Learning to Recommend

MA, Hao

A Thesis Submitted in Partial Ful Iment
of the Requirements for the Degree of
Doctor of Philosophy
in
Computer Science and Engineering

The Chinese University of Hong Kong
December 2009



Thesis/Assessment Committee Members

Professor Je rey Xu YU (Chair)

Professor Irwin KING (Thesis Supervisor)
Professor Michael R. LYU (Thesis Supervisor)
Professor Yufei TAO (Committee Member)
Professor Qiang YANG (External Examiner)



Abstract of thesis entitled:
Learning to Recommend
Submitted by MA, Hao
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in December 2009

Recommender Systemare becoming increasingly indispensable
nowadays since they focus on solving the information ovedd
problem, by providing users with more proactive and persoha
ized information services. Typically, recommender systesrare
based onCollaborative Filtering, which is a technique that au-
tomatically predicts the interest of an active user by colleting
rating information from other similar users or items. Due to
their potential commercial values and the associated grea¢-
search challenges, Recommender systems have been extehsiv
studied by both academia and industry recently.

However, the data sparsity problem of the involved user-ite
matrix seriously a ects the recommendation quality. Many &-
Isting approaches to recommender systems cannot easily dea
with users who have made very few ratings. The objective of
this thesis is to study how to build e ective and e cient ap-
proaches to improve the recommendation performance.

In this thesis, we rst propose two collaborative Itering
methods which only utilize the user-item matrix for recomme-
dations. The rst method is a neighborhood-based collabora
tive ltering method which designs an e ective missing data
prediction algorithm to improve recommendation quality, viile
the second one is a model-based collaborative Itering medd



which employs matrix factorization technique to make the e
ommendation more accurate.

In view of the exponential growth of information generatedy
online users, social contextual information analysis is beming
iImportant for many Web applications. Hence, based on the
assumption that users can be easily in uenced by the friends
they trust and prefer their friends' recommendations, we @mpose
two recommendation algorithms by incorporating users' sl
trust information. These two methods are based on probaksiiic
matrix factorization. The complexity analysis indicates hat our
approaches can be applied to very large datasets since thegle
linearly with the number of observations, while the experimantal
results show that our methods perform better than the state{-
the-art approaches.

As one of the social relations, \distrust" also performs an
iImportant role in online Web sites. We also observe that dis-
trust information can also be incorporated to improve recom
mendation quality. Hence, the last part of this thesis studis
the problem on how to improve recommender system by consid-
ering explicit distrust information among users. We make t@
assumption that users' distrust relations can be interpretd as
the \dissimilar" relations since useru; distrusts useruq indicates
that user u; disagrees with most of the opinions issued by user
Ug. Based on this intuition, the distrust relations between usrs
can be easily modeled by adding the regularization term intihe
objective functions of the user-item matrix factorization The
experiments on the Epinions dataset indicate that distrusin-
formation is at least as important as trust information.
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Chapter 1

Introduction

1.1 Overview

As the exponential growth of information generated on the Wid
Wide Web, the Information Filtering techniques like Recom-
mender Systemshave become more and more important and
popular. Recommender systems form a speci c type of infor-
mation ltering technique that attempts to suggest informa
tion items (movies, books, music, news, Web pages, images,
etc.) that are likely to interest the users. Typically, recon-
mender systems are based ddollaborative Filtering, which is a
technique that automatically predicts the interest of an ative
user by collecting rating information from other similar ugrs or
items. The underlying assumption of collaborative lterirg is
that the active user will prefer those items which other sinhar
users prefer [68]. Based on this simple but e ective intuitin,
collaborative ltering has been widely employed in some lge,
well-known commercial systems, including product recomme
dation at Amazont, movie recommendation at Net ix?, etc.

Due to the potential commercial values and the great resedrc
challenges, recommendation techniques have drawn muchexit
tion in data mining [9, 59], information retrieval [7, 26, 4550,

Lhttp://www.amazon.com
2http://www.net ix.com
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ul

Figure 1.1: Recommendations from Amazon

58, 131] and machine learning [75, 94, 98, 99, 100, 133] com-
munities. Recommendation algorithms suggesting persorrdd
recommendations greatly increase the likelihood of cust@ms
making their purchases online. Fig. 1.1 shows some recommen
dation examples from Amazon.

A number of algorithms have been proposed to improve both
the recommendation quality and the scalability problems. Tese
collaborative ltering algorithms can be divided into two main
categories: neighborhood-based (or memory-based) and rabd
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based approaches [16, 102]. Dierent methods make di erent
assumptions. The neighborhood-based recommendation algo
rithms assume that those who agreed in the past tend to agree
again in the future. They usually fall into two classes: user
based approaches [16, 44] and item-based approaches [28].10
To predict a rating for an item from a user, user-based methad
nd other similar users and leverage their ratings to the iten for
prediction, while item-based methods use the ratings to odén
similar items from the user instead [21]. In addition to the
neighborhood-based approach, the model-based approaches
ploy the observed user-item ratings to train a prede ned moal.
Algorithms in this category include clustering methods [14,
Bayesian model [128], aspect model [48], etc.

Although recommendation algorithms have been widely used
In recommendation systems [65, 95], the problem of inacctea
recommendation results still exists in both neighborhoodased
methods and model-based methods. The fundamental problem
of these approaches is the data sparsity of the user-item nnixt
The density of available ratings in commercial recommendsys-
tems is often less than 1% [102] or even much less. In such cir-
cumstance, neighborhood-based [53, 65, 68, 119] collabvea
ltering algorithms fail to nd similar users, since the methods
of computing similarities, such as the Pearson CorrelatioGoef-
cient (PCC) or the Cosine method, assume that two users have
rated at least some items in common. Moreover, almost all of
model-based [47, 48, 99, 107] collaborative Itering algtinms
cannot handle users who rated only a few items.

Many recent algorithms have been proposed to alleviate the
data sparsity problem. In [119], Wang et al. proposed a genrer
ative probabilistic framework to exploit more of the data auil-
able in the user-item matrix by fusing all ratings with a predc-
tive value for a recommendation to be made. Xue et al. [124]
proposed a framework for collaborative Itering which comimes
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the strengths of memory-based approaches and model-based a
proaches by introducing a smoothing-based method, and setls
the data sparsity problem by predicting all the missing datan

a user-item matrix. Although the simulation showed that ths
approach can achieve better performance than other collafae
tive ltering algorithms, the cluster-based smoothing algrithm
limited the diversity of users in each cluster and predictig all
the missing data in the user-item matrix could bring negatig
in uence for the recommendation of active users.

Based on the above analysis, in order to improve the recom-
mendation quality, we need to solve the data sparsity probhe.
In this thesis, we propose ve e ective and e cient methods D
make the recommendations more accurate.

The rst two algorithms purely based on user-item matrix,
and do not include any other data sources. The rst algo-
rithm [68] is a memory-based collaborative Itering algotihm
which focuses on recommending products or items based on the
past behavior of similar users. Notable similarity comput#on
algorithms include Pearson Correlation Coe cient (PCC) [%]
and Vector Space Similarity (VSS) algorithm [17]. PCC-bask
collaborative ltering generally can achieve higher perfonance
than the other popular algorithm VSS, since it considers thdif-
ferences of user rating styles. In order to generate more acate
recommendations, Amazon also extended this method to caicu
late the implicit relations between items or products, whia is
called item-based method. Item-based methods share the sam
iIdea with user-based methods. The only di erence is user-bed
methods try to nd the similar users for an active user but iten-
based methods try to nd the similar items for each item. The
second algorithm [72] is a model-based collaborative Iterg al-
gorithm which employs semi-nonnegative matrix factorizadn
techniques to improve recommendation quality.

Di erent with the rst two algorithms, the rest three ap-
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proaches [69, 70, 74] incorporates social relations betwessers.
These relations are normally assigned by online users exiily.
Actually, thanks to the popularity of the Web 2.0 applications,
recommender systems are now associated with various kinds o
social context information, including users' social trushetwork,
social distrust network, tags issued by users or associateath
items, etc. This contextual information contains abundantad-
ditional information about the interests of users or properes of
items, hence providing a huge opportunity to improve the remnm-
mendation quality. For example, in users' social trust neterk,
users tend to share their similar interests with the friendshey
trust. In reality, we always turn to friends we trust for movie,
music or book recommendations, and our tastes and charader
can be easily a ected by the company we keep.

Traditional recommender systems assume that users are in-
dependent and identically distributed. This assumption igores
the social trust relationships among the users. But the fads,

o ine, social recommendation is an everyday occurrence. Fo
example, when you ask a trusted friend for a recommendation
of a movie to watch or a good restaurant to dine, you are essen-
tially soliciting a verbal social recommendation. In [110]Sinha
et al. have demonstrated that, given a choice between recom-
mendations from trusted friends and those from recommender
systems, in terms of quality and usefulness, trusted friestdrec-
ommendations are preferred, even though the recommendatiso
given by the recommender systems have a high novelty factor.
Trusted friends are seen as more quali ed to make good and
useful recommendations compared to traditional recommeead
systems [8]. From this point of view, the traditional recom-
mender systems that ignore the social network structure ohée
users may no longer be suitable.
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1.2 Thesis Contributions

The main contributions of this thesis can be described as folvs:

(1)

(2)

E ective Missing Data Prediction

In order to extract implicit social relations between users
we rst use PCC-based signi cance weighting to compute
similarities between users, which overcomes the potential
decrease of similarity accuracy. We also extend this method
to calculate similarities between items. Second, we pro-
pose an e ective missing data prediction algorithm which
exploits the information both from users and items. More-
over, this algorithm will predict the missing data of a user-
item matrix if and only if we think it will bring positive

in uence for the recommendation of active users instead of
predicting every missing data of the user-item matrix. The
simulation shows our novel approach achieves better per-
formance than other state-of-the-art collaborative lteting
approaches.

Recommend with Global Consistency We propose a
semi-nonnegative matrix factorization method with global
statistical consistency. The major contribution of our wok

is twofold: (1) We endow a new understanding on the gen-
eration or latent compositions of the user-item rating ma-
trix. Under the new interpretation, our work can be formu-
lated as the semi-nonnegative matrix factorization probla.
(2) Moreover, we propose a novel method of imposing the
consistency between the statistics given by the predicted
values and the statistics given by the data. We further
develop an optimization algorithm to determine the model
complexity automatically. The complexity of our method
Is linear with the number of the observed ratings, hence it
Is scalable to very large datasets.
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(3) Social Recommendation

(4)

We propose a framework to integrate social contextual in-
formation and the user-item rating matrix, based on a prob-
abilistic factor analysis. We connect these di erent data
resources through the shared user latent feature space (or
item latent feature space), that is, the user latent feature
space in the social contextual information is the same as in
the user-item rating matrix. By performing factor analysis
based on probabilistic matrix factorization, the low-rank
user latent feature space and item latent feature space are
learned in order to make recommendations. The experi-
mental results on the Epiniond and Movielend datasets
show that our method outperforms the state-of-the-art col-
laborative ltering algorithms, especially when active usrs
have very few ratings. Moreover, the complexity analysis
indicates that our approach can be applied to very large
datasets since it scales linearly with the number of obser-
vations.

Recommend with Social Trust Ensemble

Aiming at modeling the recommender systems more accu-
rately and realistically, we endow a novel understanding to
all the ratings in the user-item matrix R. We interpret
the rating R;; in the user-item matrix as the representa-
tion mixed by both the useru;'s taste and his/her trusted
friends tastes on the itemv;. This assumption naturally
employs both the user-item matrix and the users' social
trust network for the recommendations.

In terms of the users' own tastes, we factorize the user-item
matrix and learn two low-dimensional matrices, which are
user-speci ¢ latent matrix and item-speci ¢ latent matrix.

Shttp://www.epinions.com
4http://www.grouplens.org/node/73
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(5)

For the social trust graph, based on the intuition that users
always prefer the items recommended by the friends they
trust, we infer and formulate the recommendation prob-
lem purely based on their trusted friends' favors. Then, by
employing a probabilistic framework, we fuse the users and
their trusted friends' tastes together by an ensemble param
eter. Finally, by performing a simple gradient descent on
the objective function, we learn the latent low-dimensiona
user-speci ¢ and item-speci ¢ matrices for the prediction
of users' favors on di erent items.

Recommend with Social Distrust

We elaborate how user distrust information can bene t the
recommender systems. Users' distrust relations can be in-
terpreted as the \dissimilar" relations since useu; distrusts
user uq indicates that useru; disagrees with most of the
opinions issued by useuqy. Dierent with distrust, users'
trust relations can be modeled as the \similar" relations de

to the reason that useru; trusts user u; means that user
u; agrees with most of the opinions issued by;. Based
on the above intuitions, the distrust and trust relations
between users can be easily modeled by adding the regular-
ization terms into the objective functions of the user-item
matrix factorization. By performing a simple gradient de-
scent on the objective function, we can learn the latent
low-dimensional user-speci ¢ and item-speci ¢ matrice®of
the prediction of users' favors on di erent items.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2
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In this chapter, we brie y review some background knowl-
edge and related work in the eld of recommender systems.

Chapter 3

This chapter focuses the neighborhood-based collaboragiv
ltering problems on two crucial factors: (1) similarity com-
putation between users or items and (2) missing data pre-
diction algorithms. First, we use the enhanced Pearson
Correlation Coe cient (PCC) algorithm by adding one pa-
rameter which overcomes the potential decrease of accuracy
when computing the similarity of users (implicit social re-
lations) or items. Second, we propose an e ective missing
data prediction algorithm, in which information of both
users and items is taken into account. In this algorithm,
we set the similarity threshold for users and items respec-
tively, and the prediction algorithm will determine whethe
predicting the missing data or not. We also address how
to predict the missing data by employing a combination of
user and item information. Finally, empirical studies on
dataset MovieLens have shown that our newly proposed
method is more robust against data sparsity.

Chapter 4

In this chapter, we propose a Semi-Nonnegative Matrix
Factorization with Global Statistical Consistency (SNGSGQ
approach for collaborative ltering. First, we endow a new
understanding on the latent compositions of the ratings,
which is based on the following assumptions: (1) there are
totally a number of d types of items; (2) on each type of
items, every user has a con dence value indicating the taste
of this user on the type; (3) each item also has a qual-
ity value on each type. Based on these assumptions, we
formulate the collaborative ltering algorithm as the Semi
Nonnegative Matrix Factorization problem, and propose an
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optimization formulation with sensitive analysis. Second
based on the observation that the statistics of the predicte
ratings are not consistent with the statistics of the train-
ing data, we propose to impose the consistency between
them. This consideration generates very good performance
when the dataset is spare. Furthermore, we develop an al-
gorithm to determine the model complexity automatically.
The complexity of our method is linear with the number
of the observed ratings, which can be applied to very large
datasets.

Chapter 5

In this chapter, based on the assumption that users' deci-
sions can be easily in uenced by the friends they trust, we
propose a factor analysis approach based on probabilistic
matrix factorization to alleviate the data sparsity and poa
prediction accuracy problems by incorporating social trus
information. This method is quite general, and we also
can extend this approach to improve recommender systems
with social tags that are issued by users.

Chapter 6

Although the users' social trust network is integrated into
the recommender systems by factorizing the social trust
graph in Chapter 4, the real world recommendation pro-
cesses are not re ected in the model. This drawback not
only causes lack of interpretability in the model, but also
a ects the recommendation qualities. A more novel and
realistic approach is needed to model the trust-aware rec-
ommendation problem. In this chapter, aiming at model-
ing recommender systems more accurately and realistically
we propose a novel probabilistic factor analysis framewaqrk
which naturally fuses the users' tastes and their trusted
friends' favors together. In this framework, we coin the
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term Social Trust Ensembleto represent the formulation of
the social trust restrictions on the recommender systems.

Chapter 7

In this chapter, we prove that not only social trust informa-
tion can be used to improve recommender systems, social
distrust information is also a very important source. We
model users' distrust relations as the \dissimilar" relatbns
based on the intuition that distrust can be interpreted as
disagree in most circumstances. We also extend this idea
to model trust relations as the \similar" relations. The ex-
perimental results show that the distrust relations among
users are as important as the trust relations.

Chapter 8

The last chapter summarizes this thesis and addresses some
future directions that can be further explored.

In order to make each of these chapters self-contained, some
critical contents, e.g., model de nitions or motivations laving
appeared in previous chapters, may be brie y reiterated insne
chapters.

2 End of chapter.



Chapter 2

Background Review

Generally speaking, the concept of Recommendation is very
broad. Lots of research problems can be classi ed as reconmme
dation problems, including search ranking [18, 19, 22, 672]9
query suggestion [5, 25, 32, 34, 37, 52, 71, 123], tag recomime
dation [41, 108, 112, 132], Web service recommendation [[129
marketing candidates selection [29, 30, 73, 97, 111], questan-
swering [52], etc. However, in this thesis, we only focus ore&
ommender Systems, which form a speci c type of information
ltering technique that attempts to present information it ems
(movies, music, books, news, images, web pages, etc.) thet a
likely of interest to the user.

Recommender systems have become an important research
area since the appearance of the rst papers on collaboragivi-
tering in the mid-1990s [46, 95, 106]. They are becoming ieeas-
ingly indispensable nowadays since they focus on solvingetin-
formation overload problem by providing users with more prac-
tive and personalized information services. In this chaptewe
brie y review some backgrounds about recommender systems,
including (1) traditional recommender systems which are nialy
based on collaborative Itering techniques, and (2) sociddased
recommender systems which have drawn lots of attention re-
cently.

12
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2.1 Traditional Recommender Systems

As reported in [2], although the roots of recommender sys-
tems can be traced back to the extensive work in cognitive sci
ence [96], approximation theory [91], information retriesd [101],
forecasting theories [4], and also have links to managemesai-
ence [80] and to consumer choice modeling in marketing [64],
recommender systems emerged as an independent research are
in the mid-1990s when researchers started focusing on recom
mendation problems that explicitly rely on the ratings stricture.
The missing ratings of the not-yet-rated items can be estinted
in many di erent ways using methods from machine learning,
approximation theory, and various heuristics [2].

Normally, recommender systems can be classi ed into two
categories:

Content-based Itering: The user will be recommended
items similar to the ones the user preferred in the past;

Collaborative ltering: The user will be recommended items
that people with similar tastes and preferences liked in the
past.

In this chapter, we mainly focus on collaborative Itering
since this method is the most popular and e ective method,
which is widely analyzed in both industry and academia. Ac-
cording to [17], algorithms for collaborative Itering canbe grouped
into two general classes: memory-based (or neighborhooaskd)
and model-based.

2.1.1 Memory-based Methods

The memory-based approaches [17, 27, 39, 44, 53, 57, 65, 81, 9
102] are the most popular prediction methods and are widely
adopted in commercial collaborative ltering systems [6595].
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The most analyzed examples of memory-based collaborative
Itering include user-based approaches [17, 44, 53, 124}ktem-
based approaches [28, 65, 102].

[44] presented an algorithmic framework for performing col
laborative Itering and new algorithmic elements that increase
the accuracy of collaborative prediction algorithms. Thisvork
also presented a set of recommendations on selection of thght
collaborative ltering algorithmic components. [65] revewed the
famous Amazon item-to-item collaborative ltering method

User-based approaches predict the ratings of active useesked
on the ratings of similar users found, and item-based apprdaes
predict the ratings of active users based on the informatioof
similar items computed. User-based and item-based approes
often use PCC (Pearson Correlation Coe cient) algorithm [B]
and VSS (Vector Space Similarity) algorithm [17] as the simi
larity computation methods. PCC-based collaborative Iteing
generally can achieve higher performance than the other pdpr
algorithm VSS, since it considers the di erences of user rnag
styles.

Given a recommendation system consists & users andN
items, the relationship between users and items is denotedg b
an M N matrix, called the user-item matrix. Every entry in
this matrix rp,., represents the score value, that user m rates
an itemn, wherer 21 1;2;:::;rmaxg. If userm does not rate the
item n, then ry.n = 0.

User-based collaborative Itering engaging PCC was used in
a number of recommendation systems [106], since it can be-eas
ily implemented and can achieve high accuracy when compagin
with other similarity computation methods. In user-based al-
laborative ltering, PCC is employed to de ne the similarity
between two usersa and u based on the items they rated in
common:
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X
(ra;i ra) (ru;i ru)
i21 (a)\ 1 (u) -

Sim(a;u) = s—x

X ;

Fu)?

(ra;i ra)2 (ru;i
i21 (a)\ I (u) i21 (a)\ I (u)
(2.1)
whereSim(a; u) denotes the similarity between usea and user
u, and i belongs to the subset of items which user and useru
both rated. r,; is the rate usera gave itemi, and 1, represents
the average rate of usea. From this de nition, user similarity
Sim(a; u) is ranging from [ 1;1], and a larger value means users
a and u are more similar.
ltem-based methods such as [28, 102] are similar to user-&as
approaches, and the di erence is that item-based methods em
ploy the similarity between the items instead of users. Thedsic
idea in similarity computation between two itemsi and | is to
rst isolate the users who have rated both of these items and
then apply a similarity computation technique to determinethe
similarity Sim(i;j ) [102]. The PCC-based similarity computa-
tion between two itemsi andj can be described as:

X
(rei 1) (raj 1)
o u2U(i)\ UG) :
Slm(|1j)_ S VAN d VAN )
(rui Ti)? (ruj  Tj)?
u2U(i\ U(j) u2U @i\ U()

(2.2)
whereSim(i;j ) is the similarity between itemi and itemj, and
u belongs to the subset of users who both rated itemand item
j . ryi is the rate useru gave itemi, andT; represents the average
rate of itemi. Like user similarity, item similarity Sim(i;j ) is
also ranging from [ 1;1].
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In the VSS approach, the two usera and u are treated as two
vectors in m-dimensional space. Then, the similarity between
two vectors can be measured by computing the cosine of the
angle between them:

| |
a ‘" u

. | |
Sim(a;u) = coJaju)= +———+——
(@) z g< Jajiz ii" ujiz
ra;i I‘u;i
e i2|(a)\|(u)c )
- S /"\ 5 ~ /"\ 5 ' (23)
ra;i ru;i

i21 (a)\ I (u) i21 (a)\ I (u)

wheré a | u denotes the dot-product between the vectorsa
and u.

Once the similarities are calculated, we can easily calctda
the values of missing rating ; for useru and itemi by aggre-
gating the ratings of some other (usually, theN most similar)
users for the same item:

Fu;ii = aggryoyol uei; (2.4)
where U° denotes the set olN users that are the most similar

to user u and who have rated itemi. Some examples of the
aggregation function are [2]:

1 X

Mei = — ryoi, (2-5)
u®2uyo

P * Sim(u;u (2.6)
rgi = ¥ — : im(u;uy  rye;; .
! Loyl SIM(u; u9)] . ot

1 )

rei = Tu+ P Sim(u;uy  (rei  Tw);

weuo Sim(u; u9j o
(2.7)
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wherer, is the average rating of useu.

2.1.2 Model-based Methods

In contrast to the memory-based approaches, the model-base
approaches [13, 20, 36, 40, 75, 86, 119] to collaborativeeiling
use the observed user-item ratings to train a compact modedat
explains the given data, so that ratings could be predictedia
the model instead of directly manipulating the original raing
database as the memory-based approaches do [66]. [13] pro-
posed a collaborative Itering method in a machine learning
framework, where various machine learning techniques cdeg
with feature extraction techniques (such as singular valude-
composition) can be used. [20] introduced a peer-to-peeropr
tocol for collaborative Itering which protects the privacy of
individual data. This work also presented a new collaborate
ltering algorithm based on factor analysis which appearsd be
the most accurate method for collaborative ltering. The ne&v
algorithm has other advantages in speed and storage over pre
vious algorithms. It is based on a careful probabilistic maal of
user choice, and on a probabilistically sound approach to aléng
with missing data.

There have been several other model-based collaborativere
ommendation approaches proposed in the literature. Algdhms
in this category include the aspect models [47, 48, 107], Besyan
model [24], relevance models [120, 121], latent class medéBb,
54, 76, 107, 104], matrix factorization models [14, 40, 9403]
and clustering models [6, 35, 56, 87, 116, 117]. [47] prombse
an algorithm based on a generalization of probabilistic lant
semantic analysis to continuous-valued response variabld24]
proposed a Bayesian approach for the problem of predictinbe
missing ratings from the observed ratings. This approach 4in
corporates similarity by assuming the set of judges can be pa
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titioned into groups which share the same ratings probabili
distribution. This leads to a predictive distribution of miss-
ing ratings based on the posterior distribution of the group
ings and associated ratings probabilities. Markov chain Mie
Carlo methods and a hybrid search algorithm are used to obtai
predictions of the missing ratings. [121] presented a prabiés-
tic user-to-item relevance framework that introduces the an-
cept of relevance into the related problem of collaborativéter-
ing. Experimental results complement the theoretical inghts
with improved recommendation accuracy. The uni ed model
IS more robust to data sparsity, because the di erent typesfo
ratings are used in concert. [54] conducted a broad and syste
atic study on di erent mixture models for collaborative It er-
ing. It discussed general issues related to using a mixtureoatel
for collaborative ltering, and proposed three propertieshat a
graphical model is expected to satisfy. Using these propas,
this work thoroughly examined ve di erent mixture models,
including Bayesian Clustering (BC), Aspect Model (AM), Fle-
ible Mixture Model (FMM), Joint Mixture Model (JMM), and
the Decoupled Model (DM). Experiments over two datasets of
movie ratings under di erent con gurations show that in gen
eral, whether a model satis es the proposed properties tesd
to be correlated with its performance. In particular, the De
coupled Model, which satis es all the three desired propeds,
outperforms the other mixture models as well as many other
existing approaches for collaborative ltering. [56] premnted an
algorithm for collaborative Itering based on hierarchica clus-
tering, which tried to balance both robustness and accuraayf
predictions, especially when few data were available.

More recently, a signi cant amount of research has been done
in trying to model the recommendation process using more cem
plex probabilistic models. For instance, Shani et al. [L0%jew
the recommendation process as a sequential decision proble
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and propose using Markov decision processes for generatieg
ommendations. [75] proposed a combination method of multr
mial mixture and aspect models using generative semanticé o
Latent Dirichlet Allocation. Similarly, Si and Jin [107] also use
probabilistic latent semantic analysis to propose a exild mix-
ture model that allows modeling the classes of users and item
explicitly with two sets of latent variables. Furthermore,Kumar
et al. [62] use a simple probabilistic model to demonstraténat
collaborative ltering is valuable with relatively little data on
each user, and that, in certain restricted settings, simpleollab-
orative ltering algorithms are almost as e ective as the bst
possible algorithms in terms of utility [2].

Recently, due to the e ciency in dealing with large datasets
several low-dimensional matrix approximation methods [948,
99, 113] have been proposed for collaborative ltering. Tise
methods focus on tting a factor model to the data, and use it
in order to make further predictions.

Low-rank matrix approximations based on minimizing the
sum-squared errors can be easily solved using Singular \@alu
Decomposition (SVD), and a simple and e cient Expectation
Maximization (EM) algorithm for solving weighted low-rankap-
proximation is proposed in [113]. In [114], Srebro et al. pposed
a matrix factorization method to constrain the norms ofU and
V instead of their dimensionality. Salakhutdinov et al. pre-
sented a probabilistic linear model with Gaussian obsenian
noise in [99]. In [98], the Gaussian-Wishart priors are plad on
the user and item hyperparameters. Although low-dimensiah
methods are proved to be very e ective and e cient, these médt-
ods still su er several disadvantages that are unveiled. Ithe
SVD method, as well as other well-known methods such as the
weighted low-rank approximation method [113], Probabiliec
Principal Component Analysis (PPCA) [115], ProbabilisticMa-
trix Factorization (PMF) [99] and Constrained Probabilistic Ma-
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trix Factorization [99], the latent features are uninterpetable,
and there is no range constraint bound on the latent features
vectors. The lack of interpretability results in the improper
modeling of the latent factors, hence downgrades the recoram
dation accuracy. In [127], a honnegative constraint is impged
on both user-speci c featuresU and item-speci c featuresV
(Nonnegative Matrix Factorization).

Actually, the fundamental problem to low-rank matrix fac-
torization is to learn two latent feature spaces of users and
items V. The most fundamental technique is Regularized Ma-
trix Factorization.

Regularized Matrix Factorization

Consider anm  n user-item rating matrix R, the matrix fac-
torization method employs a rankk matrix X = UTV to t
it, where U 2 R' mandV 2 R' ". From the above de ni-
tion, we can see that the low-dimensional matriced and V are
unknown, and need to be estimated. Moreover, this featurepe
resentations have clear physical meanings. In this lineaadtor
model, each factor is a preference vector, and a user's prefe
ences correspond to a linear combination of these factor (@,
with user-speci ¢ coe cients. More speci cally, each row & U
performs as a \feature vector", and each row oY is a linear
predictor, predicting the entries in the corresponding cainn of
R based on the \features" inU.

To nd matrices U and V, we can solve the following opti-
mization problem:

_ o _ 1 X0 X . o
rLrJl;I\pL(R,U,V) =5 i (Ri Ui Vj)
i=1 j=1
u 2 \ 2.
+ —kUkg + —kVk 2.
5 KUKE + : (2.8)

WherelijR is the indicator function that is equal to 1 if useru;
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rated item v; and equal to O otherwise, ank k2 denotes the
Frobenius norm.

A local minimum of the objective function given by Eq. (2.8)
can be found by performing gradient descent ibj;, V,,

= U RV + ol
= IRUTY RpU+ vV (2.9)

2.2 Netix Prize Competition

The Netix Prize competition is an important event related
to recommendation technologies. It is started and supporde
by Netix, a company providing online movie rental services
In October 2006, this company released a large movie rating
dataset containing about 100 million ratings from over 48Chiou-
sand randomly selected customers on nearly 18 thousand nevi
items. In Net ix Prize competition, RMSE (Root Mean Square
Error)is adopted for performance evaluation and the algghms

in the competition are allowed to output real valued ratings
Lots of new concepts and methods have been proposed during
this contest [10, 11, 12, 60, 61, 98, 99, 125, 126, 134].

In [60], Koren proposed a model to combine the latent fac-
tor model, which directly pro le both users and products, ad
neighborhood model, which analyze similarities between qui-
ucts or users. The factor and neighborhood models is smoathl
merged, thereby building a more accurate combined model. &h
accuracy improvements are achieved by extending the modéds
exploit both explicit and implicit feedback by the users. Tle ex-
periments show that on Net ix data, the proposed method are
better than those previously published on this dataset. Mads
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recently, [61], Koren proposed another collaborative Iteng
method based on the intuition that customer preferences for
products are drifting over time. The proposed model can tr&c
the time changing behavior throughout the life span of the da.
The experiments results show that this method is better than
other state-of-the-art methods.

2.3 Social-based Recommender Systems

Recall that all the above methods for recommender systemsear
based on the assumption that users are independent and iden-
tically distributed, and ignores the social trust relatiorships be-
tween users, which is not consistent with the reality that we
normally ask trusted friends for recommendations.

In the most recent research work conducted in [109], by an-
alyzing the who talks to whom social network on the MSN in-
stant messengérover 10 million people with their related search
records on the Live Search Engirfe Singla and Richardson re-
vealed that people who chat with each other (using instant nge
saging) are more likely to share interests (their Web seareb are
the same or topically similar). Therefore, to improve the re-
ommendation accuracy, in modern recommender systems, both
social network structure and user-item rating matrix shou be
taken into consideration.

Based on this intuition, many researchers have recently stad
to analyze trust-based recommender systems.

Trust is type of social relations, and a wide range of re-
search [1, 3] of turst begins from sociologist Gambetta's de
nition of trust [33]. Trust models have been applied to a wide
range of contexts, ranging from onlin reputation systems tdy-
namic networks [23] and mobile environments [93]; a survey o

Lhttp://www.msn.com
2http://www.live.com
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trust in online service provision can be found in [55].

Recently, trust modeling has been extensively studied ince
ommender systems [3, 8, 15, 38, 51, 77, 78, 82, 83, 84, 85, 89,
90, 122, 118].

Andersen et al. in [3] developed a set of ve natural axioms
that a trust-based recommendation system might be expecté¢d
satisfy, and then proved that no system can simultaneoushat
isfy all the axioms. Apparently, this work is out of the scopef
this paper since we focus on how to employ both social trusttae
work and user-item matrix to provide more accurate and readtic
recommendations. In [77], a trust-aware collaborative kring
method for recommender systems is proposed. In this work,
the collaborative ltering process is informed by the repudtion
of users which is computed by propagating trust. Trust value
are computed in addition to similarity measures between use
The experiments on a large real dataset show that this work
increases the coverage (number of ratings that are preditia)
while not reducing the accuracy (the error of predictions)Bedi
et al. [8] proposed a trust-based recommender system for tGe-
mantic Web. This system runs on a server with the knowledge
distributed over the network in the form of ontologies, and ses
the Web of trust to generate the recommendations.

These methods are all neighborhood-based methods which
employ only heuristic algorithms to generate recommendains.
There are several problems with this approach, however. The
relationship between the trust network and the user-item niaix
have not been studied systematically. Moreover, these meitis
are not scalable to very large datasets since they may need to
calculate the pairwise user similarities and pairwise userust
scores. In this thesis, we propose three e ective and e cign
model-based methods to help solve these problems.

2 End of chapter.



Chapter 3

E ective Missing Data
Prediction

This chapter focuses the memory-based collaborative Itarg
problems on two crucial factors: (1) similarity computatiam
between users or items and (2) missing data prediction algo-
rithms. First, we use the enhanced Pearson Correlation Ceef
cient (PCC) algorithm by adding one parameter which over-
comes the potential decrease of accuracy when computing the
similarity of users or items. Second, we propose an e ective
missing data prediction algorithm, in which information ofboth
users and items is taken into account. In this algorithm, we
set the similarity threshold for users and items respectilye and
the prediction algorithm will determine whether predicting the
missing data or not. We also address how to predict the misgin
data by employing a combination of user and item information
Finally, empirical studies on dataset MovielLens have showvthat
our newly proposed method outperforms other state-of-thaer
collaborative Itering algorithms and it is more robust aganst
data sparsity.

24
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3.1 Similarity Computation

This section brie y introduces the similarity computation meth-
ods in traditional user-based and item-based collaboragvlter-
ing [17, 28, 44, 102] as well as the method proposed in this pha
ter. Given a recommendation system consists & users and
N items, the relationship between users and items is denoted b
an M N matrix, called the user-item matrix. Every entry in
this matrix rp,., represents the score value, that user m rates
an itemn, wherer 2 f 1;2;:::; rmaxg. If userm does not rate the
item n, thenrp,., = 0.

3.1.1 Pearson Correlation Coe cient

User-based collaborative ltering engaging PCC was used i
number of recommendation systems [106], since it can be eas-
ily implemented and can achieve high accuracy when compagin
with other similarity computation methods. In user-based al-
laborative ltering, PCC is employed to de ne the similarity
between two usersa and u based on the items they rated in
common:

X
(ra;i ra) (ru;i ru)
. i21 (@)\ |
Sim(a;u) = s xl ARG S——x¢ :
(rai Ta)? (rusi Tu)?
i21 (a)\ I (u) i21 (a)\ I (u)
(3.1)

where Sim(a; u) denotes the similarity between usea and user
u, andi belongs to the subset of items which usexr and useru
both rated. r,; is the rate usera gave itemi, and r, represents
the average rate of usea. From this de nition, user similarity
Sim(a; u) is ranging from [ 1;1], and a larger value means users
a and u are more similar.

Item-based methods such as [28, 102] are similar to user-bas
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approaches, and the di erence is that item-based methods em
ploy the similarity between the items instead of users. Thedsic
idea in similarity computation between two itemsi and | is to
rst isolate the users who have rated both of these items and
then apply a similarity computation technique to determinethe
similarity Sim(i;j ) [102]. The PCC-based similarity computa-
tion between two itemsi andj can be described as:
X
(ru;i ri) (ru;j rj)

. .. 2U>D\ U(
Sim(i;j)=s L2Uan ve)

~J

X ;
(rui Ti)? (ruj Tj)?
u2U @)\ U() u2U(i)\ U(j)

A

(3.2)
whereSim(i;j ) is the similarity between itemi and itemj, and
u belongs to the subset of users who both rated itemand item
] . ry; is the rate useru gave itemi, andr; represents the average
rate of itemi. Like user similarity, item similarity Sim(i;j ) is
also ranging from [ 1;1].

3.1.2 Signi cance Weighting

PCC-based collaborative ltering generally can achieve gher
performance than other popular algorithms like VSS [17], rste
it considers the factor of the di erences of user rating stgs.
However PCC will overestimate the similarities of users who
happen to have rated a few items identically, but may not have
similar overall preferences [79]. Herlocker et al. [43, 43fpposed
to add a correlation signi cance weighting factor that woudl
devalue similarity weights that were based on a small numbef
co-rated items. Herlocker's latest research work [79] proged
to use the following modi ed similarity computation equation:

Max(jla\ luj; )

Sim%a;u) = Sim(a; u): (3.3)
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This equation overcomes the problem when only few items
are rated in common but in case that whenlz\ 1j is much
higher than , the similarity SimYa;u) will be larger than 1,
and even surpass 2 or 3 in worse cases. We use the following
equation to solve this problem:

Min (jla\ 1y); )

Sim%a;u) = Sim(a; u); (3.4)
wherejl,\ 1,j is the number of items which usea and useru
rated in common. This change bounds the similaritsimY{a; u)
to the interval [0; 1]. Then the similarity between items could
be de ned as:

Min U\ Uij; )

sim%i;j) = sim(i;j ); (3.5)
where jU; \ U;j is the number of users who rated both item
and itemj.

3.2 Collaborative Filtering Framework

In pratice, the user-item matrix of commercial recommendain
system is very sparse and the density of available ratingsoften
less than 1% [102]. Sparse matrix directly leads to the predi
tion inaccuracy in traditional user-based or item-based dabo-
rative ltering. Some work applies data smoothing methodsad

Il the missing values of the user-item matrix. In [124], Xueet
al. proposed a cluster-based smoothing method which cluste
the users using K-means rst, and then predicts all the missg
data based on the ratings of Top-N most similar users in the
similar clusters. The simulation shows this method could ger-
ate better results than other collaborative ltering algoithms.
But cluster-based method limits the diversity of users in ezn
cluster, and the clustering results of K-means relies on thwe-
selected K users. Furthermore, if a user does not have enough
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Figure 3.1: (a) The user-item matrix fn n) before missing data prediction.
(b) The user-item matrix (m n) after missing data prediction.

similar users, then Top-N algorithm generates a lot of digsilar
users which de nitely will decrease the prediction accurgcof
the active users.

According to the analysis above, we propose a novel e ective
missing data prediction algorithm which predicts the missig
data when it ts the criteria we set. Otherwise, we will not pre-
dict the missing data and keep the value of the missing data to
be zero. As illustrated in Fig. 3.1(a), before we predict theniss-
ing data, the user-item matrix is a very sparse matrix and eveg
user only rates few items withri; at the same time, other un-
rated data are covered with shade. Using this sparse matriot
predict ratings for active users always results in giving lzhrec-
ommendations to the active users. In our approach, we evalea
every shaded block (missing data) using the available infoa-
tion in Fig. 3.1(a). For every shaded block, if our algorithm
achieves con dence in the prediction, then we give this shad
block a predicted rating valueh,;. Otherwise, we set the value
of this missing data to zero, as seen in Fig. 3.1(b).

Accordingly, the collaborative ltering is simpli ed into two
simple questions. The rst is \Under what circumstance does
our algorithm have con dence to predict the shaded block?"
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and the second is \How to predict?". The following will answe
these two questions.

3.2.1 Similar Neighbors Selection

Similar neighbors selection is a very important step in prect-
ing missing data. If selected neighbors are dissimilar witthe
current user, then the prediction of missing data of this use
Is inaccurate and will nally a ect the prediction results of the
active users. In order to overcome the aws of Top-N neighbsr
selection algorithms, we introduce a threshold. If the similar-
ity between the neighbor and the current user is larger than,
then this neighbor is selected as the similar user.

For every missing datar;, a set of similar userss(u) towards
useru can be generated according to:

S(u) = fugSimYuga u) > :u .6 ug; (3.6)

where SimQu,; u) is computed using Eq. (3.4). At the same
time, for every missing datar,;, a set of similar itemsS(i)
towards itemi can be generated according to:

S(i) = fijSimYii) > ;i « 6 ig; (3.7)

where is the item similarity threshold, and SimYiy;i) is com-
puted by Eq. (3.5). The selection of and is an important step
since a very big value will always cause the shortage of siaril
users or items, and a relative small value will bring too many
similar users or items.

According to Eq.(3.6) and Eq.(3.7), we de ne that our algo-
rithm will lack enough con dence to predict the missing data
rei if and only if S(u) = ;™ S(i) = ;, which means that user
u does not have similar users and item does not have similar
items either. Then our algorithm sets the value of this missg
data to zero. Otherwise, it will predict the missing datar
following the algorithm described in Section 3.2.2.
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3.2.2 Missing Data Prediction

User-based collaborative ltering predicts the missing da us-
ing the ratings of similar users and item-based collaborae
Itering predicts the missing data using the ratings of simlar
items. Actually, although users have their own rating styleif
an item is a very popular item and has obtained a very high aver
age rating from other users, then the active user will have adh
probability to give this item a good rating too. Hence, predit-
Ing missing data only using user-based approaches or onlyngs
item-based approaches will potentially ignore valuable farma-
tion that will make the prediction more accurate. We proposéo
systematically combine user-based and item-based apprbas,
and take advantage of user correlations and item correlahs in
the user-item matrix.

Given the missing datar ;, according to Eq. (3.6) and Eq. (3.7),
if S(u) 6 ;™ S(i) 6 ;, the prediction of missing dataP(r;) is
de ned as:

SimQua;u) (ruy  Ua)
Ua2S(u)

P(ry;) = (u+ X )+
SimYug; u)
)gaZS(U)
SimYik;i) (rui, 1)
C, s -
@ ) d SimTe) ); (3.8)
i 25(i)

where is the parameter in the range of [0l]. The use of
parameter allows us to determine how the prediction relies on
user-based prediction and item-based prediction. = 1 states
that P(r;) depends completely upon ratings from user-based
prediction and = O states that P(ry;) depends completely
upon ratings from item-based prediction.
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In practice, some users do not have similar users and the
similarities between these users and all other users aredekan
the threshold . Top-N algorithms will ignore this problem and
still choose the topn most similar users to predict the missing
data. This will de nitely decrease the prediction quality d the
missing data. In order to predict the missing data as accurat
as possible, in case some users do not have similar users, s& u
the information of similar items instead of users to predicthe
missing data, and vice versa, as seen in Eq. (3.9) and Eq. @1
This consideration inspires us to fully utilize the informéion of
user-item matrix as follows:

If S(u) & ;™ S(i) = ;, the prediction of missing dataP (r)

is de ned as:
X

Simo(ua; u) (rug: Ua)
Ua2S(u)

P(ryi) =0+ X : (3.9)
SimYug; u)
Ua2S(u)
If S(u) = ;" S(i) 6 ;, the prediction of missing dataP (r ;)
is de ned as:

SimYi;i) (rui, 1x)
P(ryi) = T+ 250 x ; (3.10)
SimYi;i)
i 25()

The last possibility is given the missing data ., useru does
not have similar users and at the same time, itemalso does not
have similar items. In this situation, we choose not to predt
the missing data; otherwise, it will bring negative in uene to
the prediction of the missing datar ;. That is:

If S(u) = ;" S(i) = ;, the prediction of missing dataP (r ;)
is de ned as:

P(ry;)=0: (3.11)
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This consideration is di erent from all other existing predc-
tion or smoothing methods. They always try to predict all the
missing data in the user-item matrix, which will predict sone
missing data with bad quality.

3.2.3 Prediction for Active Users

After the missing data is predicted in the user-item matrixthe
next step is to predict the ratings for the active users. The
prediction process is almost the same as predicting the mirss
data, and the only di erence is in the case for a given active
usera; namely, if S(a) = ;™ S(i) = ;, then predicts the missing
data using the following equation:

P(rai) = Ta+(1 ) T (3.12)

In other situations, if (1) S(u) 6 ;™ S(i) 6 ;, (2) S(u) 6
;N S()) = ; or (3 S(u) = ;™ S(i) 68 ;, we use Eq. (3.8),
Eq. (3.9) and Eqg. (3.10) to predictr i, respectively.

3.2.4 Parameter Discussion

The thresholds and introduced in Section 3.1 are employed
to avoid overestimating the users similarity and items sinharity,
when there are only few ratings in common. If we setand too
high, most of the similarities between users or items need be
multiplied with the signi cance weight, and it is not the results
we expect. However, if we set and too low, it is also not
reasonable because the overestimate problem still exist&ining
these parameters is important to achieving a good predictio
results.

The thresholds and introduced in Section 3.2.1 also play
an important role in our collaborative lItering algorithm. If
and are set too high, less missing data need to be predicted,; if
they are set too low, a lot of missing data need to be predicted
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Table 3.1: The relationship between parameters with other Eapproaches

Lambda | Eta | Theta Related CF Approaches
1 1 1 User-based CF without missing data prediction
0 1 1 Item-based CF without missing data prediction
1 0 0 User-based CF with all the missing data predicted
0 0 0 Item-based CF with all the missing data predicted

In the case when =1and =1, our approach will not predict
any missing data, and this algorithm becomes the general €ol
laborative Itering without data smoothing. In the case when
=0and =0, our approach will predict all the missing data,
and this algorithm converges to the Top-N neighbors seleon
algorithms, except the numberN here includes all the neigh-
bors. In order to simplify our model, we set = in all the
simulations.
Finally, parameter introduced in Section 3.2.2 is the last pa-
rameter we need to tune, and it is also the most important one.
determines how closely the rating prediction relies on user-
formation or item information. As discussed before, = 1 states
that P(ry;) depends completely upon ratings from user-based
prediction and = O states that P(r,;) depends completely
upon ratings from item-based prediction. This physical irer-
pretation also helps us to tune accordingly.

With the changes of parameters, several other famous collab
orative ltering methods become special cases in our apprda
as illustrated in Table 3.1.

3.3 Empirical Analysis

We conduct several experiments to measure the recommenda-
tion quality of our new approach for collaborative Itering with
other methods, and address the experiments as the following
guestions:
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1. How does our approach compare with traditional user-base
and item-based collaborative Itering methods?

2. What is the performance comparison between our e ec-
tive missing data prediction approach and other algorithms
which predict every missing data?

3. How does signi cance weighting a ect the accuracy of pre-
diction?

4. How do the thresholds and a ect the accuracy of pre-
diction? How many missing data are predicted by our al-
gorithm, and what is the comparison of our algorithm with
the algorithms that predict all the missing data or no miss-
ing data?

5. How does the parameter a ect the accuracy of prediction?

6. How does our approach compare with the published state-
of-the-art collaborative ltering algorithms?

In the following, Section 3.3.3 gives answers to questions 1
and 6, Section 3.3.4 addresses question 2, and Section 3d&5
scribes experiment for the questions 3 to 5.

3.3.1 Dataset

Two datasets from movie rating are applied in our experimest
MovieLeng and EachMovi€. We only report the simulation
results of MovieLens due to the space limitation. Similar salts
can be observed from the EachMovie application.

MovielLens is a famous Web-based research recommender sys-
tem. It contains 100,000 ratings (1-5 scales) rated by 943ars

Lhttp://www.cs.umn.edu/Research/GrouplLens/.
2http://www.research.digital.com/SRC/EachMovie/. It is retired by
Hewlett-Packard (HP), but a postprocessed copy can be found on
http://guir.berkeley.edu/projects/swami/.
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Table 3.2: Statistics of Dataset MovieLens
Statistics User | Item

Min. Num. of Ratings 20 1
Max. Num. of Ratings| 737 583
Avg. Num. of Ratings | 106.04| 59.45

on 1682 movies, and each user at least rated 20 movies. The
density of the user-item matrix is:

100000
943 1682

The statistics of dataset MovieLens is summarized in Table&
We extract a subset of 500 users from the dataset, and divide
it into two parts: select 300 users as the training users (100
200, 300 users respectively), and the rest 200 users as thivac
(testing) users. As to the active users, we vary the number of
rated items provided by the active users from 5, 10, to 20, and
give the name Given5, Givenl1l0 and Given20, respectively.

= 6:30%

3.3.2 Metrics

We use the Mean Absolute Error (MAE) metrics to measure the
prediction quality of our proposed approach with other coélbo-
rative ltering methods. MAE is de ned as:

P . :
i Jluii bu;ij_
N 1

wherer; denotes the rating that useru gave to itemi, and b;;
denotes the rating that useru gave to itemi which is predicted
by our approach, andN denotes the number of tested ratings.

MAE = (3.13)

3.3.3 Comparison

In order to show the performance increase of our e ective nsis
ing data prediction (EMDP) algorithm, we compare our algo-
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Table 3.3: MAE comparison with other approaches (A smaller ME value
means a better performance).

Training Users | Methods | Given5 | Given10| Given20
EMDP | 0.784 | 0.765 0.755
MovieLens 3000 UPCC | 0.838 | 0.814 0.802
IPCC 0.870 | 0.838 0.813
EMDP | 0.796 | 0.770 0.761
MovieLens 2000 UPCC | 0.843 | 0.822 0.807
IPCC 0.855 | 0.834 0.812
EMDP 0.811 0.778 0.769
MovieLens 1000 UPCC | 0.876 | 0.847 0.811
IPCC 0.890 | 0.850 0.824

Table 3.4: MAE comparison with state-of-the-arts algoritims (A smaller
MAE value means a better performance).

Num. of Training User$ 100 200 300
Given Ratings 5110 20| 5 | 10| 20| 5 | 10| 20
EMDP 0.807|0.769(0.765(0.793|0.760(0.751(0.788/0.754(0.746
SF 0.8470.7740.7920.8270.7730.7830.8040.7610.769
SCBPCC 0.8480.8190.7890.8310.8130.7840.8220.8100.778
AM 0.9630.9220.8870.8490.8370.8150.8200.8220.796
PD 0.8490.8170.8080.8360.8150.7920.8270.8150.789
PCC 0.8740.8360.8180.8590.8290.8130.8490.8410.820

rithm with some traditional algorithms: user-based algothm
using PCC (UPCC) and item-based algorithm using PCC (IPCC).
The parameters or thresholds for the experiments are empiri
cally set as follows: =0:7, =30, =25, = =0:4.

In Table 3.3, we observe that our new approach signi cantly
improves the recommendation quality of collaborative lteing,
and outperforms UPCC and IPCC consistently.

Next, in order to compare our approach with other state-of-
the-arts algorithms, we follow the exact evaluation procadges
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which were described in [119, 124] by extracting a subset @b
users with more than 40 ratings. Table 3.4 summarizes our ex-
perimental results. WWe compare with the following algoritms:
Similarity Fusion (SF) [119], Smoothing and Cluster-BaseBCC
(SCBPCC) [124], the Aspect Model (AM) [48], Personality Di-
agnosis (PD) [88] and the user-based PCC [17]. Our method
outperforms all other competitive algorithms in various co g-
urations.

3.3.4 Impact of Missing Data Prediction

Our algorithm incorporates the option not to predict the mis-
ing data if it does not meet the criteria set in Section 3.2.1ral
Section 3.2.2. In addition, it alleviates the potential negtive
in uences from bad prediction on the missing data. To demon-
strate the e ectiveness of our approach, we rst conduct a $ef
simulations on our e ective missing data prediction approeh.
The number of training users is 300, where we set= 30, =25,

= =0:5, and vary from zero to one with a step value of
0:05. We then plot the graph with the ratings of active users of
Given5, Givenl0 and Given20, respectively. As to the method
in predicting every missing data (PEMD), we use the same algo
rithm, and keep the con gurations the same as EMDP except for
Eqg. (3.11). In PEMD, when S(u) = ; and S(i) = ;, we predict
the missing datar; using the nearest neighbors of the missing
data instead of setting the value to zero. In this experiment
we set the number of nearest neighbors to 10. The intention of
this experiment is to compare the performance of our EMDP
algorithm with PEMD under the same con gurations. In other
words, we intend to determine the e ectiveness of our misgin
data prediction algorithm, and whether our approach is betr
than the approach which will predict every missing data or no

In Fig. 3.2, the star, up triangle, and diamond in solid line
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Figure 3.2: MAE Comparison of EMDP and PEMD (A smaller MAE vale
means a better performance).

represent the EMDP algorithm in Given20, Givenl10 and Given5
ratings respectively, and the circle, down triangle, and s@re in
dashed line represent the PEMD algorithm in Given20, Giver@l
and Given5 ratings respectively. All the solid lines are belv
the respectively comparative dashed lines, indicating ow ec-
tive missing data prediction algorithm performs better tha the
algorithm which predict every missing data, and predictingniss-
ing data selectively is indeed a more e ective method.

3.3.5 Impact of Parameters

and in Signi cance Weighting

Signi cance weighting makes the similarity computation moe
reasonable in practice and devalues some similarities whiook
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Figure 3.4: Impact of Lambda on MAE

similar but are actually not, and the simulation results in kg. 3.3
shows the signi cance weighting will promote the collabotave
ltering performance.

In this experiment, we rst evaluate the in uence of , and
select 300 training users, thenset=0:7, = =05, =26.
We vary the range of from O to 50 with a step value of 2.
Fig. 3.3(a),(b),(c) shows how a ects MAE when given ratings
20, 10, 5 respectively, and Fig. 3.3(d) shows that the valud o
also impacts the density of the user-item matrix in the procs
of missing data prediction. The density of the user-item maitx
will decrease according to the increase of the value of More
experiments show that has the same features and impacts on
MAE and matrix density as ; however, we do not include the
simulation results due to the space limitation.
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Impact of

Parameter balances the information from users and items. It
takes advantages from these two types of collaborative Iteng
methods. If =1, we only extract information from users, and
if =0, we only mine valuable information from items. In other
cases, we fuse information from users and items to predicteth
missing data and furthermore, to predict for active users.

Fig. 3.4 shows the impacts of on MAE. In this experiment,
we test 300 training users, 200 training users and 100 trang
users and report the experiment results in Fig. 3.4(a), Fig.4(b)
and Fig. 3.4(c) respectively. The initial values of other pame-
ters or thresholds are: = =0:5, =30, =25,

Observed from Fig. 3.4, we draw the conclusion that the value
of impacts the recommendation results signi cantly, which
demonstrates that combining the user-based method with the
item-based method will greatly improve the recommendation
accuracy. Another interesting observation is when followg the
increase of the number of ratings given (from 5 to 10, and from
10 to 20), the value of arg min(MAE ) of each curve in Fig. 3.4
shifts from 0.3 to 0.8 smoothly. This implies the informatia for
users is more important than that for items if more ratings fo
active users are given. On the other hand, the information fo
items would be more important if less ratings for active user
are available; however, less ratings for active users widd to
more inaccuracy of the recommendation results.

Impact of and

and also play a very important role in our collaborative
Itering approach. As discussed in Section 3.2, and directly
determine how many missing data need to be predicted. Ifand

are set too high, most of the missing data cannot be predicted
since many users will not have similar users, and many itemsliw
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Figure 3.5: Impact of Eta and Theta on MAE and Density

not have similar items either. On the other hand, if and are
set too low, every user or item will obtain too many similar usrs
or items, which causes the computation inaccuracy and in@ses
the computing cost. Accordingly, selecting proper value®f

and

simplify our model, we set =

Is as critical as determining the value for . In order to
as employed in our experiments.

In the next experiment, we select 500 users from MovielLens
dataset and extract 300 users for training users and other @0
as the active users. The initial values for every parametemnd

threshold are:

=0:7,

= 30,

= 25. We vary the values of

and from O to 1 with a step value of 0.05. For each training
user set (100, 200, 300 users respectively), we compute thali
and density of the user-item matrix. The results are showedhi

Fig. 3.5.
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As showed in Fig. 3.5(a), given 300 training users and given
20 ratings for every active user, this algorithm will achies the
best performance around = = 0:50, and the related den-
sity of user-item matrix in Fig. 3.5(d) is 92.64% which shows
that 7.36% missing data of this user-item matrix are not pre-
dicted. In this experiment, the number of data that was not
predicted is Q0736 500 1000 = 36800. We observe that
around = = 0:70, this algorithm already achieves a very
good MAE value which is almost the same as the best MAE val-
ues in Fig. 3.5(b). The related matrix density is 29.00%, whh
illustrates that more than 70% data of user-item matrix are ot
predicted. Nevertheless, the algorithm can already achiesat-
isfactory performance.

3.4 Summary

In this chapter, we propose an e ective missing data prediizin
algorithm for collaborative ltering. By judging whether a user
(an item) has other similar users (items), our approach dete
mines whether to predict the missing data and how to predictte
missing data by using information of users, items or both. &di-
tional user-based collaborative ltering and item-basedallabo-
rative Itering approaches are two subsets of our new appraoh.
Empirical analysis shows that our proposed EMDP algorithm
for collaborative Itering outperforms other state-of-the-art col-
laborative ltering approaches.

2 End of chapter.



Chapter 4

Recommend with Global
Consistency

Recently, due to its e ciency in handling very large datases,
low-dimensional factor models have become one of the mosppo
ular approaches in the model-based collaborative Iteringlgo-
rithms. The premise behind a low-dimensional factor modes$i
that there is only a small number of factors in uencing the pef-
erences, and that a user's preference vector is determineg b
how each factor applies to that user [94].

Although these methods can e ectively predict missing val-
ues, several disadvantages are unveiled, which will poteaity
decrease the prediction accuracy. First, in low-rank factebased
approaches, both item factor vectors and user-specic coe
cients are understood as latent factors which have no phyalc
meanings, and hence uninterpretable. Moreover, the lack of
terpretability will result in the improper modeling of the latent
factors. For example, these latent factors in [98, 99] aretd®e
be in the Euclidean space, while they are nonnegative in [127
Second, due to the sparsity of the user-item rating matrix (te
density of available ratings in commercial recommender sgsms
Is often less than 1% [102]), many matrix factorization mettds
fail to provide accurate recommendations. In the sparse use
item rating matrix, the ratings for training the user features are

43
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rare, hence the learned user features and the coe cients caot
accurately re ect the taste of users, which will result in tle bad
prediction accuracy.

In this chapter, aiming at providing solutions for the issus
analyzed above, we propose a Semi-Nonnegative Matrix Facto
ization with Global Statistical Consistency (SNGSC) apprach
for collaborative ltering.

4.1 Framework

4.1.1 Problem De nition

Without loss of generality, in this chapter, we use the movie
recommender systems as the example. In a collaborative pre-
diction movie recommendation system, the inputs to the systn
are user ratings on the movies the users have already seene-Pr
diction of user preferences on the movies they have not yeese
are then based on patterns in the partially observed rating ax
trix X 2 R? ™ wheren is the number of users, andn is the
number of movies. The valueX; indicates the score of item

j rated by useri. This approach contrasts with feature-based
approach where predictions are made based on features of the
movies (e.g. genre, year, actors, external reviews) and thsers
(e.g. age, gender, explicitly speci ed preferences, sdcieust
networks [69, 74]). Users \collaborate" by sharing their rangs
instead of relying on external information [94].

Table 4.1 and Table 4.2 are the toy examples on the problem
we study. As illustrated in Table 4.1, each user (fronu; to
Ue) rated some items (fromi, to ig) on a 5-point integer scale
to express the extent of favor of each item. The problem we
study in this chapter is how to predict the missing values oftte
user-item matrix e ectively and e ciently.
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Table 4.1: User-ltem Matrix

i1 |02 |03 |ia|is|i6|i7|]s
up || 512 3 4
u, || 4 | 3 5
us || 4 2 214
Ug
us | 51112 4|3
Us || 4 | 3 24 3|5

Table 4.2: Predicted User-ltem Matrix

i | 2 | s | i4 | 05 | e | I7 | g
u| 5| 2 |25| 3 |48| 4 |22|48
U | 4| 3 |24[29| 5 41|26 |47
us || 4 17| 2 |32[39|30| 2| 4
Uy || 48 (21 (27|26 |47 (382449
Uus|| 5 | 1| 2 |34] 4| 3 |15]|46
Us || 4 | 3 (29| 2 | 4 |34]| 3| 5

4.1.2 How is user-item matrix X generated?

The n m matrix X contains the ratings of users on items.
X is generated by the users who rate the movies according to
their overall feeling about the movies that they have seen. \B
anatomizing their overall feeling, we give a detailed anadys on
the rating process as follows.

Each user has a dierent taste on dierent type of genre,
actors, or something else. But with the only given rating maix,
the information for genre or actors is unknown, so we assume
there ared di erent unknown types of objects, which are named
as latent types. We further assume that user has con dence
Uk (Uk 2 R+) on k-th type, and Uy is also the taste of user
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in ranking objects of typek; on the other hand, onk-th type,
each itemj has a \true" quality value Vjx (Vik 2 R). So to user
i, item j should be rated by use asUy Vjx. As a result, on
k-th type, if both the quality of object j and the taste of usei
are high, then usern will rate object j with a high score.
Thesed latent types may have cross-e ects on each other. For
example, War type movies may also belong to classic Hollywibo
sub-category. Considering the cross-e ects, we assume ansy
metric non-negative matrix ¢ 4, in which , = |k denotes
the cross-e ect between typek and |, and ¢ = . Ideally,
we hope that thed latent types are independent, and their sig-
ni cance can be ordered, i.e., nonnegative signi cance vas
1 o il 4 can be assigned to thel latent types.
Consequently, on typek, useri rates itemj with a score

Xd
Uk Vi ki
1=1
where the quality Vj of itemj on typel is transferred to quality
}g « by . Note that, if 4 4 is diagonal, then it becomes
|d=1 k Uk Vik. Accumulating all the dierent unknown
types, we obtain that

Xt X ]
Uk Vi w=(U V%),
k=1 I=1

where Uy is the vector consisting olUy, V is the vector consist-

We consider factorizations of the forrX U VT, whereU 2
R4 2R¢9 andv2R™ 9

Remark . According to the physical meaning ofJ andV, U
IS nonnegative whileV should be unrestricted. For example, a
movie may be very bad so that everyone dislikes it, and hence
the quality of this movie can be scored as 1. The con dence
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Is the ability of a user to rate a movie, and so should not be
negative. To explain it further, if the con dence of a user is
also set as 1, then the product of -1 and -1 will be 1, which
means that a user with low con dence rates a bad movie with
a high score, which is not true in reality. On the contrary, tle
setting U; 2 R avoids such unreasonable cases, leading to the
advantage of the interpretability of U.

4.1.3 Sensitivity Analysis

We nd U, ,and V sothatP = U VT approximatesX well.
But it is not preferable that small changes (due to computing
errors or error propagated from observation errors iK ) in these
three matrices result in a big change in their product. Sinctne
derivatives with respect to the variabledJ, , and V mean the
change rate, we examine the square sum of the corresponding
derivatives. Let the notationjj jj denote the Frobenius norm.

By £ = (A)y, we have
X @u vy *_ X | N2
W = im( V7 )k
ijmn K gk
= ( VD ?
Ij&
= n ( VD ?
ik
= njj VTjjE: (4.1)
Similarly we have
X uvmh, > . .
av Vi v = mju i, (4.2)
ijmn k
X uvwvmh, >
@Y Vi - g UjigijViig: (4.3)

@mk

ijmn
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4.1.4 Optimization Problem

Considering both the approximationX U VT and the sensi-
tivity analysis, a factorization problem can be cast as an a@p
mization problem.

X
; . Ty. )2
LIJT']I;Q/ (le (U \Y )Ij)
(i;j )20l
+ njj VTij2 + mju jiz + djjUjjdjjVijjé ;
sict: U O

0: (4.4)

where is a hyperparameter that controls the balance between
the approximation and the sensitivity, andOIl denote the set of
observed index pairs.

4.1.5 Problem Simpli cation and Solution

Let Ui's and V;'s be the columns otJ and V respectively. With-
out loss of generality, we seff Uyjjr = 1;jjWjjp =1for1l k

d. As aresult,jjUjjz = d;jjVjj2 = d. For the purpose of simpli-
fying the solution, we further assume that 4 4 is diagonal, i.e.,

d g=diag( 1; 2;:::; 4). Consequently,
xd
i Viig=oo&
k=1
and
Xd
v = &
k=1
In order to simplify the notation, we denoteU as U, then
disappears, and the conditions ; 2 D 4 can be
changed tojjUijjr  jj Uzije @i ji Udiie. Based on the

above simpli cation, Eg. (4.4) can be reformulated as foll@s.
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Given ann m nonnegative matrix X , solve

I'o

X koo
LT;I\I;: Xi (U )i
(i )20 k=1
xd
+ N jUig + m VKijg + d3;
k=1 k=1
sit: U O
Ui I Uk+tlir;
JViir = 1: (4.5)

In order to obtain the most informative latent features and
nd the dimension d, we tthe incomplete matrix X step by step
in such a way that whenUy and Vi are learned,U; (j k 1)
andV, (j k 1)are xed, and we only learnUy and V based
on the residualR. R is de ned as
i1
R=X Ui’
j=1
on Ol, and R = 0 on others for convenience. The process con-
tinues until there is no useful information retained inR. When

the process stops, the dimension can be determined. So weyonl
focus on the following problem:

) X TN 2
m_|n Rij (Uka )ij
UV .

()20l
+  njjUdig + mjiViig;
sit: U O

Uk die J Ukiie;
IVKir = 1 (4.6)

Note that the elements inR may be negative. If we ignore the
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variant , the Lagrangian of the above problem is
J = s Ri (UM ’
()20l
+(m+ n)jjUji
(UdUc U Uk 0)
MV 1) YT U (4.7)

+ +

whereY 2 R", and ¢ 2 R,:. Let the i-th element of Uy, the
j -th element of Vi, and thei-th element of Y be Uy, Vi; andY;
respectively. In order to solve this problem, take derivatie on
J with respect to Uy; and V,. We have

X
@El;j = 2(Rij  UkiVig)( Vi)
j:(i;)20I
+ 2 )%Uki Y; =0; (48)
@g}j = 2(Rij  UiVi)( U)
! i:(i; )20I
+ 2 kaj =0: (4.9

If Uy is given, then minimizing the quadratic function in Eq. (4.7,

we obtain that 5

Vg = P )20 Rij Uki

; (4.10)
i yzon Ys Tk

where | is a parameter such thatjjVyjj = 1.
If Vi is given, considering the constraints thatyy 0 and
U die I Udir, we ontain
o ifisj )20l
e l iiyzor iE K
_ (D j:(i;j)20l Rij ij)+_ (4.11)
izol ig ¥k |

Rij ij + Y;=2
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whereY; is the minimum positive number such that

X
Rij Vij + Yi=2 0
j:(i;j )20l
i.e., X
Y, =0 if Rij ij 0;
ju(i;j )20l
and X X
Yi = Rij ij if Rij ij <0
j:(ij )20l ju(i;j )20l

and  is the minimum positive number such that
JJ Ukij JJ Uk 1JJ|: :

We name our algorithm as Semi-Nonnegative Matrix Fac-
torization with Global Statistical Consistency (SNGSC). h Al-
gorithm 1, we summarize a learning algorithm by employing
Eg. (4.10) and EqQ. (4.11). The criterion that no useful infor
mation can be mined inR is specied in ourpexperiments as:
the di erence between the mean residua]Jol—Ij (@i)201 JRij ] In
the current dimensiond and that in the previous dimension is
smaller than 0.0005.

From the algorithm, we can see the time complexity of SNGSC
Is linear on the number of ratings, i.e., §OI]), because we only
need to calculate the multiplications when the ratings vales are
not missing. Moreover, with the proper physical meaning itJ
and V, our algorithm is expected to achieve more accurate re-
sults.
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Algorithm 1 : SNGSC Learning Algorithm

Input : Incomplete matrix X 0
Output : d, fUkgl_,, and f Vig?_,
1: Initialize d =0, k = 1.

2. repeat

32 if k==1 then

4. R=X

5. else

6: R=R Uk 1VkT 1

7. endif

8. repeat

o: for j =3, TO m do

10: Vg = P itino LF;J :’ki
i(ij )20l ki k

11:
12:
13:

14.
15:
16:

end for
for i =1pTO n do

Ui = (piiireon RiVig)s
! j(ij )20l ij2+ k

end for
until Converge
k=k+1

17: until No useful information can be mined iR
18: d=k 1

4.2 Consistency with Global Information

: . . P :
Until now, we only constrain the expression Ezl(UkaT) in
Eqg. (4.5) by tting its values on the user-item pairs with the
training data. Howeverpwe observe that this partial constint

cannot make the values {_, (UV,T) follow the global statistics

such as the rst moment and the second moment. The previous
low-dimensional factor models share this problem because n
action is taken on controlling the global statistics. For eample,
the mean of ratings in EachMovie Data is 0.607357 (after saa
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Mean Given by SNGSC Without Global Constraints
Mean Given by SNGSC With Global Constraints
Mean Given by SVD
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Figure 4.1: An illustration showing the problem of SNGSC an&VD without
controlling the global statistics. The means predicted by dels are far away
from the true means.

to the interval [0,1]), but the mean given by SVD and SNGSC
is far away from the true mean. In Figure 4.1, we demonstrate
this problem.

Based on the above observation, we propose to impose the
consistency on SNGSC between the predicted statistics arfubise
given in the data samples. Ideally we should consider moment
of all orders and the data priors, but considering the compu-
tation cost and the model complexity, we only include the r¢
moment X {the mea of ratings in this chapter. The predicted
values are given by Ezl(UkaT), and hence the predicted mean

by the model is

1 XX xd xd .
— (UkiVij) = (UVye );
i=1 j=1 k=1 k=1

whereUy and Vi are the vector means oty and Vi respectively.



CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 54

Let be the parameter balancing the tradeo of tting the data
and tting the mean of ratings. Then we should optimize
X

! ) Ty 2
LT;Q Ru (Ukvk )u

(i )20l
+ njjUGiE + m iUz

1 XX Xk )
+ nm ( UiVvy X)5
i=1 j=1 I=1

sit: U O

U die i Ukiie;

IVkije = 1: (4.12)

When =0, no global H,]formation is included; when =+ 1,

all the predicted values :;1 Ui V;; will be equal toX such that

the rst moment is perfectly tted. The best should be in the

mid%e of these two extreme cases. In our experiments, we set
= " nm=jOlj based on experiences. An ordinary calculus can

result in similar equations as Eq. (4.10) and Eqg. (4.11).

4.3 Experiments

In this section, we conduct several experiments to comparhd
recommendation quality of our approach with other state-of
the-art collaborative Itering methods. Our experiments ae
intended to address the following questions:

1. How does our approach compare with the published state-
of-the-art collaborative ltering algorithms?

2. How does the model parameter (the global consistency
parameter) a ect the accuracy of the prediction?

3. How do the non-negative constraints a ect the accuracy of
the recommendation quality?
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4. What is the performance comparison on users with di erent
observed ratings?

4.3.1 Description of Dataset

We evaluate our algorithms on the EachMovie datas&twhich is
commonly used in previous work [75, 94, 133]. The EachMovie
dataset contains 74,424 users, 1,648 movies, and 2,811 A4t8
ings in the scale of zero to ve. We map the ratings 0,1,2,3,4
and 5 to the interval [0, 1] using the linear functiont(x) = x=5.

As to the training data, we employ three settings: 80%, 50%
and 20% for training, where 80% means we randomly select 80%
ratings as training data to predict the remaining 20% rating.
Selecting 80% as training data is the standard evaluationts®g
which is widely employed in the previous work. However, in th
chapter, we are also interested in the settings to include %®
and 20% as training data, since these two settings can be used
to examine how well the algorithms are under the sparse data
settings. The reported results in all of the experiments inhis
chapter are the average of ten runs of the algorithms on therte
random partitions of the dataset.

4.3.2 Metrics

We use the Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) metrics to measure the prediction quality of ou
proposed approach in comparison with other collaborativel-
tering methods. MAE is de Ir31ed as:
i jrij  byj
N :
wherer;; denotes the rating usen gave to itemj, b; denotes
the rating useri gave to itemj as predicted by our approach,

MAE = (4.13)

Lhttp://www.research.digital.com/SRC/EachMovie/. It is  retired by Hewlett-Packard
(HP).
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and N denotes the number of tested ratings. RMSE is de ned
as: S p

) i (rij by )2_
N ;

RMSE = (4.14)

4.3.3 Performance Comparisons

We compare our SNGSC approach with other four approaches.

1. User Mean : This is a baseline method which predicts a
user's missing rating on an item by the sample mean of this
user's ratings.

2. Item Mean : This is a baseline method which predicts a
user's missing rating on an item by the sample mean of this
item's ratings.

3. MMMF  [94, 114]: This method constrains the norms of
U and V instead of their dimensionality. This corresponds
to constraining the overall \strength" of the factors, rather
than their number.

4. PMF [99]: This method proposes a probabilistic frame-
work to employ UV, with Gaussian noise tting each rat-
ing observation.

The prediction accuracies evaluated by Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) are shown in
Table 4.3. In SNGSC, the paragweter Is set to be 0.000004,
and the parameter is set to be’ nm=jOlj, wherejOlj is the
number of observed ratings. The dimensions for SNGSC are
automatically determined at each of the ten runs, and they &
between 25 and 30. In order to compare other algorithms fayrl
we set the dimensions of MMMF and PMF to 30.

From Table 4.3, we can observe that our algorithm consis-
tently performs better than the other methods in all the set-
tings. When we use a sparse dataset (20% as training data), we
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Table 4.3: Comparison with other popular algorithms. The ngorted val-
ues are the mean RMSE and MAE on the EachMovie Dataset achievby
ten runs from dividing the data into 80%, 50%, and 20% for traiing data,
respectively.

Data | Metrics | User Mean Item Mean MMMF PMF SNGSC
RMSE 1.426 1.386 1.173 1.151 1.122
80% Variance 10 4 10 4 0.001 0.001 10 °
MAE 1.141 1.102 0.928 0.901 0.860
Variance 10 4 10 4 0.001 0.001 10 °
RMSE 1.438 1.387 1.342 1.335 1.176
50% Variance 10 4 10 4 0.001 0.001 10 °
MAE 1.149 1.103 0.978 0.963 0.891
Variance 10 4 10 4 0.001 0.001 10 °
RMSE 1.484 1.388 1.466 1.451 1.266
0% Variance 0.001 0.001 0.01 0.01 10 4
MAE 1.180 1.103 1.143 1.085 0.973
Variance 0.001 0.001 0.01 0.01 10 4

nd that our method generates much better performance than
MMMF and PMF. However, MMMF and PMF do not address
the problem of sparsity, hence they even perform worse than
the Item Mean method when using 20% as training data. This
demonstrates the advantage of our algorithm in handling the
sparsity problem.

In Figure 4.2 and Figure 4.3, we also plot the percentages of
performance increase of our algorithm against other four rie
ods in terms of RMSE and MAE on the EachMovie dataset,
respectively. From these gures, we observe an interestine-
nomenon: as the sparsity of the data increases, the percegs
of performance increase against MMMF and PMF keep increas-
ing. This observation again proves the advantage of our algo
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Performance Increase on RMSE

B 80% as Training data M 50% as Training data d 20% as Training data

23.53%

0,
17.94% 15.80% 13.15%

14.12% 13.52%

2.58% i \ J
PMF

Figure 4.2: Performance Increase on RMSE (EachMovie)

27.09%
22.28%
9.64%

17.22%
| | 4.55%

User Mean Item Mean MMMF

rithm. On the other hand, we can also notice that as the spatyi
increases, although our method still can generates much best
recommendation qualities than User Mean and Item Mean meth-
ods, the percentages of performance increase against thage
methods keep dropping. This observation is reasonable basa
our random testing data generation method does not change
the distribution of the ratings. Hence, the User Mean and It@
Mean algorithms should be relatively stable against the spsity
problem.

In order to show the usefulness of each key part of SNGSC,
we also evaluate our algorithm on its various degraded cases
follows:

1. SNGSC-1: It is the SNGSC algorithm without the global
consistency ( = 0);

2. SNGSC-2: It is the SNGSC algorithm without the non-
negative constraint (a modi ed version of SVD with global
consistency);
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Figure 4.3: Performance Increase on MAE (EachMovie)

3. SNGSC-3: It is the SNGSC algorithm with nonnegative
constraints on bothU and V (a modi ed version of NMF
with global consistency).

The results on the EachMovie dataset are reported in Ta-
ble 4.4. From the results, we observe that our Semi-Nonnegad
setting is the best among all these variants, which empiridg
demonstrates the need of introducing SNMF.

However, the global consistency achieves only a little accu
racy improvement in this experimental setting (See SNGSC-1
and SNGSC). This phenomenon may be caused by the setting
that majority (80%) of data is chosen as training data. In the
extreme case that the rating data is very sparse and each user
only rates one movie, then the latent feature) and V do not
have much meanings, but we can at least predict all the misgin
ratings as the mean of training data. We believe that the spaer
the training data, the better the global consistency approzh. To
demonstrate the e ectiveness of the global consistency ajach,
we run both SNGSC-1 and SNGSC in a di erent setting: 20%
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Table 4.4: Comparison with variants of SNGSC in a setting wit 80% for
training and 20% for testing on the EachMovie dataset. (1) SGESC-1:
SNGSC without the global consistency ( = 0); (2) SNGSC-2: SNGSC
without the nonnegative constraint (a modi ed version of S\D with global
consistency); and (3) SNGSC-3: SNGSC with nonnegative cdrasnts on
both U and V (a modi ed version of NMF with global consistency).

Algorithms SNGSC-1 SNGSC-2 SNGSC-3 SNGSC
RMSE 1.151 1.212 1.258 1.122
Variance 10 ° 0.001 0.001 10 °
MAE 0.883 0.932 0.971 0.860
Variance 10 ° 0.001 0.001 10 °

Table 4.5: Comparison with variants of SNGSC in a 20% for traing 80%
for testing setting on the EachMovie dataset.

Algorithms SNGSC-1 SNGSC-2 SNGSC-3 SNGSC
RMSE 1.423 1.356 1.365 1.266
Variance 10 4 0.01 0.01 10 4
MAE 1.095 1.048 1.060 0.973
Variance 10 4 0.01 0.01 10 4

of the data are chosen for training and 80% for testing. The
results are shown in Table 4.5. From the results, we can see
SNGSC with the global consistency signi cantly outperforra
the one without the global consistency (SNGSC-1). In such a
setting, it is not surprising to see that the di erence betwen
SNGSC and SNGSC-2 is small, because the latent feature is not
very meaningful and hence the sign setting is not so importgn
therefor, the global consistency dominates the results.

4.4 Summary

We demonstrate a Semi-Nonnegative Matrix Factorization nteod
with Global Statistical Consistency for collaborative ltering, in
which the user-speci ¢ latent featureJyc includes the meaning of
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the con dence of user on the k-th latent type of the item, and
the item-speci c latent feature Vjx includes the meaning of the
quality of the item j on the k-th latent type of the item. This
work has showed that the latent features with physical mean-
Ings can achieve not only the model interpretability but als the
prediction accuracy. Moreover, we propose a novel methodath
Imposes the consistency between the statistics of trainirdata
and the statistics of the predicted ratings. The experimeiat
analysis shows that our method outperforms other state-adife-
art algorithms.

For the global consistency, we only take the rst step, i.e.,
we only make our models consistent with the rst moment cur-
rently. By doing so we have already achieved promising retsil
In order to capitalize on these achievements, further studis
needed on the following problems:

1. We would enforce the consistency with the second moment
globally in the models without increasing the complexity obur
models.

2. There is prior information that all values in the matrix

Ezl(UkaT) should be between zero and gne after the mapping.
Without taking any action, prediction by E:l UV, will run
outside of the range of valid rating values. For this, one ce is
to map the values to the interval [Q 1] by some nonlinear func-
tions like logistic function. But in our setting, such a mapjng
does not match our intuition{the prediction on the user-iten
pair (i;j ) results from a linear combination of the products of
I's authority on a latent type and j 's quality. Flgr such a consid-
eration, how can we put a constraint that O Ezl(UkaT) 1
while we can still learn the latent features dimension by dien-
sion.

2 End of chapter.



Chapter 5

Social Recommendation

Traditional recommender systems assume that users ared: (in-
dependent and identically distributed); this assumptiongnores
the social interactions or connections among users. But thact
IS, 0 ine, social recommendation is an everyday occurrencen
order to re ect users' social relations in the recommendains,
based on the intuition that a user's social network will a et
her/his personal behaviors on the Web, in this chapter, we pr
pose to fuse a user's social network graph with the user-item
rating matrix in order to make more accurate and personalize
recommendations, which is calle@ocial Recommendation

5.1 Recommendation Framework

In this section, we rst design a recommendation framework
by consolidating user-item rating matrix and users' sociarust
network in Section 5.1.1. Then in Section 5.1.2, we apply thi
framework to incorporating social tag information, which $ an-
other important source of social contextual information.

5.1.1 Recommendation with Social Trust Network

We rst demonstrate our recommendation framework using a
simple but illustrative toy example. Then we introduce the ec-

62
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ommendation framework by factor analysis using probabilis
matrix factorization.

A Toy Example

Let us rst consider the typical social trust network graph n
Fig. 5.1(a). There are 6 users in total (nodes, fromy to ug) with

8 relations (edges) between users in this graph, and eachaten
is associated with a weightv;; in the range [Q 1] to specify how
much useru; knows or trusts user; . In an online social network
Web site, the weightw;; is often explicitly stated by useru;. As
illustrated in Fig. 5.1(b), each user also rates some itemfg¢m
I, to ig) on a 5-point integer scale to express the extent of favor
of each item. The problem we study in this chapter is how to
predict the missing values of the user-item matrix e ectivly and
e ciently by employing two di erent data sources. Motivate d
by the intuition that a user's social trust connections willa ect
this user's behaviors on the Web, we therefore factorize tisecial
trust graph and user-item matrix simultaneously and seamésly
usingU'Z and UTV, where the shared low-dimensional matrix
U denotes the user latent feature spacé, is the factor matrix in
the social network graph, andv represents the low-dimensional
item latent feature space. If we use 5 dimensions to perforrhd
matrix factorization for social recommendation, we obtain
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(a) Social Network Graph

(b) User-ltem Matrix (c) Predicted User-ltem Matrix

Figure 5.1: Example for Toy Data

64
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where U; and V; are the column vectors and denote the latent
feature vectors of useu; and itemv;, respectively. Note that the
solutions ofU and V are not unique. Then we can predict the
missing valuew; in Fig. 5.1(b) using UiTVj (before prediction,
we need to rst transfer the value ofU"V, using logistic function
g(x) and another mapping functionf (x), which will be intro-
duced in Section 5.1.1 and Section 5.1.1 respectively). The
fore, all the missing values can be predicted using 5-dimensal
matrices U and V, as shown in Fig. 5.1(c). Note that even
though useru, does not rate any items, our approach still can
predict reasonable ratings.

Since this example is a toy example, we cannot evaluate the
accuracy of the prediction. However, the experimental angis
In Section 5.2 based on Epinions dataset tests the e ectivess
of our approach. In the following sections, we will presenhe
details of how we conduct factor analysis for social recomme
dation using probabilistic matrix factorization.
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Social Network Matrix Factorization

Suppose we have a directed social network gragh= (V;E),
where the vertex setV = fvigl,; represents all the users in
a social network and the edge seE represents the relations
between users. LeC = fcykg denote them m matrix of G,
which is also called the social network matrix in this chapte
For a pair of vertices,v; and vy, let cx 2 (0; 1] denote the weight
associated with an edge fronv; to vk, and ¢ = 0, otherwise.
The physical meaning of the weightcx can be interpreted as
how much a usen trusts or knows userk in a social network.
Note that C is an asymmetric matrix, since in a social network,
especially in a trust-based social network, usertrusting k does
not necessary indicate usek trusts i.

The idea of social network matrix factorization is to derive
a high-quality I-dimensional feature representatiord of users
based on analyzing the social network grap®. Let U 2 R' ™
and Z 2 R' ™ be the latent user and factor feature matrices,
with column vectors U; and Zy representing user-speci ¢ and
factor-speci c latent feature vectors, respectively. We el ne the
conditional distribution over the observed social networkela-
tionships as

: 2 e T 2 Ik
p(Cju; Z; ¢) = N ckjo(Ui' Ze); ¢ (5.1)
i=1 k=1

whereN (xj ; ) is the probability density function of the Gaus-
sian distribution with mean and variance 2, and | is the
indicator function that is equal to 1 if useri trusts or knows
userk and equal to O otherwise. The functiorg(x) is the logis-
tic function g(x) = 1=(1 +exp( x)), which makes it possible to
bound the range ofU Z, within the range [G 1]. We also place
zero-mean spherical Gaussian priors [31, 99] on user anddac
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feature vectors:

. 2 Yn . 2
p(Uj §) = N (UijO; §l);
i=1
) Y N2
p(Zj 7) = N (ZkjO; 71): (5.2)
k=1

Hence, through a simple Bayesian inference, we have
p(U; ZiC; & & 2)
p(CiU;Z; 2)p(Uj §)p(Zj 2)

Yoy : 1S
= N ckjo(UTze); & ™
i=1 k=1
yn yn
N (Uijo; 31) N (ZijO; 21): (5.3)
i=1 k=1

In online social networks, the value oy is mostly explicitly
stated by useri with respect to userk, which cannot accurately
describe the relations between users since it contains ressand
it ignores the graph structure information of social netwdt. For
instance, similar to the Web link adjacency graph in [130]ni
a trust-based social network, the con dence of trust value,
should be decreased if usdr trusts a large number of users;
however, the con dence of trust valueg, should be increased if
userk is trusted by lots of users. Hence, we employ the term
¢, Which incorporates local authority and local hub values as a
substitute for ¢k in Eq. (5.1),

. Yooy . IS
p(CiU; Z; &)= N Gio(U'ze); &
i=1 j=1
_ d (w)
T dr )+ d (W)

where d” (v;) represents the outdegree of node, while d (vk)
indicates the indegree of node.

S

Cik ; (5.4)
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Figure 5.2: Graphical Model for Social Trust Recommendatio

User-ltem Matrix Factorization

Now considering the user-item matrix, suppose we haue users,
n movies, and rating values within the range [A]. Actually,
most recommender systems use integer rating values from 1 to
Rmax tO represent the users' judgements on the items. In this
chapter, without loss of generality, we map the ratings;1::; Rmax
to the interval [0; 1] using the functionf (x) = (X 1)=(Rmax 1).
Let R represent the rating of useri for movie j, and U 2
R' mandV 2 R' " be latent user and movie feature matrices,
with column vectors U; and V; representing user-speci c and
movie-speci ¢ latent feature vectors respectively. We dae the
conditional distribution over the observed ratings as
. Yo . IR
p(CiU;V; ) = N rgjgUTV); & ' (5.5)
i=1 j=1
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wherelin is the indicator function that is equal to 1 if useri
rated moviej and equal to O otherwise. We also place zero-mean
spherical Gaussian priors on user and movie feature vectors

P2 v ; 2
p(Uj §) = N (UijO; §l);
i=1
pVi §) = N(Vi0; §1): (5.6)
j=1
Hence, similar to Eq. (5.3), through a Bayesian inference,ew
have

p(U; VIR; & & &)
p(RjU; V; B)p(Uj §)p(Zj &)

—_ LA ; T . 2 'in
= N rijjgU' Vi), r
i=1j=1
yn _ " Y _ )
N (Uijo; gl) N (V;jo; yl): (5.7)
i=1 =1

Matrix Factorization for Social Trust Recommendation

In order to re ect the phenomenon that a user's social connec
tions will a ect this user's judgement of interest in items, we
model the problem of social recommendation using the graph-
ical model described in Fig. 5.2, which fuses both the social
network graph and the user-item rating matrix into a consisgnt
and compact feature representation.

Based on Fig. 5.2, we have

p(U;V;ZIC;R; & 3; & & 2)
I p(RjU;V; R)P(CjU; Z; &)
p(Uj &)p(Vi $)p(Zj 2): (5.8)
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The log of the posterior distribution for the above equation
IS given by

In p(U; V;ZIC;R; & & & & 2)=

5 2 i Uij 9lY V)
Rij=1 j=1
1
57 lic(ce  9(UTZy)?
Ci=1 k=1
1 . 1 X 1 X
2—2 Ui Ui 2—2 \/J \/J 2—2 Zka
U j=1 | V=1 Zlk—l |
1 XX X o '
5 IX In g+ & In 2
i=1 j=1 i=1 k=1
1
5 miin 2+nlln 2+ mlin 2 +C (5.9)

where C is a constant that does not depend on the parame-
ters. Maximizing the log-posterior over three latent feattes
with hyperparameters (i.e., the observation noise variaecand
prior variances) kept xed is equivalent to minimizing the bDI-
lowing sum-of-squared-errors objective functions with @aratic
regularization terms:

e 18X Tv/))2
L(R;C;U;V;2) = ~ i (ri 9(U' )))
i=1 j=1
X To W2
+ = lic (G 9(U; Zk))
i=1 k=1
U v z
+ ZKUKE + —kVIE + kZKE (5.10)
Whel’e C = %z %; U = %z LZJI V = %: \2/1 Z = I%: %’

andk kZ denotes the Frobenius norm. A local minimum of the
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objective function given by Eq.(5.10) can be found by perfar-
ing gradient descent inU;, V; and Zy,

@ _* & T T
Qu _1|ij MU VAUV 1)V,
J:

xn
+ ¢ ISV ZY(UTZY)  c)Ze+ uUi
j=1

@ _ X R T T :

ey = TIUMEUN) U W

Q e T T

@z © RGIU Z(9(UTZ)  q)Ui+ 2Z45.11)

i=1

whereg{x) is the derivative of logistic functiong{x) = exp(x)=(1+
exp(x))2. In order to reduce the model complexity, in all of the
experiments we conduct in Section 5.2, we set, = v = 7.

Complexity Analysis

The main computation of gradient methods is evaluating theln
ject function L and its gradients against variables. Because of
the sparsity of matricesR and C, the computational complexity
of evaluating the object functionL is O( rl + cl), where g
and ¢ are the numbers of nonzero entries in matricd® and C,
respectively. The computational complexities for gradiga &

8 and &, in Eq. (5.11) areO( rl + cl), O( grl) and O( C@’T)Lf
respectively. Therefore, the total computational complagy in
one iteration isO( rl+ cl), which indicates that the computa-
tional time of our method is linear with respect to the numbepof
observations in the two sparse matrices. This complexity aih
ysis shows that our proposed approach is very e cient and can

scale up with respect to very large datasets.
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5.1.2 Recommendation with Social Tags

In the above section, we demonstrate how to recommend by in-
corporating users' social trust information. Actually, ths gen-
eral framework can also be easily extended to fuse the usem
rating matrix with social tags information. We can use Simgr
factor analysis approach by utilizing both users' rating ifor-
mation and tagging information at the same time in light of
the facts that both users' rating information and users' tag
ging information can re ect their opinions about Web conteh
Speci cally, on the one hand, we connect users' rating infer
mation with users' tagging information through the shared ser
latent feature space. The graphical model of this case is st
in Fig. 5.3, where the matrixT represents the latent feature of
each tag, andFj indicates how many times that usew; used
tag tx. We can also have the similar object function as shown in
Eqg. (5.10) with the parameter ¥ controlling how many users'
tag information should be used. On the other hand, we connect
items' received rating information with items' received tgging
information through the shared item latent feature space. fie
related graphical model is shown in Fig. 5.4, whergjy repre-
sents how many times that itemvy; is tagged by tagty. In the
objective function, we employ Y to control how many items'
tag information should be incorporated.

The user latent feature space a ects users' behaviors on ot
rating and tagging activities, while the item latent feature space
determines both the received rating information and recead
tagging information.

5.2 Experimental Analysis

In this section, we conduct several experiments to comparbe
recommendation quality of our social recommendation appach
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Figure 5.3: Graphical Model for Recommendation with User s

Figure 5.4: Graphical Model for Recommendation with Item Tgs
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with other state-of-the-art collaborative Itering methods. We
conduct the experiments on two di erent datasets, one is Ept
lons which is associated with a social trust network, anotines
Movielens which has tag information that is issued by di eret

users.
Our experiments are intended to address the following ques-

tions:

1. How does our approach compare with the published state-
of-the-art collaborative ltering algorithms?

2. How does the model parameterc aect the accuracy of
prediction?

3. What is the performance comparison on users with di erent
observed ratings?

4. Can our algorithm achieve good performance even if users
have no observed ratings?

5. Is our algorithm e cient for large datasets?

5.2.1 Metrics

We use two metrics, the Mean Absolute Error (MAE) and the
Root Mean Square Error (RMSE), to measure the prediction
quality of our proposed approach in comparison with other ¢o
laborative ltering and trust-aware recommendation methais.

The metrics MAE is de ngd as:

i rij - byj

N ;

wherer;; denotes the rating usen gave to itemj, b; denotes
the rating useri gave to itemj as predicted by a method, and
N denotes the number of tested ratings. The metrics RMSE is

de ned as:

MAE = (5.12)
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S D
=

i (rij by )2_

N :

RMSE = (5.13)

5.2.2 Compared Methods

In this section, in order to show the performance improvemen
of our Recommendation Algorithm with Social Contextual In-
formation (SoRec), we compare our algorithm with two basele
methods User Mean and Item Mean, as well as two state-of-
the-art algorithms SVD [63] and Probabilistic Matrix Factor-
ization (PMF) [99].

5.2.3 Epinions Dataset

Description of the Epinions Dataset

A tremendous amount of data has been produced on the Internet
every day over the past decade. Millions of people in uence
each other implicitly or explicitly through online social retwork
services, such as FacebobkAs a result, there are many online
opportunities to mine social networks for the purposes of sl
recommendations.

We choose Epinions as the data source for our experiments
on social recommendation. Epinions.com is a well known knbw
edge sharing and review site that was established in 1999. In
order to add reviews, users (contributors) need to registdor
free and they begin submitting their own personal opinionsio
topics such as products, companies, movies, or reviews sy
other users. Users can also assign products or reviews imeg
ratings from 1 to 5. These ratings and reviews will in uence
future customers when they are deciding whether a product is
worth buying or a movie is worth watching. Every member of

Lhttp://www.facebook.com
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Figure 5.5: Power-Law Distributions of the Epinions Datade (a) Items per
User Distribution. (b) Trust Graph Outdegree Distribution. (c) Trust Graph
Indegree Distribution.

Epinions maintains a \trust" list which presents a network d
trust relationships between users, and a \block (distrust) list
which presents a network of distrust relationships. This re
work is called the \Web of trust", and is used by Epinions to
re-order the product reviews such that a user rst sees rewis
by users that they trust. Epinions is thus an ideal source fogx-
periments on social recommendation. Note that in this chapt,
we only employ trust statements between users while ignogn
the distrust statements, for the following two reasons: (1JThe
distrust list of each user is kept private in Epinions.com irorder
to protect the privacies of users, hence it is not availableiour
dataset. (2) As presented in [42], the understanding of distst
IS more complicated than trust, which indicates that the use
trust latent feature space may not be the same as the user dis-
trust latent feature space. The study of distrust-based soad
recommendation will be conducted as future work.

The dataset used in our experiments is collected by crawl-
ing the Epinions.com site on Jan 2009. It consists of 51,670
users who have rated a total of 83,509 dierent items. The
total number of ratings is 631,064. The density of the user-
item rating matrix is less than Q015%. We can observe that
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Table 5.1: Statistics of User-ltem Rating Matrix of Epiniors

Statistics User | Item
Max. Num. of Ratings | 1,960 7,082
Avg. Num. of Ratings | 12.21| 7.56

Table 5.2: Statistics of Social Trust Network of Epinions
Statistics | Trust per User | Be Trusted per User
Max. Num. 1,763 2,443
Avg. Num. 9.91 9.91

the user-item rating matrix of Epinions is very sparse, sirethe
densities for the two most famous collaborative Itering déasets
Movielens (6,040 users, 3,900 movies and 1,000,209 ratjraysl
Eachmovie (74,424 users, 1,648 movies and 2,811,983 ratjng
are 425% and 229%, respectively. Moreover, an important fac-
tor that we choose the Epinions dataset is that user socialust
network information is not included in the Movielens and Edt-
movie datasets. The statistics of the Epinions user-item tiag
matrix is summarized in Table 5.1. As to the user social trust
network, the total number of issued trust statements is 51799.
The statistics of this data source is summarized in Table 5.2

We also observe a number of power law distributions in our
dataset, including items per user distribution, social trat net-
work outdegree and indegree distributions. The distribuans
are shown in Fig. 5.5.

Comparison

We use di erent amounts of training data (90%, 80%, 70%, 60%)
to test all the algorithms. Training data 90%, for example,
means we randomly select 90% of the ratings from Epinions
dataset as the training data to predict the remaining 10% of
ratings. The random selection was carried out 5 times indepe
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Table 5.3: MAE comparison with other approaches on Epiniondataset (A
smaller MAE value means a better performance)

Methods 90% Training | 80% Training | 70% Training | 60% Training
User Mean 0.9294 0.9319 0.9353 0.9384
Item Mean 0.8936 0.9115 0.9316 0.9528

SVD 0.8739 0.8946 0.9214 0.9421
5D | PMF 0.8678 0.8946 0.9127 0.9350
SoRec 0.8442 0.8638 0.8751 0.8948
SvD 0.8702 0.8921 0.9189 0.9382
10D | PMF 0.8651 0.8886 0.9092 0.9328
SoRec 0.8404 0.8580 0.8722 0.8921

Table 5.4: RMSE comparison with other approaches on Epinisrdataset (A
smaller RMSE value means a better performance)

Methods 90% Training | 80% Training | 70% Training | 60% Training
User Mean 1.1927 1.1968 1.2014 1.2082
Item Mean 1.1678 1.1973 1.2276 1.2505

SvD 1.1635 1.1845 1.2067 1.2298
5D | PMF 1.1583 1.1773 1.1943 1.2163
SoRec 1.1333 1.1530 1.1690 1.1892
SVD 1.1600 1.1812 1.2011 1.2268
10D | PMF 1.1544 1.1760 1.1968 1.2230
SoRec 1.1293 1.1492 1.1660 1.1852
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dently. The experimental results are shown in Table 5.3. The
parameter settings of our approach arec =20, y = v =

z =0:001, and in all the experiments conducted in the follow-
ing sections, we set all of the parametersy, v and 7 equal
to 0:001. From Table 5.3 and Table 5.4, we can observe that our
approach outperforms the other methods. The improvements
are signi cant, which shows the promising future of our reao-
mendation approach.

Impact of Parameter c

The main advantage of our recommendation approach is that it
incorporates the social trust network information, which klps
predict users' preferences. In our model, parameteg balances
the information from the user-item rating matrix and the use
social trust network. If ¢ = 0, we only mine the user-item
rating matrix for matrix factorization, and if ¢ = 1, we only
extract information from the social network to predict uses'
preferences. In other cases, we fuse information from theeus
item rating matrix and the user social network for probabilstic
matrix factorization and, furthermore, to predict ratings for ac-
tive users.

Fig. 5.6 shows the impacts of c on MAE and RMSE. We ob-
serve that the value of ¢ impacts the recommendation results
signi cantly, which demonstrates that fusing the user-iten rat-
ing matrix with the user social trust network greatly improwes
the recommendation accuracy. As ¢ increases, the prediction
accuracy also increases at rst, but when ¢ surpasses a certain
threshold, the prediction accuracy decrease with furthentrease
of the value of . This phenomenon con rms the intuition that
fusing the user-item rating matrix and the user social trushet-
work can generate better performance than only purely using
each of these two resources separately. From Fig. 5.6, we ob-
serve that for this Epinions dataset, our social recommentan



CHAPTER 5. SOCIAL RECOMMENDATION

90% as Training Data

80% as Training Data

0.89 " " " " 0.91 " " "
0.88} ] 0.9f ]
0.89r ]
0.87} ] G
I?I<J 1 % 0.88
= =7
0.86
0.87
0.85 0.86
¥
0.84 : i 0.85 ; y y
0.1 1 10 20 50 100 0.1 10 20 50 100
Values of | c Values of | c
70% as Training Data 60% as Training Data
0.93 " " " " 0.95 . : .
0.92

10 20 50 100

0.1 1 10 20 50 100 0.1
Values of | c Values of | c
90% as Training Data 80% as Training Data
1.18 T T T T 1.19 T T T

¢

1.18

w 117
%)
=
4

1.12 : . y y 1.14 ; y y
0.1 1 10 20 50 100 A 10 20 50 100
Values of | c Values of | c
70% as Training Data 60% as Training Data
121 " " " " 1.24 . : !

0.1 1 10 20 50 100
Values of | c

1.18 1

10 20 50 100
Values of | c

Figure 5.6: Impact of Parameter ¢ (Dimensionality = 10)

80



CHAPTER 5. SOCIAL RECOMMENDATION

x 10°

=
)l

Number of Test Ratings
o
[$)) =

0 1-10 11-20 21-40 41-80 81-160 >160
Number of Observed Ratings

(a) Distribution of Testing Data (90%
as Training Data)

Dimensionality = 10 Dimensionality = 10

1 T 1.25 T
——SVD ——SVD

] —%—PMF 2 —%—PMF
—0—SoRec |{ 12 —0-SoRec

.75 . : . : 1.05 . : . :
1-10 11-20 21-40 41-80 81-160 >160 1-10 11-20 21-40 41-80 81-160 >160
Number of Observed Ratings Number of Observed Ratings

(b) MAE Comparison on Di erent User (c) RMSE Comparison on Dierent
Rating Scales (90% as Training Data) User Rating Scales (90% as Training
Data)

Figure 5.7: Performance Comparison on Di erent Users

81



CHAPTER 5. SOCIAL RECOMMENDATION 82

method achieves the best performance whert is around 20,
while smaller values like ¢ = 0:1 or larger values ¢ = 100 can
potentially degrade the model performance.

Performance on Di erent Users

One main task we target in this chapter is to provide accurate
recommendations when users only supply a few ratings or even
have no rating records. Although previous work has noticed
this critical problem, few approaches perform well when feuser
ratings are given. Hence, in order to compare our approachtivi
the other methods thoroughly, we rst group all the users basd
on the number of observed ratings in the training data, and
then evaluate prediction accuracies of di erent user group The
experimental results are shown in Fig. 5.7. Users are groupe
into 10 classes: \=0",\1 5",\6 10",\11 20",\21 40",
\41 80",\81 160",\160 320",\320 640", and \> 640",
denoting how many ratings users have rated.

Fig. 5.7(a) summarizes the distributions of testing data ac
cording to groups in the training data (90% as training data)
For example, there are a total of 3,360 user-item pairs to be
predicted in the testing dataset in which the related usersiithe
training dataset have rating numbers from 1 to 10. In Fig. 5.(b)
and Fig. 5.7(c), we observe that our SoRec algorithm consis-
tently outperforms other methods even when users only rated
very few ratings.

E ciency Analysis

The complexity analysis in Section 5.1.1 states that the como-
tational complexity of our approach is linear with respectd the
number of ratings, which proves that our approach is scalabl
to very large datasets. Actually, our approach is very e ciat
even when using a very simple gradient descent method. In the
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Figure 5.8: E ciency Analysis

experiments using 90% of the data as training data, each iter
tion only needs less than 2 seconds. Also, as shown in Fig.,5.8
when using 90% of the data as training data, our method needs
less than 300 iterations to converge, which only needs apgfo
imately 10 minutes. When using 60% of the data as training
data, we only need less than 5 minutes to train the model. All
the experiments are conducted on a normal personal computer
containing anIntel Pentium D CPU (3.0 GHz, Dual Core) and

1 Giga byte memory.
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From Fig. 5.8, we also observe that when using a small value
of ¢c,suchas ¢ =0:1 or ¢ =1, after 50 or 100 iterations,
the model begins to overt, while a larger ¢, such as ¢ =
20, does not have the over tting problem. These experiments
clearly demonstrate that in this Epinion dataset, using litle
social network information can cause overting problem, adh
that the predictive accuracy can be improved by incorporatig
more social network information.

5.2.4 MovieLens Dataset

Description of the MovieLens Dataset

MovieLens is a famous recommender system. The dataset we
employ in this chapter is the 10M/100K dataset. This data
set contains 10,000,054 ratings and 95,580 tags added to68Q,
movies by 71,567 users of the online movie recommender segvi
MovielLens.

Comparison

In the comparison, we employ di erent amounts of training
data, including 80%, 50%, 30%, 10%. 80% training data means
we randomly select 80% of the ratings from the MovieLens
10M/100K data set as the training data, and leave the remain-
ing 20% as prediction performance testing. The procedure is
carried out 5 times independently, and we report the average
values in this chapter.

As introduced in Section 5.1.2, we can incorporate socialga
information in two ways: (1) the rst method is to treat the
tags as the favors of users (we call this method SoRecUserdan
it is related to the graphical model shown in Fig. 5.3 with the
parameter Y); (2) the second method is to interpret the tags
as the properties of items (we call this method SoRecltem, dn
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Table 5.5: MAE comparison with other approaches on MovieLsndataset
(A smaller MAE value means a better performance)

Methods 80% Training | 50% Training | 30% Training | 10% Training
User Mean 0.7686 0.7710 0.7742 0.8234
Item Mean 0.7379 0.7389 0.7399 0.7484

SVD 0.6390 0.6547 0.6707 0.7448

5D PMF 0.6325 0.6542 0.6698 0.7430
SoRecUser 0.6209 0.6419 0.6607 0.7040
SoRecltem 0.6199 0.6407 0.6395 0.7026

SVvD 0.6386 0.6534 0.6693 0.7431

10D PMF 0.6312 0.6530 0.6683 0.7417
SoRecUser 0.6197 0.6408 0.6595 0.7028
SoRecltem 0.6187 0.6395 0.6584 0.7016

Table 5.6: RMSE comparison with other approaches on Moviehe dataset
(A smaller RMSE value means a better performance)

Methods 80% Training | 50% Training | 30% Training | 10% Training
User Mean 0.9779 0.9816 0.9869 1.1587
Item Mean 0.9440 0.9463 0.9505 0.9851

SVvD 0.8327 0.8524 0.8743 0.9892

5D PMF 0.8310 0.8582 0.8758 0.9698
SoRecUser 0.8121 0.8384 0.8604 0.9042
SoRecltem 0.8112 0.8370 0.8591 0.9033

SVvD 0.8312 0.8509 0.8728 0.9878

10D PMF 0.8295 0.8569 0.8743 0.9681
SoRecUser 0.8110 0.8372 0.8593 0.9034
SoRecltem 0.8097 0.8359 0.8578 0.9019
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Figure 5.9: Performance Comparison on Items with Di erent #of Tags

it is associated with the graphical model shown in Fig. 5.4
the parameter Y).

In the comparison, we setY =1and ¥ =10. The MAE re-
sults and RMSE results are reported in Table 5.5 and Table 5.6
respectively. From the results, we can see that our SoReclUse
and SoRecltem approaches consistently outperform the béise
methods and the state-of-the-art recommendation algoriths,
especially when there is a small amount of training data, wtin
IS equivalent to data sparsity in reality. In addition, it is nec-
essary to notice that in the MovieLens 10M/100K data set, all
the selected users have rated at least 20 movies, but in régli
according to the famous power law distribution phenomenoin
almost all kinds of Web activities, most users only rated ver
few items. Thus, we can see the improvement of our method
Is signi cant, and this again shows the promising future of ar
approach.

As to the parameters ¥ and Y basically, they share the
similar trends with Fig. 5.6, hence we do not show the detaie
results here.



CHAPTER 5. SOCIAL RECOMMENDATION 87

x 10° Dimensionality = 20 x 10° Dimensionality = 20
10
9l
sl
7l
g g
£ 6r 2
S g5l S
9] 1]
o =]
E 4r £
S ]
= =
3l
s
1l
9]
=0 1-5 6-10 11-20 >21 =0 1-5 6-10 11-20 >21
Number of observed unique tags Number of observed unique tags
(a) 80% as Training Data (b) 50% as Training Data
x 10° Dimensionality = 20 x 10° Dimensionality = 20
35 4.5
3 ar
3.5
2.5
g g 3
2 2
S ?r = 25f
=] =]
3 g L,
£ 15 g 2
5 5
P4 Z 15+
1l
1l
0.5 05l
0 9]
=0 1-5 6-10 11-20 >21 =0 1-5 6-10 11-20 >21
Number of observed unique tags Number of observed unique tags
(c) 30% as Training Data (d) 10% as Training Data

Figure 5.10: Tag Distributions of Testing Data on Di erent Amount of Train-
ing Data
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Performance on Items with Di erent Number of Tags

One major contribution of this chapter is incorporating soal
tagging information with traditional rating information t o im-
prove prediction quality. In order to further investigate how the
number of tags attached to one item a ects the prediction ac-
curacies, we rst group all the items based on the number of
unique tags they have been annotated, then evaluate the pre-
diction accuracies on di erent groups. We divide the itemsnito
5 groups based on the number of unique tags that have been
annotated: \= 0", \1-5", \6-10", \11-20", and \ 21",
Experimental results are presented in Fig. 5.9. This g¢-
ure shows the prediction accuracies (measured with MAE and
RMSE) of groups of items annotated with di erent number of
unique tags, and the results of di erent amount of training éta
are all presented. We only report the results on dimensioni
=10. From Fig. 5.9, we can see that incorporating tags inforex
tion can improve prediction quality signi cantly. In addit ion, as
the number of annotated unique tags increases, the predich
quality rst improves drastically, then gradually stabili zes after
the number of tags surpasses some threshold value (around 20
in this data set). This phenomenon is reasonable, becausdlwi
more tags' information, the concept of an item can be repre-
sented more accurately, but too many tags result in redundag
In representing the concepts of the items. Fig. 5.10 showseth
tag distributions of testing data on di erent amount of training
data.

5.3 Summary

In this chapter, in order to alleviate the data sparsity prolem
in the traditional recommender systems, we present a novel -
cient and general recommendation framework fusing a uséesm
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rating matrix with social contextual information using proba-
bilistic matrix factorization. The experimental results $iow that
our approach outperforms the other state-of-the-art collaora-
tive ltering algorithms, and the complexity analysis indicates
it is scalable to very large datasets. Moreover, the data fios
method using probabilistic matrix factorization we introduce in
this chapter is not only applicable to recommendation with @
cial contextual information, but also extensible to other ppular
research topics, such as social search.

For future work, we employ the inner product of two vectors
to t the observed data in this chapter; this approach assume
that the observed data is a linear combination of several laht
factors. Although we use the logistic function to constrairthe
inner product, a more natural and accurate improvement over
this assumption is to use a kernel representation for the two
low-dimensional vectors, such as a Gaussian Kernel or a Poly
nomial Kernel, which map the relations of the two vectors ird a
nonlinear space, and thus leading to an increase in the model
performance.

Moreover, we only employ inter-user trust information in ths
chapter, but in many online social networks, the distrust ifor-
mation is also stated by many users. Because a user trust fesdt
space may not be consistent with the corresponding user digst
feature space, we cannot simply incorporate the distrust ior-
mation into our model. In the future, we need to investigate
the following two problems: whether the distrust informaton is
useful to increase the prediction quality, and how to incorprate
this distrust information to obtain better quality results.

Furthermore, when fusing the social trust network informa-
tion, we ignore the information di usion or propagation betveen
users. A more accurate approach is to consider the di usiorrq-
cess between users. Hence, we need to replace the socialorétw
matrix factorization with the social network di usion processes.
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This consideration will help alleviate the data sparsity poblem
and will potentially increase the prediction accuracy.

Lastly, we either associate tags with users or associate fag
with items. Actually, we can design a more general framework
to incorporate tags with users and items simultaneously. Ti&
consideration will provide more information than either ofthe
proposed methods, hence can further improve the recommenda
tion quality.

2 End of chapter.



Chapter 6

Recommend with Social Trust
Ensemble

In last chapter, we developed a factor analysis method based
the probabilistic graphical model which fuses the user-ite ma-
trix with the users' social trust networks by sharing a commo
latent low-dimensional user feature matrix. The experimeal
analysis shows that this method generates better recommen-
dations than the non-social collaborative Itering algorihms.
However, the disadvantage of this work is that although the
users' social trust network is integrated into the recommaeter
systems by factorizing the social trust graph, the real wadlrec-
ommendation processes are not re ected in the model. This
drawback not only causes lack of interpretability in the modl,
but also a ects the recommendation qualities. A more novel
and realistic approach is needed to model the trust-awareae
ommendation problem.

6.1 Recommendation with Social
Trust Ensemble

Traditional recommender system techniques, like collabative
Itering, only utilize the information of the user-item rating ma-
trix for recommendations while ignore the social trust rekgons

91
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(a) Social Trust Graph (b) User-ltem Rating Matrix
Figure 6.1: Example for Trust based Recommendation

among users. As the exponential growth of online social net-
works, incorporating social trust information into recomnender
systems is becoming more and more important. In this sectipn
we rst describe the trust-aware recommendation problem in
Section 6.1.1, and then provide the solution in Sections 621
6.1.3 and 6.1.4.

6.1.1 Problem Description

In the real world, the process of recommendation scenario-in
cludes two central elements: the trust network and the favarof
these friends, which can essentially be modeled by the exaeg
of the trust graph in Fig. 6.1(a) and the user-item rating ma-
trix in Fig. 6.1(b), respectively. In the trust graph illustrated in
Fig. 6.1(a), totally, 5 users (nodes, fronu; to us) are connected
with 9 relations (edges) between users, and each relatiorasso-
ciated with a weight S;; in the range (Q 1] to specify how much
useru; knows or trusts useru;. Normally, the trust relations in
the online trust network are explicitly stated by online uses. As
illustrated in Fig. 6.1(b), each user also rated some item$rém
V1 10 Vg) Oon a 5-point integer scale to express the extent of the
favor of each item (normally, 1, 2, 3, 4 and 5 represent \hate"
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\don't like", \neutral", \like" and \love", respectively) . The
problem we study in this chapter is how to predict the missing
values for the users e ectively and e ciently by employing te
trust graph and the user-item rating matrix.

6.1.2 User Features Learning

In order to learn the characteristics or features of the userwe
employ matrix factorization to factorize the user-item matix.
The idea of user-item matrix factorization is to derive a hig-
guality I-dimensional feature representatiot) of users andv of
items based on analyzing the user-item matriR. Suppose in
a user-item rating matrix, we havem users,n items, and rat-
ing values within the range [@1]. Actually, most recommender
systems use integer rating values from 1 tBnax to represent
the users' judgements on items. In this chapter, without |assof
generality, we map the ratings 1:::; Rmax to the interval [O; 1]
using the functionf (x) = x=Rmax. Let R; represent the rating
of usery; foritemvj, andU 2 R" mandV 2 R' " be latent user
and item feature matrices, with column vectordJ; and V, rep-
resenting thel-dimensional user-speci ¢ and item-speci c latent
feature vectors of usew; and item v;, respectively. Note that
the solutions ofU and V are not unique. In [99], the conditional
distribution over the observed ratings is de ned as:
. Yo . B
p(RjU; V; B) = N Rjjg(U'v) & ':  (6.1)
i=1 j=1

whereN (xj ; ) is the probability density function of the Gaus-
sian distribution with mean and variance 2, and Iin is the
indicator function that is equal to 1 if useru; rated item v; and
equal to O otherwise. The functiorng(x) is the logistic function
g(x) = 1=(1+exp( x)), which makes it possible to bound the
range of UV, within the range [0, 1]. The zero-mean spherical



CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 94

(a) Factorization of User- (b) Recommendations by Trusted Friends
Item Matrix

(c) Recommendations with Social Trust Ensemble

Figure 6.2: Graphical Models
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Gaussian priors are also placed on user and item feature verst
i 2 v ; 2 i 2 v ; 2
p(Uj §)=  N(UjO; §l); p(Vi )= N(Vj0; §1):(6.2)
i=1 j=1

Hence, through a Bayesian inference, we have

p(U; VIR; 3; &: 2) _ p(RjU;V; &)pUj 3)p(Vj 2)

Yyn oy . |R
= N RjjoU'v); 3 "
i=1 j=1
yn Y0
N (Uijo; §l) N (Vj0; g1): (6.3)
i=1 j=1

The graphical model of Eq. (6.3) is shown in Fig. 6.2(a). This
equation represents the method on how to derive the users-la
tent feature space or users' characteristics purely based the
user-item rating matrix without considering the favors of gers'
trusted friends. In the next section, we will systematicajl illus-
trate how to recommend based on the tastes of trusted friends

6.1.3 Recommendations by Trusted Friends

In this section, we analyze how our social trust networks act
our decisions or behaviors, and propose a method to recomrden
only by using the tastes of trusted friends.

Suppose we have a directed social trust grapB = (U; E),
where the vertex setU = fu;gt, represents all the users in
a social trust network and the edge seE represents the trust
relations between users. Le$ = f§; g denote them m matrix
of G, which is also called the social trust matrix in this chapter
For a pair of vertices,u; and u;, let S; 2 (0; 1] denote the weight
associated with an edge frony; to u;, and S; = 0, otherwise.
The physical meaning of the weightS; can be interpreted as
how much a usew; trusts or knows usery; in a social network.
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Note that social trust matrix S is an asymmetric matrix, since
in a trust-based social network, usew; trusting u; does not
necessary indicate useu; trusts u;.

In reality, we always turn to our friends for recommendatios
since we trust our friends. We also believe that most probablve
will like the items (books, music, movies, etc.) that our trgted
friends recommend. Even if the recommended items are not the
types we like, we still have a high probability to be in uencd
by our trusted friends. In the real world, suppose a user wasit
to see the movie \The Dark Knight" (suppose it is the itemv;
in Fig. 6.1(b)), which is now playing at the theaters, but heshe
knows nothing about the movie, like useu, in Fig. 6.1(b). What
this user normally do is to take into account his/her trusted
friends' recommendations. Among all of his/her trusted fends
in Fig. 6.1(a), u, and u4 rated this movie as 4 and 5, andi,
trusts us (weight 1.0) more thanu, (weight 0.6). Based on the
information, there is a very high probability that u; will draw
the conclusion that \The Dark Knight" is a very good movie
worth of watching.

From the above analysis, we can generalize the above social
process as

P
j2T (i) RS
Ru= o ©4)
where Ii?ik is the prediction of the rating that user u; would
give itemv;, Rj is the score that usew; gave itemv, T (i) is
the friends set that useru; trusts and T (i)j is the number of
trusted friends of useru; in the setT (i). T (i)j can be merged
into §; since it is the normalization term of trust scores. Hence,
Eqg. (6.4) can be simpli ed as
X
Ibik = Rjk Sij : (65)
2T (i)
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Then the prediction of the ratings that useru; gives to all the
items can be inferred as

0] 1 0] 10 1
Riy R11 R21 17 Rm Si1
R, Ri» Ry i R S,

D e | S
Ii?in Rln RZn - Rmn Sim

We can then infer that for all the users to obtain
R = SR; (6.7)

where SR can be interpreted as the recommendations purely
based on the trusted friends' tastes.

From the social trust network aspect, we de ne the condi-
tional distribution over the observed ratings as

iS;UV; &)=
P(R] U2V 6)

1 3|iR
Yo X . -
AN @QR; jo SkUdV); 3AS ;. (6.8)

i=1j=1 k2T (i)

whereSjk is normalized byjT (i)j, which is the number of trusted
friends of useru; in the set T (i). IiJR is the indicator function
that is equal to 1 if useri rated itemj and equal to O otherwise.

Hence, similar to Eq. (6.3), through a Bayesian inference,ew
have

P(U;VIR;S: & & §)
P(RiS;U;V; §)p(UIS; §p(Vis; §):  (6.9)
In Eq. (6.9), we can assume thatS is independent with the

low-dimensional matricesU and V, then this equation can be
changed to
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p(U; VJR; S; 2%: g,; 2)_ p(RjS; U; V; %)p(iJJ' 2)p(Vij 3);

R

Yoy X
= AN @R; jof SkU{V,); &AS
i=1j=1 k2T (i)
\4 \%
N (Uijo; 2l) N (Vj0; &l): (6.10)
i=1 j=1

where p(Uj 3) and p(Vj 2) are zero-mean spherical Gaussian
priors on user and item feature vectors. This equation spees
the method to recommend purely based on users' trusted frigs!
tastes. The graphical model is shown in Fig. 6.2(b).

6.1.4 Social Trust Ensemble

In Section 6.1.2, given the user-item rating matrix, the oleved
rating R is interpreted by the useru;'s favor on itemy;, while in
Section 6.1.3, given the user-item rating matrix and usersocial
trust network, the observed ratingR;; is realized as the favors on
item v; of useru;'s trusted friends. Actually, both of the above
assumptions are partially right since in the real world sitation,
every user has his/her own taste and at the same time, every
user may be in uenced by his/her friends he/she trusts. Hereg
in order to de ne the model more realistically, every obseed
rating in the user-item matrix should re ect both of these two
factors. Based on this motivation, we model the conditional
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distribution over the observed ratings as:

p(u;VjR;zs; 02: 3 %)

13'5
=" M anerjgu Ty * SeUTv): 25
N ulg(U| VJ (1 ) SIkUk\/J);
i=1j=1 k2T (i)
N4 Y
N (Uijo; &) N (Mjo; d1): (6.11)
i=1 j=1

In Eq. (6.11), the users' favors and the trusted friends' faus
are smoothed by the parameter , which naturally fuses appro-
priate amount of real world recommendation processes intbe
recommender systems. The parameter controls how much do
users trust themselves or their trusted friends. It is alsohe
reason we call our approach Recommendation with Social Ttus
Ensemble (RSTE). The graphical model of RSTE is shown in
Fig. 6.2(c).

The log of the posterior distribution for the recommendatias
Is given by

Inp(U; ViR; S; % 3; &)=

1 A R T X T 2
52 PR og(Uivi+(@ ) SkUcV))
i=1 j=1 k2T (i)
1 X 1 X
2 UiTUi 2_ \/JT\/j
i=1 i=1
1 XX 1
é( 15)in 2 2(m||n 2+ nln 2)+ C (6.12)
i=1 j=1

where C is a constant that does not depend on the parame-
ters. Maximizing the log-posterior over two latent featurs with
hyperparameters (i.e., the observation noise variance armuior
variances) kept xed is equivalent to minimizing the folloving
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sum-of-squared-errors objective functions with quadratiregu-
larization terms:

L(R;S; U;V)
1){“ X R T X T 2
= _— |IJ (RU g(Ul\/J+(1 ) Sikuk\/j))
i=1 j=1 k2T (i)
+ SKURE + YkVig; (6.13)

where y = 2= 3, v = 2= 2, andk k2 denotes the Frobenius
norm.

A local minimum of the objective function given by Eq. (6.13)
can be found by performing gradient descent ib;, V,,

@ _ X & T X T
ou Iing(UiVj+(1 ) Sik Ug Vi)V,
=1 X k2T (i)
(Uvi+@ ) SkWV) Ry)
k2T (i)
X X X
1) IGglUM+(T ) S M)
p2B (i) j =1 X k2T (p)
QU Vi+(1 ) SwUM) RySuiVi+ uUi
k2T (p)
@ T & T X T
v IRlu v+ ) Sik Ue V)
= X k2T (i)
UV +@ )  SkYV) Ry)
VL0
(Ui+(1 ) SkU) + vV (6.14)
k2T (i)

whereg{x) is the derivative of logistic functiongqx) = exp(x)=(1+
exp(x))? and B(i) is the set that includes all the users who trust
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useru;. In order to reduce the model complexity, in all of the
experiments we conduct in Section 6.2, we set; = v.

6.1.5 Complexity Analysis

The main computation of gradient methods is evaluating the
object function L and its gradients against variables. Because
of the sparsity of matricesR and S, the computational complex-
ity of evaluating the object function L is O( gl + rKkl), where

r iS the number of nonzero entries in the matriXR, and k is
the average number of friends that a user trusts. Since alnos
all of the online social networks t the power-law distribuion,
a large long tail of users only have few trusted friends. This
indicates that the value ofk is relatively small. The computa-
tional complexities for the gradients3; and & in Eq. (6.14) are
O( rp I+ rp kl) and O( gl + gKkl), respectively, wherep is
the average number of friends who trust a user, which is also a
small value. Actually, in a social trust graph, the value ok is
always equal to the value ob, which is 991 in the dataset we
employ in the Section 6.2. Therefore, the total computatical
complexity in one iteration isO( grp |+ rpkl), which indicates
that theoretically, the computational time of our method islin-
ear with respect to the number of observations in the userdin
matrix R. This complexity analysis shows that our proposed
approach is very e cient and can scale to very large datasets

6.2 Empirical Analysis

In this section, we conduct several experiments to comparbe
recommendation qualities of our RSTE approach with other
state-of-the-art collaborative lItering and trust-aware recom-
mendation methods. Our experiments are intended to address
the following questions: (1) How does our approach compare
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Table 6.1: Statistics of User-ltem Rating Matrix of Epiniors

Statistics User | Item
Max. Num. of Ratings | 1960 | 7082
Avg. Num. of Ratings | 12.21| 7.56

Table 6.2: Statistics of Social Trust Network of Epinions
Statistics | Trust per User | Be Trusted per User
Max. Num. 1763 2443
Avg. Num. 9.91 9.91

with the published state-of-the-art collaborative Itering and
trust-aware recommendation algorithms? (2) How does the rdel
parameter a ect the accuracy of prediction? (3) What is the
performance comparison on users with di erent observed rat
ings? (4) Can our algorithm achieve good performance even if
users have few observed rating records? (5) Is our algorithm
e cient when training the model?

6.2.1 Dataset Description

We choose Epinions as the data source for our experiments on
recommendation with social trust ensemble. Epinions.cors a
well known knowledge sharing site and review site, which was
established in 1999. In order to add reviews, users (contutors)
need to register for free and begin submitting their own peosal
opinions on topics such as products, companies, movies, eF r
views issued by other users. Users can also assign products o
reviews integer ratings from 1 to 5. These ratings and review
will in uence future customers when they are about to decide
whether a product is worth buying or a movie is worth watch-
ing. Every member of Epinions maintains a \trust" list which
presents a social network of trust relationships between ers.
Epinions is thus an ideal source for experiments on socialst
recommendation.
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The dataset used in our experiments is collected by crawl-
ing the Epinions.com site on Jan 2009. It consists of 51,670
users who have rated a total of 83,509 dierent items. The
total number of ratings is 631,064. The density of the user-
item rating matrix is less than Q015%. We can observe that
the user-item rating matrix of Epinions is very sparse, sirecthe
densities for the two most famous collaborative ltering deasets
Movielens (6,040 users, 3,900 movies and 1,000,209 ratjraysl
Eachmovie (74,424 users, 1,648 movies and 2,811,983 ra)ng
are 425% and 229%, respectively. Moreover, an important fac-
tor that we choose the Epinions dataset is that user socialust
network information is not included in the Movielens and Edt-
movie datasets. The statistics of the Epinions user-item tiag
matrix is summarized in Table 6.1. As to the user social trust
network, the total number of issued trust statements is 51799.
The statistics of this data source is summarized in Table 6.2

6.2.2 Metrics

We use two metrics, the Mean Absolute Error (MAE) and the
Root Mean Square Error (RMSE), to measure the prediction
quality of our proposed approach in comparison with other ¢o
laborative ltering and trust-aware recommendation methais.
The metrics MAE is de an as:
i rij by
N :
wherer;; denotes the rating usen gave to itemj, b; denotes
the rating useri gave to itemj as predicted by a method, and
N denotes the number of tested ratings. The metrics RMSE is
de ned as:

MAE =

(6.15)

S P .
i (rij  by)e
N ;

RMSE = (6.16)
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6.2.3 Comparison

In this section, in order to show the performance improvemeaf
our RSTE approach, we compare our method with the following
approaches.

1. PMF: this method is proposed by Salakhutdinov and Minh
in [99]. It only uses user-item matrix for the recommenda-
tions, and it is based on probabilistic matrix factorizatian.

2. Trust: this is the method purely uses trusted friends' tags
making recommendations. Itis proposed in Section 6.1.3in
this chapter. It is also a special case of RSTE when= 0.

3. SoRec: this is the method proposed in [74]. It is a so-
cial trust-aware recommendation method that factorizes
the user-item rating matrix and users' social trust network
by sharing the same user latent space.

We use dierent amounts of training data (90%, 80%) to
test the algorithms. Training data 90%, for example, meanseav
randomly select 90% of the ratings from Epinions dataset as
the training data to predict the remaining 10% of ratings. Tle
random selection was carried out 5 times independently. The
experimental results using 5 and 10 dimensions to represehe
latent features are shown in Table 6.3.

The parameter settings of our approach are = 0:4 for both
90% training data and 80% training data, y = v = 0:001,
and in all the experiments conducted in the following sectis,
we set all of the parameters y, v equal to Q001. From Ta-
ble 6.3, we can observe that our approach RSTE outperforms
the other methods. In general, two social trust recommenda-
tion approaches SoRec and RSTE all perform better than the
PMF method (only uses the user-item matrix for recommen-
dations). However, the Trust method performs worse than the
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Table 6.3: Performance Comparisons (A Smaller MAE or RMSE Ve
Means a Better Performance)

Dimensionality = 5
Trust | PMF | SoRec| RSTE
MAE || 0.9054| 0.8676| 0.8442| 0.8377
RMSE || 1.1959| 1.1575| 1.1333| 1.1109
MAE || 0.9221] 0.8951| 0.8638| 0.8594
RMSE || 1.2140] 1.1826| 1.1530| 1.1346

Dimensionality = 10
Trust | PMF | SoRec| RSTE

MAE || 0.9039| 0.8651| 0.8404| 0.8367
RMSE || 1.1917| 1.1544| 1.1293| 1.1094
MAE || 0.9215| 0.8886| 0.8580| 0.8537
RMSE || 1.2132| 1.1760| 1.1492| 1.1256

Training Data | Metrics

90%

80%

Training Data | Metrics

90%

80%

PMF method, which indicates purely utilizing trusted friends'
tastes to recommend is not applicable. Among these three st4
aware recommendation methods, our RSTE method generally
achieves better performance than the SoRec and Trust methed
on both MAE and RMSE. This demonstrates that our interpre-
tation on the formation of the ratings is realistic and reasoable.

6.2.4 Performance on Dierent Users

One challenge of the recommender systems is that it is di-
cult to recommend items to users who have very few ratings.
Hence, in order to compare our approach with the other meth-
ods thoroughly, we rst group all the users based on the numbe
of observed ratings in the training data, and then evaluaterne-
diction accuracies of di erent user groups. The experimeat
results are shown in Fig. 6.3. Users are grouped into 6 classe
\1 10",\11 20",\21 40",\41 80",\81 160"and\> 160",
denoting how many ratings users have rated.
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Figure 6.3: Performance Comparison on Di erent Users
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Fig. 6.3(a) summarizes the distributions of testing data ac
cording to groups in the training data (90% as training data)
For example, there are a total 3,360 user-item pairs to be pre
dicted in the testing dataset in which the related users in tl
training dataset have rating numbers from 1 to 10. In Fig. 6.()
and Fig. 6.3(c), we observe that our RSTE algorithm consis-
tently performs better than other methods, especially whefew
user ratings are given. When users' rating records are rangi
from 1 to 80, our RSTE method performs much better than the
Trust, PMF and SoRec approaches.

6.2.5 Impact of Parameter

In our method proposed in this chapter, the parameter bal-
ances the information from the users' own characteristicsnd
their friends' favors. It controls how much our method shoul
trust users themselves and their friends. If =1, we only mine
the user-item rating matrix for matrix factorization, and smply
employ users' own tastes in making recommendations. If=0,
we only extract information from the social trust graph to pe-
dict users' preferences purely from the friends they trust.In
other cases, we fuse information from the user-item rating an
trix and the user social trust network for probabilistic matix
factorization and, furthermore, to predict ratings for theusers.
Fig. 6.4 shows the impacts of on MAE and RMSE. We
observe that the value of impacts the recommendation re-
sults signi cantly, which demonstrates that fusing the uses'
own tastes with their friends' favors greatly improves the ec-
ommendation accuracy. No matter using 90% training data or
80% training data, as increases, the MAE and RMSE de-
crease (prediction accuracy increases) at rst, but when sur-
passes a certain threshold, the MAE and RMSE increase (pre-
diction accuracy decreases) with further increase of the lua
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Figure 6.4: Impact of Parameter (Dimensionality = 10)

of . This phenomenon con rms with the intuition that purely
using the user-item rating matrix or purely using the usersso-
cial trust network for recommendations cannot generate beetr
performance than fusing these two favors together.

From Fig. 6.4(a) and Fig. 6.4(b), when using 90% ratings as
training data, we observe that, our RSTE method achieves the
best performance when is around 0.4, while smaller values
like =0:1orlarger values like = 0:7 can potentially degrade
the model performance. This indicates that we need to trust
more about the tastes of users' trusted friends than their ou
tastes, since the training data of user-item matrix is verygarse,
which can hardly learn the accurate characteristics of userIn
Fig. 6.4(c) and Fig. 6.4(d), when using 80% ratings as train-
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Figure 6.5: E ciency Analysis (90% as Training Data)
ing data, the optimal value of is also around 0.4. However,
less ratings for users will lead to an overall degradation ¢fie
recommendation results.

6.2.6 Training E ciency Analysis

The complexity analysis in Section 6.1.5 states that the comu-
tational complexity of our approach is linear with respectd the
number of ratings, which shows that our approach is scalable
to very large datasets. Actually, our approach is very e ciat
even when using a very simple gradient descent method. In the
experiments using 90% of the data as training data, our metko
only needs less than 400 iterations for training, and eacheita-
tion only requires less than 20 seconds. All the experimerdse
conducted on a normal personal computer containing aimtel
Pentium D CPU (3.0 GHz, Dual Core) and 1G memory.

Fig. 6.5(a) and Fig. 6.5(b) show the performance (MAE and
RMSE) changes with the iterations. We observe that when us-
ing a large value of , suchas =1or =0:7,atthe end of the
training, the model begins to over t (especially for the RME),
while a relatively smaller , suchas =0or =0:4, does not
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have the over tting problem. These experiments clearly deon-
strate that in this dataset, an approach ignoring the socialust
information can cause the over tting problem, and that the pe-
dictive accuracy can be improved by incorporating appropaie
amount of social trust information.

6.3 Summary

This chapter is motivated by the fact that a user's trusted frends
on the Web will a ect this user's online behavior. Based on tl
intuition that every user's decisions on the Web should inadde
both the user's characteristics and the user's trusted fnnels' rec-
ommendations, we propose a novel, e ective and e cient prob
abilistic matrix factorization framework for the recommeimler
systems. Experimental analysis on the Epinions dataset shs
the promising future of our proposed method. Moreover, the
method introduced in this chapter by using probabilistic mé&ix
factorization is not only working in trust-aware recommendr
systems, but also applicable to other popular research tas,
such as social search, collaborative information retrielvaand
social data mining.

In this chapter, although we employ the trusted friends' opi-
lons in the social trust network to make recommendations for
the users, we do not consider the possible di usions of trust
between various users. Under the circumstance that both the
user-item rating matrix and the trust relations of a social et-
work are very sparse, the diusions of trust relations becom
inevitable since this consideration will help to alleviatéhe data
sparsity problem and will potentially increase the prediabn ac-
curacy. We plan to employ the di usion processes in our futer
work.

In many popular applications on the Web, users not only can
keep a list of trust relationships, but also have the rightsd
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establish a list of distrust or block relationships. If a ugeu;
Is in the distrust list of a useru;, most probably, it is because
the useru; thinks the user u;'s taste is totally di erent from
him/her. Actually, this information is very useful on the recom-
mender systems. Unfortunately, to the best of our knowledge
no previous work can employ this information well into recom
mender systems. The understanding of distrust relations ill
unclear to the researchers: We cannot use di usion methods t
model it due to the reason that one person's enemy's enemy is
not necessarily the enemy of this person. In the future, weai
to study the formation and nature of the distrust relations,and
explicitly model them in the recommender systems.

2 End of chapter.



Chapter 7

Recommend with Social
Distrust

Although we developed two trust-based recommendation ap-
proaches in this thesis, we ignored a very important inforntin,
l.e., distrust relations among users.

In this chapter, we propose a factor analysis framework with
the constraints of distrust and trust relations among usersOur
work is based on the following intuitions:

Users' latent features can be extracted by factorizing the
user-item rating matrix.

Users' distrust relations can be interpreted as the \dissim
ilar" relations since useru; distrusts useruy indicates that
user u; disagrees with most of the opinions issued by user
Ug.

Users' trust relations can be modeled as the \similar" re-
lations due to the reason that usew; trusts useru; means
that user u; agrees with most of the opinions issued hy;.

7.1 Recommendation Framework

Previous recommender system techniques only utilize the-in
formation of the user-item rating matrix for recommendatios

112
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while ignoring the trust and distrust relationships among sers.
However, the fact is, trust and distrust information is veryhelp-

ful in making the recommendations since to some extent, they
represent the \similar" and \dissimilar" relationships. With the
exponential growth of Web 2.0 Web sites, providing personal
ized recommendations and incorporating trust and distrusinto
traditional recommender systems are becoming more and more
important.

In this section, we rst describe the problem we study in
Section 7.1.1, and then brief the matrix factorization techique
for recommendation in Section 7.1.2. We provide solutionsho
how to incorporate the distrust and trust into recommendatbns
in Section 7.1.3, Section 7.1.4 and Section 7.1.5. Finallhe
complexity analysis is conducted in Section 7.1.6.

7.1.1 Problem De nition

Fig. 7.1(a) illustrates a typical Web user we will study in ths

chapter. In this gure, user u, rated three itemsvy, vz and vs.

In addition to the rating data, this user also maintains two ists:

trust list and distrust list. The trust list stores all the users that
user u; trusts while the distrust list includes all the users that
useru; distrusts.

By integrating all the information from all the users, we sum
marize three di erent data sources: the user-item rating nmax
shown in Fig. 7.1(b), the user trust graph shown in Fig. 7.1{c
and the user distrust graph shown in Fig. 7.1(d). In this exam
ple, totally, there are 5 users (fromu; to us) and 5 items (from
v to vs) with 6 trust relations (edges) and 5 distrust relations
between users. Each relation is associated with a weighy in
the range (Q 1] to specify how much useun; trusts or distrusts
user uj. In an online social network Web site, the weightv;
Is often explicitly stated by useru;. Typically, each user also
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(a) A Web User (b) User-ltem Rating Matrix

(c) User Trust Graph (d) User Distrust Graph

Figure 7.1: A Toy Example

rates some items on a 5-point integer scale to express the entt
of the favor of each item (normally, 1, 2, 3, 4 and 5 represent
\hate", \don't like", \neutral", \like" and \love", respec tively).

The problem we study in this chapter is how to e ectively and
e ciently predict the missing values of the user-item matrx by
employing these di erent data sources.

7.1.2 Matrix Factorization for Recommendation

A common and popular approach to recommender systems is to
t a factor model to the user-item rating matrix, and use it in
order to make further predictions [48, 76, 94, 99]. The prese
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behind a low-dimensional factor model is that there is only a
small number of factors in uencing the preferences, and tha
user's preference vector is determined by how each factondips
to that user [94].

Consider anm  n user-item rating matrix R, the matrix
factorization method employs a rank-matrix X = UTV to t
it, where U 2 R mandV 2 R' ". From the above de ni-
tion, we can see that the low-dimensional matriced and V are
unknown, and need to be estimated. Moreover, this featurepe
resentations have clear physical meanings. In this lineaadtor
model, each factor is a preference vector, and a user's prefe
ences correspond to a linear combination of these factor @&,
with user-speci ¢ coe cients. More speci cally, each row é U
performs as a \feature vector", and each row oY is a linear
predictor, predicting the entries in the corresponding caimn of
R based on the \features" inU.

Actually, most recommender systems use integer rating val-
ues from 1 toR .« tO represent the users' judgements on items.
In this chapter, without loss of generality, we map the rat-
INngs 1 :::; Rmax to the interval [0; 1] using the functionf (x) =
X=Rmax. However, simply employingU;"V; to predict the miss-
ing value R;; can make the prediction outside of the range of
valid rating values. Hence, instead of using a simple linetactor
model, in this chapter, the inner product between user-spiec
and movie-speci c feature vectors is mapped through a nonk
ear logistic functiong(x) = 1=(1 + exp( X)), which bounds the
range of the predictions into [0, 1].

Hence, by adding the constraints of the norms dff and V,
we have the following optimization problem:
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. 18X Tv/ )\ 2
minL(R;U;V) = 2 (R 9(U' Vv)))
SRY, 2 .
i=1 j=1
YkUK2 + Y kVK2:
+ KUKE + kVKE; (7.1)

WherelijR is the indicator function that is equal to 1 if useru;
rated item v; and equal to O otherwise, ank k2 denotes the
Frobenius norm.

The optimization problem in Eq. (7.1) minimizes the sum-of-
squared-errors objective function with quadratic regulazation
terms. It also has a probabilistic interpretation with Gausian
observation noise, which is detailed in [99]. However, thame as
many other collaborative Itering methods, this approach aly
utilizes the user-item rating matrix for the recommendatios.
In the following sections, we will introduce how to incorpate
the distrust and trust information into the matrix factoriz ation
method.

7.1.3 Recommendation with Distrust Relations

In this section, we analyze how the distrust relationshipsan
a ect the recommendation processes.

Distrust is one of the most controversial topics and issues t
cope with, especially when considering trust metrics and ust
propagation [135]. Although many researchers have alreadgn-
ducted comprehensive studies on the trust related applidans,
the understanding of distrust relations is still unclear tothe
researchers. Distrust is totally di erent with trust, hence the
method employed in the trust-aware recommender systems ean
not be simply transplanted to distrust-aware recommendelys-
tems. For example, the most popular method in trust-aware
recommender systems is to improve the recommendation qual-
ity by the propagation of trust; however, we cannot simply us
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propagation methods to model distrust due to the reason that
one person's enemy's enemy is not necessarily the enemy af th
person.

However, we cannot ignore the distrust information since as
reported in [42], experience with real-world implementedraist
systems such as Epinions and eBay suggests that distrust is a
least as important as trust.

In this chapter, we employ a simple intuition to make positie
In uence using distrust information. If a userugy is in the distrust
list of a useru;, most probably, it is because the useu; thinks
the userugy's taste is totally di erent from him/her. Actually,
this information is very useful on the recommender systemgVe
could interpret this problem using the following intuition: if user
u; distrusts userug, then we could assume that the featureb);
and Uy will have a large distance in the feature space. Based on
this assumption, for all the users in the user space, we sumnza
the following optimization function:

1 X0 X
max SOkU;  Ugk2; (7.2)

i=1 d2D+ (i)
whereD* (i) is the set of users that user; distrusts, and S§ 2
(0; 1] is the weight of distrust score that useu; gives to userug.
The larger the value ofS§ is, the more the usew; distrusts the
user ugq.

Based on Eq. (7.1) and Eq. (7.2), we de ne the recommenda-
tion with distrust relations as the following optimization prob-
lem:
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. D 1){“ X R T 2
mnLo(R;S%UV) = 3 it (R a(U' V)
' i=1 j=1
XX
+ - ( SilgkUi Udk|2:)
i=1 d2D+ (i)
+ ?UkUk§+ %kaé: (7.3)

In the online opinion sharing or recommender systems, the
distrust value S8 is typically issued by useru; explicitly with
respect to useny, and it cannot accurately describe the relations

between users since it contains noises and ignores the graph

structure information of distrust network. For instance, smilar
to the Web link adjacency graph in [130], in a distrust graph,
the con dence of distrust valueSh should be decreased if usex
distrusts lots of users; however, the con dence of distrus@alue
S§ should be increased if useuy is trusted by lots of users.
Hence, we propose to smooth the tern$3 by incorporating
local authority and local hub values in Eq. (7.3),

r (Uq)
r=(u)+r (uq)

SP = Si; (7.4)
wherer *(u;) represents the outdegree of user, in the distrust
graph, whiler (ug) indicates the indegree of useuqy in the
distrust graph.

A local minimum of the objective function given by Eq. (7.3)
can be found by performing gradient descent ibj;, V,,
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j=1
+ X SR(Us  U)+ X SP(U, W)
id \ “d i pi (Yp i
d2D * (i) 02D (i)
+  uUi
@-D — |R O(UTV UTV R: YU + e 75
@y - ij LY 19U V) i U vV, (7.5)

i=1

whereD (i) is the set of users that distrust useu;.

7.1.4 Recommendation with Trust Relations

In this section, we discuss how to incorporate the trust reten-
ships into recommender systems. In order to model the trust
relationships between users realistically, we rst need tander-
stand where the \trust" comes from. Actually, on the Web, it
Is not di cult to interpret the generation of trust relation s. For
example, in an opinion sharing Web site, if a usau; is in the
trust list of a user u;, most probably, the underlying cause is
that user u; agrees with most of useu;'s opinions. Moreover,
how much useru; trusts user u; depends on how much useu;
agrees with usetu;.

Based on the above interpretation, if useu; trusts userug, we
can assume that the feature representatiorld; and Uy of these
two users are close in the feature space. Following this imtion,
we minimize the objective function

1 X X
min = SikU  Uk2; (7.6)
v i=1 2T * (i)
whereT * (i) is the set of users that usey; trusts, and S{ 2 (0; 1]
Is the degree indicates how much user; trusts user u;. The
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larger the value ofS] is, the more the useuw; trusts the useru.

By employing Eg. (7.1) and Eq. (7.6), we de ne the recom-
mendation problem with trust relations as the following opit
mization problems:

: T R Ty )2
minLr(R;STIUV) = 5 i (R 9(Yi Vi)
’ i=1 j=1
X X
+ o (STkU;,  Uk?)
i=1 127 * (i)
u 2 \ 2.
+ DKUKE + RVIE: (7.7)

Similar to Eq. (7.4), we also smooth the trust valueS] in
Eqg. (7.7) based on the following equation:

(Up)
(u) + (uy)
where *(u;) represents the outdegree of usar; in the trust
graph, while  (u;) indicates the indegree of useu, in the trust
graph.
In Eq. (7.7), by performing gradient descent inU;, V;, we
have

Si = St (7.8)

@-T _ X |R O(UTV UTV R: V.
@ B i GLY, (YY) i )V,
j=1
X . X ]
+ S; (U U+ Sqi(Ui Ug)
€27 * (i) @ 0
+ ol
@-T — |R O(UTV UTV R: YU + V- 79
@—}\/_ i 9(U Vi) (oYU V) ij U vVi; (7.9)

i=1
whereT (i) is the set of users that trust usem;.
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7.1.5 Prediction

After the low-dimensional latent feature spaced) and V are
learned, the next step is to predict the ratings for the actig
users. For the given missing dat&;; , the value predicted by
our method is de ned as

Ri = g(U™V): (7.10)

We will evaluate the prediction quality in Section 7.2.

7.1.6 Complexity Analysis

The main computation of gradient methods is evaluating the
object functionsLp, Lt and their gradients against variables.

Because of the sparsity of matriceR, SP and ST, the com-
putational complexities of evaluating the objective funabnsL p
areLt areO( rl+ mrl) and O( gl + msl), respectively, where

r 1S the number of nonzero entries in the matrixR, | is the
dimensions of the user featurem is the number of usersy is
the average number of users that a user distrusts, arglis the
average number of friends that a user trusts. Since almost af
the online social network graphs t the power-law distributon, a
large long tail of users only have few trusted or distrustedsers.
This indicates that the values off and s are relatively small.
Generally mr<< g andms<< g.

The computational complexities for the gradients%J and
% in Eq. (7.5) are O( rI?+ m(r + r9l) and O( rl?), respec-
tively, where r%is the average number of users who distrust a
user, which is also a small value. Actually, in a distrust netork
graph, the value ofr is always equal to the value of® which is
0:94 in the dataset we employ in the Section 7.2.

The computational complexities for the gradients%J and
@1 in Eq. (7.9) are O( grl?+ m(s+ s91) and O( rl?), respec-
tively, where s is the average number of friends who trust a
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user. In a trust network graph, the value ofs is also equal to
the value of s% which is 545 in the dataset we employ in the
experiments.

Therefore, the total computational complexity in one iter-
ation is O( gl + rl?), which indicates that theoretically, the
computational time of our method is linear with respect to tle
number of observations in the user-item matrixR. This com-
plexity analysis shows that our proposed approach is very e
cient and can scale to very large datasets.

7.2 Experimental Analysis

In this section, we conduct several experiments to comparhd
recommendation qualities of our approaches with other statof-
the-art collaborative lItering and trust-aware recommendtion
methods. Our experiments are intended to address the followg
guestions:

1. How does our approach compare with the published state-
of-the-art collaborative Itering and trust-aware recommnen-
dation algorithms?

2. How do the model parameter and a ect the accuracy
of prediction?

7.2.1 Dataset Description

We choose Epinions as the data source for our experiments on
trust and distrust-aware recommendations. Epinions.consia
well known knowledge sharing site and review site, which was
established in 1999. In order to add reviews, users (contutors)
need to register for free and begin submitting their own peosal
opinions on topics such as products, companies, movies, eF r
views issued by other users. Users can also assign products o
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Table 7.1: Statistics of User-ltem Rating Matrix of Epiniors
Statistics User | Item

Min. Num. of Ratings 1 1
Max. Num. of Ratings | 162169| 1179
Avg. Num. of Ratings | 102.07| 17.79

Table 7.2: Statistics of Trust Network of Epinions
Statistics | Trust per User | Be Trusted per User
Max. Num. 2070 3338
Avg. Num. 5.45 5.45

reviews integer ratings from 1 to 5. These ratings and review
will in uence future customers when they are about to decide
whether a product is worth buying or a movie is worth watch-
ing. Every member of Epinions maintains a \trust" list which
presents a network of trust relationships between users, éGma
\block (distrust)" list which presents a network of distrust re-
lationships. This network is called the \Web of trust”, and is
used by Epinions to re-order the product reviews such that a
user rst sees reviews by users that they trust. Epinions ishus
an ideal source for experiments on social recommendation.
The dataset used in our experiments consists of 131,580 sser
who have rated at least one of a total of 755,137 di erent item
The total number of ratings is 13,430,209. The density of the
user-item matrix is ¢@014%. We can observe that the user-item
matrix of Epinions is very sparse, since the densities for ¢htwo
most famous collaborative Itering datasets Movielens (€40
users, 3,900 movies and 1,000,209 ratings) and Eachmovig 424
users, 1,648 movies and 2,811,983 ratings) ar23P6 and 229%,
respectively. Moreover, an important reason that we chooske
Epinions dataset is that user trust and distrust informatio is
not included in the Movielens and Eachmovie datasets. The
statistics of the Epinions user-item rating matrix is summeazed
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Table 7.3: Statistics of Distrust Network of Epinions
Statistics | Distrust per User | Be Distrusted per User

Max. Num. 1562 540
Avg. Num. 0.94 0.94
in Table 7.1.

As to the user trust network, the total number of issued trust
statements is 717,129. The statistics of the this data sowec
IS summarized in Table 7.2. In the user distrust network, the
total number of issued distrust statements is 123,670, andhe
statistics of the distrust data is summarized in Table 7.3.

We also observe a number of power-law distributions in these
data sources, including items per user, trust relations parser
(outdegree in the trust graph) and distrust relations per uer
(outdegree in the distrust graph). The distributions are sbwn
in Fig. 7.2.

7.2.2 Metrics

We employ the Root Mean Square Error (RMSE) to measure
the prediction quality of our proposed approaches in compiaon
with other collaborative Itering and trust-aware recommenda-
tion methods.

The metrics RMSE is de ned as:
S B

; i (rij by )2_
N :

RMSE = (7.11)

wherer;; denotes the rating usen gave to itemj, b; denotes
the rating useri gave to itemj as predicted by a method, and
N denotes the number of tested ratings.



CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 125
10°
10
0 10°
g ;
3
® 10°
10
.
o I H-
10 :
10° 10° 10 10°
# of ltems Rated by Users
(a)
10° 10°
10% 10*
» 10° 0 10°
2 3
=) D
* 10 = 10° e
#@%
1l 1 i
10 10 %ﬁ +
0 0 M
10 10
10° 10" 10° 10° 10* 10° 10" 10° 10° 10*
# of Trusted Users # of Distrusted Users
(b) (©

Figure 7.2: Power-Law Distributions of the Epinions Datade (a) Iltems per
User Distribution. (b) Trust Graph Outdegree Distribution. (c) Distrust
Graph Outdegree Distribution.
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7.2.3 Comparison

In this section, in order to show the e ectiveness of our pragsed
recommendation approaches, we compare the recommendation
results of the following methods:

1. PMF (Probabilistic Matrix Factorization): this method i s
proposed by Salakhutdinov and Minh in [99]. It only uses
user-item matrix for the recommendations.

2. SoRec (Social Recommendation): this is the method pro-
posed in [74]. It is a trust-aware recommendation method
that factorizes the user-item rating matrix and users' trus
network by sharing the same user latent space.

3. RWD (Recommendation With Distrust): this is a matrix
factorization-based recommendation method with distrust
constraints. It is proposed in Section 7.1.3 in this chapter

4. RWT (Recommendation With Trust): this is a matrix factori zation-
based recommendation method with trust constraints. It
Is proposed in Section 7.1.4 in this chapter.

As to the training data, we employ three settings: 5%, 10%
and 20% for training, where 20% means we randomly select 20%
ratings as training data to predict the remaining 80% rating.

In our RWD and RWT methods, there are totally four pa-
rameters need to be set, including, , y and . Without
loss of generality, in order to reduce the model complexityye
set y = v =0:001 in all the experiments we conduct in this
chapter. We will discuss the in uence of the parameters and

in the experiments conducted in Section 7.2.4.

The prediction accuracies evaluated by RMSE are shown
in Table 7.4. In our proposed distrust-aware recommendatio
method RWD, the parameter is set to be 0.00001 while in our
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Table 7.4: RMSE Comparison with other popular algorithms. Te reported
values are the RMSE on the Epinions Dataset achieved from dtng the
data into 5%, 10%, and 20% for training data, respectively.

Dataset | Traning Data | Dimensionality PMF SoRec RWD RWT
504 5D 1.228 1.199 1.186 1.177
10D 1.214 1.198 1.185 1.176
Epinions 10% 5D 0.990 0.944 0.932 0.924
10D 0.977 0.941 0.931 0.923
5D 0.819 0.788 0.723 0.721
20%
10D 0.818 0.787 0.723 0.720

Figure 7.3: RWT Performance Increase (5D)
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Figure 7.4: RWT Performance Increase (10D)

trust-aware recommendation method RWT, the parameter is
set to be 0.001.

From Table 7.4, we can observe that our RWD and RWT ap-
proaches constantly performs better than the other methods
all the settings. When we use 20% as training data, we nd that
our method generates much better performance than PMF and
SoRec. This demonstrates the advantages of trust and disst
aware recommendation algorithms.

In Fig. 7.3 and Fig. 7.4, we also plot the percentages of per-
formance increase of our RWT algorithm against PMF, SoRec
as well as our RWD algorithms in terms of RMSE. From these
gures, we observe an interesting phenomenon: as the spéaysi
of the data decreases, the percentages of performance iasee
against PMF and SoRec keep increasing. This observation is
reasonable since in the very spare training settings like 5&mhd
10%, the user features cannot be accurately learned sinceeth
training sample is very sparse. Hence our optimization metls
cannot maximize the in uences of the trust and distrust con-
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Figure 7.5: E ciency Analysis (10% as Training Data). (a) RMSEs of PMF
and SoRec Change with Iterations. (b) RMSEs of RWD and RWT Chage
with Iterations ( =0:001, =0:00001).

straints. But as the increase of the training data, RWD and
RWT performs better and better.

We also observe another phenomenon worthy of studying.
We nd that the distrust-based method RWD performs almost
as good as the trust-based method RWT (Please notice that in
Table 7.2 and Table 7.3, in average, every user only has 0.94
distrusted users while has 5.45 trusted users). This obsativn
proves that the distrust information among users is as imptant
as the trust information in the recommender systems.

In Fig. 7.5, we plot the performance (RMSE) changes with
the iterations. We observe that in the PMF and SoRec methods,
at the end of the training, the models begin to over t, as show
in Fig. 7.5(a), while our RWD and RWT methods do not have
the over tting problem, as illustrated in Fig. 7.5(b). These ex-
periments clearly demonstrate that in this dataset, the enlpy
of our trust and distrust regularization terms not only gene
ates better performance than other methods, but also avoids
the over tting problem.
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7.2.4 Impact of Parameters and

In our method proposed in this chapter, the parameters and
play very important roles. They control how much our method
should use the information of trusted or distrusted users.nithe
extreme case, if we use a very small value ofor , we only mine
the user-item rating matrix for matrix factorization, and smply
employ users' own tastes in making recommendations. On the
other side, if we employ a very large value of or , the trust
or distrust information will dominate the learning processs. In
normal cases, we integrate information from the user-itermat-
ing matrix and the users' trust or distrust network for matrix
factorization and, furthermore, to predict ratings for theusers.

Fig. 7.6 shows the impacts of on RMSE. We observe that
the value of impacts the recommendation results signi cantly,
which demonstrates that incorporating the trust informaton
greatly improves the recommendation accuracy. No matter us
ing 5% training data, 10% training data or 20% training dataas

increases, the RMSE decrease (prediction accuracy incress
at rst, but when  surpasses a certain threshold like:@1, the
RMSE increase (prediction accuracy decreases) with furthim-
crease of the value of . The existence of the yielding point con-
rms with the intuition that purely using the user-item rati ng
matrix or purely using the users' trust information for recaon-
mendations cannot generate better performance than appnap
ately integrating these two sources together.

The impact of generally shares the same trend as the impact
of . The dierence is that we should choose a relatively small
value of , since if we choose a large value, the optimization
problem in Eq. (7.3) will become unbounded, hence we cannot
nd the solutions.
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7.3 Summary

In this chapter, we systematically study how to e ectively ad
e ciently incorporate the trust and distrust information i nto
the recommender systems. Our proposed framework is based
on matrix factorization with regularization terms constraning
the trust and distrust relations between users. The complex
ity of our proposed optimization framework is linear with tre
observations of the ratings, and the experimental analys@n a
large Epinions dataset shows that our RWD and RWT meth-
ods outperforms other state-of-the-arts algorithms. Basdeon
the experimental analysis, we also draw the conclusion théte
distrust information is at least as important as the trust irfor-
mation. This observation brings a major contribution to the
research of trust and distrust-aware applications since groves
that the distrust information can also be utilized to in uence
online applications in a positive fashion.

In this chapter, the trust and distrust constraints are reglar-
ized separately. In order to generate better prediction quligy,
a possible improvement is to fuse these two data sources into
the same objective function. The most direct method is simpl
attaching the constraints in Eq. (7.2) and Eqg. (7.6) to the olpec-
tive function in Eq. (7.1). However, this will increase the mdel
complexity, hence a more exible and e cient method needs to
be designed in the future.

2 End of chapter.



Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this chapter, we provide a summary of the thesis. The thesi
consists of two parts: the rst part deals with traditional rec-
ommender systems while the second part focuses on sociaddzh
recommender systems. All of the approaches proposed in this
thesis are aiming at alleviating the data sparsity problemsn
recommender systems.

In the rst part, we rst present an e ective missing data pre-
diction method for collaborative Itering, which is a memoy-
based method. In order to improve the recommendation per-
formance, we predict some of the missing data, and utilize ¢h
enriched data for further prediction. The second method inhis
part is a model-based method which utilizes matrix factore-
tion technique to constrain the mean of the testing data with
the mean of the training data. The experimental results show
that this method can generate better results.

In the second part of this thesis, thanks to the many Web
2.0 Web sites, we propose three methods to incorporate sdcia
contextual information into traditional recommender sysems.
For trust relations, the underlying assumption we make is tat
online users can be very easily in uenced by the friends they
trust, and prefer their friends' recommendations. For disust

133
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relations, we model them as \dissimilar" relations since &s u;
distrusts useruq indicates that useru; disagrees with most of
the opinions issued by useuy.

In general, the goal of our work is to model the real world
recommendation as realistic as possible. Our proposed sbci
recommendation framework opens a new direction for other-re
searchers.

8.2 Future Work

There has several research directions we can follow in botiat
ditional and social-based recommender systems in the fueur

For traditional methods, we plan to conduct more research
on the relationship between user information and item infona-
tion since our simulations show the algorithm combining thee
two kinds of information generates better performance. Atloer
direction worth of investigation is how design a method to tke
advantages of both memory-based and model-based methods.

For the social based methods, currently, we only use social
trust and distrust information to improve recommendations
However these two types of relations are still di erent withthe
\Friend" relation, such as friend relations in Facebook!. To
achieve the nal goal of social recommendation, we need toiut
lize social friend data instead of social trust data for recomen-
dation.

As the exponential growth of online social network sites cen
tinues, the research of social search is becoming more andreno
important. We also plan to develop similar techniques to abw
users' trusted friends to in uence the users' search ressltor
guery suggestions. The intuition behind this is that if a lage
number of our friends are searching for something, it's like

thttp://www.facebook.com
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that we may be interested in that topic too. This would be an
interesting search phenomenon to explore in social netwark

The Web is now leaving the era of search and entering one
of discovery. Search is what you do when you are looking for
something. Discovery is when something wonderful that youod
not know existed, or do not know how to ask for, nds you.
Hence, in the future, another promising research topic walibe
how to actually extend recommendations techniques to seéarc
problems. If we can accurately model users' search behagor
we believe we can also design accurate personalized residts
all the online users.

2 End of chapter.
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