against each other or change

with a proportional rate, i.e., ∆dx ≈ c∆dy (c is a positive constant) as the

decision hyperplane moves, the above equation can be further written as

f ′1 = c
−k1(dx)

k2(dy)
.

Lemma 11 (1) If dy ≥ 1/
√

3 or the corresponding β ≥ 0.25, k2(dy) decreases

as dy increases.

(2) If dx ≥ 1/
√

3 or the corresponding α ≥ 0.25, k1(dx) decreases as dx in-

creases.

Proof: Since (1) and (2) are actually very similar statements, we only

prove (1). k2(d) is actually the first order derivative of d2

1+d2 according to

(3.45). We consider the first order derivative of k2(d) or the second order

derivative of d2

1+d2 . It is easily verified that ( d2

1+d2 )′′ ≤ 0 when d ≥ 1/
√

3.

This is also illustrated in Figure 3.13. According to the definition of the

second derivative, we immediately obtain the lemma. Note that d ≥ 1/
√

3

corresponds to β ≥ 0.25. Thus the condition can be also replaced by β ≥ 0.25.
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In the above procedure, dy, β increase and dx, α decrease, as the hyperplane

moves towards x. Therefore, according to Lemma 11, k1(dx) increases while

k2(dy) decreases when α, β ∈ [0.25, 1). This shows that f ′1 is getting smaller

as the hyperplane moves towards x. In other words, f ′′1 would be less than 0

and thus is concave when α, β ∈ [0.25, 1). It should be noted that in many

well-separated real world data sets, the optimal α and β will be greater than

0.25 with a high possibility, since to achieve good performance, the worst-case

accuracies are naturally required to be greater than a smaller amount, e.g.,

0.25. This is observed in the data sets used in the chapter. All the data sets

except Pima attain their optimums satisfying this constraint. For Pima, the

overall accuracy is relatively lower, which implies two classes of data in this

dataset appear to largely overlap with each other.7

An illustration can be also seen in Figure 3.12. We generate two classes

of Gaussian data with x = [0, 0]T , y = [L, 0]T , and Σx = Σy = [1, 0; 0, 1].

The prior probability for each data is set as an equal value 0.5. We plot the

curves of f1(β) and f1(β) + β when L is set as different values. It is observed

that when two classes of data largely overlap with each other, for example in

Figure 3.12(a) with L = 1, the optimal solution of MEMPM lies in the small-

value range of α and β, which is usually not concave. On the other hand, (b),

(c), and (d) show that when two classes of data are well-separated, the optimal

solutions lie in the region with α, β ∈ [0.25, 1), which is often concave.

Note that, in the above, we make an assumption that as the decision hy-

perplane moves, dx and dy change at an approximately fixed proportional rate.

From the definition of dx and dy, this assumption implies that w, the direction

of the optimal decision hyperplane, is insensitive to β. This assumption does

not hold in all cases; however, observed from the geometrical interpretation of

7It is observed, even for Pima, the proposed solving algorithm is still successful, since α
is approximately linear as shown in Figure 3.11. Moreover, due to the fact that the slope of
α is slightly greater than −1, the final optimum naturally leads β achieves its maximum.
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MEMPM, for those data with isotropic or not significantly anisotropic Σx and

Σy, w would be indeed insensitive to β.

We summarize the above analysis into the following proposition.

Proposition 12 Assuming (1) two classes of data are well-separated and (2)

dx and dy change at an approximately fixed proportional rate as the optimal

decision hyperplane (associated with a specified β) moves, the one-dimensional

line search problem of MEMPM is often concave in the range of α, β ∈ [0.25, 1)

and will often attain its optimum in this range. Therefore the proposed solving

method leads to a satisfactory solution.

Remarks. As demonstrated in the above, although the MEMPM is often

overall concave in real world tasks, there exist cases that the MEMPM opti-

mization problem is not concave. This may lead to the case that the solved

local optimum, based on the SBMPM method, is not the global optimum. In

these instances, we may need carefully choose the initial starting point. In ad-

dition, the physical interpretation of β as the worst-case accuracy, may make

it relatively easy to choose a suitable initial value. For example, we can set the

initial value by using the information obtained from prior domain knowledge.

3.8 Limitations and Future Work

In this section, we present the limitations and future work.

First, although MEMPM achieves better performance to MPM, its se-

quential optimization of Biased Minimax Probability Machine may cost more

training time than MPM. In our experiments, the MEMPM needs to solve

5-15 BMPM optimizations on the average. Supposing that BMPM is solved

based on Conjugate Gradient Methods (with a worst-case time complexity in

the same order as MPM), the MEMPM would be 5-15 times as expensive as

MPM. Although in pattern recognition tasks, especially in off-line classifica-

tions, effectiveness is often more important than efficiency, expensive time-cost
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presents one of the main limitations of the MEMPM model, in particular for

large scale data sets with millions of samples. To solve this problem, one pos-

sible direction is to reduce those redundant points, which actually make less

contributions to the classification. In this way, the problem dimension (in the

kernelization) would be greatly decreased and therefore may help in reduc-

ing the computational time required. Another possible direction is to exploit

some techniques to decompose the Gram matrix (as is done in SVM) and to

develop some specialized optimization procedures for MEMPM. Undoubtedly,

speeding up the algorithm will be a highly worthy topic in the future.

Second, as a generalized model, MEMPM actually incorporates some other

variations. For example, when the prior probability (θ) cannot be estimated

reliably (e.g., in sparse data), maximizing α + β, namely the sum of the ac-

curacies or the difference between true positive and false positive, would be

considered . This type of approaches is widely used in pattern recognition

field, e.g., in medical diagnosis [52] and in graph detection, especially line de-

tection and arc detection, where it is called Vector Recovery Index [35, 93] .

Moreover, when there are domain experts at hand, a variation of MEMPM,

namely, the maximization of Cxα + Cyβ may be used, where Cx (Cy) is the

cost of a misclassification of x (y) obtained from experts. Exploring these

variations in some specific domains is thus a valuable direction in the future

(we actually will discuss these variations as criteria for biased or imbalanced

learning in Chapter 5).

Third, [85] has built up a connection between MPM and SVM from the

perspective of the margin definition, i.e., MPM corresponds to finding the

hyperplane with the maximal margin from the class center. Nevertheless,

some deeper connections need to be investigated, e.g., how is the bound of the

MEMPM related to the generation bound of SVM? More recently, [64] and

also the next chapter have disclosed the relationship between them from either

a local or global viewpoint of data. It is particularly useful to look into these
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links and explore their further connections in the future.

3.9 Summary

In this chapter, we have proposed a novel global learning model, named Min-

imum Error Minimax Probability Machine. By minimizing the upper bound

of the Bayes error of future data points, our model derives the distribution-

free Bayes optimal hyperplane in the worst-case setting. This thus distinguish

itself from the traditional global learning approaches or more particular from

traditional Bayes optimal classsifers. More importantly, we have shown that,

the worst-case Bayes optimal hyperplane derived by MEMPM becomes the

true Bayes optimal hyperplane, when some conditions are satisfied, e.g., when

a Gaussian distribution is assumed on data. We have shown how to exploit

Mercer kernels in this setting to derived a nonlinear classification boundary.

We also have demonstrated that how a robust framework can be introduced to

make solid the foundation of the proposed model. Moreover, we have demon-

strated that this novel model permits an explicit accuracy bound on future

data theoretically and validate this proposition empirically as well. We have

evaluated our algorithms on both synthetic data sets and real-world bench-

mark data sets. The performance of MEMPM is demonstrated to outperform

MPM, a comparable model with SVM.
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Figure 3.4: An evaluation of MEMPM and MPM on a synthetic dataset.
The decision hyperplane derived from MEMPM (the dashed red line) exactly
corresponds to the optimal threshholding point, i.e., the intersection point,
while the decision hyperplane given by MPM (the solid blue line) corresponds
to the point in which, two error rates for two classes of data are equal.
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Figure 3.5: Empirical evaluations on bounds and test set accuracies of
MEMPM. The test accuracies including TSAx (for the class x), TSAy (for
the class y), and the overall accuracies TSA are all greater than their cor-
responding accuracy bounds both in MPM and MEMPM. This demonstrates
how the accuracy bound can serve as the performance indicator on future data.



Chapter 3 A General Global Learning Model: MEMPM 77

−8 −6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

Z
1

Z
2

MEMPM
robMEMPM
MPM
robMPM

(a)

−8 −6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

Z
1

Z
2

robMEMPM:ν
x
≠ν

y
robMEMPM:ν

x
=ν

y
=ν

robMPM:ν

(b)

Figure 3.6: An example in R2 demonstrates the results of robust versions of
MEMPM and MPM. Training points are indicated with black +’s for the class
x and magenta �’s for class y. Test points are represented by blue ×’s for class
x and by green o’s for the class y. In (a), the robust MEMPM outperforms
both MEMPM and the robust MPM. In (b), the robust MEMPM with νx 6= νy

outperforms the robust MEMPM with νx = νy.
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Figure 3.7: Bounds and real accuracies for BMPM in Heart-disease data set.
With β0 varying from 0 to 1, the real accuracies are lower bounded by the
worst-case accuracies. In addition, α(G) is above α(L), which shows the power
of the kernelization.
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Figure 3.8: Theoretical comparison between the worst-case accuracy and the
real test accuracy for the Gaussian data in Figure 3.9(a).
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Figure 3.9: Three two-dimensional data with the same means and covariances
but with different skewness. The worst-case accuracy bound of (a) is tighter
than that of (b) and looser than that of (c).
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Figure 3.10: The sum of a pseudo-concave function and a linear function is not
necessarily a concave function. In (a), f1 + f2 is a concave function, however
in (b) and (c) it is not.
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Figure 3.11: The curves of α against β (f1) are all concave-like in the data sets
used in this chapter.
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Figure 3.12: An illustration of the concavity of the MEMPM. Subfigure (a)
shows that when two classes of data overlap largely with each other, the op-
timal solution of MEMPM lies in the small-value range of α and β, which is
usually not concave. (b), (c), and (d) show that when two classes of data are
well-separated, the optimal solutions lie in the region with α, β ∈ [0.25, 1),
which is often concave.
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Chapter 4

Learning locally and Globally:

Maxi-Min Margin Machine

The proposed MEMPM model obtains the decision hyperplane by using only

global information, e.g., the mean and covariance matrices. However, although

these moments can be more reliably obtained than estimating the distribution,

they may still be inaccurate in many cases, e.g., when the data are very sparse.

Recently, local learning methods, especially large margin classifiers [141]

have attracted much interest in the community of machine learning and pattern

recognition. Support Vector Machine (SVM) [154], the most famous one of

them, represents a state-of-the-art classifier. The essential point of SVM is to

find a linear separating hyperplane, which achieves the maximal margin among

different classes of data. Furthermore, one can extend SVM to build nonlinear

separating decision hyperplanes by exploiting kernelization techniques.

These methods do not try to summarize any global information before-

hand, but to focus on obtaining the decision hyperplane in a “local” way. For

example, in SVM, the decision boundary is exclusively determined by some

critical points, which are called support vectors, whereas all other points are

totally irrelevant to this hyperplane. Although this scheme is both theoret-

ically and empirically demonstrated to be powerful, it actually discards the

global information of data.

84
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SVM
a more reasonable hyperplane

support vectors 
x 

y 

Figure 4.1: A decision hyperplane with considerations of both local and global
information.

An illustration example can be seen in Figure 4.1. In this figure, the classifi-

cation boundary is intuitively observed to be mainly determined by the dotted

axis, i.e., the long axis of the y data (represented by �’s) or the short axis of

the x data (represented by ◦’s). Moreover, along this axis, the y data are more

possible to scatter than the x data, since y contains a relatively larger variance

in this direction. Noting this “global” fact, a good decision hyperplane seems

reasonable to lie closer to the x side (see the dash-dot line). However, SVM

ignores this kind of “global” information, i.e., the statistical trend of data oc-

currence: the derived SVM decision hyperplane (the solid line) lies unbiasedly

right in the middle of two “local” points (the support vectors).1

Aiming to construct classifiers both locally and globally, we propose the

Maxi-Min Margin Machine (M4) in this chapter. We will attempt to combine

into the local learning the global information, i.e., the covariance information,

which can represent the data trend. Moreover, as this model also contains the

properties of local learning, it will naturally neutralize the impact when the

global information is inaccurate.

As we show later, one critical contribution of this novel model is that

1This figure has appeared earlierin Chapter 2. However, for the purpose of self-containing
for each chapter, we still present it here.
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M4 actually presents a unified model of SVM and another recently-proposed

promising model Minimax Probability Machine (MPM) [85]. Moreover, based

on our proposed local and global view of data, another popular model, Fisher

Discriminant Analysis (FDA) [47] can also be interpreted as its special case.

Another good feature of the M4 model is that it can be cast as a sequential

Conic Programming problem [124], or more specifically, a sequential Second

Order Cone Programming (SOCP) problem [94, 112, 79], which thus can be

practically solved in polynomial time. In addition, with incorporating the

global information, a reduction method is proposed for decreasing the compu-

tation time of this new model.

The third important feature of our proposed model is that, the kernelization

methodology is also applicable for this formulation. This thus generalizes

the linear M4 into a more powerful classification approach, which can derive

nonlinear decision boundaries.

The rest of this chapter is organized as follows. In the next section, we

introduce the M4 model in detail, including its model definition, the geometri-

cal interpretation, connections with other models, and the associated solving

methods. In Section 4.2, we derive a generation bound for the M4 model. In

Section 4.3, we develop a reduction method to remove redundant points for

decreasing the computation time. In Section 4.4, we exploit the kernelization

trick to extend M4 into nonlinear classification tasks. In Section 4.5, we eval-

uate this novel model on both synthetic data sets and real world benchmark

data sets. In Section 4.6, we make discussions on the M4 model and also

present future work. Finally, we conclude this chapter in Section 4.7. This

work can be also seen in [64] [66] for a short version .
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4.1 Maxi-Min Margin Machine

In the following, we first, for the purpose of clarity, divide M4 into separa-

ble and nonseparable categories, and then introduce the corresponding hard-

margin M4 and soft-margin M4 sequently. In this section, we will also es-

tablish the connections of the M4 model with other large margin classifiers

including SVM, MPM, FDA, and Mininum Error Minimax Probability Ma-

chine (MEMPM) [67].

4.1.1 Separable Case

Assuming the classification samples are separable, we first introduce the model

definition and the geometrical interpretation. We then transform the model

optimization problem into a sequential SOCP problem and discuss the detailed

optimization method.

Problem Definition

Only two-category classification tasks are considered in this chapter. Let a

training data set contain two classes of samples, represented by xi ∈ Rn and

yj ∈ Rn respectively, where i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny. The basic task

here can be informally described to find a suitable hyperplane f(z) = wTz + b

separating two classes of data as robustly as possible (w ∈ Rn\{0}, b ∈ R,

and wT is the transpose of w). Future data points z for which f(z) ≥ 0 are

then classified as the class x; otherwise, they are classified as the class y.

The formulation for M4 can be written as:

max
ρ,w 6=0,b

ρ s.t. (4.1)

(wTxi + b)√
wTΣxw

≥ ρ, i = 1, 2, . . . , Nx , (4.2)

−(wTyj + b)√
wTΣyw

≥ ρ, j = 1, 2, . . . , Ny , (4.3)
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Figure 4.2: A geometric interpretation of M4. The M4 hyperplane corresponds
to the tangent line (the solid magenta line) of two small dashed ellipsoids
centered at the support vectors (the local information) and shaped by the
corresponding covariances (the global information). It is thus more reasonable
than SVM (the dotted line).

where Σx and Σy refer to the covariance matrices of the x and the y data,

respectively.

This model tries to maximize the margin defined as the minimum Maha-

lanobis distance for all training samples,while simultaneously classifying all

the data correctly. Compared to SVM, M4 incorporates the data information

in a global way; namely, the covariance information of data or the statistical

trend of data occurrence is considered, while SVMs, including l1-SVM [165]

and l2-SVM [153] (lp-SVM means the “p-norm” distance-based SVM) [141],

simply discard this information or consider the same covariance for each class.

Geometrical Interpretation

A geometrical interpretation of M4 can be seen in Figure 4.2. In this figure,

the x data are represented by the inner ellipsoid on the left side with its center

as x0, while the y data are represented by the inner ellipsoid on the right

side with its center as y0. It is observed that these two ellipsoids contain



Chapter 4 Learning locally and Globally: Maxi-Min Margin Machine 89

unequal covariances or risks of data occurrence. However, SVM does not

consider this global information: its decision hyperplane (the dotted blue line)

locates unbiasedly in the middle of two support vectors (filled points). In

comparison, M4 defines the margin as a Maxi-Min Mahalanobis distance, which

thus constructs a decision plane (the solid magenta line) with considerations

of both the local and global information: the M4 hyperplane corresponds to

the tangent line of two dashed ellipsoids centered at the support vectors (the

local information) and shaped by the corresponding covariances (the global

information).

Optimization Method

In the following, we propose the optimization method for the M4 model. We

will demonstrate that the above problem can be cast as a sequential Conic

Programming problem, or more specifically, a sequential SOCP problem.

Our strategy is based on the “Divide and Conquer” technique. One may

note that in the optimization problem of M4, if ρ is fixed to a constant ρn, the

problem is exactly changed to “conquer” the problem of checking whether the

constraints of (4.2) and (4.3) can be satisfied. Moreover, as will be demon-

strated shortly, this “checking” procedure can be stated as an SOCP problem.

Thus the problem now becomes how ρ is set, which we can use “divide” to han-

dle: if the constraints are satisfied, we can increase ρn accordingly; otherwise,

we decrease ρn.

We detail this solving technique in the following two steps:

1. Divide: Set ρn = (ρ0 +ρm)/2, where ρ0 is a feasible ρ, ρm is an infeasible

ρ, and ρ0 ≤ ρm.

2. Conquer: Call the Modified Second Order Cone Programming (MSOCP)

procedure elaborated in the following to check whether ρn is a feasible

ρ. If yes, set ρ0 = ρn; otherwise, set ρm = ρn;
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In the above, if a ρ satisfies the constraints of (4.2) and (4.3), we call it a

feasible ρ; otherwise, we call it an infeasible ρ. These two steps are iterated

until |ρ0 − ρm| is less than a small positive value.

We propose the following Theorem showing that the MSOCP procedure,

namely, the checking problem with ρ fixed to a constant ρn, is solvable by

casting it as an SOCP problem.

Theorem 13 The problem of checking whether there exist a w and a b satis-

fying the following two sets of constraints (4.4) and (4.5) can be transformed

as an SOCP problem, which can be solved in polynomial time,

(wTxi + b) ≥ ρn
√

wTΣxw, i = 1, . . . , Nx , (4.4)

−(wTyj + b) ≥ ρn

√
wTΣyw, j = 1, . . . , Ny . (4.5)

Proof: Introducing dummy variables τ , we rewrite the above checking

problem into an equivalent optimization problem:

max
w 6=0,b,τ

{
Nx+Ny

min
k=1

τ k} s.t.

(wTxi + b) ≥ ρn
√

wTΣxw− τ i,

−(wTyj + b) ≥ ρn

√
wTΣyw− τ j+Nx ,

where i = 1, . . . , Nx and j = 1, . . . , Ny.

By checking whether the minimum τ k at the optimum point is positive, we

can know whether the constraints of (4.2) and (4.3) can be satisfied. If we go

further, we can introduce another dummy variable and transform the above
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problem into an SOCP problem:

max
w 6=0,b,τ ,η

η s.t.

(wTxi + b) ≥ ρn
√

wTΣxw − τ i ,

−(wTyj + b) ≥ ρn

√
wTΣyw − τ j+Nx ,

η ≤ τ k ,

where i = 1, . . . , Nx, j = 1, . . . , Ny, and k = 1, . . . , Nx + Ny. By checking

whether the optimal η is greater than 0, we can immediately know whether

there exist a w and a b satisfying the constraints of (4.2) and (4.3). Moreover,

the above optimization is easily verified to be the standard SOCP form, since

the optimization function is a linear form and the constraints are either linear

or the typical second order conic constraints.

Remarks. In practice, many SOCP programs, e.g., Sedumi [144], provide

schemes to directly handle the above checking procedure. It thus need not

introduce dummy variables as what we have done in the proof.

We now analyze the time complexity of M4. As indicated in [94], if the

SOCP is solved based on interior-point methods, it contains a worst-case com-

plexity of O(n3). If we denote the range of feasible ρ’s as L = ρmax− ρmin and

the required precision as ε, then the number of iterations for M4 is log(L/ε)

in the worst case. Adding the cost of forming the system matrix (constraint

matrix), which is O(Nn3) (N represents the number of training points), the

total complexity would be O(log(L/ε)n3 +Nn3) ≈ O(Nn3), which is relatively

large but can still be solved in polynomial time.2

2Note that the system matrix needs to be formed only once.
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4.1.2 Connections with Other Models

In this section, we establish connections between M4 and other models. We

show that SVM and MPM are actually special cases of our model. Moreover,

FDA can be interpreted and extended according to our local and global views

of data.

Connection with Minimax Probability Machine

If one expands the constraints of (4.2) and add all of them together, one can

immediately obtain the following:

wT
Nx∑

i=1

xi +Nxb ≥ Nxρ
√

wTΣxw ,

⇒ wTx + b ≥ ρ
√

wTΣxw , (4.6)

where x denotes the mean of the x training data.

Similarly, from (4.3) one can obtain:

−(wT

Ny∑

j=1

yj +Nyb) ≥ Nyρ
√

wTΣyw ,

⇒ −(wTy + b) ≥ ρ
√

wTΣyw , (4.7)

where y denotes the mean of the y training data.

Adding (4.6) and (4.7), one can obtain:

max
ρ,w 6=0

ρ s.t.

wT (x− y) ≥ ρ(
√

wTΣxw +
√

wTΣyw) . (4.8)

The above optimization is exactly the MPM optimization [85]. Note, how-

ever, that the above procedure cannot be reversed. This means the MPM is a
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special case of M4.

Remarks. In MPM, since the decision is completely determined by the global

information, namely, the mean and covariance matrices [85],3 to assure an ac-

curate performance, the estimates of mean and covariance matrices need to

be reliable. However, it cannot always be the case in real world tasks. On

the other hand, M4 seems to solve this problem in a natural way, because the

impact caused by inaccurately estimated mean and covariance matrices can be

neutralized by utilizing the local information, namely by satisfying those con-

straints of (4.2) and (4.3) for each local data point. This is also demonstrated

in the later experiment.

Connection with Support Vector Machine

If one assumes Σx = Σy = Σ, the optimization of M4 can be changed as:

max
ρ,w 6=0,b

ρ s.t.

(wTxi + b) ≥ ρ
√

wTΣw ,

−(wTyj + b) ≥ ρ
√

wTΣw ,

where i = 1, . . . , Nx and j = 1, . . . , Ny.

Observing that the magnitude of w will not influence the optimization,

without loss of generality, one can further assume ρ
√

wTΣw = 1. Therefore

the optimization can be changed as:

min
w 6=0,b

wTΣw s.t. (4.9)

(wTxi + b) ≥ 1 , (4.10)

−(wTyj + b) ≥ 1 , (4.11)

3This can be directly observed from (4.8).
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where i = 1, . . . , Nx and j = 1, . . . , Ny.

A special case of the above with Σ = I is precisely the optimization of

SVM, where I is the identity matrix.

Remarks. In the above, two assumptions are implicitly made by SVM: One

is the assumption on data “orientation” or data shape, i.e., Σx = Σy = Σ,

and the other is the assumption on data “scattering magnitude” or data com-

pactness, i.e., Σ = I. However, these two assumptions are inappropriate. We

demonstrate this in Figure 4.3 and Figure 4.4. We assume the orientation and

the magnitude of each ellipsoid represent the data shape and compactness,

respectively, in these figures.

Figure 4.3 plots two types of data with the same data orientations but

different data scattering magnitudes. It is obvious that, by ignoring data scat-

tering, SVM is improper to locate itself unbiasedly in the middle of the sup-

port vectors (filled points), since x is more possible to scatter in the horizontal

axis. Instead, M4 is more reasonable (see the solid line in this figure). Fur-

thermore, Figure 4.4 plots the case with the same data scattering magnitudes

but different data orientations. Similarly, SVM does not capture the orienta-

tion information. In comparison, M4 grasps this information and demonstrates

a more suitable decision plane: M4 represents the tangent line between two

small dashed ellipsoids centered at the support vectors (filled points). Note

that SVM and M4 do not need to achieve the same support vectors. In Fig-

ure 4.4, M4 contains the above two filled points as support vectors, whereas

SVM has all the three filled points as support vectors.

Link with Fisher Discriminant Analysis

FDA, an important and popular method, is used widely in constructing de-

cision hyperplanes and reducing the feature dimensionality. In the following

discussion, we mainly consider its application as a classifier. FDA involves
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Figure 4.3: An illustration on that SVM omits the data compactness informa-
tion.

Figure 4.4: An illustration on that SVM discards the data orientation infor-
mation.



Chapter 4 Learning locally and Globally: Maxi-Min Margin Machine 96

Figure 4.5: An illustration that FDA partly yet incompletely considers the
data orientation.

solving the following optimization problem:

max
w 6=0

|wT (x− y)|√
wTΣxw + wTΣyw

.

Similar to MPM, FDA also focuses on using the global information rather than

considering data both locally and globally. We now show that FDA can be

modified to consider data both locally and globally.

If one changes the denominators in (4.2) and (4.3) as
√

wTΣxw + wTΣyw,

the optimization can be changed as:

max
ρ,w 6=0,b

ρ s.t. (4.12)

(wTxi + b)√
wTΣxw + wTΣyw

≥ ρ , (4.13)

−(wTyj + b)√
wTΣxw + wTΣyw

≥ ρ , (4.14)
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where i = 1, . . . , Nx and j = 1, . . . , Ny. The above optimization is actually

a generalized case of FDA, which considers data locally and globally. This is

verified as follows.

If one performs the procedure similar to that of Section 4.1.2, the above

optimization problem is easily verified to be the following optimization:

max
ρ,w 6=0,b

ρ s.t.

wT (x− y) ≥ ρ
√

wTΣxw + wTΣyw. (4.15)

One can change (4.15) as: ρ ≤ |wT (x−y)|√
wTΣxw+wTΣyw

, which is exactly the optimiza-

tion of the FDA (wT (x−y) is implicitly implied as a positive value from (4.13)

and (4.14)).

Remarks. The extended FDA optimization actually focuses on considering

the data orientation, while omitting the data scattering magnitude informa-

tion. Using the analysis similar to that of Section 4.1.2, we can know that the

extended FDA lacks the consideration on the data scattering magnitude. Its

decision hyperplane in the example of Figure 4.3 coincides with that of SVM.

With respect to the data orientation, it actually uses the average of covari-

ances for two types of data. As illustrated in Figure 4.5, the extended FDA

corresponds to the line lying exactly in the middle of the long axes of the x

and y data. This shows that the extended FDA considers the data orientation

partially yet incompletely.

4.1.3 Nonseparable Case

In this section, we modify the M4 model to handle the nonseparable case.

We need to introduce slack variables in this case. The optimization of M4 is
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changed as:

max
ρ,w 6=0,b,ξ

ρ− C
Nx+Ny∑

k=1

ξk s.t. (4.16)

(wTxi + b) ≥ ρ
√

wTΣxw− ξi , (4.17)

−(wTyj + b) ≥ ρ
√

wTΣyw− ξj+Nx
, (4.18)

ξk ≥ 0 ,

where i = 1, . . . , Nx, j = 1, . . . , Ny, and k = 1, . . . , Nx +Ny. C is the positive

penalty parameter and ξk is the slack variable, which can be considered as

the extent how the training point zk disobeys the ρ margin (zk = xk when

1 ≤ k ≤ Nx; zk = yk−Ny when Nx + 1 ≤ k ≤ Nx +Ny). Thus
∑Nx+Ny

k=1 ξk can

be conceptually regarded as the training error or the empirical error. In other

words, the above optimization achieves maximizing the minimum margin while

minimizing the total training error.

Solving Method

As clearly observed, when ρ is fixed, the optimization is equivalent to mini-

mizing
∑Nx+Ny

k=1 ξk under the same constraints. This is once again an SOCP

problem and thus can be solved in polynomial time. We can then update ρ ac-

cording to some rules and repeat the whole process until an optimal ρ is found.

This is once again the so-called line search problem. We still adopt Quadratic

Interpolation method to solve this problem, which converges superlinearly to

the global optimum if suitable starting points are assigned [11]. Since we have

introduced this linear search method in Chapter 3, we simply omit it here.

In summary, we iterate the following two steps to solve the modified opti-

mization.

Step 1. Generate a new ρn from three previous ρ1, ρ2, ρ3 by using the Quadratic

Interpolation method.
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Step 2. Fix ρ = ρn, perform the optimization based on SOCP algorithms.

Update ρ1, ρ2, ρ3.

4.1.4 Further Connection with Minimum Error Mini-

max Probability Machine

In this section, we show how the M4 can be connected with Minimum Er-

ror Minimax Probability Machine [67], which is a worst-case Bayes optimal

classifier and a superset of MPM as well.

If one looks into carefully the optimization of nonseparable M4, a more pre-

cise form is the one replacing ξk with ξk
√

wTΣxw in (4.17) and ξk
√

wTΣyw

in (4.18). However, this optimization may prove to be a difficult problem.

Nevertheless, we can start from this precise form and derive the connection of

M4 with MEMPM.

We reformulate the optimization of (4.17)-(4.18) as their precise forms as

follows:

max
ρ,w 6=0,b,ξ

ρ− C
Nx+Ny∑

k=1

ξk s.t. (4.19)

wTxi + b√
wTΣxw

≥ ρ− ξi , (4.20)

− wTyj + b√
wTΣyw

≥ ρ− ξj+Nx
, (4.21)

ξk ≥ 0 , (4.22)

where i = 1, . . . , Nx, j = 1, . . . , Ny, and k = 1, . . . , Nx +Ny.

Maximizing (4.19) contains a similar meaning as minimizing 1
ρ2 +B

∑Nx+Ny

k=1 ξk

(B is a positive parameter) in a sense that they both attempt to maximize the

margin ρ and minimize the error rate. If we consider
∑Nx+Ny

k=1 ξk as the residue

and regard 1
ρ2 as the regularization term, the optimization can be cast into the
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framework of solving ill-posed problems. 4

According to [153, 155], the above optimization, pointed as the Tikhonov’s

Variation Method [149], is equivalent to the optimization below refereed to

Ivannov’s Quasi-Solution Method [69], in the sense that if one of the methods

for a given value of the parameter (say C) produces a solution {w, b}, then

the other method can derive the same solution by adapting its corresponding

parameter (say A).

min
ρ,w 6=0,b,ξ

Nx+Ny∑

k=1

ξk s.t. (4.23)

wTxi + b√
wTΣxw

≥ ρ− ξi , (4.24)

− wTyj + b√
wTΣyw

≥ ρ− ξj+Nx
, (4.25)

ρ ≥ A , ξk ≥ 0 , (4.26)

where A is a positive constant parameter.

Now if we expand (4.24) for each i and add them all together, we can

obtain:

Nx
wTx + b√
wTΣxw

≥ Nxρ−
Nx∑

i=1

ξi . (4.27)

This equation can easily be changed as:

Nx∑

i=1

ξi ≥ Nxρ−Nx
wTx + b√
wTΣxw

. (4.28)

4A trick can be made by assuming 1
ρ2 as a new variable and thus the condition that the

regularization is convex can be satisfied.
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Similarly, if we expand (4.25) for each j and add them all together, we obtain:

Ny∑

j=1

ξj+Nx
≥ Nyρ +Ny

wTy + b√
wTΣyw

. (4.29)

By adding (4.28) and (4.29), we obtain:

N∑

k=1

ξk ≥ Nρ− (Nx
wTx + b√
wTΣxw

−Ny
wTy + b√
wTΣyw

) . (4.30)

To achieve minimum training error, namely, min
ρ,w 6=0,b,ξ

∑Nx+Ny

k=1 ξk, we

may consider to minimize its lower bound as specified by the right hand side of

(4.30). Hence in this case ρ should attain its lower bound A, while the second

part should be as large as possible, i.e.,

max
w 6=0,b

θ
wTx + b√
wTΣxw

− (1− θ) wTy + b√
wTΣyw

, (4.31)

where θ is defined as Nx

N
and thus 1− θ denotes Ny

N
. If one further transforms

the above to:

max
w 6=0,b

θt + (1− θ)s s.t. (4.32)

wTx + b√
wTΣxw

≥ t , (4.33)

− wTy + b√
wTΣyw

≥ s , (4.34)

one can see that the above optimizes a very similar form as the MEMPM model

except that (4.32) changes to minw 6=0,b θ
t2

1+t2
+ (1− θ) s2

1+s2
[67]. In MEMPM,

t2

1+t2
( s2

1+s2
) (denoted as α (β)) represents the worst-case accuracy for the classi-

fication of future x (y) data. Thus MEMPM maximizes the weighted accuracy

on the future data. In M4, s and t represent the corresponding margin, which

is defined as the distance from the hyperplane to the class center. Therefore,
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it represents the weighted maximum margin machine in this sense. Moreover,

since the function of g(u) = u2

1+u2 increases monotonically with u, maximizing

the above formulae contains a physical meaning similar to the optimization of

MEMPM in some sense.

Remarks. Implicit constraints are contained for the optimization of the above

derived special case of M4. Empirically, (4.27) cannot achieve the equality in

the normal case, since (4.24) and (4.25) can only achieve equalities for support

vectors. Moreover, the slack variables are usually far smaller than ρ. This

implies we can consider wT x+b√
wTΣxw

> ρ = A. Analogously, for y, a similar state-

ment can be obtained. The presence of these two constraints is essential, since

with the constraints, the parameter ρ involves in the optimization. Moreover,

these two constraints also prevent the circumstance that the decision hyper-

plane is extremely far away from one class center, while being very close to the

other class center.

4.2 Bound on the Error Rate

In this section, we provide theoretical results on the bound of the error rate of

M4. We first borrow the leave-one-out theorem from [95] and [154]:

Lemma 14 The leave-one-out estimator is almost unbiased.

We then present the generation bound of M4 as the following theorem:

Theorem 15 If (1) the training set containing N samples are separated by the

decision hyperplane derived by M4 and (2) the mean and covariance matrices

are reliably estimated, then the expectation of the probability of the test error

is bounded by the expectation of the minimum of two values: The ratio m/N

and θ 1
1+d2

x
+ (1− θ) 1

1+d2
y
, where m is the number of support vectors, dx and dy

are the corresponding Mahalanobis distances from the class center x and y to
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the decision hyperplane, and θ is prior probability of the x data. Namely,

E[Perror] ≤ E[min(
m

N
, θ

1

1 + d2
x

+ (1− θ) 1

1 + d2
y

)] (4.35)

Proof: According to Lemma 14, to prove E[Perror] ≤ E[m
N

], we only

need to show that the number of errors by the leave-one-out method does

not exceed the number of support vectors. Actually, this is the case. If we

leave a non-support vector out and then we perform training on the remaining

data, the decision hyperplane will not change, since the decision hyperplane is

just decided by support vectors and the covariance matrices (statistically, one

point will not influence the covariance of data). Therefore, this non-support

vector will be recognized correctly. Thus the leave-one-out method classifies

correctly all the samples that are not support vectors, i.e., the number of the

leave-one-out errors does not exceed the number of the support vectors.

We next prove E[Perror] ≤ E[θ 1
1+d2

x
+ (1 − θ) 1

1+d2
y
]. According to [85, 67,

101], if the means and covariances are reliably estimated, d2
x

(1+dx2)
and

d2
y

(1+dy2)

represent the worst-case rates in recognizing correctly the x data and y data

respectively. Therefore, θ 1
1+d2

x
+ (1− θ) 1

1+d2
y

represents the expected maximum

error rate, i.e., E[Perror] ≤ E[θ 1
1+d2

x
+ (1− θ) 1

1+d2
y
].

Remarks. Note that the above two items actually represent two meanings of

the M4 model, i.e., minimizing the leave-one-out error presents the contribu-

tion by considering the local information from data; on the other hand, the

second item describes the effect by considering the global information from

data. Moreover, if we further examine the second item, dx(dy) is actually de-

termined by two parts: the Mahalanobis distance from the support vectors to

the corresponding class center x (y) and the margin ρ. This can be observed

in Figure. 4.2. Intuitively, the larger the margin ρ is, the larger dx and dy are,

which leads to a smaller expected test error in the future. This motivates the

margin maximization in the large margin machines.
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4.3 Reduction

The variable in previous sections is [w, b, ξ1, . . . , ξNx, . . . , ξNx+Ny ], whose di-

mension is n+1+Nx+Ny. The number of the second order conic constraints is

easily verified to be Nx +Ny. This size of the generated constraint matrix will

be a big number and may thus encounter problems in solving large scale clas-

sification tasks. Therefore, we should reduce both the number of constraints

and the number of variables.

Since this problem is caused by the number of the data points, we consider

removing some redundant points to reduce both the space and time complexity.

The reduction rule is introduced as follows:

Reduction Rule: Set a threshold ν ∈ [0, 1). In each class, calculate the

Manhalanobis distance, di, of each point to its corresponding class center. if

d2
i /(1 + d2

i ), denoted as νi, is greater than ν, namely, νi ≥ ν, keep this point;

otherwise, remove this point.

The intuition under this rule is that, in general the more discriminant in-

formation the point contains, the further it is from its center (unless it is a

noise point). The inner justification under this rule is from [85]: d2/(1 + d2)

is the worst-case classification accuracy for future data, where d is the mini-

max Manhalanobis distance from the class center to the decision hyperplane.

Thus removing those points with small ν’s, namely, d2
i /(1 + d2

i ) will not affect

the worst-case classification accuracy and will not greatly reduce the overall

performance.

Nevertheless, to cancel the negative impact caused by removing those

points, we add the following global constraint:

wT (x− y) ≥ ρ(
√

wTΣxw +
√

wTΣyw). (4.36)
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Integrating the above, we formulate the modified model as follows:

max
ρ,w 6=0,b,ξ

{ρ− C(

rx+ry∑

k=1

ξk + (Nx +Ny − rx − ry)ξm)} s.t.

(wTxi + b) ≥ ρ(
√

wTΣxw)− ξi, i = 1, . . . , rx ,

−(wTyj + b) ≥ ρ(
√

wTΣyw)− ξj+rx, j = 1, . . . , ry ,

wT (x− y) ≥ ρ(
√

wTΣxw +
√

wTΣyw)− ξm ,

ξm ≥ 0, ξk ≥ 0, k = 1, . . . , rx + ry ,

where, ξm is the slack variable for the global constraint (4.36), ξk are modified

slack variables for the remaining data points, rx is the number of the remaining

points for x, and ry is the number of the remaining points for y.

Remarks. An interesting observation from the above is that, when we set the

reduction threshold ν to a larger value, or simply to the maximum value 1,

the M4 optimization degrades to the standard MPM optimization. This would

imply that the above modified M4 model contains a worst-case performance of

MPM, if the incorporated local information is useful.

4.4 Kernelization

One may note that in the above, the classifier derived from M4 is provided

in a linear configuration. In order to handle nonlinear classification problems,

in this section, we seek to use the kernelization trick [138] to map the n-

dimensional data points into a high-dimensional feature space Rf , where a

linear classifier corresponds to a nonlinear hyperplane in the original space.

The kernel mapping can be formulated as: xi → ϕ(xi), yj → ϕ(yj), where

i = 1, . . . , Nx, j = 1, . . . , Ny, and ϕ : Rn → Rf is a mapping function. The

corresponding linear classifier in Rf is γTϕ(z) = b, where γ, ϕ(z) ∈ Rf , and

b ∈ R.
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The optimization of M4 in the feature space can be written as:

max
ρ,γ 6=0,b

ρ s.t. (4.37)

(γTϕ(xi) + b)√
γTΣϕ(x)γ

≥ ρ, i = 1, 2, . . . , Nx , (4.38)

−(γTϕ(yj) + b)√
γTΣϕ(y)γ

≥ ρ, j = 1, 2, . . . , Ny . (4.39)

However, to make the kernel work, we need to represent the optimization and

the final decision hyperplane into a kernel form, K(z1, z2) = ϕ(z1)Tϕ(z2),

namely, an inner product form of the mapping data points.

4.4.1 Foundation of Kernelization for M4

In the following, we demonstrate that the kernelization trick indeed works in

M4, provided suitable estimates of means and covariance matrices are applied

therein.

Corollary 16 If the estimates of means and covariance matrices are given in

M4 as the following estimates:

ϕ(x) =
Nx∑

i=1

λiϕ(xi), ϕ(y) =

Ny∑

j=1

ωjϕ(yj) ,

Σϕ(x) = ρxIn +
Nx∑

i=1

Λi(ϕ(xi)− ϕ(x))(ϕ(xi)− ϕ(x))T ,

Σϕ(y) = ρyIn +

Ny∑

j=1

Ωj(ϕ(yj)− ϕ(y))(ϕ(yj)− ϕ(y))T ,

where In is the identity matrix of dimension n then the optimal γ in (4.37-4.39)

lies in the space spanned by the training points.

Proof: We write γ = γp + γd, where γp is the projection of γ in the

vector space spanned by all the training data points and γ d is the orthogonal
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component to this span space. By using γTdϕ(xi) = 0 and γTdϕ(yj) = 0, one

can easily verify that the optimization (4.37-4.39) changes to:

max
ρ,{γp,γd}6=0,b

ρ s.t.

−(γTpϕ(xi) + b)√
γTp
∑Nx

i=1 Λi(ϕ(xj)− ϕ(x))(ϕ(xi)− ϕ(x))Tγp + ρx(γTp γp + γTd γd)
≥ ρ ,

−(γTpϕ(yj) + b)√
γTp
∑Ny

j=1 Ωj(ϕ(yj)− ϕ(y))(ϕ(yj)− ϕ(y))Tγp + ρy(γTp γp + γTd γd)
≥ ρ ,

where i = 1, . . . , Nx, j = 1, . . . , Ny. Since we intend to maximize the margin ρ,

the denominators in the above two constraints need to be as small as possible.

This would lead to γd = 0. In other words, the optimal γ lies in the vector

space spanned by all the training data points. Note that the above discussion

is assumed in the feature space.

According to Corollary 16, if we use the plug-in estimates to approximate the

means and covariance matrices, we can write γ as a linear combination form

of training data points:

γ =
Nx∑

i=1

µiϕ(xi) +

Ny∑

j=1

υjϕ(yj) , (4.40)

where the coefficients µi, υj ∈ R, i = 1, . . . , Nx, j = 1, . . . , Ny.

4.4.2 The Kernelization Result

We present the kernelization result as the following theorem.
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Theorem 17 [Kernelization Theorem of M4] The optimal decision hyper-

plane for M4 involves solving the following optimization problem:

max
ρ,η 6=0,b

ρ s.t.

(ηTKi + b)√
1
Nx
ηT K̃T

xK̃xη
≥ ρ, i = 1, 2, . . . , Nx ,

−(ηTKj+Nx + b)√
1
Ny
ηT K̃T

yK̃yη
≥ ρ, j = 1, 2, . . . , Ny .

Proof: The theorem can easily be proved by simply substituting the

plug-in estimations of means and covariances matrices and (4.40) into (4.37)-

(4.39).

The optimal decision hyperplane can be represented as a linear form in the

kernel space

f(z) =
Nx∑

i=1

η∗iK(z,xi) +

Ny∑

i=1

η∗Nx+iK(z,yi) + b∗ ,

where η∗ and b∗ are the optimal parameters obtained by the optimization pro-

cedure. The notations in the above are defined similar to Chapter 3. However,

for an easy reference, we also summarize them in Table 4.1.

4.5 Experiments

In this section, we present the evaluation results of M4 in comparison with

SVM and MPM on both synthetic toy data sets and real world benchmark

data sets. SOCP problems are solved based on the general software named

Sedumi [144, 145]. The covariance matrices are given by the plug-in estimates.
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Notation

z ∈ RNx+Ny zi := xi i = 1, 2, . . . ,Nx .
zi := yi−Nx i = Nx + 1, Nx + 2, . . . , Nx +Ny .

η ∈ RNx+Ny η := [µ1, . . . , µNx , υ1, . . . , υNy ]T .

K is Gram matrix Ki,j := ϕ(zi)Tϕ(zj).

Kx :=




K1,1 K1,2 . . . K1,Nx+Ny

K2,1 K2,2 . . . K2,Nx+Ny

.

..
.
..

.

..
.
..

KNx,1 KNx,2 . . . KNx,Nx+Ny


 .

Ky :=




KNx+1,1 KNx+1,2 . . . KNx+1,Nx+Ny

KNx+2,1 KNx+2,2 . . . KNx+2,Nx+Ny

...
...

...
...

KNx+Ny,1 KNx+Ny,2 . . . KNx+Ny,Nx+Ny


 .

k̃x, k̃y ∈ RNx+Ny [k̃x]i := 1
Nx

∑Nx
j=1 K(xj , zi) .

[k̃y]i := 1
Ny

∑Ny

j=1 K(yj , zi) .

1Nx ∈ RNx 1i := 1 i = 1, 2, . . .Nx .
1Ny ∈ RNy 1i := 1 i = 1, 2, . . .Ny .

K̃ :=

(
K̃x

K̃y

)
:=

(
Kx − 1Nx k̃Tx
Ky − 1Ny k̃Ty

)
.

Table 4.1: Notations used in Kernelization

4.5.1 Evaluations on Three Synthetic Toy Data Sets

We demonstrate the advantages of our approach in comparison with SVM and

MPM in the following synthetic toy data sets first.

As illustrated in Figure 4.6, we generate two types of data with the same

data orientations but with different data magnitudes in Figure 4.6 (a), while we

generate two types of data with the same data magnitudes but with different

data orientations in Figure 4.6 (b). In (a), the x data are randomly sampled

from the Gaussian distribution with the mean as [−3.5, 0]T and the covariance

as [3, 0; 0, 4.5], while the y data are randomly sampled from another Gaussian

distribution with the mean and the covariance as [3.5, 0]T and [1, 0; 0, 1.5]

respectively. In (b), the x data are randomly sampled from the Gaussian

distribution with the mean as [−4, 0]T and the covariance as [1, 0; 0, 5], while

the y data are randomly sampled from another distribution with the mean and

the covariance as [4, 0]T and [1, 0; 0, 5] respectively. Moreover, to generate

different data orientation, in this figure, the y data are rotated anti-clockwise

at the angle of − 7
8
π. In both (a) and (b), training (test) data, consisting

of 120 (250) data points for each class, are presented as o’s (+’s) and ×’s
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Figure 4.6: The first two synthetic toy examples to illustrate M4. Training
(test) data, consisting of 120 (250) data points for each class are presented as
o’s (+’s) and ×’s (�’s) for x and y respectively. Subfigure (a) demonstrates
SVM omits the data compactness information and (b) demonstrates SVM
discards the data orientation information, while M4 achieves the ideal decision
boundary, which considers data both locally and globally.
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(�’s) for x and y respectively. Observed from Figure 4.6, M4 demonstrates its

advantages over SVM. More specifically, in Figure 4.6 (a), SVM discards the

information of the data magnitudes, whose decision hyperplane lies basically

in the middle of boundary points of two types of data, while M4 successfully

utilizes this information, i.e., its decision hyperplane lies closer to the compact

class (y data), which is more reasonable. Similarly, in Figure 4.6 (b), M4

takes advantage of the information of the data orientation, while SVM simply

overlooks this information, which results in a lot of points incorrectly classified.

When MPM is compared with M4, since in the above two data sets, the

global information, i.e., the mean and the covariance can be reliably estimated

from data, they achieve similar performance. To see the difference between

M4 and MPM, we generate another data set as illustrated in Figure 4.7, where

we intentionally generate a very small number of training data, i.e., only 20

training points. Similarly, the data are generated under two Gaussian distribu-

tions: the x data are randomly sampled from the Gaussian distribution with

the mean as [−3, 0]T and the covariance as [0.5, 0; 0, 8], while the y data are

randomly sampled from another distribution with the mean and the covari-

ance as [4, 0]T and [6, 0; 0, 1] respectively. Training data and test data are

represented using similar symbols to Figure 4.6. From Figure 4.7, once again

M4 achieves the ideal decision boundary, which considers data both locally and

globally; whereas SVM obtains the local boundary just in the middle of the

support vectors, which discards the global information, namely the statistical

“trend” of data occurrence. For MPM, its decision hyperplane is exclusively

dependent on the mean and covariance matrices. Thus we can see that this

hyperplane coincides with the data shape, i.e., the long axis of training data of

x is nearly in the same direction as the MPM decision hyperplane. However,

the estimated mean and covariance is inaccurate due to the small number of

data points. This results in a relatively lower test accuracy as illustrated in

Figure 4.7(b). In comparison, M4 incorporates the information of the local



Chapter 4 Learning locally and Globally: Maxi-Min Margin Machine 112

points to neutralize the effect caused by inaccurate estimations. The test ac-

curacies for the above three toy data sets listed in Table 4.2 also demonstrates

the advantages of M4.

Dataset M4 SVM MPM

I(%) 98.8 96.8 98.8
II(%) 98.8 97.2 98.8
III(%) 98.3 97.5 95.8

Table 4.2: Comparisons of classification accuracies between M4, SVM, and
MPM on the toy data sets.

4.5.2 Evaluations on Benchmark Data Sets

We perform evaluations on seven standard data sets. Data for Twonorm prob-

lem were synthetically generated according to [16]. The remaining six data sets

were real world data obtained from the UCI machine learning repository [12].

We compared M4 with SVM and MPM engaging both the linear and Gaussian

kernels. The parameter C for both M4 and SVM was tuned via cross valida-

tions [77], so were the width parameter in the Gaussian kernel for all three

models. The final performance results were obtained via the 10−fold cross

validation. Table 4.3 summarizes the evaluation results.

Data set Linear kernel Gaussian kernel
M4 SVM MPM M4 SVM MPM

Twonorm(%) 96.5± 0.6 95.1 ± 0.7 97.6± 0.5 96.5± 0.7 96.1± 0.4 97.6± 0.5
Breast(%) 97.5± 0.7 96.6 ± 0.5 96.9± 0.8 97.5± 0.6 96.7± 0.4 96.9± 0.8

Ionosphere(%) 87.7± 0.8 86.9 ± 0.6 84.8± 0.8 94.5± 0.4 94.2± 0.3 92.3± 0.6
Pima(%) 77.7± 0.9 77.9± 0.7 76.1± 1.2 77.6± 0.8 78.0± 0.5 76.2± 1.2
Sonar(%) 77.6± 1.2 76.2 ± 1.1 75.5± 1.1 84.9± 1.2 86.5± 1.1 87.3± 0.8
Vote(%) 96.1± 0.5 95.1 ± 0.4 94.8± 0.4 96.2± 0.5 95.9± 0.6 94.6± 0.4

Heart-disease(%) 86.6± 0.8 84.1 ± 0.7 83.2± 0.8 86.2± 0.8 83.8± 0.5 83.1± 1.0

Table 4.3: Comparisons of classification accuracies among M4, SVM, and
MPM.

From the results, we observe that M4 achieves the best overall performance.

In comparison with SVM and MPM, M4 wins five cases in the linear kernel

and four in the Gaussian kernel. The evaluations on these standard bench-

mark data sets demonstrate that it is worth considering data both locally and
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Figure 4.7: The third synthetic toy example to illustrate M4. Training (test)
data, consisting of 20 (60) data points for each class are presented as o’s (+’s)
and ×’s (�’s) for x and y respectively. Subfigure (a) demonstrates the decision
boundaries derived from training data, while (b) illustrates the performance of
these hyerplanes on the test set. The M4 achieves the ideal decision boundary,
which considers data both locally and globally.
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globally, which is emphasized in M4. Inspecting the differences between M4

with SVM, the kernelized M4 appears marginally better than the kernelized

SVM, while the linear M4 demonstrates a distinctive advantage over the linear

SVM. This phenomenon may be explained on two hands. On one hand, this

can be explained from the fact that the data points are very sparse in the

kernelized space or feature space (compared with the huge dimensionality in

the Gaussian kernel). Thus the plug-in estimates of the covariance matrices

may not accurately represent the data information in this case. On the other

hand, it is well-known that the kernelization will not keep the structure infor-

mation in the feature space. One direct consequence is that maximizing the

margin in the feature space does not necessarily maximize the margin in the

original space [151]. Therefore, without building some connections between

the original space and the feature space, utilizing the structure information,

e.g., covariance matrices in the feature space seem not to do much help in

this sense. Inspecting these two points, one interesting topic in the future is

to consider forcing constraints on the mapping function so as to maintain the

data topology in the kernelization process.

In the above, we do not perform the reduction on these data sets. To

illustrate how the reduction algorithm works for decreasing the computation

time while maintaining the test accuracy, we implement it on the Heart-disease

data set. We perform the reduction in training sets and then keep test sets

unchanged. We repeat this process for different thresholds ν. We then plot

the curve of the cross validation accuracy against the threshold ν. Moreover,

we also plot the curve of the computation time against the threshold. This can

be seen in Figure 4.8. From this figure, we can see both the computation time

and the test accuracy change insensitive against ν when ν is set to some small

values, e.g. ν ≤ 0.7. If looking into the Heart-disease data set, we find that

most data points are faraway from their corresponding class center in terms of

the Manhalanobis distance. Thus setting small values to ν does not actually
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Figure 4.8: Reduction on the Heart-disease data set

reduce many data points. This generates both a relatively flat changing curve

in the test accuracy and the computation time in this range. As ν is changing

larger, the computation time decreases fast as more and more data points are

removed, while the test accuracy goes down slowly. When the threshold is

set to 1, the M4 degrades to the MPM model, yielding the test accuracy of

M4 achieves the same value of MPM. This demonstrates how the proposed

reduction algorithms can decrease the computation time while maintaining

good performance. When used in practice, the threshold can be set according

to the required response time.

4.6 Discussions and Future Work

We will discuss several important issues in this section. First, although M4

can be solved in polynomial time, the large computation time is still one of

its biggest limitations. This may cause problems especially in its kernelization

version. Note that the proposed reduction algorithm in this chapter does

not completely solve this problem, since removing points will inevitably lose

information. In this sense, it is crucial to develop some special algorithms

for M4. Due to the sparsity of M4 (it also contains support vectors), it is
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therefore very interesting to investigate whether decomposable methods or an

analogy to the Sequential Minimal Optimization [119] designed for SVM can

also be applied in training M4. We believe there is much to gain from such

explorations. Certainly, this is a high worthy research direction in the future.

Second, although we have derived an error bound for M4, digging out the

direct connection or perform empirical comparison of this bound with those of

its special cases, namely, SVM and MPM maintains an interesting problem.

Especially, it is an open problem whether there exists an unified form of the

bounds for M4, SVM, and MPM. This interesting subject deserves future deep

explorations.

Third, since in this chapter we mainly discuss M4 for two-category classi-

fications, how to extend its application to multi-way classifications is also an

important topic in the future.

4.7 Summary

Local learning approaches, e.g., large margin machines have demonstrated

their advantages in machine learning and pattern recognition. However, they

derive the decision boundary only in a local way. For example, the most

popular large margin classifier, Support Vector Machine obtains the decision

hyperplane by focusing on considering some critical local points called support

vectors, while discarding all other points; on the other hand, global learning

models e.g., Minimax Probability Machine obtain the classifier only based on

global information, i.e., the mean and covariance information in MPM, while

ignoring all individual local points. Differently, our proposed model is con-

structed based on both a local and a global view of data. This new model is

theoretically important in the sense that SVM and MPM can both be consid-

ered as its special case. Furthermore, the optimization of M4 can be cast as

a sequential Conic Programming problem, which can be solved in polynomial
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time.

We have provided a clear geometrical interpretation, and established de-

tailed connections among our model and other models such as Support Vector

Machine, Minimax Probability Machine, Fisher Discriminant Analysis, and

Minimum Error Minimax Probability Machine. We have also shown to exploit

Mercer kernels to extend our model to build up nonlinear decision boundaries.

In addition, we have also proposed a reduction method to decrease the compu-

tation time. Experimental results on both synthetic data sets and real world

benchmark data sets have demonstrated the advantages of M4 over Support

Vector Machine and Minimax Probability Machine.



Chapter 5

Extension I: BMPM for

Imbalanced Learning

We consider the problem of the binary classification on imbalanced data, in

which nearly all the instances are labelled as one class, while far fewer instances

are labelled as the other class, usually the more important class. Traditional

machine learning methods seeking an accurate performance over a full range of

instances are not suitable to deal with this problem, since they tend to classify

all the data into the majority class, usually the less important class. More-

over, many current methods have tried to utilize some intermediate factors,

e.g., the distribution of the training set, the decision thresholds or the cost

matrix, to impose a bias towards the important class. However, it remains

uncertain whether these roundabout methods can improve the performance in

a systematic way. In this chapter, we apply Biased Minimax Probability Ma-

chine, one of the special case of Minimum Error Minimax Probability Machine

to deal with the imbalanced learning tasks. Different from previous methods,

this model achieves in a worst-case scenario, to derive the biased classifier by

directly controlling the classification accuracy on each class. More precisely,

BMPM builds up an explicit connection between the classification accuracy

and the bias, which thus provides a rigorous treatment on imbalanced data.

We examine different models and compare BMPM with three other competitive

118
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methods, i.e., the Naive Bayesian classifier, the k-Nearest Neighbor method,

and the decision tree method C4.5. The experimental results demonstrates

the superiority of this model.

This chapter is organized as follows. In the next section, we briefly present

an introduction to the imbalanced learning. We then reiterate in a tight ver-

sion the theoretical foundation of this chapter, namely the BMPM model.

Following that, we then in Section 5.3 apply the BMPM model to deal with

the imbalanced learning tasks. Following that, we evaluate the BMPM model

based on a series of experiments. In Section 5.5, we make discussions and

present future work. Finally, we summarize this chapter in Section 5.6.

5.1 Introductions to Imbalanced Learning

Learning classifiers from imbalanced or skewed data sets is an important topic,

arising very often in practice in classification problems. In such problems,

almost all the instances are labelled as one class, while far fewer instances are

labelled as the other class, usually the more important class. It is obvious

that traditional classifiers seeking an accurate performance over a full range of

instances are not suitable to deal with imbalanced learning tasks, since they

tend to classify all the data into the majority class, which is usually the less

important class.

To cope with imbalanced data sets, there are types of methods, such as the

methods of sampling [21, 92, 81], the methods of moving the decision thresh-

olds [99, 122], and the methods of adjusting the cost matrix [18, 99]. The first

school of methods aims to reduce the data imbalance by “down-sampling” (re-

moving) instances from the majority class or “up-sampling” (duplicating) the

training instances from the minority class or both. The second school of meth-

ods tries to adapt the decision threshold to impose a bias on the minority class.

Similarly, the third school of methods improves the prediction performance by
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adjusting the weight (cost) for each class.

A common problem for all the three families of methods is that they lack

a rigorous and systematic treatment on imbalanced data. For the sampling

method, either up- or down-sampling is unsuitable: up-sampling will intro-

duce noise, while down-sampling the data will lose information. Moreover, to

incorporate a good bias, it is usually difficult to know what a proportion should

be sampled. For these reasons, Provost states it as an open problem whether

simply varying the skewness of the data distribution can improve prediction

performance systematically [122]. For the method of adjusting the cost ma-

trix or adapting weights, similar problems are also encountered, i.e., they are

hard to build direct connections between the cost matrix or the weights and

the biased classification quantitatively. To impose a suitable bias towards the

important class, they have to adapt these factors by trials. Therefore, these

methods cannot rigorously handle imbalanced data.

In this chapter, we apply Biased Minimax Probability Machine (BMPM) to

handle the tasks of learning from imbalanced data. Different from the sampling

methods, BMPM does not remove or duplicate data. When compared with the

methods of changing the thresholds or weights, our model builds up an explicit

connection between the classification accuracy and the bias. It thus offers an

elegant way to incorporate the bias into classification by directly controlling

the real accuracy.

5.2 Biased Minimax Probability Machine

Suppose two random n-dimensional vectors x and y represent two classes of

data, where x belongs to the family of distributions with a given mean x̄

and a covariance Σx, denoted as x ∼ (x̄,Σx); similarly, y belongs to the

family of distributions with a given mean ȳ and a covariance Σy, denoted as

y ∼ (ȳ,Σy). Here x, y, x̄, ȳ ∈ Rn, and Σx, Σy ∈ Rn×n. In this chapter,
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the class x also represents the important or minority class and the class y

represents the corresponding less important or majority class.

The Biased Minimax Probability Machine can be described as follows1:

max
α,β,b,w 6=0

α s.t. inf
x∼(x̄,Σx)

Pr{wTx ≥ b} ≥ α , (5.1)

inf
y∼(ȳ,Σy)

Pr{wTy ≤ b} ≥ β , (5.2)

β ≥ β0 . (5.3)

Here α means the lower bound of the probability (accuracy) for the classifica-

tion of future cases of the class x with respect all distributions with the mean

and covariance as (x, Σx); in other words, α is the worst-case accuracy for

the class x. Similarly, β is the lower bound of the accuracy of the class y.

This optimization achieves to maximize the accuracy (the probability α) for

the biased class x while simultaneously maintaining the class y’s accuracy at

an acceptable level β0 by setting a lower bound as (5.3). In comparison, the

Minimax Probability Machine (MPM) in [84, 85] considers the balanced data

set; therefore, it makes α equal to β.

This optimization setting seems to be more useful in incorporating a bias

into classifications for imbalanced learning problems. A typical example can be

seen in the epidemic disease diagnosis problem, which is usually an imbalanced

classification problem as well. The “ill” cases are usually much fewer than the

healthy cases. However, misclassification of the “ill” class results in more

serious consequence than misclassification of the “healthy” case. Thus an

unequal treatment on different classes is obviously necessary.

We summarize the advantages of our biased model in the following. First,

1Note that, for easy explanations, the model description is in the slightly different but
essentially the same form as the one introduced in Chapter 3.
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this method provides a different treatment on different classes, i.e, the hyper-

plane w∗Tz = b∗ given by the solution of this optimization favors the classifi-

cation of the important class x over the less important class y. Second, given

reliable mean and covariance matrices, the derived decision hyperplane is di-

rectly associated with two real accuracy indicators, i.e., α and β, for each class.

Thus, by varying the lower bound of β, i.e., β0 and deriving the correspond-

ing classifier, we can quantitatively incorporate a bias into the classification.

Third, this model contains a distribution-free feature. With no distribution as-

sumption on data, the derived hyperplane seems to be more general and valid

than a large family of classifiers, namely the generative classifiers [62, 132]

including the Naive Bayesian classifier [88], which has to make specific distri-

bution assumptions. Fourth, as shown shortly in Section 5.3, either we can

simply modify this BMPM optimization to automatically search the best β0 in

terms of some standard criteria, or slightly different from the current setting,

we can quantitatively generate the trade-off curve between the accuracies on

different classes and leave the task of choosing the best β0 to the users. Fi-

nally, although the BMPM contains the above advantages, it does not trade

them for efficiency. It is shortly shown that the optimization of BMPM can

be cast as a Fractional Programming (FP) problem and thus can be solved

efficiently. In short, with these important features, BMPM appears to offer

a more direct and rigorous scheme to handle biased classification tasks, es-

pecially the imbalanced classifications, where the importance or cost for each

class is unequal.
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5.3 Learning from Imbalanced Data by Using

BMPM

In this section, we apply the novel BMPM model into the tasks of learning from

imbalanced data. We first review four standard imbalanced learning criteria.

We then, based on two of them, apply BMPM into imbalanced learning tasks.

5.3.1 Four Criteria to Evaluate Learning from Imbal-

anced Data

In general, four criteria are used to evaluate the imbalanced learning. They

are (1) the criterion of Minimum Cost (MC), (2) the criterion of Maximum

Geometry Mean (MGM) of the accuracies on the majority class and the mi-

nority class, (3) the criterion of the Maximum Sum (MS) of the accuracies

on the majority class and the minority class, and (4) the criterion of Receiver

Operating Characteristic (ROC) analysis. We review these criteria as follows.

Aiming to solve the problems caused by maximizing the accuracy over a

full range of data, instead, Grzymala-Busse [52] et al. maximized the sum of

the accuracies on the minority class and the majority class (or maximized the

difference between the true positive and false positive accuracy). This criterion

is also widely used in other fields, e.g., graph detection, especially line detection

and arc detection, where it is called Vector Recovery Index [35, 93]. Similarly,

Kubat et al. [80] proposed to use the geometric mean instead of the sum of the

accuracies. However, compared to maximizing the sum, this criterion has a

nonlinear form, which is not easy to be automatically optimized. On the other

hand, when the cost of misclassification is known, a minimum cost measure

defined as (5.4) should be used [14]:

Cost = Fp · CFp + Fn · CFn , (5.4)
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Figure 5.1: An artificially generated Receiver Operating Characteristic (ROC)
Curve

where Fp is the number of the false positive, CFp is the cost of a false positive,

Fn is the number of the false negative, and CFn is the cost of a false negative.

However, because the cost of misclassification is generally unknown in real

cases, the usage of this measure is somewhat restricted. Considering this point,

some researchers introduced the ROC analysis [98, 99, 147]. This criterion

plots a so-called ROC curve to visualize the tradeoff between the false positive

rate and the true positive rate and leaves the task of the selection of a specific

tradeoff to the practitioners. Fig. 5.1 illustrates an artificially generated ROC

curve. It has been suggested that the area beneath an ROC curve can be

used as a measure of accuracy in many applications [123, 146]. Thus, a good

classifier for imbalanced learning should have a larger area.

Based on the above review, in this chapter, we will focus on using the

criterion of MS and the ROC curve analysis to evaluate the classifiers.
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5.3.2 BMPM for Maximizing the Sum of the Accuracies

In the following, we first modify the formulation of BMPM to maximize the

sum of the accuracies for two classes. Next, we make an analysis on the

solvability of the modification version. Finally we present the optimization

method.

Model Modification

When using BMPM for the criterion of MS, we can modify the formulation of

BMPM as follows:

max
α,β,b,w 6=0

α+ β s.t. (5.5)

inf
x∼{x,Σx}

Pr{wTx ≥ b} ≥ α , (5.6)

inf
y∼{y,Σy}

Pr{wTy ≤ b} ≥ β . (5.7)

The above formulation directly maximizes the sum of the lower bounds of the

accuracies so as to maximize the sum of the accuracies. In comparison, to

achieve the maximum sum of the accuracies, some other approaches, e.g., the

methods of sampling or the methods of adapting the weights have to search

the best sampling proportion or the best weights by trials, which are in general

very time-consuming. Since the above optimization is in fact nearly the same

as the Minimum Error Probability Machine, it can be similarly solved by

the Sequential Biased Minimax Probability Machine optimization method as

introduced in Chapter 3. We thus do not elaborate it here.

5.3.3 BMPM for ROC Analysis

It is straightforward to apply the BMPM model to plot the ROC curve, since

the lower bounds α and β directly and quantitatively control the accuracies

for two classes. We only need to adapt the acceptable level for β, namely β0,



Chapter 5 Extension I: BMPM for Imbalanced Learning 126

from 0 to 1, to obtain a sequence of trade-offs between the accuracy of the

important class and the negative class. We address again, since β0 represents

the lower bound of the accuracy of the less important class, varying β0 provides

a direct and quantitative way to move the decision plane with different trade-

offs. Directly associating accuracies with the moving of the hyperplane while

assuming no distribution is one of advantages of BMPM over the other methods

by adapting the weights or thresholds.

5.4 Experimental Results

In this section, we first illustrate the BMPM model with a toy example. We

then evaluate the performance of BMPM on two real world imbalanced data

sets, namely the recidivism data set and the rooftop data set in compari-

son with the Naive Bayesian (NB) classifier, the k-Nearest Neighbor (k-NN)

method [1], and the decision tree classifier C4.5 [125].

5.4.1 A Toy Example

We present a toy example to illustrate the BMPM model in this section. Sup-

pose 15 data points of the class x are generated from a 2-dimensional Gaus-

sian distribution with the mean and covariance matrix as x = [0 1.5]T and

Σx = [0.5 0; 0 0.5] and 65 data points of the class y from another 2-dimensional

Gaussian distribution with y = [0 0]T and Σy = [0.5 0; 0 0.5].

By adapting the lower bound accuracy β0 for the class y, with optimizing

the corresponding BMPM, we obtain a series of decision boundaries for the toy

example when using the Gaussian kernel e−‖x−y‖2/σ with the parameter σ as 5.

These boundaries are illustrated in Fig. 5.2. Green regions are classified as the

class x represented by black +’s, whereas those outside green regions are judged

as the class y plotted as magenta �’s. It is clear to observe that the lower

bound β0 directly controls the accuracy of the class y. More specifically, when
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β0 is set to small values such as 10.00%, 60.00% and 95.00%, the boundary is

biased towards the class x. When β0 is set to larger values such as 99.00%,

the classification is biased towards the class y. Moreover we demonstrate in

Table 5.1 that the lower bounds β0 and α can serve as the accuracy indictors. It

is observed that these lower bounds keep well, i.e., the corresponding accuracies

are slightly higher than the lower bounders except in the case when β0 =

0.95. The exception, i.e., that the value of α, 99.16% is greater than the real

accuracy 93.33%, is understandable due to the relatively smaller number of

training samples: one single misclassification will influence the classification

results significantly. This toy example demonstrates that, by changing β0,

BMPM provides an elegant and direct way to incorporate the bias into the

classification.

β0(%) True Negative Rate(%) α(%) True Positive Rate(%)

10.00 13.85 100.00 100.00
60.00 63.08 100.00 100.00
95.00 95.38 99.16 93.33
99.00 100.00 81.94 86.67

Table 5.1: Lower bounds of accuracies, α, β0 and the real accuracies

5.4.2 Evaluations on Real World Imbalanced Datasets

In this section, we evaluate our novel BMPM model in comparison with three

competitive classification methods, namely the Naive Bayesian classifier, the

k-Nearest Neighbor methods, and the decision tree, C4.5, on two real world

imbalanced data sets, the recidivism data set and the rooftop data set. Before

we go into the experimental details, we first introduce these three techniques

and adapt them to learn from imbalanced data sets according to previous

research results [90, 99].
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Modifying Three Learning Techniques

We investigate and modify three learning techniques, the Naive Bayesian clas-

sifier, the k-Nearest Neighbor method, and the decision tree, C4.5 in the fol-

lowing.

The Naive Bayesian classifier [63, 88] is proposed based on a very simple

assumption, i.e., each attribute is conditionally independent of each other when

given the class variable. The decision in a two-category prediction task is made

according to the calculation of the posterior probability p(C|z), where C is

the class variable and z represents the observation. When p(C1|z) ≥ 0.5 or

another equivalent yet more convenient rule is satisfied, i.e., p(C1)p(z|C1) ≥
p(C2)p(z|C2), z is classified into C1; otherwise, it is judged as C2. Even with the

strong conditionally independency assumption, the Naive Bayesian classifier

demonstrates a surprisingly good performance when compared with state-of-

art classifiers [46, 89] such as Support Vector Machines [154] and C4.5 in

many domains. By simply introducing a parameter τ into the decision rule

p(C1)p(z|C1) ≥ τp(C2)p(z|C2), Naive Bayesian classifiers can be adapted into

the imbalanced learning. For example, specifying τ < 1 imposes a bias towards

the C1 class, whereas specifying τ > 1 imposes a bias towards the C2 class.

In the k-Nearest Neighbor classification [1], based on some distance mea-

sure, e.g, the Euclidean distance measure, k data points, which are the closest

to the query point, are selected out. It then labels the query point as the

most frequent class among the chosen k points. Although this method is very

simple and may suffer from difficulties in high dimensions, it achieves satisfac-

tory performance in many real domains. Following [99], we alter the distance

measure δj for the class Cj to handle imbalanced learning tasks according to

(5.8)

δj = dE(z, zj)− τjdE(z, zj) , (5.8)
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where zj is the closest point from class Cj to the query point, and dE(z, zj)

represents the Euclidean distance measure. Similar to the Naive Bayesian

classifier, by modifying τj, the Nearest Neighbor method can build biased

classifiers.

C4.5 is a kind of algorithm introduced by Quinlan for inducing classifi-

cation models, also called decision trees, from data [125]. By selecting the

attributes according to the gain ratios criterion, an information measure of

homogeneity, C4.5 builds up a decision tree, where each path from the root

to a leaf represents a specific classification rule. We adapt C4.5 to learn from

imbalanced data set based on the similar method to [99], i.e., by changing the

prior probability to bias the classification.

Evaluations on the Recidivism Dataset

The recidivism data set was obtained from a cohort of releasees of the North

Carolina prison system during the time period from July 1, 1977 to June 30,

1978. There are totally 4, 618 individuals in this data set, including a training

set with 1, 540 individuals and a test set with 3, 078 individuals. In the training

set, 570 (27.5%) individuals were recidivists and 970 (72.5%) were not. In the

test set, 1, 151 individuals were recidivists and 1, 927 were not. Although this

data set is not skewed as severely as other reported data sets, for example,

the fog-data set [113] and the rooftop data set used in the next subsection, it

is enough to use this data set to evaluate the performance of the imbalanced

learning [99].

We use the same processing method [135] to select and scale nine attributes

appeared in Table 5.2, while six other attributes were dropped based on an

insignificant test at the 5% level.

We compare the performance of our proposed Biased Minimax Probability

Machine model, in both the linear (BMPML) and the Gaussian kernel set-

ting (BMPMG), with the Naive Bayesian classifier, C4.5 and the k-Nearest
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Attribute Description

TSERVED Time served (in months)
AGE Age (in months) at the time of release

PRIORS Number of previous incarcerations
WHITE Is the individual Caucasian?
FELON Was the sentence for a felony?
LCHY Does individual’s record indicate a serious problem with alcohol?

JUNKY Does individual’s record indicate a serious problem with hard drugs?
PROPTY Was individual’s sentence for a crime against property?

MALE Is the individual male?

Table 5.2: Attribute description in the recidivism data set

Neighbor method. These methods are modified into the imbalanced learning

according to the methods introduced in the previous section. We run k-NN

methods for k = 1, 3, 5, . . . , 21, but we only present the best three results

for brevity. The width parameter for the Gaussian kernel is tuned via cross

validation methods [77].

We first present the experimental results based on the MS criterion in

Table 5.3. To be more comparable, we show the average of the accuracy for

each class when each classifier attains the point of the maximum sum. The

BMPML achieves an average accuracy of 0.6391 and the BMPMG achieves an

average accuracy of 0.6490, while the highest average accuracy among other

classifiers is given as 0.6272 by NB. Therefore, in this data set, BMPML and

BMPMG outperform other methods in terms of the MS criterion.

Let us next present the experimental results based on the ROC analysis.

By setting the thresholds or costs by trials for NB, k-NN, and C4.5, the ROC

curves are generated with good shapes as evenly distributed along their length

as possible. As discussed in [99], although this generation method may increase

the running time for some methods, e.g., k-NN, it works well in C4.5 and NB

and is sufficient to evaluate the performance of imbalanced learning. For the

BMPM model, since the lower bound β0 serves as the accuracy indicators, we

simply vary it from 0 to 1 to generate the corresponding ROC curve. The ROC

curves are shown in Fig. 5.3(a). As seen in this figure, the performances of

BMPML and BMPMG are once again superior to those of other methods, since
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their ROC curves cover those of other models in most parts. To quantitatively

demonstrate the difference, in Table 5.4, we also show the areas beneath the

ROC curves approximated by using the trapezoid rule. The BMPML and

BMPMG show a consistent superiority to NB, the best of the other three

methods.

In addition, in real applications, not all the portions of the ROC curve are

of great interest [102]. Usually, those with a small false positive rate and a

high true positive rate should be more of interest and importance [159]. We

thus especially show the portion of the ROC curve in the range when the false

positive rate FP∈ [0, 0.5] and the true positive rate TP∈ [0.5, 1]. As shown

in Fig. 5.3(b), in this range, the superiority of the BMPL and BMPMG is

more obvious than the whole ROC curve analysis. This again demonstrates

our model’s advantages over other methods.

Method True Negative True Positive (True Positive +True Negative) / 2

NB 0.6177 0.6377 0.6272
k-NN(9) 0.6255 0.5464 0.5860
k-NN(11) 0.6238 0.5542 0.5890
k-NN(13) 0.5569 0.6201 0.5885

C4.5 0.7405 0.4900 0.6153
BMPML 0.7037 0.5745 0.6391
BMPMG 0.7203 0.5778 0.6490

Table 5.3: Performance on a recidivism prediction task based on the MS cri-
terion

Method Area under ROC Curve

NB 0.6646
k-NN(11) 0.6155
k-NN(13) 0.6189
k-NN(17) 0.6148

C4.5 0.6383
BMPML 0.6842
BMPMG 0.6798

Table 5.4: Performance on a recidivism prediction task based on the area of
ROC curve
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Evaluations on the Rooftop Dataset

The rooftop data set consists of 17, 829 overhead images of Fort Hood, Texas,

collected as part of the RADIUS project [44], which are of a military base.

Depending on whether they are buildings (with a detected rooftop) or not,

781 images in this data set are labelled as positive examples while 17, 048

images are labelled as negative examples. It is clearly observed that this is a

severely skewed data set. According to [44, 99], these images were taken from

two different viewpoints, i.e., a nadir aspect and an oblique aspect and covered

three different areas. Following [91, 99], we represent each of these images in

nine continues attributes which are extracted based on various image analysis.

The detailed information about this data set is summarized in Table 5.5 and

Table 5.6.

Sub-data set Location Image Size Aspect #Positive #Negative

1 A 2055 × 375 Nadir 71 2645
2 A 1803 × 429 Oblique 74 3349
3 B 670 × 645 Nadir 197 982
4 B 704 × 568 Oblique 238 1955
5 C 1322 × 642 Nadir 87 3722
6 C 1534 × 705 Oblique 114 4395

Table 5.5: Description of images in the rooftop data set

Attribute Description

1 Evaluation of the edge support
2 Evaluation of the corner support
3 Evaluation of the parallel support
4 Evaluation of the OTV (Orthogonal Trihedral Vertex) support
5 Evaluation of the shadow corner support
6 Evaluation of gap overlap
7 Evaluation of displacement of edge support
8 Evaluation of crossing lines on any side of the hypothesis
9 Evaluation of existence of T-junction or L-junction on any side

Table 5.6: Description of the attributes in the rooftop data set

We randomly split the rooftop data into a training set with 60% data and

a test set with 40% data. We then construct classifiers from imbalanced data

based on the training data set and perform evaluations on the test data set.

We repeat this procedure ten times and use the average of the results as the
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performance metric. In such a setup, we compare our BMPM with other three

approaches, i.e., NB, C4.5, and k-NN. Similar to the case in the recidivism

data set, NB, C4.5, and k-NN are modified to handle imbalanced data. The

width parameter σ is chosen by cross validation methods again. Moreover, we

still run k-NN with k = 1, 3, 5, ..., 21 and present the best three for brevity.

The results are summarized in Table 5.7 based on the MS criterion, and

Fig. 5.4 and Table 5.8 based on the ROC analysis. As is clearly observed,

for both criteria, the BMPM method demonstrates its superiority to the other

methods, since they have higher sums of the accuracies and larger areas under

the ROC curves. Similar to what we do in the recivisim data set, we also

plot the more critical portion of the ROC curve in Fig. 5.4(b). The predom-

inance of the BMPML and the BMPMG is even more obvious. To evaluate

the performance more reliably, we perform a significance test based on both

LabMRMC [34, 97] and a t-test. The analysis shows that the accuracies of

BMPML and BMPMG are significantly different from those of other methods

at p ≤ 0.05, both in terms of the MS criterion and the ROC curve criterion.

Method True Negative True Positive (True Positive + True Negative) / 2

BMPML 0.8015 ± 0.0058 0.8231 ± 0.0063 0.8123± 0.0060
BMPMG 0.7997 ± 0.0087 0.8405 ± 0.0100 0.8201± 0.0091
k-NN(7) 0.7510 ± 0.0055 0.8069 ± 0.0062 0.7789 ± 0.0052
k-NN(13) 0.7409 ± 0.0051 0.8140 ± 0.0083 0.7774 ± 0.0061
k-NN(15) 0.7433 ± 0.0067 0.8211 ± 0.0072 0.7822 ± 0.0072

NB 0.7969 ± 0.0043 0.8177 ± 0.0080 0.8073 ± 0.0066
C4.5 0.8176 ± 0.0040 0.7942 ± 0.0063 0.8059 ± 0.0051

Table 5.7: Performance on the rooftop data set based on the MS Criterion

Method Area under ROC Curve

BMPML 0.8791± 0.0061
BMPMG 0.8819± 0.0087
k-NN(9) 0.8601 ± 0.0091
k-NN(11) 0.8569 ± 0.0058
kNN(15) 0.8582 ± 0.0063

NB 0.8678 ± 0.0060
C4.5 0.8744 ± 0.0062

Table 5.8: Performance on the rooftop Dataset based on the Area of ROC
Curve



Chapter 5 Extension I: BMPM for Imbalanced Learning 134

5.4.3 Evaluations on Disease Data Sets

Diagnosing diseases contains a very similar characteristic to the imbalanced

learning, since one class, usually the disease class needs to be given more bias

than the other class. Therefore, the above discussed model modifications will

be automatically applicable for this kind of tasks. In the following, we evaluate

the performance of BMPM on two disease data sets, namely, the Breast-cancer

data and the Heart-disease data set, which are obtained from UCI machine

learning repository. In the context of diagnosing diseases, the true positive rate

is usually called sensitivity, while the true negative rate is called specificity.

Therefore, we should maximize the sensitivity while maintaining the specificity

acceptable. In the following, we present the experimental results still compared

with the modified the Naive Bayesian classifier, the best three k-NN, and C4.5.

We randomly split the data for each data set into a training set with 80% data

and a test set with 20% data. We then construct classifiers based on the

training data set and perform evaluations on the test data set. We repeat

this procedure ten times and use the average of the results as the performance

metric.

We present the results based on the MS criterion in Table 5.9 for the breast-

cancer data set and Table 5.10 for the heart disease data set. Obsereved from

these two table, the BMPM model also demonstrates a superiority to other

three models. In addition, the T-test also shows that the accuracies of BMPML

and BMPMG are significantly different from those of other three classifiers at

p ≤ 0.05.

We next present the experimental results based on the ROC analysis in

Fig. 5.5(a), and Fig. 5.6(a). It is observed that the BMPML and BMPMG

perform better than other classifiers for both datasets, since in most parts,

the BMPM curves dominate those of other methods. More specifically, we

calculate the areas under the ROC curves as illustrated in Table 5.11, based
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Method Specificity Sensitivity (Specificity+Sensitivity)/2

BMPML 0.9684 ± 0.0029 0.9872 ± 0.0015 0.9778 ± 0.0021
BMPMG 0.9612 ± 0.0018 0.9915 ± 0.0011 0.9764 ± 0.0016
k-NN(11) 0.9900 ± 0.0047 0.9620 ± 0.0034 0.9760 ± 0.0029
k-NN(17) 0.9862 ± 0.0081 0.9664 ± 0.0058 0.9762 ± 0.0050
k-NN(7) 0.9721 ± 0.0071 0.9752 ± 0.0049 0.9737 ± 0.0058

NB 0.9366 ± 0.0059 0.9719 ± 0.0049 0.9543 ± 0.0051
C4.5 0.9378 ± 0.0074 0.9582 ± 0.0067 0.9480 ± 0.0072

Table 5.9: Comparison of the model performance based on the MS criterion
on the breast-cancer data set

Method Specificity Sensitivity (Specificity+Sensitivity)/2

BMPML 0.8549 ± 0.0042 0.8158 ± 0.0013 0.8354 ± 0.0035
BMPMG 0.8403 ± 0.0053 0.8572 ± 0.0017 0.8488 ± 0.0026
k-NN(17) 0.7654 ± 0.0029 0.8837 ± 0.0018 0.8246 ± 0.0027
k-NN(7) 0.7754 ± 0.0038 0.8844 ± 0.0042 0.8299 ± 0.0037
k-NN(15) 0.7512 ± 0.0028 0.8653 ± 0.0037 0.8082 ± 0.0036

NB 0.7862 ± 0.0052 0.8024 ± 0.0031 0.7943 ± 0.0040
C4.5 0.8831 ± 0.0022 0.7065 ± 0.0018 0.7948 ± 0.0021

Table 5.10: Comparison of the model performance based on the MS criterion
on the heart disease data set

on the trapezoid rule. For the breast-cancer dataset, it produces a curve with

an area of 0.9953 in the linear setting and a curve with an area of 0.9963 in the

Gaussian kernel, whereas the k-NN with k = 11 forms a curve with a smaller

area equal to 0.9908, the best result of the k-NN, the NB, and C4.5. For the

heart disease dataset, the BMPM shows a curve with an area of 0.8814 in

the linear setting and a curve with an area of 0.8932 in the Gaussian kernel

setting. These two areas are both greater than those of the other methods,

i.e., the k-NN classifier, NB and C4.5. In summary, the evaluations based on

the area of the ROC curve quantitatively demonstrate the superiority of our

BMPM model for both datasets.

In addition, as illustrated in Fig. 5.5(b) and Fig. 5.6(b), we show the critical

portion of Fig. 5.5(a) and Fig. 5.6(a) respectively when the false positive rate

is in the range of 0.0 to 0.5 and the true positive rate is in the range of 0.5

to 1.0. In this critical region, most parts of the ROC curves of the BMPM

cover the corresponding curves of other models in both datasets, which again

demonstrates the superiority of the BMPM model.
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breast-cancer heart
Method Area under ROC Curve Method Area under ROC Curve

BMPML 0.9953 ± 0.0018 BMPML 0.8814± 0.0056
BMPMG 0.9963 ± 0.0016 BMPMG 0.8932± 0.0043
k-NN(11) 0.9908 ± 0.0060 k-NN(17) 0.8701 ± 0.0038
k-NN(17) 0.9902 ± 0.0100 k-NN(7) 0.8689± 0.0050
k-NN(7) 0.9887 ± 0.0080 k-NN(15) 0.8596 ± 0.0038

NB 0.9841 ± 0.0060 NB 0.8162 ± 0.0034
C4.5 0.9762 ± 0.0120 C4.5 0.8301± 0.0038

Table 5.11: Comparison of the model performance based on the ROC analysis

5.5 When the Cost for Each Class Is Known

There exists cases in which the cost for each class can be given by experts. In

the following, we show that the BMPM model can naturally be adapted into

this type of tasks.

Assuming x and y are the minority class and the majority class respectively,

it is easily verified that minimizing the optimization function given by (5.4) is

equivalent to maximizing the following formulation:

max rxKx + ryKy,

where rx is the true positive rate or the accuracy of the class x, ry is the true

negative rate or the accuracy of the class y, Kx and Ky are two constants,

which are equal to CFpNy and CFnNx respectively (Nx, Ny are respectively

the number of data points labelled as the class x and y). Similar to the

optimization procedure of MS, we can naturally modify the BMPM model

into the following formulation:

max
α,β,b,w 6=0

Kxα+Kyβ s.t. inf
x∼{x,Σx}

Pr{wTx ≥ b} ≥ α ,

inf
y∼{y,Σy}

Pr{wTy ≤ b} ≥ β .

The above optimization derives the classification boundary by maximizing the

weighted lower bound of the real accuracies or the weighted worst-case real
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accuracies so as to minimize the overall classification risk. Moreover, similar

to the MS case, it is easily validated that this optimization problem can be

cast a sequential BMPM problem. Hence, it can similarly be solved based on

the method presented in Chapter 3.

5.6 Summary

In this chapter, we have applied a novel model named Biased Minimax Prob-

ability Machine to deal with the task of learning from imbalanced data sets.

Given reliable estimation of the mean and covariance of data, this model con-

structs the classification boundary by directly controlling the lower bound of

the real accuracy and thus provides a systematic and rigorous treatment on

skewed data. We have evaluated the BMPM model on two real world im-

balanced data sets and two disease data sets in terms of two criteria. In

both criteria, the performances are shown to be the best when compared with

other competitive methods such as the Naive Bayesian classifier, the k-Nearest

Neighbor method, and the decision tree classifier, C4.5.
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Figure 5.2: A toy example to illustrate BMPM. Data of the class x is plotted
as black +’s, and data of class y as magenta �’s. The green area represents
the classification region of the class x, while the area outside the green region
is classified as the class y.
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Figure 5.3: ROC curves for the recidivism data set. Subfigure (a) shows a
full range of the ROC curve, while (b) shows a critical proportion of the ROC
curve, which is of more interest in real applications. Both figures demonstrate
the superiority of the BMPM model, since the curves of BMPML and BMPMG
cover those of other models in most parts and thus have a larger area.
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Figure 5.4: ROC curves for the rooftop data set. We ran each method by
randomly partitioning the data set into a training data set (60%) and a test
data set (40%). The evaluations were iterated 10 times. We then average
the true positive rate and false positive rate to generate the ROC curves.
Subfigure (a) shows a full range of the ROC curve, while (b) shows a critical
proportion of the ROC curve, which is of more interest in real applications.
Both figures demonstrate the superiority of the BMPML and BMPMG model
to other models, since the curves of BMPML and BMPMG cover those of other
models in most parts and thus have a larger area.
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Figure 5.5: ROC curves for the breast-cancer data set. The ROC curves of the
BMPML and the BMPMG dominate those of other models and the BMPMG
yields the largest area under the ROC curve.
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Figure 5.6: ROC curves for the heart disease data set. The ROC curves of the
BMPML and the BMPMG dominate those of other models and the BMPMG
yields the largest area under the ROC curve.



Chapter 6

Extension II: A Regression

Model from M4

In this chapter, we present a novel regression model, which is directly motivated

from the Maxi-Min Margin Machine model described in Chapter 4. Regression

is one of the problems in supervised learning. The objective is to learn a model

from a given data set, {(x1, y1), . . . , (xN , yN)}, and then based on the learned

model, to make accurate predictions of y for future values of x. Support Vector

Regression (SVR), a successful method in dealing with this problem contains

the good generalization ability [154, 140, 53, 37]. The standard SVR adopts

the `2-norm to control the functional complexity and chooses an ε-insensitive

loss function with a fixed tube (margin) to measure the empirical risk. By

introducing the `2-norm, the optimization problem in SVR can be transformed

to a quadratic programming problem. On the other hand, the ε-tube has the

ability to tolerate noise in data and fixing the tube enjoys the advantages of

simplicity. These settings are in a global fashion and are effective in common

applications, but they lack the ability and the flexibility to capture the local

trend in some applications. For example, in stock markets, the data are highly

volatile and the associated variance of noise varies over time. In such cases,

fixing the tube cannot capture the local trend of data and cannot tolerate the

noise adaptively.

143
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Figure 6.1: Illustration of the ε-insensitive loss function with fixed and non-
fixed margins in the feature space. In (b), a non-fixed margin setting is more
reasonable. It can moderate the effect of the noise by enlarging (shrinking)
the margin width in the local area with large (small) variance of noise.

One typical illustration can be seen in Fig. 6.1. In this figure, the data

contain larger noise as the x value of the data becomes larger. However, the

SVR cannot flexibly and suitably handle it. As shown in Fig. 6.1(a), with a

fixed ε-margin (set to 0.04), SVR considers the data globally and equally: The

derived approximating function in SVR deviates from the actual data trend.

On the other hand, as illustrated in Fig. 6.1(b), if we adequately consider

the local volatility of data by adaptively and automatically setting a small

margin in low volatile regions and a larger margin in high volatile areas, the

resulting approximating function (the blue solid line in Fig. 6.1(b)) would be

more suitable and reasonable.

Targeting to solve these problems, we propose the Local Support Vector

Regression (LSVR) model. we will show that, with consideration of the local

data trend, our model provides a systematic and automatic scheme to locally

and flexibly adapt the margin. Moreover, we will also demonstrate that this

novel LSVR model can derive special cases, containing a very similar physical

meaning to the standard SVR. Another critical feature of our model is that
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the associated optimization of LSVR can be cast as a Second Order Cone

Programming (SOCP) problem, which can be efficiently solved in polynomial

time [94]. The margin setting in the novel LSVR model is different from that

in our previous work [162]. Concretely, the tube here is adapted directly based

on the functional complexity and the local trend of data. This hence provides a

more systematic and more rigorous way to moderate the margin automatically.

This model can be seen as an extension into the regression model of Maxi-Min

Margin Machine. In Maxi-Min Margin Machine, the main purpose is to build

a classification boundary for different classes, while in LSVR, the goal is to

model a function approximating the data. Therefore, M4 considers different

data trends for different classes, while LSVR focuses on employing the different

data trends in different data regions. This is more valuable with the framework

of regression tasks.

The rest of this chapter is organized as follows: the linear LSVR model

with its theoretical background is presented in Section 6.1. In Section 6.2, we

demonstrate how the standard SVR can be considered as the special case of

our proposed model. In Section 6.3, we show the link between our proposed

LSVR model and the general large margin classifier Maxi-Min Margin Machine.

The kernelized LSVR is tackled by utilizing the Mercer’s kernel in Section 6.5.

Section 6.6 provides an additional interpretation on the issue of controlling the

complexity of the LSVR model. Section 6.7 presents the experiments on both

synthetic and real data. The chapter is concluded in Section 6.8.

6.1 A Local Support Vector Regression Model

In this section, we first present the problem and model definition of the LSVR

model. We then detail its interpretation and its appealing characteristics.

After that, we state its corresponding optimization method.



Chapter 6 Extension II: A Regression Model from M4 146

6.1.1 Problem and Model Definition

A basic idea to avoid overfitting in function approximation is to restrict the

class of admissible solutions by a regularization term. A common method

is to find a function, f : Rd 7→ R, based on an N -instance data set D =

{(xi, yi) | xi ∈ Rd, yi ∈ R, i = 1, . . . , N} by minimizing the following regu-

larized functional risk

Rreg[f ] = Ω[f ] + C ·Remp[f ],

where C > 0 is a regularization parameter used as the tradeoff between the

minimal empirical risk, Remp[f ], and the smoothness or functional complexity

controlled by Ω[f ].

Support Vector Regression is a successful regression model following this

idea. It attempts to find an approximating function in the linear form:

f(x) = wTx + b, w,x ∈ Rd, b ∈ R. (6.1)

For the complexity term, Ω[f ], SVR selects `2-norm, or other `p-norm of w.

To measure the empirical risk, Remp[f ], the standard SVR uses an ε-insensitive

loss function [154].

In order to improve the flexibility of the standard SVR, we propose a new

regression model, namely Local Support Vector Regression (LSVR). The ob-

jective is to learn the function in (6.1) approximating the data in D by making

the function locally as less volatile as possible while keeping the error as small
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as possible. We formulate this objective as follows:

min
w,b,ξi,ξ∗i

1

N

N∑

i=1

√
wTΣiw + C

N∑

i=1

(ξi + ξ∗i ), (6.2)

s.t. yi − (wTxi + b) ≤ ε
√

wTΣiw + ξi,

(wTxi + b)− yi ≤ ε
√

wTΣiw + ξ∗i , (6.3)

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N,

where ξi and ξ∗i are the corresponding up-side and the down-side errors at the

i-th point, respectively. ε is a positive constant. Σi is the covariance matrix

formed by the i-th data point and those data points close to it.

6.1.2 Interpretations and Appealing Properties

In this section, beginning with stating the physical meaning of the term,

wTΣiw, we interpret our novel LSVR model.

Suppose yi = wTxi + b and ȳi = wT x̄i + b. We have the variance around

the i-th data point as ∆i = 1
2k+1

∑k
j=−k(yi+j− ȳi)2 = 1

2k+1

∑k
j=−k(w

T (xi+j−
x̄i))

2 = wTΣiw, where 2k is the number of data points closest to the i-th

data point. Therefore, ∆i = wTΣiw actually captures the volatility in the local

region around the i-th data point. In addition, ∆i can also measure the local

functional complexity around the i-th data, since it reflects the smoothness

of the corresponding local region. This will be in details addressed later in

section 6.6.

By using the first meaning of ∆i = wTΣiw (representing the local volatil-

ity), LSVR can systematically and automatically vary the tube: If the i-th

data point lies in the area with a larger variance of noise, it will contribute

to a larger ε
√

wTΣiw or a larger local margin. This will result in reducing

the impact of the noise around the point; on the other hand, in the case that

the i-th data point is in the region with a smaller variance of noise, the local
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margin (tube), ε
√

wTΣiw, will be smaller. Therefore, the corresponding point

would contribute more in the fitting process. In comparison, the standard SVR

adopts a fixed margin, which treats each point equally and therefore lacks the

ability to tolerate the change in noise.

By engaging the second compelling property of ∆i = wTΣiw, namely,

a measure in describing the local functional complexity, LSVR controls the

overall smoothness of the approximating function by minimizing the average

of ∆i as seen in (6.2). Intuitively, the margin around each point can be neither

too large nor too small: If the margin is too large, the local data trend may

not be captured for “over-tolerating” data; if the margin is too small, the local

data trend may be “over-emphasized”, resulting a highly zig-zag approximating

curve. Therefore by adding the regularization term, a trade-off can be achieved

via adapting the parameter C.

6.2 Connection with Support Vector Regres-

sion

We now analyze the connection of the LSVR model with the standard Support

Vector Regression model. By considering the data trend globally and equally,

i.e., setting Σi = Σ, for i = 1, . . . , N , we can transform the optimization of

(6.2) as follows:

min
w,b,ξi,ξ∗i

√
wTΣw + C

N∑

i=1

(ξi + ξ∗i ), (6.4)

s.t. yi − (wTxi + b) ≤ ε
√

wTΣw + ξi,

(wTxi + b)− yi ≤ ε
√

wTΣw + ξ∗i ,

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N.
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Further, if Σ = I, we obtain:

min
w,b,ξi,ξ∗i

‖w‖+ C
N∑

i=1

(ξi + ξ∗i ), (6.5)

s.t. yi − (wxi + b) ≤ ‖w‖ε+ ξi,

(wxi + b)− yi ≤ ‖w‖ε+ ξ∗i , (6.6)

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N.

The above optimization problem is very similar to the `1-norm SVR, except

that it has a margin related to the complexity term. In the following, we will

prove that the above optimization is actually equivalent to the `1-norm SVR

in a meaningful sense.

Lemma 18 The LSVR model with setting Σi = I is equivalent to the `1-norm

SVR in the sense that: (1) Assuming a unique ε∗1 exists for making `1-norm

SVR optimal (i.e. setting ε to ε∗1 will make the objective function minimal),

if for ε∗1 the `1-norm SVR achieves a solution {w∗, b∗} = SVR(ε∗1), then the

LSVR can produce the same solution by setting the parameter ε =
ε∗1
‖w∗1‖

, i.e.,

LSVR(
ε∗1
‖w∗1‖

) = SVR(ε∗1); (2) Assuming a unique ε∗2 exists for making the special

case of LSVR optimal (i.e. setting ε to ε∗2 will make the objective function

minimal), if for ε∗2 the special case of LSVR achieves a solution {w∗2, b∗2} =

LSVR(ε∗2), then the `1-norm SVR can produce the same solution by setting

the parameter ε = ε∗2‖w∗2‖, i.e., SVR(ε∗2‖w∗2‖) = LSVR(ε∗1).

Proof: Since (1) and (2) are very similar statements, we only prove (1).

When ε of the special case of LSVR is setting to
ε∗1
‖w∗1‖

, the value of the objective

function of LSVR will be at least smaller than the one by simply setting

{w, b} = {w∗1, b∗1}, since {w∗1, b∗1} is easily verified to satisfy the constraints of

LSVR. Namely,

LSVR(
ε∗1
‖w∗1‖

) � SVR(ε∗1), (6.7)
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where we use � to represent “superior to”. We assume the solution for ε =
ε∗1
‖w∗1‖

in LSVR as {w2, b2}. Similarly, by setting ε = ε∗1
‖w2‖
‖w∗1‖

in SVR, we have:

SVR(ε∗1
‖w2‖
‖w∗1‖

) � LSVR(
ε∗1
‖w∗1‖

). (6.8)

Combining (6.7) and (6.8), we have:

SVR(ε∗1
‖w2‖
‖w∗1‖

) � LSVR(
ε∗1
‖w∗1‖

) � SVR(ε∗1) (6.9)

Since ε∗1 is the unique ε making the objective of SVR minimal, (6.9) implies

that w2 = w∗1.

In addition, if in LSVR we use the item of wTΣw instead of its square

root form as the structure risk or complexity risk, a similar proof will also be

applicable that the `2-norm SVR is equivalent to the special case of LSVR

with Σi = Σ. In summary, we can see that the LSVR model actually contain

the standard SVR model as special cases.

6.3 Link with Maxi-Min Margin Machine

The LSVR model can also be considered as an extension of the general large

margin classifier, Maxi-Min Margin Machine (M4) presented previously in this

thesis or [64]. Within the framework of binary classifications for class x and

y, the M4 is formulated as follows:

max
ρ,w 6=0,b

ρ s.t. (6.10)

(wTxi + b)√
wTΣxw

≥ ρ, i = 1, 2, . . . , Nx , (6.11)

−(wTyj + b)√
wTΣyw

≥ ρ, j = 1, 2, . . . , Ny , (6.12)
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where Σx and Σy refer to the covariance matrices of the x and the y data,

respectively.

Within the framework of classifications, M4 considers different data trends

for different classes. Analogously, in the novel LSVR model, we allow different

data trends for different regions, which is more suitable for the regression

purpose.

6.4 Optimization Method

In order to solve the optimization problem of (6.2), we introduce auxiliary

variables, t1,. . . , tN , and transform the problem as follows:

min
w,b,ti,ξi,ξ∗i

1

N

N∑

i=1

ti + C
N∑

i=1

(ξi + ξ∗i ), (6.13)

s.t. yi − (wTxi + b) ≤ ε
√

wTΣiw + ξi,

(wTxi + b)− yi ≤ ε
√

wTΣiw + ξ∗i , (6.14)
√

wTΣiw ≤ ti, (6.15)

ti ≥ 0, ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N.

It is clear that (6.14) and (6.15) are non-convex constraints. This may

present difficulties in optimizing the LSVR problems. In the following, we

relax the optimization to a Second Order Cone Programming problem (SOCP)
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problem [94] by replacing
√

wTΣiw with its upper bound ti.

min
w,b,ti,ξi,ξ∗i

1

N

N∑

i=1

ti + C
N∑

i=1

(ξi + ξ∗i ),

s.t. yi − (wTxi + b) ≤ εti + ξi,

(wTxi + b)− yi ≤ εti + ξ∗i ,
√

wTΣiw ≤ ti,

ti ≥ 0, ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N.

Since ti is closely related to
√

wTΣiw, weighting the margin width with

ti will contain a meaning similar to the original motivation, i.e., adapting the

margin flexibly. More importantly, the relaxed form is a linear programming

problem under quadratic cone constraints, or more specifically it is a Second

Order Cone Programming. Therefore, this problem can be solved in polyno-

mial time by many general optimization packages, e.g., Sedumi [144, 145].

6.5 Kernelization

In this section we extend the above linear regression model to the non-linear

one by using the Mercer’s kernel. Suppose the training data are mapped into a

kernel space or a feature space by the mapping function, ϕ : Rd 7→ Rf . Then,

the objective in the feature space is transformed as follows:

min
w,b,ti,ξi,ξ∗i

1

N

N∑

i=1

ti + C
N∑

i=1

(ξi + ξ∗i ), (6.16)

s.t. yi − (wTϕ(xi) + b) ≤ εti + ξi,

(wTϕ(xi) + b)− yi ≤ εti + ξ∗i ,√
wTΣϕ

i w ≤ ti,

ti ≥ 0, ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N.
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In order to utilize the Mercer’s kernel, we first present the following theorem.

Theorem 19 If the corresponding local covariance Σϕ
i can be estimated by

the mapped training data, i.e., ϕ̂i, Σϕ
i can be written as

ϕ̂i =
1

2k + 1

k∑

j=−k
ϕ(xi+j), (6.17)

Σϕ
i =

1

2k + 1

k∑

j=−k
(ϕ(xi+j)− ϕ̂i)(ϕ(xi+j)− ϕ̂i)T , (6.18)

where we just consider 2k data points which are the closest to the i-th data,

then the optimal w lies in the span of the mapped training data.

Proof: Suppose w = wp + wo, where wp is the projection of w in the

span of the mapped training data, wo is the orthogonal component to the span.

Since wT
o ϕ(xi) = 0, i = 1, . . . , N , we can easily know that

wTϕ(xi) = wT
p ϕ(xi)

wTΣϕ
i w = wT

p Σϕ
i wp.

Therefore, we can omit wo since it disappears in the optimization. We then set

it to 0 and obtain w = wp, i.e., the optimal w lies in the span of the mapped

training data.

By using Theorem 19, we write w as
N∑
j=1

µjϕ(xj) and substitute it into

(6.17). By rewriting (6.17) in the kernel form by a kernel function K(z1, z2) =

ϕ(z1)Tϕ(z2), we then obtain

wTϕ(xi) =
N∑

j=1

µjK(xi,xj) = µTKi,

wTΣϕ
i w = µTLT

i Liµ
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where µ = [µ1, . . . , µN ]T , Ki = [K(x1,xi), . . . , K(xN ,xi)]
T , Kij = K(xi,xj),

Li = 1√
2k+1

(K[i−k:i+k,N ]−12k+1l
T
i ),K[i−k:i+k,N ] =




Ki−k,1, . . . , Ki−k,N
...

. . .
...

Ki+k,1, . . . , Ki+k,N


, (lTi )t =

1
2k+1

k∑
j=−k

K(xi+j,xt), and 12k+1 is a column vector with ones of dimension

2k + 1.

Consequently, the corresponding objective in (6.16) becomes:

min
µ,b,ti,ξi,ξ∗i

1

N

N∑

i=1

ti + C
N∑

i=1

(ξi + ξ∗i ),

s.t. yi − (µTKi + b) ≤ εti + ξi,

(µTKi + b)− yi ≤ εti + ξ∗i ,√
µTLT

i Liµ ≤ ti,

ti ≥ 0, ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N.

Hence we only need a kernel function in the optimization without knowing a

specific mapping function and can be easily solved by the SOCP methods.

6.6 Additional Interpretation on wTΣiw

We now interpret in terms of sparse approximation [22, 23, 49, 31, 26, 55, 114]

why wTΣiw can be considered as the local complexity around the data point

xi.

In [49], Girosi has demonstrated an equivalence between sparse approxi-

mation and support vector machines. In the view of sparse approximation,

the regression can be regarded as the task of approximating data using lin-

ear superpositions of basis functions selected from a large, redundant set of

basis functions, called dictionary [96]. A common sense in choosing a good

approximating function is that one should not only approximate the given
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data as accurately as possible, more importantly, one should use as few as

possible basis functions. Therefore, a sparsity concept is invoked, i.e., the ap-

proximating function should be sparse in using the basis functions. When it

is connected with Support Vector Regressions, the readers can regard a basis

function is associated with each data point (note that the regression function

can be represented as the linear combination form in the kernel space). The

fact that SVR contains the property of sparsity, i.e., only a small fraction of

data points (support vectors) makes contributions to the final approximating

function, may therefore explain why it has achieved a great success. The mea-

sure of sparsity of the approximating function f , which is also regarded as the

measure of complexity is formulated as follows:

Ω[f ] = (
N∑

i=1

δi)
p, (6.19)

where, δi =





1 if xi appears ;

0 otherwise.
(6.20)

It is well-known that the `0-norm of a vector counts the number of elements

different from zero, the complexity term can also be described as:

Ω[f ] = ‖w‖p`0. (6.21)

However, due to involving in minimizing a combinatorial term as the above,

it is extremely difficult to perform the optimization in practice. Therefore,

instead, one often uses `1-norm as its approximated version, i.e.,

Ω[f ] = ‖w‖p`1. (6.22)

when p is set to 1, it therefore leads to the standard `1-norm SVR.

When one looks back into the LSVR model, minimizing 1
N

∑N
i=1

√
wTΣiw
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presents another approximated version to the sparsity, since it also tries to

make w as sparse as possible.1 Another advantage of using 1
N

∑N
i=1

√
wTΣiw

is that it leads to an easy solving method as illustrated in Section 6.4.

6.7 Experiments

In this section, we report the experiments on both synthetic sinc data sets

and real world data sets. The SOCP problem associated with our LSVR

model is solved by a general software, Sedumi [144, 145]. The SVR algorithm

is performed by the LIBSVM [20].

ε Case I: σ = 0.0 Case II: Varying σ

LSVR SVR LSVR SVR

0.0 0 0 0.1825±0.1011 0.3101±0.1165
0.2 0.0004 0.0160 0.2338±0.0888 0.2761±0.1111
0.4 0.0016 0.0722 0.1917±0.0726 0.2217±0.0840
0.6 0.0044 0.1695 0.1540±0.0687 0.2384±0.0867
0.8 0.0082 0.1748 0.1333±0.0674 0.2333±0.1096
1.0 0.0125 0.1748 0.1115±0.0597 0.2552±0.1218
2.0 0.0452 0.1748 0.0959±0.0421 0.2616±0.1517

Table 6.1: Experimental results (MSE±STD) of the LSVR model and the SVR
algorithm on the sinc data with different ε values.

6.7.1 Evaluations on Synthetic Sinc Data

50 examples (xi, yi) are generated from a sinc function [136], where xi are

drawn uniformly from [−3, 3], and yi = sin(πxi)/(πxi)+τi, with τi drawn from

a Gaussian with zero mean and variance σ2. Two cases are evaluated. One

is with σ = 0. The standard deviation of the data in the other case increases

linearly from 0.5 at x = −3 to 1.5 at x = 3. It is clearly observed that in the

second case, the variance of noise is different in different regions. We use the

default parameters C = 100, the RBF kernel K(u, v) = exp(−‖u− v‖2).

1Intuitively, when w is sparser, 1
N

∑N
i=1

√
wTΣiw would be smaller.
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(c) LSVR, σ=0.0
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(d) LSVR with varying σ

Figure 6.2: Experimental results on synthetic sinc data with ε=0.2.



Chapter 6 Extension II: A Regression Model from M4 158

Table 6.1 reports the average results over 100 random trails with different

ε values. Fig. 6.2 illustrates the difference between the LSVR model and the

SVR algorithm when ε = 0.2. For the case I, σ = 0.0, the LSVR model can

adjust the tube automatically to fit the data with a smaller Mean Square Error

(MSE), which can be seen in Fig. 6.2(c). However, containing a fixed tube, the

SVR algorithm lacks the flexibility (see Fig. 6.2(a)). This also leads that the

MSE increases as ε increases. As reported in Table 6.1, when ε ≥ 0.8, there

are no support vectors in SVR and the MSE is the largest. In the case II, the

LSVR model has smaller MSE’s and smaller STD’s for all ε’s. Figure 6.2(d)

also shows that the obtained approximating function in LSVR is smoother

than that in SVR.

Moments DJIA NASDAQ S&P500

Train Test Train Test Train Test

Mean 0.0000 -0.2850 -0.0000 -0.4819 0.0000 -0.3858
S.D. 1.0000 0.9957 1.0000 1.1312 1.0000 1.1298
Skew -0.0678 0.1684 0.0928 0.3256 -0.1298 -0.0102
Kurt 2.5437 2.7706 2.6600 1.8631 2.5308 2.4124

Table 6.2: Summary statistics of normalized returns of DJIA, NASDAQ and
S&P500 in the experiments. These indices show different statistical properties.

6.7.2 Evaluations on Real Financial Data

We evaluate our model on the financial time series data, which are highly

volatile and non-stationary. The experimental data are three major indices:

(1) the Dow Jones Industrial Average (DJIA), (2) the NASDAQ, and (3) the

Standard & Poor 500 index (S&P500) in the period from January 2, 2004

to April 30, 2004. We choose this period of data because three indices data

contain different statistical properties as reported in Table 6.7.1. Especially,

one may note that the data in this period for three indices contain largely

different skewness. In this way, the diversity in the data may not bias the

comparison of the models.

Following the procedure in [120], we convert the daily closing prices (dt)
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ε DJIA NASDAQ S&P500

LSVR SVR LSVR SVR LSVR SVR

0.0 0.9204 1.3241 1.2897 1.3050 1.2372 1.2833
0.2 0.9835 1.1274 1.2896 1.3246 1.2399 1.2831
0.4 0.9341 0.9156 1.2898 1.3314 1.2442 1.2952
0.6 0.9096 0.9387 1.2901 1.3404 1.2540 1.2887
0.8 0.9273 0.9450 1.2904 1.3891 1.2788 1.2798
1.0 0.9434 0.9713 1.2908 1.4105 1.3044 1.2664
2.0 0.9666 1.0337 1.2928 1.3619 1.2643 1.3220

Table 6.3: Experimental results of the LSVR model and the SVR algorithm
on the financial data with different ε values

of these indices to continuously compounded returns (rt = log dt+1

dt
) and set

the ratio of the number of the training return series to the number of test

return series to 5 : 1. We perform normalization on these return series by

Rt = rt−Mean(rt)
SD(rt)

, where the means and standard deviations are computed for

each individual index in the training period.

We compare the performance of the LSVR model against the SVR. The

predicted system is modelled as R̂t = f(xt), where xt takes the previous four

days’ normalized returns as indicators, i.e., xt = (Rt−4, Rt−3, Rt−2, Rt−1). Here

this simple setting we employ is based on the suggestions in [120]: A suitable

selection for the sequent values is four. We then apply the modelled function f

to test the performance by one-step ahead prediction. The trade-off parameter

C and the parameter of the RBF kernel (K(u,v) = exp(−β‖u − v‖2)), (C,

β), are obtained by a five-fold cross-validation conducting the SVR on the

following paired points: [2−5, 2−4, . . . , 210]× [2−5, 2−4, . . . , 210]. We obtain the

corresponding parameters as (24, 2−3) for DJIA, (2−3, 21) for NASDAQ, and

(20, 22) for S&P500.

As suggested in [120], there is a relationship in the sequential five days’

values. We select k = 2, i.e., five days’ values, to model the local volatility.

Since when ε ≥ 2.0, there are no support vectors in the SVR. We just set the ε

values from 0.0, 0.2, . . . , 1.0, to 2.0. The corresponding results are reported in

Table 6.3. As observed, the LSVR model demonstrates a consistent superiority

to the SVR algorithm, even though the paired parameters (C, β) are not tuned
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for our LSVR model. Furthermore, a paired t-test [107], performed on the best

results of both models in Table 6.3, shows that the LSVR model outperforms

SVR with α = 10% significance level for a one-tailed test.

6.8 Summary

In this chapter, we propose a Local Support Vector Regression model. Dif-

ferent from the standard Support Vector Regression model, our novel model

offers a systematic and automatic scheme to locally and flexibly adapt the

margin. Therefore, it can tolerate the noise adaptively. We demonstrate that

the promising model can not only captures the local information of the data

in approximating functions, but also can branch out similar models to the

standard SVR. The experiments conducted on sinc data sets and three indices

data from stock markets show that our model outperforms the standard SVR.

One future work of this model is to investigate efficient methods to directly

solve the original optimization of LSVR instead of solving a relaxed form. In

addition, both theoretical and empirical comparisons between the true solu-

tion and the approximated relaxed solution quantitatively are also valuable

research topics in the future.



Chapter 7

Conclusion and Future Work

In this chapter, a summary of this thesis is provided: We will review the

whole journey of this thesis, which starts from two schools of learning thought

in the literatures of machine learning and then motivate the resulting com-

bined learning thought including Maxi-Min Margin Machine, Minimum Error

Minimax Probability Machine and their extensions. Following that, we then

present both future perspectives within the proposed models and beyond the

developed approaches.

7.1 Review of the Journey

Two paradigms exist in the literatures of machine learning. One is the school of

global learning approaches; the other is the school of local learning approaches.

Global learning enjoys a long and distinguished history, which usually focuses

on describing phenomena by estimating a distribution from data. Based on

the estimated distribution, the global learning methods can then perform infer-

ences, conduct marginalizations, and make predictions. Although containing

many good features, e.g., a relatively simple optimization, and the flexibility in

incorporating global information such as structure information and invariance

etc, these learning approaches have to assume a specific type of distribution a

prior. However, in general, the assumption itself may be invalid. On the other
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hand, local learning methods do not estimate a distribution from data. Instead,

they focus on extracting only the local information, which is directly related to

the learning task, i.e., the classification in this thesis. Recent progress following

this trend has demonstrated that local learning approaches, e.g., Support Vec-

tor Machine (SVM) outperform the global learning methods in many aspects.

Despite of the success, local learning actually discards plenty of important

global information on data, e.g., the structure information. Therefore, this

restricts the performance of this types of learning schemes. Motivated from

the investigations of these two types of learning approaches, I therefore suggest

to propose a hybrid learning framework. Namely, we should learn from data

globally and locally.

Following the hybrid learning thought, I thus develop a hybrid model

named Maxi-Min Margin Machine (M4), which successfully combines two largely

different but complementary paradigms. This new model is demonstrated to

contain both appealing features in global learning and local learning. It can

capture the global structure information from data, while it can also provide

a task-oriented scheme for the learning purpose and inherits the superior per-

formance from local learning. This model is theoretically important in the

sense that M4 contains many important learning models as special cases in-

cluding Support Vector Machines, Minimax Probability Machine (MPM), and

Fisher Discriminant Analysis as special cases; the proposed model is also em-

pirically promising in that it can be cast as a Sequential Second Order Cone

Programming problem, yielding a polynomial time complexity.

The idea of learning from data locally and globally is also applicable in re-

gression tasks. Directly motivated from the Maxi-Min Margin Machine, a new

regression model named Local Support Vector Regression (LSVR) is proposed

in this thesis. LSVR is demonstrated to provide a systematic and automatic

scheme to locally and flexibly adapt the margin, which is globally fixed in

the standard Support Vector Regression (SVR), a state-of-the-art regression
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model. Therefore, it can tolerate the noise adaptively. The proposed LSVR

is promising in the sense that it not only captures the local information of

the data in approximating functions, but more importantly, it includes special

cases, which enjoy a physical meaning very much similar to the standard SVR.

Both theoretical and empirical investigations demonstrate the advantages of

this new model.

Besides the above two important models, another important contribution

of this thesis is that we also develop a novel global learning model called Min-

imum Error Minimax Probability Machine (MEMPM). Although still within

the framework of global learning, this model does not need to assume any spe-

cific distribution beforehand and represents a distribution-free Bayes optimal

classifier in a worst-case scenario. This thus makes the model distinguished

from the traditional global learning models, especially the traditional Bayes

optimal classifier. One promising feature of MEMPM is that it can derive an

explicit accuracy bound under a mild condition, leading to a good generaliza-

tion performance for future data.

The fourth contribution of this thesis is that I develop the Biased Mini-

max Probability Machine (BMPM) model. Even though it is a special case of

MEMPM, I highlight this model because BMPM provides the first systematic

and rigorous approach for a kind of important learning tasks, namely, the bi-

ased learning or imbalanced learning. Different from traditional imbalanced

(biased) learning methods, BMPM can quantitatively and explicitly incorpo-

rate a bias for one class and consequently emphasizes the more important

class. A series of experiments demonstrate that BMPM is very promising in

imbalanced learning and medical diagnosis.
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7.2 Future Work

The models developed in this thesis bridge the gap between local learning and

global learning. This brings a new viewpoint for both existing local models and

global models. Following the viewpoint of learning from data both globally and

locally, there seem to be a lot of immediate directions both inside and beyond

the proposed models in this thesis.

7.2.1 Inside the Proposed Models

There are certainly a lot of work for improving the proposed models in this

thesis.

First, all the models proposed in this thesis, including Minimum Error

Minimax Probability Machine, Maxi-Min Margin Machine, and Local Support

Vector Machine, involve in solving either a single Second Order Cone Program-

ming or a Sequential Second Order Cone Programming problems. Although

many optimization programs have demonstrated their good performance and

mathematic tractability in solving this kind of problems, they are designed for

general purposes and may not adequately exploit the specific properties in our

models. Therefore, it is highly possible and valuable to develop some special

optimization algorithms for speeding up their training. In particular, Maxi-

Min Margin Machine and Local Support Vector Regression enjoy the feature

of sparsity. By taking advantages of this property, researchers have developed

fast optimization algorithms for Support Vector Machine. It is therefore very

interesting to investigate whether similar procedures can be applied here. This

interesting topic deserves more attentions and remains to be an open problem.

Second, an immediate problem for Minimum Error Minimax Probability

Machine is the possible presence of local optimum in the practical optimization

procedures. While empirical evidence shows that the global optimum can be

attained in most of cases, the local optimum may occur when two types of
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data are not well-separated. Conventional simulated annealing [19, 76] or de-

terministic annealing methods [40, 41] are certainly possible ways to attack this

problem, however a formal approach, that is either a regularization augment

or an algorithmic approximation, may prove more appropriate.

Third, as shown in this thesis, all the proposed models apply the kernel-

ization trick to extend their applications into nonlinear tasks. However, it is

well-known that some global information, e.g., the structure information, may

not be well kept when the data are mapped from the original space to the

feature space. This may restrict the power of learning from data both globally

and locally. Motivated from this view, it is thus highly valuable to develop

techniques to retain the global information of data when performing the pro-

jection from the original space to the feature space. This can also be considered

as a task on how to choose a suitable kernel, which currently attracts much

interest in the machine learning community [4, 83].

Another important future direction for the proposed classification mod-

els, i.e., Minimum Error Minimax Probability Machine and Maxi-Min Margin

Machine, is how to extend the current binary classifications into multi-way

classifications. Although One Vs. All and One Vs. One [2, 128] approaches

present the main tools for conducting the upgrading, one always prefers to a

more systematic and more rigorous approach.

7.2.2 Beyond the Proposed Models

Although several important models have been motivated and developed from

the viewpoint of learning from data both globally and locally, beyond these

models, there are plenty of work deserving future investigations.

One natural question is whether other famous local models or global models

can be extended by engaging the viewpoint of learning from data globally and

locally. For example, Neural Networks, a large family of popular learning
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models, also focus on modelling data in a local fashion. It is therefore very

interesting to investigate whether global information can be also incorporated

into these kind of learning processes.

It is noted that the learning discussed in this thesis is restricted within

the framework of either classification or regression tasks. Both tasks belong

to the so-called supervised learning [7, 33, 157]. However, the other largely

different learning paradigm, unsupervised learning [36, 43, 142] is not consid-

ered. Therefore, exploring possible applications of hybrid learning in this field

presents a straightforward and immediate ongoing topic.



Appendix A

Proof of Lemma 2

Proof: In Marshall and Olkin Theory, if we define S = {aTy ≥ b}, the

theorem is changed to:

sup
y∼{y,Σy}

Pr{aTy ≥ b} =
1

1 + d2
, with d2 = inf

aTy≥b
(y − y)TΣ−1

y (y − y) .

We next show that d can be obtained with as follows:

d2 = inf
aTy≥b

(y − y)TΣ−1
y (y − y)

=
max (b− aTy, 0)2

aTΣya
.

This can be proved by using the Lagrangian multiplier method as follows

1). If aTy ≤ b

Denoting pT = aTΣ
1/2
y , g = Σ

−1/2
y (y − y), and q = b − aTy, one can

write d2 = infpTw≥q gTg. One can obtain g by introducing Lagrangian

multiplier:

{g, λ} = arg min
g

arg max
λ
{gTg + λ(q − pTg)},

167



Appendix A Proof of Lemma 2 168

where the multiplier λ ≥ 0. Therefore, one can get the following equali-

ties:

g =
λp

2
, q = pTg (A.1)

Since aTy ≤ b, one can easily obtain q ≥ 0. One can further obtain:

λ =
2q

pTp
, g =

dp

pTp
.

Finally, this leads to the following equation:

d2 = inf
aTy≥b

(y − y)TΣ−1
y (y − y)

=
(b− aTy)2

aTΣya
.

2). If aTy ≥ b

In this case, we can only have y = y. Therefore, d = 0.

By integrating the above, we thus complete the proof of this theorem
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A Simple Manual for the

Package of MEMPM Version 1.0

B.1 Starting MEMPM Version 1.0

- Unzip MEMPM-1.0.zip

- Run mempm demo in Matlab to see the demo of MEMPM.

The mempm demo function is designed step by step interactively. You

may press any key to continue it. The m-file mempm demo.m is designed

to demonstrate on how to use the MEMPM functions, it is commented

and explained so that you can use the code conveniently.

- Run robust demo in Matlab to see the demo of robost MEMPM.

The robust demo.m function demonstrates how to use the robust version

of MEMPM and MPM (with νx 6= νy) functions. It is commented and

explained so that you can use the code conveniently with your own data.
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B.2 An Overview of the Files

- build MEMPM lin bi QI.m

This function is designed to train the Minimum Error Minimax Proba-

bility Machine (the linear version) for binary classifications by using Se-

quential Biased Minimax Probability Machine method. The line search is

performed by the Quadratic Interpolation method and the Biased Mini-

max Probability Machine is performed by the Rosen Gradient projection

method.

- solve FP RG.m

This function is designed to solve a Fractional Programming problem by

the Rosen Gradient projection method.

- build MEMPM k bi QI.m

This function is designed to train the Minimum Error Minimax Proba-

bility Machine (the kernelized version) for binary classifications using the

Sequential Biased Minimax Probability Machine method, the line search

is performed by the Quadratic Interpolation method.

- solve FP PM.m

This function is designed to solve a Fractional Programming problem by

the Parametric Method.

- build BMPM k bi PM.m

This function is designed to train a Biased Minimax Probability Machine

(the kernelized version) for binary classifications by using the Parametric

Method to solve the Fractional Programming problem.

- build robMEMPM lin bi QI.m

This function is designed to train a robust Minimum Error Minimax
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Probability Machine (the linear version) for binary classifications by us-

ing sequential Biased Minimax Probability Machine method, the line

search is performed by the Quadratic Interpolation method.

- solv robF RG.m

This function is designed to solve a Fractional Programming problem

with robust parameters by the Rosen Gradient projection method.

- build robMEMPM k bi QI.m

This function is designed to train a robust Minimum Error Minimax

Probability Machine (the kernelized version) for binary classifications by

using sequential Biased Minimax Probability Machine method. The line

search is performed by the Quadratic Interpolation method.

- solve robFP PM.m

This function is designed to solve a Fractional Programming problem

with robust parameters by the Parametric Method.

- build robBMPM k bi PM.m

This function is designed to train a robust Biased Minimax Probability

Machine (BMPM, kernelized version) for binary classification by using

the Parametric Method to solve the Fractional Programming problem.

- build robMPMn lin bi PM.m

This function is designed to train a robust linear Minimax Probability

Machine for binary classifications with νx 6= νy, it is implemented by

solving a Fractional Programming problem using parametric method.

- build robMPM k bi PM.m

This function is designed to train a robust Minimax Probability Ma-

chine (the kernelized version) for binary classifications with νx 6= νy.

It is implemented by solving a Fractional Programming problem using

parametric method.
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- eval lin bi.m

This function is designed to evaluate all kinds of probability machines

(linear version), including Minimax Probability Machine , Biased Min-

imax Probability Machine , Minimum Error Minimax Probability Ma-

chine, for binary classifications.

- eval k bi.m

This function is designed to evaluate all probability machines (kernel-

ized version), including Minimax Probability Machine, Biased Minimax

Probability Machine, Minimum Error Minimax Probability Machine, for

binary classifications.

- mempm.mat:

This data file contains the data for the demonstration in .mat format

- mempm demo.m:

This function is designed to demonstrate on how to use the MEMPM

toolbox.

- robust demo.m:

This function is designed to demonstrate on how to use the robust version

of MEMPM and MPM with unequal parameters.
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introduction to Kernel-Based Learning Algorithms. IEEE Transactions

on Neural Networks, 12:181–201, 2001.

[110] R. M. Neal. Probabilistic inference using markov chain monte carlo

methods. Technical Report CRG-TR-93-1, Dept. of Computer Science,

University of Toronto, 1993.

[111] R. M. Neal. Suppressing random walks in markov chain monte carlo

using ordered overrelaxation. M. I. Jordan (editor) Learning in Graphical

Models, Dordrecht: Kluwer Academic Publishers:205–225, 1998.

[112] Y. Nesterov and A. Nemirovsky. Interior point polynomial methods in

convex programming: Theory and applications. SIAM, Philadelphia,

PA., 1994.

188



[113] A. S. Nugroho, S. Kuroyanagi, and A. Iwata. A solution for imbalanced

training sets problem by combnet and its application on fog forecasting.

IEICE TRANS. INF. & SYST., E85-D(7), 2002.

[114] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive

field properties by learning a sparse code for natural images. Nature,

(381):607–609, 1996.

[115] E. Osuna, R. Freund, and F. Girosi. Support Vector Machines: Training

and Applications. Technical Report AIM-1602, MIT, 1997.

[116] D. Patterson. Artificial Neural Networks. Singapore: Prentice Hall.,

1996.

[117] J. Pearl. Probabilistic Reasoning in Intelligent Systems: networks of

plausible inference. Morgan Kaufmann, CA, 1988.

[118] R. L. Pinto and R. M. Neal. Improving markov chain monte carlo es-

timators by coupling to an approximating chain. Technical Report No.

0101, Dept. of Statistics, University of Toronto, 2001.

[119] J. Platt. Sequential minimal optimization: A fast algorithm for training

support vector machines. Technical Report MSR-TR-98-14, 1998.

[120] Bernd Pompe. Mutual information and relevant variables for predictions.

In Abdol S. Soofi and Liangyue Cao, editors, Modelling and forecasting

financial data: techniques of nonlinear dynamics, pages 61–92. Kluwer

Academic Publishers, Boston, Mass., 2002.

[121] I. Popescu and D. Bertsimas. Optimal inequalities in probability theory:

A convex optimization approach. Technical Report TM62, INSEAD,

2001.

189



[122] F. Provost. Learning from imbanlanced data sets. In Proceedings of The

Seventeenth National Conference on Artificial Intelligence (AAAI 2000),

2000.

[123] F. Provost and T. Fawcett. Analysis and visulization of classifier per-

formance:comparison under imprecise class and cost distributions. In

Proceedings of the Third International Conference on Knowledge Dis-

covery and Data Mining, pages 43–48. Menlo Park, CA:AAAI Press,

1997.

[124] A. Pruessner. Conic programming in GAMS. In Opti-

mization Software - The State of the Art. INFORMS Atlanta,

http://www.gamsworld.org/cone/links.htm, 2003.

[125] J. R. Quinlan. C4.5 : programs for machine learning. San Mateo, Cali-

fornia:Morgan Kaufmann Publishers, 1993.

[126] L. R. Rabiner. A tutorial on hidden markov models and selected appli-

cations in speech recognition. Proceedings of the IEEE, 77(2):257C286,

1989.

[127] C. Rathinavelu and L. Deng. The trended HMM with discriminative

training for phonetic classification. In Proceedings of ICSLP, 1996.

[128] R. Rifkin and A. Klautau. In defense of one-vs-all classification. Journal

of Machine Learning Research, 5:101–141, 2004.

[129] B.D. Ripley. Pattern Recognition and Neural Networks. Press Syndicate

of the University of Cambridge, 1996.

[130] R. Rujam. Preceptron learning by playing billiards. Neural Computation,

9:99–122, 1997.

190



[131] S. J. Russell and P. Norvig. Artificial intelligence : a modern approach.

Englewood Cliffs, N.J. : Prentice Hall, 1995.

[132] Jaakkola Tommo S. and D. Haussler. Exploiting generative models in

discriminative classifiers. In Advances in Neural Information Processing

Systems (NIPS), 1998.

[133] S. Schaible. Fractional programming. Zeitschrift für Operational Re-

search, Serie A 27(1):39–54, 1977.

[134] S. Schaible. Fractional programming. Nonconvex Optimization and its

Applications. Kluwer Academic Publishers, Dordrecht-Boston-London,

1995.

[135] P. Schmidt and A. Witte. Predicting recidivism using survival models.

New York, NY:Spring-Verlag, 1988.

[136] B. Schölkopf, P. Bartlett, A. Smola, and R. Williamson. Shrinking the

Tube: A New Support Vector Regression Algorithm. In M. S. Kearns,

S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information

Processing Systems, volume 11, pages 330 – 336, Cambridge, MA, 1999.

MIT Press.

[137] B. Schölkopf, C. Burges, and A. Smola, editors. Advances in Ker-

nel Methods: Support Vector Learning. MIT Press, Cambridge, Mas-

sachusetts, 1999.

[138] B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cam-

bridge, MA, 2002.

[139] B. Schölkopf and A. Smola, editors. Learning with kernels: support

vector machines, regularization, optimization and beyond. MIT Press,

Cambridge, Massachusetts, 2002.

191



[140] A. Smola and B. Schölkopf. A tutorial on support vector regression.

Technical Report NC2-TR-1998-030, NeuroCOLT2, 1998.

[141] A. J. Smola, P. L. Bartlett, B. Scholkopf, and D. Schuurmans. Advances

in Large Margin Classifiers. The MIT Press, 2000.

[142] H. Steck and T. Jaakkola. Unsupervised active learning in large domains.

In In Proceedings of the Eighteenth Annual Conference on Uncertainty

in Artificial Intelligence, 2002.

[143] A. Stolcke and S. Omohundro. Hidden markov model induction by

bayesian model merging. In NIPS 5, pages 11–18, 1993.

[144] J. F. Sturm. Using sedumi 1.02, a matlab toolbox for optimization over

symmetric cones. Optimization Methods and Software, 11:625–653, 1999.

[145] J. F. Sturm. Central region method. In J. B. G. Frenk, C. Roos, T. Ter-

laky, and S. Zhang, editors, High Performance Optimization, pages 157–

194. Kluwer Academic Publishers, 2000.

[146] J. Swets. Measureing the accuracy of diagnostic systems. Science,

(240):1285–1293, 1988.

[147] J. Swets and R. Pickett. Evaluation of diagnoistic systems: Methods

from signal detection theory. New York, NY: Springer-Verlag, 1982.

[148] B. Thiesson, C. Meek, and D. Heckman. Learning mixtures of bayesian

networks. In Technique Report, MSR-TR-97-30. Microsoft Research,

1998.

[149] A. N Tikhonov. On solving ill-posed problem and method of regulariza-

tion. Doklady Akademii Nauk USSR, 153:501–504, 1963.

[150] M. Tipping. The relevance vector machien. In Advances in Neural In-

formation Processing Systems 12 (NIPS), 1999.

192



[151] S. Tong and D. Koller. Restricted bayes optimal classifiers. In Proceed-

ings of the 17th National Conference on Artificial Intelligence (AAAI),

Austin, Texas, August 2000, pages 658–664, 2000.

[152] P. K. Trivedi. Estimation of a distributed lag model under quadratic

loss. Econometrica, 46(5):1181–1192, 1978.

[153] V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

[154] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New

York, 2nd edition, 1999.

[155] V. V. Vasin. Relationship of several variational methods for approximate

solutions of ill-posed problems. Math. Notes, 7:161–166, 1970.

[156] J. Weizenbaum. Eliza- a computer program for the study of natural

language communication between man and machine. Communications

of the Association for Computing Machinery, 1966.

[157] Hannes. Wettig, Peter Grunwald, and Teemu Roos. Supervised naive

bayes parameters. In P. Ala-siuru and S. Kasko., editors, The Art of

Natural and Artificial:Proceedings of the 10th Finnish Artificial Intelli-

gence Conference, pages 72–83, 2002.

[158] P. Woodland and D. Povey. Large scale discriminative training for speech

recognition. In Proceedings of ASR 2000, 2000.

[159] Kevin Woods, W.Philip Kegelmeyer Jr., and Kevin Bowyer. Combina-

tion of multiple classifiers using local accuracy estimates. IEEE Tans-

actions on Pattern Analysis and Machine Intelligence, 19(4):405–410,

April 1997.

[160] H. Yang, K. Huang, I. King, M. R. Lyu, and L. Chan. Mat-

lab toolbox for biased minimax probability machine (bmpm1.0).

193



http://www.cse.cuhk.edu.hk/∼miplab/mempm toolbox/index.htm,

2004.

[161] H. Yang, K. Huang, I. King, M. R. Lyu, and L. Chan. Matlab

toolbox for minimum error minimax probability machine (mempm1.0).

http://www.cse.cuhk.edu.hk/∼miplab/mempm toolbox/index.htm,

2004.

[162] H. Yang, I. King, L. Chan, and K. Huang. Financial Time Series Predic-

tion Using Non-fixed and Asymmetrical Margin Setting with Momentum

in Support Vector Regression. In J. C. Rajapakse and L. Wang, editors,

Neural Information Processing: Research and Development, volume 152

of Studies in Fuzziness and Soft Computing, pages 334–350. Springer-

Verlag, 2004.

[163] J. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief propogation.

In Neural Information Processing Systems 13, 2000.

[164] W. Zhang and I. King. A study of the relationship between support

vector machine and gabriel graph. In In Proceedings of IEEE World

Congress on Computational Intelligence—International Joint Confer-

ence on Neural Networks, 2002.

[165] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector

machines. In Advances in Neural Information Processing Systems (NIPS

16), 2003.

194


