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Abstract

Discriminative classifiers such as Support Vector Machines (SVM) directly learn a
discriminant function or a posterior probability model to perform classification. On
the other hand, generative classifiers often learn a joint probability model and then use
Bayes rules to construct a posterior classifier from this model. In general, generative
classifiers are not as accurate as discriminative classifiers. However generative classi-
fiers provide a principled way to deal with the missing information problems, which
discriminative classifiers cannot easily handle. To achieve good performances in vari-
ous classification tasks, it is better to combine these two strategies. In this paper, we
develop a method to train one of the popular generative classifiers, the Naive Bayesian
classifier (NB) in a discriminative way. We name this new model as Discriminative
Naive Bayesian classifier. We give theoretic justification, outline of the algorithm, dis-
cussion of the extension to the general Bayesian classifiers, and perform a serious of
experiments on benchmark real-world datasets to demonstrate our model’s advantages.
The Discriminative Naive Bayesian Classifier is shown to have a similar optimization
form as SVM. Its performance outperforms NB in classification tasks and outperforms
SVM in handling missing information tasks.

1 Introduction

Generative classifiers have showed their advantages to deal with missing information prob-

lems in many classification tasks, even though their overall performances are not as good

as discriminative classifiers such as Support Vector Machines [19]. A typical example of

generative classifiers is the Naive Bayesian classifier[6] [10]. Under a conditional indepen-

dency assumption, i.e., P (Ai, Aj|C) = P (Ai|C)P (Aj|C), for 1 ≤ i 6= j ≤ n, NB classifies a



new data x into the class with the largest posterior probability as shown in Eq. (1), where

Ai, Aj represent the attributes or variables, C is the class variable, n is the number of the

attributes. Further as in Eq. (2) this posterior classification rule can be transformed into

joint probability classification rule, since P (A1, A2, . . . , An) for a given data is a constant

w.r.t C. Finally, combining the independency assumption, the classification rule is changed

into a decomposable form as Eq. (3).

c = arg max
Ci

P (Ci|A1, A2, . . . , An) (1)

= arg max
Ci

P (Ci)P (A1, A2, . . . , An|Ci)
P (A1, A2, . . . , An)

= arg max
Ci

P (Ci)P (A1, A2, . . . , An|Ci) (2)

= arg max
Ci

P (Ci)
n∏

j=1

P (Aj|Ci) (3)

When used in real application, NB firstly partitioned the dataset into several sub-datesets by

the class label. According to Maximum Log-likelihood criterion, in each sub-dataset labelled

by Ci, P (Aj = ajk|Ci) is easily estimated by the frequency nijk/ni, nijk is the number of the

occurrences of the event {Aj = ajk} in sub-dateset Ci, ni is the number of the samples in

sub-dateset Ci.

This kind of simple scheme achieves a surprising success in many classification tasks [6] [10] [7].

Importantly, a great advantage for NB is its immediate ability to deal with missing infor-

mation problems. Assume the attributes set {A1, A2, . . . , An} as A, when the information

of a subset of A, for example T , is unknown, the marginalization inference can be obtained

immediately as follows:

c = arg max
Ci

∑

T

P (Ci)P (A− T, T |Ci)

= arg max
Ci

P (Ci)P (A− T |Ci)

= arg max
Ci

P (Ci)
∏

j∈A−T
P (Aj|Ci). (4)

No further computation is needed in handling this missing information problem, since each

term P (Aj|Ci) has been obtained in training the NB.
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However, problems exist for NB. This model separately model the joint probability in each

subset and then apply Bayes rule to construct posterior classifiers. This kind of framework

seems to be incomplete, since this construction procedure actually discards some important

discriminative information for classification. With no consideration of the other data with

different class label, this method only tries to approximate the information in each sub-

dataset. On the other hand, the discriminative classifiers preserver this information well

by directly constructing decision rules among all the data. Therefore, for Naive Bayesian

classifier, it is not enough to approximate the date in each sub-dateset separately. It should

provide a global scheme to preserve the discriminative information among all the data.

One of the remedy method is to directly learn a posterior probability model rather than a

joint probability model. However in the framework of Bayesian network classifier, this kind

of approaches are often computationally hard to perform the optimization. Even for the

simple Naive Bayesian classifiers, the corresponding posterior learning, known as Logistic

Regression (LR) will encounter difficult problems for dealing with missing information tasks.

In a two-category classification problem, LR defines the posterior probability as P (c =

C0|A1, A2, . . . , An) = 1/(1 + exp(−∑n
j=1 βjAj − θ)), P (c = C1|A1, A2, . . . , An) = 1− P (c =

C0|A1, A2, . . . , An). Similarly, ML criterion can be used to find the parameters β and θ.

When the values of a subset of attribute set T is unknown, the marginalization on T as

shown in Eq.( 5):

P (c = C0|A− T ) =

∑
T P (c = C0|A)P (A− T, T )∑

T P (c = C0|A)P (A− T, T ) +
∑

T P (c = C1|A)P (A− T, T )
(5)

The right hand side will be hard to calculate. Firstly, P (A − T, T ) varies from T, thus it

cannot be omitted. Secondly, P (c = C0|A), the logistic form will be at least calculated r |T |

times , where r is the minimum number of values of attributes, |T | represents the cardinality

of set T. This calculation will be computationally intractable when the number of missing

attributes is big.

In this paper, we develop a novel method to train the Naive Bayesian classifier, in a

discriminative way. Beginning with modelling the joint probabilities for the data, we add
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into the optimization function a penalty item which describes the divergence between two

classes. On one hand, the optimization on the new function not only tries to approximate the

dataset as accurately as possible. On the other hand, it also tries to enlarge the divergence

among classes as big as possible. Importantly, when improving the accuracy, this model also

inherit the NB’s ability in handling missing information problems.

This paper is organized as follows. In next section, we present a short review on the

related work. In Section 3 we describe the discriminative Naive Bayesian classifiers in detail.

We then in Section 4 evaluate our algorithm on five benchmark datasets. In section 5,

the relationship between our algorithm and other approaches, such as SVM, and Fisher

Discriminant, are discussed. In this section, we also give an algorithm to extend our algorithm

to a tree-like Bayesian network. Finally, in Section 6, we conclude this paper with remarks.

2 Related work

Combining generative classifiers and discriminative classifiers has been one of an active topics

in machine learning. A lot of work [1, 8, 18, 2] has been done in this area. However nearly

all of these methods are designed for Gaussian Mixture Model [12] and Hidden Markov

Model [15]. By contrast, our discriminative approaches are developed for one of Bayesian

network classifiers, Naive Bayesian classifiers. On the other hand, Jaakkola et. al. developed

a method to explore generative models from discriminative classifiers [17]. Different with this

approach, our method performs a reverse way to use discriminative information in generative

classifiers.

3 Discriminative Naive Bayesian Classifiers

In this section, we first develop the discriminative Naive Bayesian classifier in a two-category

classification tasks. Then we in Subsection 3.2, based on a voting scheme, we present an

extension of our method into multi-category classification tasks.
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3.1 Two-category Discriminative Naive Classifiers

The NB firstly partitions the dataset into several sub-datasets by the class variable. Typ-

ically, in a two-category classification problem, two sub-datasets S1 and S2 will be created

respectively for class label C1 and C2. Then in each sub-dataset, an ML or cross entropy

criterion will be used to find the optimal values for the parameters, namely, P (Aj|C1) and

P (Aj|C2), 1 ≤ j ≤ n. The cross entropy between a distribution p and a reference distribution

q is defined as a Kullback–Leibler form shown in the following:

KL(q, p) =
∑

q log
q

p
(6)

In the framework of Bayesian learning, the reference distribution is normally the empirical

distribution. Therefore for NB, the optimization function in a two-category classification

problem can be written:

{P1, P2} = arg max
{p1,p2}

(KL(p1, p̂1) +KL(p2, p̂2)) (7)

p̂1 and p̂2 represent the empirical distribution for Sub-dataset 1 and Sub-dataset 2 respec-

tively. The first term and second term on the right hand side of Eq. (7) describe how accu-

rately the joint distributions p1 and p2 approximate the sub-dataset 1 and sub-dataset 2. It is

observed again that this function is incomplete, since only the inner-class information is pre-

served. The important inter-class information, namely, the divergence information,between

class 1 and class 2 is discarded actually. To fix this problem, we add into the optimization

function an interactive term, which represents the divergence between classes.

{P1, P2} = arg min
{p1,p2}

f(p1, p2)

= arg min
{p1,p2}

(KL(p1, p̂1) +KL(p2, p̂2) +W ·Div(p1, p2)) (8)

Div(p1, p2) is a function of the divergence between p1 and p2. This function value needs to

go up as the divergence goes down. W is a penalty parameter. In this paper, we use the

reciprocal of the Kullback–Leibler measure to represent the function.

Div(p1, p2) =
1∑

x p1 log p1

p2

(9)
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Optimization on this function will make the inner-divergence described in the first two

terms on the right hand side as small as possible while the inter-class divergence among

classes will be as big as possible, which will benefit the classification greatly. Different from

the discriminative classifiers such as the LR, the discriminative information is finally incor-

porated into the joint probability p1 and p2. Thus the advantages of using joint probabilities

will be naturally inherited into the discriminative Naive Bayesian classifier.

However, the disadvantage of adding into this interactive item is that we cannot optimize

p1 and p2 as in NB separately in the sub-dataset 1 and sub-dataset 2. To clarify this problem,

we combine the NB assumption to expand the optimization function into a complete form:

min
{p1,p2}

2∑

c=1

n∑

j=1

∑

Aj

[p̂c(ajk) log
ˆpc(ajk)

pc(ajk)
] +W · 1∑n

j=1

∑
Aj
p1(ajk) log(p1(ajk)/p2(ajk))

,(10)

s.t. 0 ≤ pc(ajk) ≤ 1, (11)

∑

Aj

pc(ajk) = 1, c = 1, 2; j = 1, 2, . . . n. (12)

pc(ajk) is the short form of pc(Aj = ajk). So does p̂c(ajk). p1 and p2 are a set of parameters,

namely, p1 = {p1(Aj), 1 ≤ j ≤ n}, p2 = {p2(Aj), 1 ≤ j ≤ n}. This is a nonlinear optimiza-

tion problem under linear constraints. p1 and p2 are interactive variables. It is clear that

they cannot be separately optimized as in Eq.( 7).

To solve this problem, we use a modified Rosen’s Gradient Projection Method [16]. We

firstly calculate the gradient of the optimization function w.r.t p1 and p2 as Eq. (13). We

then project this gradient on the constraint plane. In our problem the projection matrix

can be written as Eq. (16). The optimal step length α is searched in the projected gradient

direction by using Quadratic Interpolation method [11]. The process is repeated until a local

minimal is obtained. We write down the detailed steps as follows:

∂f

∂p1(ajk)
= −p̂1(ajk)/p1(ajk)−

W

Z
[1 + log(p1(ajk)/p2(ajk))]; (13)

∂f

∂p2(ajk)
= −p̂2(ajk)/p2(ajk) +

W

Z
p1(ajk)/p2(ajk); (14)

Z =
n∑

i=1

∑

Aj

log
p1(ajk)

p2(ajk)
; (15)
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M = I − A(A′A)−1A′, (16)

where, A is the coefficient matrix for the constraint.

1: Calculate the gradient according to Eq. 13.

2: Project the gradient into the constraint plane:∇fM = ∇f ·M .

3: Search the optimal step length α by Cubic Interpolation method.

4: Update the p1, p2 by the following Equations.

p1(ajk)
new = p1(ajk)

old − α∇fM1jk; (17)

p2(ajk)
new = p1(ajk)

old − α∇fM2jk; (18)

5: goto step 1 until p1 and p2 converge.

3.2 Extended to Multi-category Discriminative Naive Classifiers

We use a partly-connect committing machine scheme to extend the two-category classifica-

tion problem into the multi-category one. We construct a two-category classifier for each pair

of classes. For an m-category problem, in total, m(m − 1)/2 classifiers will be constructed.

Each classifier will output a probability on how confident its voting is. We then sum up the

voting probabilities for each class and return the class with the highest probabilities as the

final decision. In Fig. (3.2), we illustrate a four-category committing machine. In Fig. (3.2),

totally 4 × 3/2 = 6 DNB two-category classifiers are constructed. Then these classifiers

output the confidence on the class they are voting for. These confidences or probabilities are

summed up for each class. Finally, the class with the maximum confidence is outputted as

the classification result.

4 Evaluations

In this section, we implement the DNB algorithm to evaluate its performance on five bench-

mark datasets from Machine Learning Repository in UCI [13]. The detailed information for
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Figure 1: Discriminative Naive Bayesian Classifier Committing Machine for a four-category
problem. Si, 1 ≤ i ≤ 4 represent the sub-dataset for category i respectively. Clm, 1 ≤ l ≤ 3,
l < m means the the two-category Discriminative Naive Beyesian classifier for category l
and category m.

these datasets are listed in Table 1. We intentionally choose these datesets which vary in

variable number and sample number. As observed in Table 1, the variable number ranges

from 4 to 60 and the sample number varies from 150 to 6435. The diversity in choosing the

datesets will make the evaluations on the algorithms more reliably. For the datesets with a

small number of samples such as Iris and Vote, we use a five-fold Cross-Validation method [9]

to test the performance. We compare our model’s performance with NB and SVM in two

cases, namely the case without information missing and the case with information missing.

The parameters for DNB and SVM are used in the experiments are listed in Table 2.

4.1 Without information missing

We first implement our model in the case without information missing. The experimental

results are demonstrated in Table 3. It can be observed that DNB outperforms NB in

all of the five datesets, which implies incorporating discriminative information in training
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Table 1: Description of data sets used in the experiments
Dataset ]Variables ]Class ]Train ]Test

Iris 4 3 150 CV-5
Vote 15 2 435 CV-5

Segment 19 7 2310 30%
Satimage 36 6 4435 2000

DNA 60 3 2000 1186

Table 2: Parameters used in the experiments
Method Penalty parameter Kernel function

DNB 1000 N/A
SVM 1000 3-order polynomial

the generative models benefits the classification greatly. When compared with SVM, DNB

wins in two of the datesets while it loses in three of the others. Especially in Segment

and Setimage, SVM performs significantly better than DNB. This demerit of DNB roots in

the inner scheme of generative classifiers. Actually this kind of demerit is traded off with

its merit when handling the missing information cases. In Section 5.1. We will present a

detailed discussion on this issue.

Table 3: prediction accuracy without information missing(%)
Dataset NB DNB SVM

Iris 93.33 97.33 95.33
Vote 90.11 93.33 94.77

Segment 88.44 90.88 95.96
Satimage 80.65 82.65 87.90

DNA 94.44 94.52 94.35

4.2 With information missing

It is important to discuss the ability of DNBs in handling the missing information issues,

since one of the main advantages for generative classifiers lies in this point. Gradually, we

increase the percentages of the number of unknown or missing attributes. We then test

the recognition rate on these datasets with different percentages. As mentioned previously

for DNB and NB, a principled way to handle missing information is using marginalization

9
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Figure 2: Error rates in Iris with information missing.

inference Eq. (19) under uncertainty. For SVM, a norm way to force its application in missing

information tasks is simply setting zeros values for the missing attributes. The experiment

results for the five datasets are shown in Fig. 2 to Fig. 6.

c = arg max
Ci

P (Ci)
∏

j∈A−T
P (Aj|Ci). (19)

It is shown that NB demonstrates a robust ability to handle the missing information

problem. In five experiments, the error rate curves do not go up until 40% attributes are

unknown. Further, the DNB shows a similar resistance ability while its accuracy is higher

than NB. This superiority is especially prominent in small datasets such as Iris and Vote

datasets. In the datasets with small number of samples, the ML approximation is not

reliable, since the distribution from insufficient training data perhaps cannot represent the

true distribution. Therefore, the discriminative item will contribute more in constructing the

classifiers. On the other hand, the SVM’s performance gradually runs down as the missing

extent goes up.
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Figure 3: Error rates in Vote with information missing.
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Figure 4: Error rates in Segment with information missing.
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Figure 5: Error rates in Satimage with information missing.
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Figure 6: Error rates in DNA with information missing.

Figure 7: SVM

12



5 Discussion

5.1 Why DNB performs not as well as SVM when no information
is missing?

In SVM, a linear classifier y = w · x + b with the maximum margin between two classes is

searched by minimizing the following function as Eq. (20).

τ(w, ξ) =
C

N

N∑

i=1

ξi +
1

2
‖ w ‖2 (20)

s.t. yi · ((w · xi) + b) ≥ 1− ξi, ξi ≥ 0

To handle the non-linear problem, usually the so-called kernel trick will be used to map

the input into a high-dimension feature space, where a linear classifier can be found. This

function consists of two parts. Since 2
‖w‖ represents the margin between two classes, the

second part on the right hand of Eq. (20), namely 1
2
‖ w ‖2 describes the extent on how far

two classes are from each other. The first term can be considered as the loss function in the

training dataset, i.e., how accurate the sample in the training dateset can be classified into

the corresponding class. Interestingly, we note this optimization function for SVM is similar

as the one for the DNB. In the DNB model, two terms form the optimization function as

Eq (8). The second term represents a similar meaning as the one in SVM. The first term

in the DNB also tries to approximate the training dataset as accurately as possible. The

difference is that in SVM, the first part directly minimizes the recognition error rate while in

the DNB, this part minimizes an intermediate term not directly related to the classification

error rate. As Box says, all models are wrong (but some are useful) [3]. Thus, using a

generative model to approximate the dateset and then making predictions need always pay

something. This may explain why SVM perform better than DNB when no information is

missing.
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5.2 Relation between DNB and Fisher Discriminant Classifier

It is also interesting that Fisher Discriminant also uses a similar idea as ours to separate two

classes. Fisher Discriminant function is defined as:

JF (w) =
(µ1 − µ2)2

D2
1 +D2

2

, (21)

where µi =
1

N

∑

x∈Si
x,D2

i =
∑

x∈Si
(x− µi)2. (22)

Si are the sub-dateset for class i. By maximizing JF (w), Fisher Discriminant minimizes the

inner-class divergence described by the denominator and maximizes the inter-class divergence

describe by the numerator. The classifier is given as a linear form: y = sign(w · x + b). We

argue that using the difference between the mean values as the divergence between two class is

not an informative way as Kullback-Leibler divergence. This may partly explain why Fisher

Discriminant is often used as the dimension reduction method rather than a classification

method. Since DNB can also be considered as a linear classifier, to some extent, it may be

regarded as an informative counterpart of the Fisher Discriminant.

5.3 Extension to Bayesian Network Classifier

As a special case of Bayesian Network classifiers (BN) [14], NB can be depicted as a depen-

dence graph as Fig. 8. A more general BN does not assign the fixed dependence relationship

as in NB. Instead, it tries to search the dependence relationship among the variables.

An interesting question is proposed naturally. Can the discriminative training for the

NB be extended to the general Bayesian Network classifiers. However, difficulties will be

encountered in trying to give a positive answer to the question. It has been reported that

searching an general Bayesian network structure is an NP-hard problem [5]. Introducing an

interactively discriminative term will make this problem more difficult to be solved. Thus a

popular way is to develop restricted BN, in which, the dependence relationship can be found

relatively easier.

Usually, restricted Bayesian networks confine the dependence structure in a specific fam-
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A A A A2 n-1 n1

C

Figure 8: Naive Bayesian Network Classifier. Ai, 1 ≤ i ≤ n is the attribute. This figure
means each attribute is independent on the other attributes, given the class label C.

ily, for example, a tree family. Optimization on restricted BN often goes into two parts

sequently, namely, structure learning and then parameter fitting when given the structures.

However, even for the restricted BN, the number of possible restricted structures is normally

huge and thus make the optimization on them intractable. Two exceptions are the NB and

tree-like BN. In NB, the structure is fixed, since no other structures are possible when the

independency assumption is given. In tree-like BN, The joint probability under the tree-like

structure assumption can written as a decomposed form as

P (A1, A2, . . . , An) =
n∏

j=1

P̂ (Aj|pa(Aj)), (23)

where pa(Aj) means the parent variable of variable Aj under the tree assumption. Then

a Chow-Liu algorithm [4] can be used to optimize the structure and the parameter simul-

taneously in an O(n2) time. Here n is the number of the variables. Even for tree-like

BNs, discriminative training encounter problems. Different from DNB, a structure learning

problem is involved. The heuristic gradient method will be hard to be integrated to the

optimization.

{p∗B1
, p∗B2

, B1, B2} = arg max
{pB1

,pB2
,B1,B2}

{KL(pB1 , p̂1) +KL(pB2 , p̂2) +W ·Div(pB1 , pB2)}, (24)

To be detailed, the optimization as Eq. (24) in tree-like BN is involved into the learning

problem of structures B1 and B2. Without the discriminative item, Bi, PBi can be separa-
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tively optimized by Chow-Liu algorithm. When added into the interactive term, Chow-Liu

algorithm is not directly available to solve the problems. The heuristic gradient method in

DNB cannot be given as a close-form function of the structure, thus it is also not applicable

in such a task..

In the following we develop an iterative algorithm to train the tree-like BN in a discrimi-

native way. We call this algorithm Discriminative Chow-Liu Tree algorithm (DCLT). Instead

performing optimization on one objective function, we optimize two functions sequently in

an iterative way:

f1 = KL(pB1 , p̂1) +W ·Div1(pB1, pB2) (25)

f2 = KL(pB2 , p̂2) +W ·Div2(pB1, pB2) (26)

where,

Div1(pB1 , pB2) = −
∑

pB1 log
pB1

pB2

(27)

Div2(pB1 , pB2) = −
∑

pB2 log
pB2

pB1

(28)

When B1, pB1 is fixed, f2 can be minimized by a modified Chow-Liu tree algorithm. So

does f1 when B2, pB2 is fixed. The details can be seen in Appendix. The solvability implies

us an iterative way as Fig 9 to perform discriminative training. The detailed algorithm is

written as follows.

To guarantee the convergence of the above scheme, we can set W to W0 · exp−β·i.

We implement the DCLT algorithm on two real world datasets. The recognition accu-

racy is shown in Table 4. From the table, DCLT improves the accuracy of CLT in both

datasets. When compared with the DNB, DCLT wins in one dataset while loses in another

dataset. Further evaluations on other datasets and the comparison between DCLT and SVM

is ongoing.
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Figure 9: Iterative Training of Tree-like Bayesian Networks in a Discriminative way

Algorithm (D,W0, β)

input(pre-classified Dataset D = {x1, x2, . . . , xN},W0, β)

Initialization: {B1, pB1} = {B0
1 , p

0
B1
}, i = 1. Partition D into two sub-datasets D1

and D2 by class;
repeat
{Bi

1, p
i
B1
} ← {Bi−1

1 , pi−1
B1
};

Find Bi
2, p

i
B2

by minimizing f2 in D2;
i← i+ 1;
{Bi

2, p
i
B2
} ← {Bi−1

2 , pi−1
B2
} ;

Find Bi
1, p

i
B1

by minimizing f1 in D1;
i← i+ 1;
W = W0e

−βi;

until convergence;

output(B1, B2, pB1 , pB2)

Algorithm 1: Iterative Bayesian Multinet Optimization Algorithm

Table 4: Recognition rate
Database NB DNB CLT DCLT

Hepatitis(%) 84.95 86.02 86.03 89.25
Vote(%) 90.34 93.33 91.26 92.18
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6 Conclusion

In this paper, we proposed a novel model named ”Discriminative Naive Bayesian classifiers”.

This model combines the advantages of generative classifiers with discriminative classifiers.

When handling the tasks without information missing, the DNB demonstrates a superior

performance than the Naive Bayesian classifer. When handling the tasks with information

missing, the DNB outperforms the Support Vector Machines. We discuss the relationship

between our model and other models such as Support Vector Machines and Fisher Discrim-

inant. We also present an extension of our model to general Bayesian Network classifiers.
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Appendix

Let l =
∑
{a1,... ,an}(p̂2 − W · pB1) log pB2 , when B1, p1 is fixed, the minimization on f2 is

equivalent to the minimization of l. Under a tree dependence structure t among the variables,

l can be decomposed as:

n∑

i=1

∑

{ai,apa(i)}
[p̂2(ai, apa(i))−W · pB1(ai, apa(i))]

log(pB2(ai|apa(i)) (29)

Let:

pd(ai, apa(i)) = p̂2(ai, apa(i))−W · pB1(ai, apa(i)) (30)

Thus, the optimization is changed into:

max
t
lt =

max
t
{

n∑

i=1

max
P |t

∑

{ai,apa(i)}
[pd(ai, apa(i))

log pB2(ai|apa(i))]}

When given a specific tree t, the inner maximization can be obtained by applying Kuhn-

Tucker conditions and Lagrange multiplier method under the constraint:pB2(ai, apa(i)) ≥ ξ2

and
∑
{ai,apa(i)} pB2(ai, apa(i)) = 1. ξ2 is a positive constant close to zero1

P (A1, A2, . . . , An) =
n∏

j=1

P̂ (Aj|pa(Aj)), (31)

where pa(Aj) means the parent vertex of vertex Aj. Each subitem P̂ (Aj|pa(Aj)) can be

reliably estimated based on the empirical distribution.. The solution for the associated

probabilities pB2 can be written as:

ptB2
(ai, aj) = ξ2,

if pd(ai, aj) ≤ 0, i 6= j; (32)

1None of the decomposed probabilities can be zero. Otherwise, the restored joint probability as
Eq. (31)will be always zero whatever the other decomposed probabilities are.
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ptB2
(ai, aj) = pd(ai, aj)/Z,

if pd(ai, aj) > 0, i 6= j; (33)

where Z is a normalization factor, which is used to guarantee
∑
{ai,aj} p

t
B2

(ai, aj) = 1;

Therefore, Eq. (31) continues to be:

max
t
lt =

= {
n∑

i=1

∑

{ai,apa(i)}
pd(ai, apa(i)) log ptB2

(ai|apa(i))}

= max
t
{[

n∑

i=1

∑

{ai,apa(i)}
[pd(ai, apa(i))

log(
ptB2

(ai, apa(i))

ptB2
(ai)ptB2

(apa(i))
)]]−

n∑

i=1

H(Ai)} (34)

Where, H(Ai) = −∑n
i=1 p

d
B2

(ai) log ptB2
(ai), 1 ≤ i ≤ n. −∑n

i=1 H(Ai) is a constant for

any tree structure. Thus we can remove this item from Eq. (34). Further, we define the

discriminative mutual information for a pair of variable ai, aj as:

Id(Ai, Aj) =
∑

{ai,aj}
pd(ai, aj) log

ptB2
(ai, aj)

ptB2
(ai)ptB2

(aj)
(35)

Eq. (34) continues to be:

max
t
lt

= max
t

n∑

i=1

Id(Ai, Apa(i)) (36)

This is a Maximum Weight Spanning Tree problem (MWST), where the weights are given by

the discriminative mutual information. The MWST problem can be solved by many mature

methods.
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