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Further Investigations on Heat Diffusion Models

Abstract

In this paper, we investigate the Heat Diffusion Model further in three aspects: its applications in the ranking
algorithm on the Web, other graph constructions for its graph inputs, and the volume effects.

In applications on the Web, we propose a ranking algorithm DiffusionRank. On one hand, DiffusionRank is mo-
tivated by the heat diffusion phenomena, which can be connected to Web ranking because the activities flow on Web
can be imagined as heat flow, the link from a page to another can be imagined as the pipe of an air-conditioner,
and heat flow can embody the structure of the underlying Web graph. On the other hand, DiffusionRank is also
motivated by the manipulation problem: the PageRank scores of Web pages can be manipulated while the PageR-
ank algorithm has proven to be very effective for ranking Web pages. DiffusionRank is proposed to handle the
manipulation problem and to cast a new insight on the Web structure. Theoretically we show that DiffusionRank
can serve as a generalization of PageRank when the heat diffusion coeffi¢ends to infinity. In such a case
1/ = 0, DiffusionRank (PageRank) has the lower ability of anti-manipulation. When the heat diffusion coeffi-
cient is set to be zero, DiffusionRank has the highest ability of anti-manipulation, but in such @ eagethe
web structure is completely ignored. Consequently, the heat diffusion coefficient is an interesting factor that can
control the balance between the extent that we want to model the original Web and the extent that we want to
reduce the effect of manipulation. It is found empirically that, whea 1, DiffusionRank has a Penicillin-like
effect on the link manipulation. Moreover, DiffusionRank can be employed to find group-to-group relations on the
Web, can divide the Web graph into several parts, and can find link communities. Experimental results show that
the DiffusionRank algorithm achieves the above mentioned advantages.

In our previous work, a classifier is proposed based on a heat diffusion model on afiméarest neighbor
(KNN) graph. To broaden the scope of the previous work, we separate the graph construction procedure and
classifier construction procedure by proposing Graph-based Heat Diffusion Classifiers (G-HDC). This separation
allows various graph inputs. Besides traditional KNN graph, we propose two other candidate graph inputs for
G-HDC: a graph with the shortest edges whose number is the same as the KNN graph, and the Minimum Spanning
Tree. These two graphs can be also considered as the representation of the underlying geometry, and the heat dif-

fusion model on them can be considered as the approximation to the way that heat flows on a geometric structure.



Three graph construction methods lead to three classifiers when applied to the G-HDC. Experiments show that
the two classifiers with the two proposed graph inputs can be considered as two other candidate classifiers, which
enrich the family of heat diffusion classifiers.

We also propose the volume-based heat diffusion model (VHDM). VHDM is based on a graph model that takes
account of unseen input data, giving rise to a closed-form expression. We give related background on heat diffusion
models, the theoretical framework of our model, detailed analysis of the formulation, and a VHDC classifier as an
example application. Experiments show that VHDC performs uniformly better than the Parzen Window Approach
(PWA) and KNN in prediction accuracy, as we expected, and is competitive with recently proposed transductive
learning algorithms. The enhanced performance of VHDC over the form without the volume consideration shows

the necessity of introducing the volume representation.
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Chapter 1

Introduction

Some successful applications of heat kernels have been reported recently. In [2], a nonlinear dimensionality re-
duction algorithm was proposed based on a local heat kernel approximation and a graph heat kernel approximation
(i.e., the graph Laplacian). For givérpointsxy, Xs, . . ., X;; in anm—dimensional spac&™, an adjacency graph

was constructed first by either-neighborhoods oK nearest neighbors. Then the local heat kernel approximation

e~ Ii=x;1*/t was employed to construct the weight of the neighborhood graph. To achieve efficient dimensionality
reduction, the minimization of the following smoothness penalty on the gfaph= Zﬁjzl(f(xi) — f(x;)) was
converted to the generalized eigenvector problem:

Lf = \Df,

whereL = D — W is the graph Laplaciany’ = (W;;), W;; = e~ I=%l’/tif x; andx; are adjacent and;; = 0
otherwise, and is a diagonal degree matrix given B; = » . W;;. Finally the eigenvectors corresponding to
the smallest eigenvalues except zero are used for dimensionality reduction.

In [19], a discrete diffusion kernel on graphs and other discrete input space was proposed. When it was applied
to a large margin classifier, good performance for categorical data was demonstrated by employing the simple

diffusion kernel on the hypercube. The proposed heat diffusion kernel takes the feffh,ofhereH = (H;),

L, i~y
0, otherwise

In [20], a general framework was proposed. The key idea was to begin with a statistical family that was
natural for the data being analyzed, and to represent data as points on the statistical manifold associated with the

Fisher information metric of this family. The investigation of the heat equation with respect to the Riemannian



structure, given by the Fisher metric, led to a family of kernels, which generalized the familiar Gaussian kernel for
Euclidean space. When applied to the text classification, where the natural statistical family was the multinomial,
a closed form approximation to the heat kernel for a multinomial family was proposed, which yielded significant
improvements over the use of Gaussian or linear kernels. The proposed closed form approximation heat kernel on

them—dimensional multinomial was given by

_m

K(6,6') = (47t)~ % ¢ 1 erecos’(V-V0)

These successful applications of the heat kernel motivate us to investigate the heat equation, since the heat
kernel can be explained as a special solution to the heat equation given a special initial condition called the delta
functiono(x — y). More specifically,d(x — y) describes a unit heat source at positjowith no heat in other
positions, in other wordsj(x —y) = 0 for x # vy andff;" 0(x —y)dx = 1. If we let fp(x,0) = §(x —y), then

the heat kernek;(x, y) is a solution to the following differential equation on a manifdi¢
)
87{ - Af = 07
fx0) = fo(x),

where f(X, t) is the temperature at locationat time¢, beginning with an initial distributiorfy(x) at time zero,

(1.1)

andA f is theLaplace-Beltrami operatoon a functionf. Eq. (2.3) describes the heat flow throughout a geometric

manifold with initial conditions. In local coordinated,f is given by
1 0 o ——O0f
() d

[20]. When the underlying manifold is the familiat—dimensional Euclidean Spac#f is simplified asy |

Af =

02 f
ax? !

and the heat kernel takes the RBF form

2
m x|

K (X,y) = (4mt)" 2e” 4 . (1.2)

It is therefore observed that the RBF kernel is a special case of the heat kernel (when the underlying manifold
is the Euclidean space). The previous researches have shown that the heat kernel is a useful tool. However, the
special setting of the initial condition that results in the heat kernel in the heat equation may narrow the scope of
the possible applications of Eqg. (2.3). In this paper we consider how to construct a classifier directly by employing
the solution to the heat equation on a graph in a wider setting of the initial condition. The heat equation on a graph
is considered as an approximation to Eq. (2.3).

In [34], we proposed the classifiéf DC' (the version without considering the volume effect), and proved the

following two claims: KNN can be considered as a special caseélbfC (when3 — +oco, N = 1, andy is
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small); and when the window function is a multivariate normal kernel, the Parzen Window Approach [3] can be
considered as a special caseHIDC (when K = n — 1, and~ is small). As a resultKNN and Parzen Window
Approach are special cases\@fiDC, asVHDC generalize$iDC (let V(j) = 1). In [37], we discussed various
graph inputs foHDC.

In Chapter 2, we consider the application of the Heat Diffusion Model on the Web.

Different from the work in [34], in Chapter 3, we separate the graph construction procedure and classifier
construction procedure by proposing Graph-based Heat Diffusion ClassBi¢i® (). Besides, we consider two
other candidate input graphs f&-HDC in this paper. This results in two novel classifiers called SKNN-based
Heat Diffusion ClassifierKNN-HDQ and MST-based Heat Diffusion Classifitl$T-HDQ. Moreover, more
interpretation and justification are provided to make the Heat Diffusion Model more convincing.

Along another aspect, Different from the work in [34], we consider the volume effects on the Heat Diffusion

Model in Chapter 4.



Chapter 2

DiffusionRank: A Possible Penicillin for Web

Spamming

2.1 Preliminaries

While thePageRanlkalgorithm [24] has proven to be very effective for ranking Web pages, inacdeagtR-
ank results are induced because of two problems: the incomplete information about the Web structure, and the
manipulated web pages by people for commercial interests.

The first problem is considered in [35, 36] by predicting the Web Structure as a random graph. In this paper we
aim to handle the second problem: the manipulation problem.

The manipulation problem is also called the Web spam, which refers to hyperlinked pages on the World Wide
Web that are created with the intention of misleading engines [12]. Itis reported in [23] that approximately 70% of
all pages in the .biz domain are spam and that about 35% of the pages in the .us domain belong to spam category.
The reason for the increasing amount of Web spam is explained in [23]: some web site operators try to influence
the positioning of their pages within search results because of the large fraction of web traffic originating from
searches and the high potential monetary value of this traffic.

From the viewpoint of the Web site operators who want to increase the ranking value of a particular page for

search engines, two methods are being used widely [23, 12]:

e Link Stuffing. The creation of extraneous pages which link to a target page. Using link stuffing, web sites

can increase the desirability of target pages to search engines using link-based ranking.

e Keyword Stuffing. The creation of thousands of popular keywords to a target page, often making the text



invisible to humans through ingenious use of color schemes. A search engine will then index the extra

keywords, and return the manipulated page as an answer to queries that contain some of the keyword.

From the viewpoint of the search engine managers, the Web spam is very harmful to the users’ evaluations
and thus their preference to choosing search engines because people believe that a good search engine should not

return irrelevant or low-quality results. There are two methods being employed to combat the Web spam:

e Machine Learning. It employed to handle the keyword stuffing. To successfully apply machine learning
method, we need to dig out some useful features for Web pages, to mark part of the Web pages as either
spam or non-spam, then to apply a supervised learning technique to mark other pages. For example in [23],
the authors proposed to use such features as number of words in the page, number of words in the page
title, average length of words, amount of anchor text, fraction of visible content, compressibility, fraction of
page drawn from globally popular words, and so on. Then the C4.5 decision tree is applied on the data set.
Another example is the RankNet, proposed in [5] and investigated further [25]. Although the authors did
not claim that RankNet can be employed as a method for spam detection, it has the potential to fulfill such

atask if appropriate features are given.

e Link Analysis. It is employed to handle the link stuffing. One example isThestRanl12], a link-based
method, in which the link structure is utilized so that human labelled trusted pages can propagate their trust

scores trough their links. This paper focuses on the link-based method.

The rest of the materials of this chapter are organized as follows. In the next section, we give a brief literature
review on various related ranking techniques. In Section 2.3, we propose the Heat Diffusion Model (HDM) on

various cases. In Section 2.5, we describe the data sets that we worked on and the experimental results.

2.2 Literature Review

Although the importance of a Web page is determined by either the textual content of pages or the hyperlink
structure or both. As in previous work [11, 16, 15], we focus on ranking methods solely determined by hyperlink
structure of the Web graph.

All the mentioned ranking algorithms are established on a graph. For our convenience, we first give some nota-
tions. We denote a static graph@y= (V, E), whereV = {vi, v, ... ,v,}, E = {(v;,v;) | there is an edge fromy to

v;} is the set of all edged; andd; denote the in-degree and the out-degree of pagspectively.



2.2.1 PageRank

The importance of a Web page is an inherently subjective matter, which depends on the reader interests, knowl-
edge and attitudes [24]. However, the average importance of all readers can be considered as an objective matter.
PageRankries to find such average importance based on the Web link structure, which is considered to contain
a large amount of statistical data. The intuition beHRagieRanks that it uses information external to the Web
pages themselves—their in-links, and that in-links from “important” pages are more significant than in-links from
average pages. Formally presented in [9], the Web is modelled by a directed’gmapine PageRanlalgorithms,

and the rank or “importance; for pagev; € V is defined recursively in terms of pages which point to it:

T; = Z Qi; Ty, (21)

(JA)EE
wherea;; is assumed to be/d; if there is a link fromj to 4, and0 otherwise. Or in matrix terms; = Ax. When

the concept of “random jump” is introduced, the matrix form in Eq. (2.1) is changed to
x = [(1-a)gl’ + aAlx, (2.2)

where the parameter is the probability of following the actual link from a pag@, — «) is the probability of
taking a “random jump”, ang is a stochastic vector (i.d.”g = 1). Typically,« = 0.85 andg = %1, wherel is

the vector of all ones.
2.2.2 TrustRank

TrustRank[12] is composed of two parts. The first part is the seed selection algorithm, in which the inverse
PageRankwvas proposed to help an expert of determining a good node. The second part is to utilize the biased
PageRankin which the stochastic distributiog is set to be shared by all the trusted pages found in the first
part. Moreover, the initial input ot is also set to bg. The justification for the inversBageRanlkand the solid

experiments support its advantage in combating the Web spam.
2.2.3 Manifold Ranking

In [41], the idea of ranking on the data manifolds was proposed. The data points represented as vectors in
Euclidean space are considered to be drawn from a manifold. From the data points on such a manifold, an
undirected weighted graph is created, then the weight m#¥ris given by the Gaussian Kernel smoothing. Then

we can show its next two steps:



Step 1. Normaliz8V by S = D~/2WD~'/2 in which D is the diagonal matrix witlii, i) —element equal to
the sum of the—th row of W.
Step 2. lteratd (¢t + 1) = aSf(¢) + (1 — )y until convergence, where is a parameter if0, 1), the: — th

element iny is set to be 1 if the corresponding data is a query, and zero otherwise.
2.2.4 Heat Diffusion

Heat diffusion is a physical phenomena. In a medium, heat always flow from position with high temperature
to position with low temperature. Heat kernel is used to describe the amount of heat that one point receives from
another point.

Recently, the idea of heat kernel on a manifold is borrowed in applications such as dimension reduction [2]
and classification [20?, 34]. In these work, the input data is considered to lie in a special structure. In [20],
the authors apply the heat kernel on a continuous manifold to text classificatior®, tinef authors apply the
heat kernel on discrete structures to categorical data classifications. In [2], the authors employ the heat kernel to
construct weights of a neighborhood graph and reduce the dimension of the underlying data. In [34], the authors
represent the underlying geometry by a finite neighborhood directed graph, on which a heat kernel is established,
and construct classifiers by imitating the heat diffusion on the graph.

All the above topics are related to our work. The readers can find that our model is a generaliZiééigaR&nk
in order to resist Web manipulation, that we inherit the first paffirabtRankthat we actually are ranking on the

manifold, and that heat diffusion is a main scheme in this paper.
2.3 Heat Diffusion Model

Heat diffusion provides us with another perspective about how we can view the Web and also a way to calculate
ranking values. In this paper, the Web pages are considered to be drawn from an unknown manifold, and the link
structure forms a directed graph, which is considered as an approximation to the unknown manifold. The heat
kernel established on the Web graph is considered as the representation of relationship between Web pages. Then
the following problems arise naturally:

1. How can we describe heat diffusion behavior on a graph instead of on a manifold?

2. How can we model the page relationship by the diffusion behavior?

To address Problem 2, we propose a ndv#fusionRankmethod in Section 2.4 using the heat kernel. To
address Problem 1, we investigate the HDM in this section. First we show our motivations for the proposed

models.



2.3.1 Motivation
There are two points to explain théageRanks susceptible to web spam.

e Over-democratic. There is a belief behinBageRank-all pages are born equal. This can be seen from the
equal voting ability of one page: the sum of each column is equal to one. This equal voting ability of all
pages gives the chance for a Web site operator to increase a manipulated page by creating a large number of

new pages pointing to this page since all the newly created pages can obtain an equal voting right.

e Input-independent. For any given non-zero initial input, the iteration will converge to the same stable
distribution corresponding to the maximum eigenvalue 1 of the transition matrix. This input-independent
property makes it impossible to set a special initial input (larger values for trusted pages and less values even

negative values for spam pages) to avoid web spam.

The input-independent feature BageRankcan be further explained as follow® = [(1 — a)gl” + aA] is

a positive stochastic matrix g is set to be a positive stochastic vector (the uniform distribution is one of such
settings), and so 1 is its largest eigenvalue and no other eigenvalue whose absolute value is equal to 1, which is
guaranteed by the Perron Theorem [22]. k@$ the eigenvector correspondingitothen we havéPy = y. Let

{x1} is the sequence generated from the iteratiops, = Px;, andxg is the initial input. If{x;} converges

to x, thenxy; = Px;, implies thatx must satisfyPx = x. Since 1 is the only maximum eigenvalue, we have

x = ¢y Wherecis a constant, and if both andy are normalized by their sums, thes= 1. The above discussions

show thatPageRanlks independent of the initial inpud;.

We observe that the heat diffusion model is a natural way to avoid the over-democratic and input-independent
feature ofPageRank Since heat always flows from a position with higher temperatures to one with lower tem-
peratures, points are not equal as some points are born with high temperatures while others are born with low
temperatures. On the other hand, different initial temperature distributions will give rise to different temperature
distributions after a fixed time period.

Based on these considerations, we propose the muffasionRank This ranking algorithm is also motivated
by the viewpoint for the Web structure. We view all the Web pages as points drawn from a highly complex ge-
ometric structure, like a manifold in a high dimensional space. On a manifold, heat can flow from one point to
another through the underlying geometric structure in a given time period. Different geometric structures deter-
mine different heat diffusion behaviors, and conversely the diffusion behavior can reflect the geometric structure.

More specifically, on the manifold, the heat flows from one point to another point, and in a given time period, if



one pointz receives a large amount of heat from another pgjnte can say: andy are connected well, and thus
x andy have a high similarity in the sense of a high mutual connection.

In the following, we first show the HDM on a manifold, which is the origin of HDM, but can not be employed
to the World Wide Web directly, and so is considered as the ideal case. To connect the ideal case and the practical
case, we then establish HDM on a graph as an intermediate case. To model the real world problem, we further
build HDM on a random graph as a practical case. Finally we demonstrafifftnsionRankwhich is derived
from the HDM on a random graph.

We note that on a point with unit mass, the temperature and the heat of this point are equivalent, and these two

terms are interchangeable in this paper.
2.3.2 Heat Flow On a Known Manifold

If the underlying manifold is known, the heat flow throughout a geometric manifold with initial conditions can
be described by the following second order differential equation:

Of(x, 1)
ot

wheref(x, t) is the heat at locatior at timet, andAf is theLaplace-Beltrami operatoon a functionf. The heat

—Af(x,t) = 0, (2.3)

diffusion kernelK;(x,y) is a special solution to the heat equation with a special initial condition—a unit heat
source at positioty when there is no heat in other positions. Based on this, the heat B€f(e]y) describes
the heat distribution at time diffusing from the initial unit heat source at positign and thus describes the
connectivity (which is considered as a kind of similarity) betwseandy.

However, it is very difficult to restore the World Wide Web as a regular geometry with a known dimension; even
the manifold, in which the Web pages lie in, is known, it is very difficult to find the heat kd€pet, y), which
involves solving Eqg. (2.3) with the delta function as the initial condition. This motivates us to investigate the heat
flow on a graph: the graph is considered as an approximation to the underlying manifold, and so the heat flow on

the graph is considered as an approximation to the heat flow on the manifold.
2.3.3 On an Undirected Graph

On an undirected grapfi, the edg€v;, v;) is considered as a pipe that connects to negdesdv;. The value
fi(t) describes the heat at nodgat timet, beginning from an initial distribution of heat given By(0) at time
zero.f(t) (f(0)) denotes the vector consisting £{t) (f;(0)).

We establish our model as follows. Suppose, at tingach node receivesM (i, j, t, At) amount of heat from

its neighbor; during a period ofAt. The heatV (i, j, t, At) should be proportional to the time peridd and the

9



heat differencef;(t) — fi(t). Moreover, the heat flows from nogéo node: through the pipe that connects nodes
i andj. Based on this consideration, we assume f&i, j, ¢, At) = v(f;(t) — fi(t))At. As a result, the heat
difference at nodé between time + At and timet will be equal to the sum of the heat that it receives from all its
neighbors. This is formulated as
filt+ At = fi(ty = D A(fi(t) — filt)At. (2.4)
j:(j9)eE

To find a closed form solution to Eqg. (2.4), we express it in a matrix form:

F(t+ At) — £(t)

At = yHf(t), (2.5)
whereH = (H;;), and
—d(vj), J =1,
Hij =4 1, (vj,v;) € E, (2.6)
0, otherwise

whered(v) denotes the degree of the naddn the limit At — 0, Eq. (2.5) becomes

d
() = YHE(D). 2.7)

Solving Eq. (2.7), we geft(t) = ¢7"H1£(0), especially we have
f(1) = e7Hf(0), (2.8)
wheree is defined as
7 ol
eVH=I+yH+§H2+§H3+.--. (2.9)

The matrixe”H is called asContinuous Diffusion Kerneh the sense that the heat diffusion process continues

infinitely many times after the nodes begin to diffuse their heat to their subsequent nodes.
2.3.4 On aDirected Graph

The above heat diffusion model must be modified to fit the situation where the links between Web pages are
directed. On one Web page, when the page-maker creates @likto another pagé, he actually forces the
energy flow, for example, people’s click-through activities, to that page, and so there is added energy imposed
on the link. As a result, heat flows in a one-way manner, only froto b, not fromb to a. Based on such

consideration, we modified the heat diffusion model on an undirected graph as follows.

10



On a directed grapty, the edg€v;, v;) is considered as a pipe that connects to negesdv;, and is forced
by added energy such that heat flows only frgno v;.
Suppose, at timg each node; receivesR H (i, j, t, At) amount of heat from its antecedentduring a period

of At. We have three assumptions:
1. The heaRH (i, j, t, At) should be proportional to the time peridd.
2. The healRH (3, j, t, At) should be proportional to the the heat at nogle
3. The heaiRH (i, j, t, At) is zero if there is no link fromy; to v;.

As aresulty; will receive Zj:(vj,vi)eE o; f;(t)At amount of heat from all its antecedents.

On the other hand, node diffusesD H (i, t, At) amount of heat to its subsequent nodes. We assume that

1. The heaDH (i, t, At) should be proportional to the time peridd.
2. The heaD H (i, t, At) should be proportional to the the heat at nogde

3. Each node has the same ability of diffusing heat. This fits the intuition that a Web surfer only has one choice

to find the next page that he wants to browse.

4. The heatDH (i,t, At) should be uniformly distributed to its subsequent nodes. The real situation is more
complex than what we assume, but we have to take this simple assumption in order to make our model

concise.

As a result, node; will diffuse v f;(t)At/d; amount of heat to any of its subsequent nodes, and each of its

subsequent node should receivg(t) At/d; amount of heat. Thereforg; = v/d;.
To sum up, the heat difference at nagebetween time + At and timet will be equal to the sum of the heat

that it receives, deducted by what it diffuses. This is formulated as

filt+ At) — fi(t) = =i AL+ > y/dfi(H)AL. (2.10)
J:(vjv)€EE
Similarly, we obtain
(1) = e™M£(0), (2.11)
whereH = (H;;), and
-1, Jj=i,
Hij =< 1/d;, (vj,v;) € E, (2.12)
0, otherwise

11



To find another closed form solution to Eq. (2.10), wetlet 0, Eq. (2.11) can then be rewritten as
f(At) = (I+ yAtH)f(0). (2.13)
AssumeN = 1/At is an integer, we then have

f(1) = f(N-At)
= (I+~AtH)I((N —1)-At)
(2.14)
= (I+~AtH)N£(0)
= I+ FH)V(0).

Eq. (2.14) is one closed form solution to Eq. (2.10) in the setting of discrete heat diffusion, where it describes the
N —step heat distribution at a time period:st from time 0 to time 1. The matrigl+ 3, H)" is called aDiscrete
Diffusion Kernelin the sense that the heat diffusion process stops after a number of steps, and in each step, nodes

diffuse their heat only to their subsequent nodes. In Figure 2.1, we illustrate the heat flow on a graph. There are

Step 1 Step 2 Step 3

Figure 2.1. lllustration on Heat Diffusion

six nodes in the graph, and there are links between them. We want to show how the heat diffuses frartonode
noded. Initially there is some amount of heat only in nadeat Step 1, heat diffuses fromto its two subsequent

nodes along the links. In Step 2, the heat diffuses further from nodes with higher heat to nodes with lower heat. At
Step 3, nodé receives heat from its two antecedents. The heat distribution in Step 3 can reflect the relationship

between node and other nodes, which is caused by the graph structure.
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2.3.5 On a Random Directed Graph

For real world applications, the heat diffusion model is not enough because some edges exist in a random way.
This can be seen in two viewpoints. The first one is that in Eq. (2.2), the Web graph is actually modelled as a
random graph, there is a edge from nagéo nodev; with a probability of(1 — «)g; (see the itenfl — a)g1?).

The second one is that in [35, 36], the Web structure is predicted as a random graph by its earlier structure found
by a crawler. For these reasons, the model would become more flexible if we extend it to random graphs. The
definition of a random graph is given below.

Definition 1: A random graphRG = (V,P = (p;;)) is defined as a graph with a vertex $ein which the
edges are chosen independently, andifers, j < |V| the probability of(v;, v;) being an edge is exacty;.

The original definition of random graphs in [4], is slightly changed to consider the situation of directed graphs.
Note that every static graph can be considered as a special random graph in the sepnstakest only 0 or 1.

On a random grapi®G = (V,P), whereP = (p;;) is the probability of the edgév;, v;) exists. In such a
random graph, the expected heat difference at ridi#ween time + At and timet will be equal to the sum of
the expected heat that it receives from all its antecedents, deducted by the expected heat that it diffuses.

Since the probability of the linkv;, v;) is pj;, the expected heat flow from nogiéo node: should be multiplied
by p;;, and so we have

A (R Vpjifi(t) At
filt + At) = fi(t) = M(t)AHj;(v;)eE RD (o) (2.15)

whereRD™ (v;) is the expected out-degree of nodeit is defined as_, p;;. Similarly we have

£(1) = e7R£(0), (2.16)
whereR = (R;;), and
-1, J=1
Rij = (2.17)
pji/ RD*(v;), j# 1.

By assuming thalv = 1/At is an integer, we also have
£(1) = (I+ %R)Nf(O). (2.18)

The matrix (I + %R)N in Eq. (2.18) and matrix"® in Eq. (2.16) are calle®iscrete Diffusion Kernebn the
random graph and theontinuous Diffusion Kernaln the random graph respectively. Based on the Heat Diffusion
Models and their solutions, we can establishBiffusionRankon undirected graphs, directed graphs, and random

graphs. In next section, we mainly focus on random graphs.
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2.4 DiffusionRank

For a random graph, the matrik + %R)N or e”® can measure the similarity relationship between nodes. Let
fi(0)=1, f;(0) = 0if j # 4, then the vectof (0) represent the unit heat at nodewhile all other nodes has zero
heat. For suclfi(0) in a random graph, we can find the heat distribution at time 1 by using Eq. (2.16) or Eq. (2.18).
The heat distribution is exactly the-th row of the matrix of(I + 3-R)" or ¢’®. So theith-row jth-column
elementh;; in the matrix(I + yAtR)" or e® means the amount of heat thatcan receive fromy; from time 0
to 1. Thus the valué;; can be used to measure the similarity frofito v;. For a static graph, similarly the matrix
(I + FH)"N or ™ can measure the similarity relationship between nodes.

The intuition behind is that the amouhts, j) of heat that a page; receives from a unit heat in a paggin
a unit time embodies the extent of the link connections from pade pagev;. Roughly speaking, when there
are more uncrossed paths framto v;, v; will receive more heat froma;; when the path length fromy; to v; is
shorter,y; will receive more heat from;; when the pipe connecting; andv; is wide, the heat will flow quickly.

The final heat that; receives will depend on various paths fremto v;, their length and width.
2.4.1 Algorithm

For the ranking task, we adopt the heat kernel on a random graph. FormalffirdonRankis described as
follows.

In algorithm 1, the elemertf;; in the inverse transition matrid is defined to be /I; if there is a link fromi to
j, and zero otherwise. This trusted pages selection procedure by iRagsRanks completely borrowed from
TrustRanK12] except for a fix number of the size of the trusted set. Although the inRargeRanks not perfect
in its ability of determining the maximum coverage , it is appealing because of its polynomial execution time and
its reasonable intuition—we actually inverse the original link when we try to build the seed set from those pages
that point to many pages that in turn point to many pages and so on. In the algorithm, the underlying random graph

isseta =ap-A+(1—ap)- % - 1,xn, Which is induced by the Web graph. As aresRit= —1 + P.
2.4.2 Advantages
Next we show the four advantages fiffusionRank

Two closed forms

First, its solutions have two forms, both of which are closed form. One takes the discrete form, and has the

advantage of fast computing while the other takes the continuous form, and has the advantage of being easily
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analyzed in theoretical aspects. The theoretical advantage has been shown in the proof of theorem in next section.

Group-group relations

Second, it can be naturally employed to detect the group-group relation. For example, if group 2 contains pages
(j1, 42, .-, 7s), and if group 1 contains pages (io, . .., it), then the sunEW hi, ;, denotes the total amounts
of heat that group 1 receives from group 2, whiefe;, is thei,,—th row j, —th column element of the heat kernel.
More specifically, we first need to s¢t0) for such an application as follows.

In£(0) = (f1(0), f2(0),..., fo(ONT,if i € {j1,72,...,7s}, thenf;(0) = 1, and0 otherwise. Then we employ
Eq. (2.16) to calculaté(1) = (f1(1), f2(1),..., f»(1))T, finally we sum thos¢; (1) wherej € {iy,i2,. .., it}

Figure 2.2 (a) shows the results generated byhfiisionRank We consider five groups—five departments
in our Engineering Faculty: CSE, MAE, EE, IE, and Sgis set to be 1, the numbers in Figure 2.2 (a) are
the amount of heat that they diffuse to each other. These results are normalized by the total number of each
group, and the edges are ignored if the values are less than 0.000001. The group-to-group relations are therefore
detected, for example, we can see that the most strong overall tie is from EE to IE. While it is a natural application
for DiffusionRankbecause of the easy interpretation by the amount heat from one group to another group, it is

difficult to apply other ranking techniques to such an application because they lack such a physical meaning.

Graph cut

Third, it can be used to partition the Web graph into several parts. A quick example is shown below.

The graph in Figure 2.2 (b) is an undirected graph, and so we employ the Eq. (2.8). If we know that node
1 belongs to one community and that node 12 belongs to another community, then we can put one unit positive
heat source on node 1 and one unit negative heat source on node 12. After time 1, ifywe $&%, the heat
distribution is [0.25, 0.16, 0.17, 0.16, 0.15, 0.09, 0.01, -0.04, -0.18 -0.21, -0.21, -0.34], and if we=séf it
will be [0.17, 0.16, 0.17, 0.16, 0.16, 0.12, 0.02, -0.07, -0.18, -0.22, -0.24, -0.24]. In both settings, we can easily
divide the graph into two partq1, 2, 3,4, 5, 6, 7} with positive temperatures af@, 9, 10, 11, 12} with negative
temperatures. For directed graphs and random graphs, similarly we can cut them by employing corresponding

heat solution.

Anti-manipulation

Fourth, it can be used to anti-manipulation. Let group 2 contains trusted Web pages.( ., js), then for each

pagei, >, h; j, is the heat that pagereceives from the group 2, and can be computed by Eq. (2.14) in the case of
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(a) Group to Group Relations (b) An undirected graph

Figure 2.2. Two graphs

a static graph or Eq. (2.18) in the case of a random graph, in whiithis set to be a special initial heat distribution
so that the trusted Web pages have unit heat while all the others have zero heat. In doing so, manipulated Web page
will get a lower rank unless it has strong in-links from the trusted Web pages directly or indirectly. The situation
is quite different forlPageRanlbecauséageRanks input-independent as we have shown in Section 2.3.1.

Based on the fact that the connection from a trusted page to a “bad” page should be weak: less uncross paths,
longer distance and narrower pipe, we canB#fusionRankcan resist web spam if we can select trusted pages. It
is fortunate, the trusted pages selection method in [12]—the first paruetfRankcan help us to fulfill this task.

In fact, the more general setting fDiffusionRankis P = ap - A + (1 — ap) - % .g- 17, and as a result,
R = —1I + P. By such a settingiffusionRankalso generaliz&rustRankwhen~ tends to infinity and when is
set in the same way asustRank However, the second part d#fustRankis not adopted by us. In our modeg,
should be the true “teleportation” determined by the user’s browse habits, popularity distribution over all the Web
pages, and so o should be the true model of the random nature of the World Wide Web. Sett@egording
to the trusted pages will not be consistent with the basic idea of Heat Diffusion on a random graph. We simply set
g = 1 only because we can not find it without any priori knowledge.

For such an application ddiffusionRank the computation complexity faDiscrete Diffusion Kernels the
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same as that fdPageRankn cases of both a static graph and a random graph. This can be seen in Eq. (2.14) and
Eqg. (2.18), by which we neefy iterations and for each iteration we need a multiplication operation between a
matrix and a vector, while in Eq. (2.1) and Eq. (2.2) we also need a multiplication operation between a matrix and

a vector for each iteration.
2.4.3 The Physical Meaning ofy

~ plays an important role in the anti-manipulation effect@iffusionRank ~ is explained as the thermal
conductivity—the heat diffusion coefficient. If it has a high value, heat will diffuse very quickly. Conversely,
if it is small, heat will diffuse slowly. In the extreme case, if it is infinitely large, then heat will diffuse from one
node to other nodes immediately, and this is exactly the case corresponéiagei®ank Next, we will interpret
it mathematically.

Theorem 1:When~ tends to infinity andf(0) is not the zero vector ®f(0) is proportional to the stable
distribution produced byageRank
Letg = %1. By the Perron Theorem [22], we have shown that 1 is the largest eigenvaRie-df1 — a)g1” +
aA], and that no other eigenvalue whose absolute value is equal to Ix hetthe stable distribution, and so
Px = x. x is the eigenvector corresponding to the eigenvalue 1. Assume thé other eigenvalues @ are

A2 < 1,...,|An| < 1, we can find an invertible matri® = ( x S; ) such that

—_
*
*
*

1 0 )\2 * *
S—1pS — (2.19)
0 O *
0O 0 0 M\,
Since
1 * * *
v(A2—1)
oR _ e _go1| O R ) (2.20)
0 0 *
0 0 0 eGn-1)
all eigenvalues of the matrid® are1,e?®2=1 ... ¢ =1 Wheny — oo, they becomd, 0, ..., 0, which

means that 1 is the only nonzero eigenvalue’df wheny — oo.
We can see that when— oo, e"Re"™Rf(0) = e7Rf(0), and sa"Rf(0) is an eigenvector af® wheny — oc.
On the other hands"®z = (I 4+ YR + %?RQ + %R‘g +..)x =Ix+vRx + %?RZX + %?RSX +...=x

sinceRx = (-1 + P)x = —x + x = 0, and hencex is the eigenvector of"® for any . Therefore bothk
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ande"Rf(0) are the eigenvectors corresponding the unique eigenvalue™®oftheny — oo, and consequently
x = ce"R£(0).

By this theorem, we see thBiffusionRankis a generalization dPageRank When~ = 0, the ranking value
is most robust to manipulation since no heat is diffused and the system is unchangeable, but the Web structure is
completely ignored sinc€®f(0) = ¢"Rf(0) = If(0) = £(0); wheny = oo, DiffusionRankecomedageRank
it can be manipulated easily. We expect an appropriate settinglwdt can balance both. For this, we have not
theoretical result, but in practice we find that= 1 works well in Section 2.5. Next we discuss how to determine

the number of iterations if we employ the discrete heat kernel.
2.4.4 The Number of Iterations

While we enjoy the advantage of the concise form of the exponential heat kernel, it is better for us to calculate
DiffusionRankby employing Eg. (2.18) in an iterative way. Then the problem about determiningyth¢he
number of iterations arises. We can formulate the problem as follows.

For a given threshole, find N such that|((I+ 3R)Y — e"™®)£(0)|| < € for anyf(0) whose sum is one.

Since itis difficult to solve this problem, we propose a heuristic method motivated by the following observations.

WhenR = -1+ P, by Eq. (2.19), we havll + 2 R)Y = (I+ & (-I1+P))N =

1 * * *
0 1+ YA2—1)\N * *
S-1 ( N S, (2.21)
0 0 *
0 0 0 (142Gl

Compare Eq. (2.20) and Eq. (2.21), we observe that the eigenval(®s-of, R)¥ — "} arel + W)N —
¢"»=1) We propose a heuristic method to determiieso that the difference between the eigenvalues are less
than a threshold for only positivks.

We also observe that f = 1,A < 1, then|(1 + 242N _ 70| < 0.005 if N > 100, and|(1 +
%)N - eV(A‘l)\ < 0.01if N > 30. So we can selv = 30, or N = 100, or others according to different
accuracy requirements. In this paper, we use the relatively accurate $éttng00 to make the real eigenvalues

in (I+ %R)Y — ¢"® less than 0.005.
2.5 Experiments

Since the ranking methods in [41] are mainly aimed to data manifolds, and the biased vector in the general

personalizedPageRankn [41] is unknown in the Web graph setting, we do not include the manifold ranking in
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the comparisons. Next we show the data, the methodology, the setting, and the results.
2.5.1 Data Preparation

Our input data consist of a toy graph, a middle-size real-world graph, and a large-size real-world graph. The
toy graph is shown in the left part in Figure 2.3. The graph below it shows node 1 is being manipulated by adding
new nodesA, B, C, ... such that they all point to node 1, and node 1 points to them all.

The data of two real Web graph were obtained from the domalitk.edu.hkThe total number of pages found
are 18542 in the middle-size graph, and 607170 in the large-size graph respectively. The middle-size graph is a
subgraph of the large-size graph, and they were obtained by the same crawler: one is recorded by the crawler in

its earlier time, and the other is obtained when the crawler stopped.
2.5.2 Methodology

The algorithms we run includeageRankTrustRankandDiffusionRank All the rank values are multiplied by
the number of nodes so that the sum of the rank values is equal to the number of nodes. By this normalization,
we can compare the results on graphs with different sizes since the average rank value is one for any graph after
such normalization. We will need value difference and pairwise order difference as comparison measures. Their
definitions are as follows.

Value DifferenceThe value difference betweet =
{A;}?_, andB = {B;}!" , ismeasured a5 " | |A; — Bil.

Pairwise Order DifferenceThe order difference betweeh andB is measured as the number of significant
order differences betweeA andB. The pair(A[i], A[j]) and (B[i], B[j]) is considered as a significant order
difference if one of the following cases happen: bdf) > [ <]A[j] + 0.1 andB[i] < [>]A[j]; both A[i] < [>
JA[j] andB[i] > [ <]A[j] 4+ 0.1.

Note that the the average ranking value is one after our normalization. Since all the ranking algorithms we
compared work in an iterative way, there may exit a large amount small errors caused by computation accuracy.

Therefore we set the significant order difference in order to reduce the effect of small errors.
2.5.3 Experimental Set-up

The experiments on the middle-size graph and the large-size graphs are conducted on the workstation whose

hardware model is Nix Dual Intel Xeon 2.2GHz, whose RAM is 1GB, and whose OS is Linux Kernel 2.4.18-27smp
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Figure 2.3. Left: the toy graph consisting of six nodes, and node 1 is being manipulated by adding

new nodes A, B, C,...; Right: the approximation tendency to PageRank by DiffusionRank
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(RedHat7.3). In calculatin®iffusionRankwe employ the discrete diffusion kernel in Eq. (2.14) and Eq. (2.18)
for such graphs. The related tasks are implemented using C language.

While in the toy graph, we employ the continuous diffusion kernel in Eq. (2.11) and Eq. (2.16), and implement
related tasks using Matlab.

For nodes that have zero out-degree (dangling nodes), we employ the method in the nRagiéBanlalgo-
rithm [18], in which dangling nodes of are considered to have random links uniformly to each node.

We seta = ay = ap = 0.85 in the all algorithms. We also segf to be the uniform distribution in both
PageRanlandDiffusionRank For DiffusionRankwe sety = 1. According to the discussions in Section 2.4.3 and
Section 2.4.4, we set the iteration number talllg = 100 in DiffusionRankand for accuracy consideration, the

iteration number in all the algorithms are set to be 100.
2.5.4 Approximation of PageRank

We show that when tends to infinity, the value differences betwdgiffusionRankandPageRanlend to zero.
Figure 2.3 (b) shows the approximation propertyDoffusionRank as proved in Theorem 1, on the toy graph.
The horizontal axis of figure 2.3 marks thevalue, and vertical axis corresponds to the value difference between
DiffusionRankandPageRankAll the possible trusted sets with= 1 are considered, they are shown in the figure.
For L > 1, the results should be the linear combination of some of these curves because of the linearity of the

solutions to heat equations. On other graphs, the situations are similar, and we omit them.
2.5.5 Results of Anti-manipulation

In this section, we show how the rank values change as the intensity of manipulation increases. We measure the
intensity of manipulation by the number of new added points that point to the manipulated point. The horizontal
axes of Figure 2.4 stand for the numbers of new added points, and vertical axes show the corresponding rank
values of the manipulated nodes.

To be clear, we consider all the six situations. Every node in Figure 2.3 (a) is manipulated respectively, and its
corresponding values f®tageRankTrustRank TR), DiffusionRankDR) are shown in the one of six sub-figures
in Figure 2.4. The vertical axes show which node is being manipulated.

In each sub-figure, the trusted sets are computed below. Since the ipagesankyields the result§l.26, 0.85,1.31,
1.36,0.51,0.71]. Let L = 1. If the manipulated node is not 4, then the trusted sét}s and otherwisg3}.

We observe that in all the cases, rank values of the manipulated node for DiffusionRank grow slowest as

the number of the new added nodes increases. On the middle-size graph and the large-size graph, this con-
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Figure 2.4. The rank values of the manipulated nodes on the toy graph

clusion is also true, see Figure 2.5. In the left sub-figure, we show the rank values of the manipulated page
(www.cse.cuhk.edu.hk/"hxyang)L = 1. We choose four trusted sets, on which we @8fusionRankand
TrustRankthe results are denoted by DiffusionRaialkd TrustRank(i = 0, 1, 2, 3 denotes the four trusted set).
Moreover, we show the results f@iffusionRankwhen we have no trusted set, and we trust all the pages before
some of them are manipulated. We also test the order difference between the ranking bedere the page is
manipulated and the ranking ordBrA after the page is manipulated. Because after manipulation, the number of
pages changes, we only compare the common pattafid P A. This experiment is used to test the stability of
all these algorithms. The less the order difference, the stabler the algorithm, in the sense that only a smaller part
of the order relations is affected by the manipulation.

Figure 2.6 shows that the rank values change when we add new nodes that point to the manipulated node. We
give severaly setting in the left panel of the figure. We find that whega: 1, the least order difference is achieved
by DiffusionRank. Itis interesting to point that asncreases, the order difference will increase first; after reaching
a maximum value, it will decrease, and finally it tends toPageRankesults. We show this tendency in the right
panel of the Figure 2.6, in which we choose three different setting—the number of manipulated nodes are 2000,

5000, and 10000 respectively. From this figure, we can see that whker2, the values are less than those for
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PageRankand that wheny > 20, the difference betwedPageRanlandDiffusionRankis very small.

After these investigations, we find that

1. For all these ranking algorithms, the larger the graph, the easier that the pages can be manipulated.

2. In all the graphs we testeDjffusionRankis most robust to manipulation both in value difference and order
difference.

3. v = 1 works well in all these cases.

4. The trust set selection algorithm proposed in [12] is effective for BatktRankandDiffusionRank

5. The difference between tiRageRank/alue and thdiffusionRank(TrustRanl value can help us to detect
pages being manipulated. The larger the difference, the more probably the page is manipulated. The remaining
part of this Section is devoted to this finding.

From the last item, we are encouraged to develop a simple manipulation detection algorithm. For a given
thresholdr, if the difference betweendgeRankvalue for a particular page and sffusionRankvalue is greater
thanr, then we consider that the page is probably being manipuldiettRankcan be also employed to fulfil

such task in the same way.

2.5.6 Manipulation Detection

To test this idea, we random choose 100 pages, and manipulated them all in different extents. Then we draw the
Recall-Precision curves as follows: for a given recall tgténd the maximum thresholdsuch that the recall rate
is exactlyv, and then calculate the ratio of the number of nodes being manipulated and the number of nodes whose
PageRank-DiffusionRank [PageRank-TrustRank] difference is greatetthidre higher precision rate under the
same recall rate means that the less “good” nodes are mixed with the ‘bad” nodes.

The upper panel in Figure 2.7 shows the results on the middle-size graph, and the lower panel shows the results
on the large-size graph. If no technique is employed, one have to guess the manipulated pages in a random way,
by which the precision will bd00/18542 ~ 0.0054 = 0.54% on the middle-size graph, ard0/667170 ~
0.000165 = 0.0165% on the large-size graph. We also draw the curve of the random detection rates on both
graphs.

We observe that bothiffusionRankandTrustRankvork excellent on the detection precision on the middle-size
graph. Compared to the random detection rate, they also work well on the large-size graph. From size of the areas

below the curves, we finBiffusionRankperforms slightly better thafirustRank
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Algorithm 1 DiffusionRank Function

Input
A transition matrix
U: the inverse transition matrix
ag: decay factor for the inverse PageRank
ap: decay factor for PageRank
M7y: number of iterations for the inverse PageRank
L: the number of trusted pages
~: the thermal conductivity coefficent
output
h*: DiffusionRank scores
1.s=1

2: for: =1TO M; do

3 s=a;-U:s+(1—qap)-1-1

4: end for

5. Sorts in a decreasing ordeft = Rank({1,...,n},s)
6:d=0

7. fori=1TO L do
8. if m(¢) is evaluated as a trusted page if ttieen
o: d(m(i)) =1
10: else
11: L=L+1
12:  endif
13: end for
14: d = d/|d|
15: h=d
16: Find the iteration numbet/z according to\
17: for i =1 TO Mp do
18 h*=(1-3-)h+-(ag-A-h+(1-ap) ;-1)
19: end for

20: RETURNA*
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Chapter 3

Graph-based Heat Diffusion Classifiers

This chapter is organized as follows. In Section 4.2, we establish a heat diffusion model based on a graph. In
Section 3.2, we establish the Graph-based Heat Diffusion Classgit{C). In Section 3.3, we present two
other candidate graph inputs f&HDC. In Section 4.1, we interpret more about the model than what we did in

[34]. In Section 4.6, we show and discuss our experimental results.
3.1 Heat Diffusion Model on a Graph

First, we give our notation for the heat diffusion model. Consider a directed weighted @raphV, E, W),
whereV = {vi,va,...,v,}, E = {(v;,v;) [there is an edge from; to v; } is the set of all edges, adl = (w;;)
is the weight matrix. In contrast to the normal undirected weighed graph, thgedgg) is considered as a pipe
that connects to nodésand;, and the weightv;; is considered as the length of the pifeg, v;). The valuef;(t)
describes the temperature at nads timet, beginning from an initial distribution of temperature given £40)
at time zero.

We establish our model as follows. Suppose, at timeach node receives an amount/ (i, j, t, At) of heat
from its neighborj during a period ofAt. The heat)M (i, j, ¢, At) should be proportional to the time period
At and the temperature differenge(t) — f;(t). Moreover, the heat flows from nodeto nodei through the
pipe that connects nodésand j, and therefore the heat diffuses in the pipe in the same way as it does in the
m-~dimensional Euclidean space, as described in Eq. (3.7). Based on the above consideration, we assume that
M{(i,j.t, At) = a- e 5P (f;(t) - fi(t))At.

As a result, the heat difference at nodeetween time + At and timet will be equal to the sum of the heat
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that it receives from all its neighbors and small patches around these neighbhors. This is formulated as

ﬂ@+€2—ﬁ@:%¥z:€wyﬂﬁ@_ﬁ@» (3.1)

(jo)eE

To find a closed form solution to Eq. (4.3), we express it as a matrix form:

f{t+At) = f(#)
At

=aHf(t), (3.2)

whereH = (H,;), and
=D ki(ki)eE evi/P =i
Hiyj={ e vilf, (4,1) € E; (3.3)
0, otherwise

In the limit At — 0, Eq. (3.2) becomes

d
SLF(0) = aH(2), (3.4)
Solving Eq. (3.4), we get
F(t) = e f(0) = e £(0), (3.5)
wherey = at, ande?" is defined as
,72 ,}/3
&H:I+7H+§ﬁﬂ+§#ﬁ+~-. (3.6)

The matrixe"? is called thediffusion kernein the sense that the heat diffusion process continues infinitely many
times from the initial heat diffusion.
To make the Heat Diffusion Classifier in [34] more flexible, in the next section, we separate the classifier and

its KNN graph input, and consider a general graph input instead of the specific KNN graph.
3.2 Graph-based Heat Diffusion Classifiers (G-HDC)

Based on the closed form solution in Eqg. (4.5), we establish a classifier by simulating the heat diffusion based
on the graph, as described follows.

Assume that there areclasses, namely,);,Cs, ..., C.. Let the labelled data set contald samples, repre-
sented by(x;, k;) (: = 1,2, ..., M), which means that the data poitbelongs to clas€’;,. Suppose the labelled
data set contai/;, points in clas<’}, so that) , M; = M. Let an unlabelled data set contaiNsunlabelled
samples, represented ky(i = M +1,M +2,...,M + N).

For a give graph that can model the data relation, we apply the heat diffusion model to the graph. For the

purpose of classification, for each claSg in turn, we set the initial heat at the labelled data in cl@ggo be
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one and all other data to be zero, then calculate the amount of heat that each unlabelled data receives from the
labelled data in clasSy. Finally, we assign the unlabelled data to the class from which it receives most heat. More
specifically, we describe the resulting Graph-based Heat Diffusion Classifier as follows.

[Step 1: Construct graph] Define graphG over all data points both in the training data set and in the unlabelled
data set by a graph construction algorithm.

[Step 2: Compute the Heat Kernel]Using Eq. (4.4) and Eq. (4.6), find the heat keriél .

[Step 3: Compute the Heat Distribution] Let

fk(O) = (xlf,:vlg, . ,;U’fw,(),(), 1)
N——
N
k=12,...,c Wheremf =1if Cy, = Ch, andxf = 0 otherwise. Then we obtainresults forf(¢), namely,

fE@t) = e f50), k = 1,2,...,c. £¥(0) means that all the data points in claSg have unit heat at the initial
time, while other data points have no heat, and the corresponding fésétilimeans that the heat distribution at
timet is caused by the initial temperature distributiti(0).

[Step 4: Classify the dataJForl = 1,2,..., N, compare the-th (p = M+I) components of }(t), f2(t), ..., f°(t),
and choose class}, such thatfz’f(t) = max|_, fj(t), i.e., choose the class that distributes the most heat to the
unlabelled data;, then classify the unlabelled datato classC).

Then we consider how to choose the input grap&4blDC.
3.3 Candidate Graphs for G-HDC

In the case that the underlying geometry is unknown or its heat kernel cannot be approximated in the same way
as used by [20], it is natural to approximate the unseen manifold by a graph, and to establish a heat diffusion model
on the approximation graph rather than on the underlying geometry. The graph embodies the discrete structure of
the nonlinear manifold. By doing so, we can imitate the way that heat flows through a nonlinear manifold. Below

we consider three graph approximations.
3.3.1 KNN Graph

The KNN graph construction algorithm is commonly used in the literature [2, 31, 27, 28]. It is shown that
PWA (Parzen Window Approach [3] when the window function is a multivariate normal kernelKain (K -
Nearest-Neighbors) are actually special cases of the classifier proposed in [34], in which the traditional KNN

graph construction algorithm is slightly changed as shown below.
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Define graphG over all data points by connecting poindsandx; from x; to x; if x; is one of theK nearest
neighbors of;, measured by the Euclidean distance. d@t j) be the Euclidean distance between painand
pointx;. Set edge weighi;; equal tod(i, j) if X; is one of thek™ nearest neighbors of;.

Note that there ar& « (M + N) directed edges in the resulting graph. Despite its success of the KNN graph,

there is a room for other graph construction algorithms. Next we propose two other candidates.
3.3.2 SKNN-Graph

When the data lies on a low-dimensional nonlinear manifold that is embedded into a high-dimensional Eu-
clidean space, the straight-line Euclidean distance may be not accurate because of the nonlinearity of the manifold.
For example, on the surface of a sphere, the distance between two points is better measured by the geodesic path.
In intuition, the smaller the strait-line Euclidean distance in a manifold, the more accurate the distance will be.
This is shown in the Figure 3.1. Since AB is shorter than AC and AD, AB is more accurate than AC and AD as an

approximation to its geodesic path. Based on such consideration, to make full use of accurate information (shorter

Figure 3.1. lllustrations on a manifold on which the shorter line is more accurate.

edges), we propose to construct the SKNN graph with the Shortest edges whose number is the same as the KNN
graph: replace th& x (M + N) edges in the KNN graph with the smalldst« (M + N)/2 undirected edges,
which amounts td<” « (M + N) directed edges.

3.3.3 Minimum Spanning Tree

Given a connected, undirected weighted graph, a spanning tree of that graph is a subgraph which is a tree and

connects all the vertices together. A spanning tree is called a minimum spanning tree (MST) if its weight is less
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than or equal to the weight of every other spanning tree. The MST, constructed from the complete graph consisting
of all the data, is selected as a candidate inp@-#1DC because of the following reasons:

1. In KNN and SKNN, we need to adjust the paramétemwhile in MST, we reduce one such kind of parameter.

2. Both KNN and SKNN cannot guarantee the connection of the resulting graph, while MST is a connected
graph.

However, MST cannot replace the KNN and SKNN in any case because there is no cycle in a MST, and thus it
lacks the ability of modelling the complex geometry. For example, a point on a sphere will diffuse heat to another
point through various paths. However, a tree-like graph cannot model this multi-connection since there is only one
path between two points.

As an example of these three candidate graph input, in Figure 4.2(a), we show 2000 points on a 2-dimensional
spiral manifold which is embedded into 3-dimensional space. In Figure 4.2(b) and 4.2(d), we show KNN graph
approximation £ = 6) and SKNN graph approximatiork{ = 6) of the spiral manifold, which contains 200
points drawn from the 2000 points in figure 4.2(a). In Figure 4.2(c) we show MST graph approximati@n. In
HDC, Step 1 consists of one of the above graph construction algorithms. In Step 2 and 3, the heat diffuses from
the labelled data to the unlabelled data along the graph, and consequently, the heat flows along the spiral manifold.
In Step 4, if the unlabelled data is closer to one class of points in the sense that it receives more heat in total from

data in such class, it is classified into this class, otherwise the other class.
3.3.4 Advantages and Disadvantages

The three input graphs have their own advantages and disadvantages, as described below.

The KNN Graph is democratic to each node because each node has exactly the same number of nodes that point
to it. Moreover, the resulting classifi&NN-HDC s a generalization of KNN. However, the KNN graph may not
be connected, and longer edges may be chosen in the KNN graph while shorter edges are removed.

The SKNN Graph loses the advantages of being democratic to each node, and may not be connected. However,
it fits the ideas that shorter edges are set more important than longer edges in a manifold.

For Minimum Spanning Tree, we enjoy its advantages of being connected. Moreover, the resultingdmatrix
is a sparse matrix (it contains ory: nonzero elements), which helps faster calculation’f using Eq. (4.6).

Also we reduce a parametér while we need to ascertaild in KNN and SKNN.
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3.4 Interpretation

In [34], the local heat diffusion and the connection with other models such as KNN and Parzen Window Ap-

proach have been introduced. In this section, we will provide more justification for the propedéxt.
3.4.1 Generalization of Gaussian Density

The heat diffusion kernek;(x,y) is a special solution to Eq. (2.3) with a special initial condition called the
delta functiond(x — y), which describes a unit heat source at positiomith no heat in other positions, in other
words,d(x—y) = 0forx #vy andff;o d(x—y)dx = 1. Based on this, the heat kerrf€}(x, y) describes the heat
distribution at time diffusing from the initial unit heat source at positignSince arbitrary initial conditions can
be considered as a combination of heat sources with different intensities at different positions and the heat equation
is linear, the heat kernel can be used to generate the solution to Eq. (Z.&,a5= [, K:(X,y)fo(y)dy. Itis
interesting to investigate the special case whers the familiarm—dimensional Euclidean Space. In such a case,

A is the LaplacianA f is simplified asA f = > %, and the heat kernel has an explicit form

x—y||2
Ky(x,y) = () Fe R (3.7)

which is the same as the Gaussian density. From this point of view, the heat Kefrgy) can be considered as a

generalization of Gaussian density—when the geometric manifold varies, the corresponding heat kernel varies and

can be considered as the generalization of Gaussian density from a flat Euclidean space to a general manifold.
3.4.2 Hopfield Model

The Hopfield neural network[14] consists ofV pairwise connected neurons. Thth neuron can be either in
fi = —1 (off) or f; = +1 (on). The connections between points are undirected and have strengths that are fixed
real numbers. Let;; be the strength of the connection from neugdio neuroni. The strengths usually satisfy:
w;; = wj;, andw;; = 0. Define the state vectd(to be a binary vector (+1) whoseh component corresponds to
the state of the-th neuron.

Each neuron examines its inputs and decides whether to turn itself on or off according to the effect of its
neighbors on it and the action threshold. More specifically, it is described as follows:

Let 7; be the threshold voltage of thieh neuron. If the weighted sum over all of its inputs is greater than or

equal toT;, thei—th neuron turns on and its state becomes +1. If the sum is less/th#ime neuron turns off

Thank the anonymous reviewer for pointing out the relation between the Hopfield Model and the Heat Diffusion Model.
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and its state becomes -1. The action of each neuron attimesimulates a general threshold functiondf— 1
variables (the states of all the other neurons) at timi¢ all the neurons update their values simultaneously, the

Hopfield network can be described:

N
fit+1) = sgn(>_ wi; f5(t) — Ty) (3.8)

j=1
LetW be anN x N real-valued, zero-diagonal symmetric matrix. The entried/aire thew;; defined above;

Let the threshold vectdrbe a real-valued vector whos¢éh component is the threshold voltage of itk neuron.

Then Eq. (3.8) can be written as a matrix form:

f(t+1) = sgn(WFf(t) —T) (3.9)

From the viewpoint of referring to neighbois;HDC is similar to Hopfield model, which is the original model
which determines class by looking at immediate neighbors.

It is interesting to point out that Eq. (3.9) and Eq. (4.5) has similar appearance. However, it is difficult for us to
compare these two models in practice because we need to determine the rfatices if Eq. (3.9) is employed
as a classifier in the similar way as Eq. (4.5) althowglandT can be calculated as a content-addressable memory

[14].
3.5 Experiments

The KNN graph, SKNN graph, and MST are considered as input dstiDC, and results in three algorithms
KNN-HDC, KN-HDC, MST-HDC Moreover,KNN, PWA (Parzen Window Approach when the window function
is a multivariate normal kernel), arBvVMare employed to be reference algorithms. All algorithms are applied to
three synthetic datasets and six datasets from the UCI Repository [13]. Since discrete attributes and the problem
of missing values are out of the scope of this paper, we simply remove all the discrete attributes and remove all the
cases that contain missing values. Table 3.1 describes the resulting datasets we use. Syn-1, Syn-2 and Syn-3 are
synthetic datasets. Syn-2 and Syn-3 are from the same spiral data as shown in Figure (4.2)(a), but with different
numbers of data. Syn-1 is obtained from Syn-2 by ignoring the third attribute. In the spiral data set, the data in one
class are distributed on a spiral rotated clockwise while the data in another class are distributed on a spiral rotated
anti-clockwise.

We obtain the free parameters KNN-HDC, MST-HDG and SKNN-HDCVvia five cross-validations on the

training data and unlabelled data (a transductive learning setting), and tHed&andKNN only on the training
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Table 3.1. Description of the Datasets

Dataset | Cases| Classes| Attributes
Syn-1 100 2 2
Syn-2 100 2 3
Syn-3 200 2 3
Breast-w | 683 2 9
Glass 214 6 9
lono 351 2 34
Iris 150 3 4
Sonar 208 2 60
Vehicle 846 4 18

Table 3.2. Mean Accuracy of SVM, KNN,PWA, KNN-HDC (KNN-H), MST-HDC (MST-H) and SKNN-HDC

(SKNN-H) on the 6 datasets

Dataset || SVM | KNN | PWA | KNN-H | MST-H | SKNN-H

Syn-1 66.0 | 67.0 | 80.0 93.0 95.0 95.0
Syn-2 34.0 | 67.0 | 83.0 93.0 94.0 89.0
Syn-3 540 | 795 | 92.0 91.0 90.0 92.0
Breast-w | 96.8 | 94.1 | 96.6 96.9 95.9 99.4

Glass 68.1 | 61.2 | 63.5 68.1 68.7 70.5
lono 93.7 | 83.2 | 89.2 96.3 96.3 96.3
Iris 96 97.3 | 95.3 98 92.0 94.7

Sonar 88.5 | 80.3 | 53.9 90.9 91.8 94.7

Vehicle 84.8 | 63.0 | 66.0 65.5 83.5 66.6
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data. We employ the Gaussian kernels for Y&\t the experimental results are obtained by using the LIBSVM
software [6], in which the width parameter is obtained via five cross-validations on the training data. The figure
shown in Table 4.1 is the mean accuracy of the ten-fold cross-validations. Note that the results on Glass, Iris, Sonar,
and Vehicle are slightly different from those in [34], in which parameters are tuned outside the cross-validation.
In each row, the maximum results are shown in bold. From the results, we observe th&Kid¥hHDCand
MST-HDC perform better thai®WA and KNN in accuracy, which shows the necessity of introducing the new
graph constructing method f@-HDC. It is interesting to mention th&a¢NN-HDC, MST-HDG andSKNN-HDC

can employ unlabelled data to construct graphs so that better accuracy is achieved.

35



Figure 3.2. An illustration on the spiral manifold and its graph approximation. (a) The 2000 points (b)

KNN Neighborhood Graph (c) Minimum Spanning Tree (d)KN shortest edges
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Chapter 4

Novel Volume-based Heat Diffusion Model and

Its Resulting Classifier

4.1 Motivations

In order to develop the Heat Diffusion Model further, we investigate various methods of solving Eg. (2.3).
Numerical methods for differential equation in continuum mechanics have traditionally been classified into three
main approaches: finite element (FE), boundary element (BE), and finite difference (FD) methods [1]. For the
heat diffusion equation, the situation is similar. The FE method for the heat diffusion equation is used in surface
smoothing (for example, see [7, 30]). Because we do not know the true geometry in which the data points lie, we
cannot construct the triangle mesh in our model and therefore we cannot use the FE and BE methods.

Fortunately we find that we can generalize the FD method. In the following, we illustrate the FD method for the
heat diffusion equation by considering the special case when the manifold is a two-dimensional Euclidean space.

In such a case, the heat diffusion equation (2.3) becomes
of _9%f _9%f _
ot Ox2 oy: ’
f(x7y70) = f0($,y)

The FD method begins with the discretization of space and time. For simplicity, we assume equal spacing of

(4.1)

the pointsz; in one dimension with intervals of siz&x = x;; — x;, equal spacing of the poinig in another
dimension with intervals of siz&y = y;11 — y; (assumeAy = Az = d for simplicity), and equal spacing of
the time stepg,, at intervals ofAt = t;1 — t,. f(4, ], k) is the heat at position;, y; at timet;. The grid on
the plane is shown in Figure (4.1)(a). The grid creates a natural graph: the set of nfldes)is and nodd, j)

is connected to nodg’, ;) if and only if i — i'| 4+ |j — j/| = 1. Note that each nodg, j) has four neighbors:
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(Z - 1)j)7 (Z + 1)j)7 (27.7 - 1)! and(ivj + 1)
Based on this discretization and approximation of the function, we then write the following approximations of

its derivatives in space and time:

of g k+ 1) — f(ij. k)

Ot 151y At ’
*f =10, k) = 2f(, 5, k) + fli + 1,5, k)
02 | i j.1) (Az)? ’
*f %f(i»j—l,k:)—2f(i,j,k)+f(i’j+17k)
Y% |1y (Ay)? ’

This leads to the difference form of the heat equation as follows:

At (Az)? (Ay)? (4.2)
— [(f(’l:—1,j,k)—f(i,j,k))d-‘g(f(i-'rl,j,k)—f(i,j,k)) + (f(ivj_Lk)_f(i7j7k))'d"'2(f(i7j+17k)_f(i’juk))}

j+1

() (b) () (d)

Figure 4.1. (a) The grid on the two dimensional space. (b) The eight irregularly positioned points. (c)

The small patches around the irregular points. (d) The square approximations of the small patches.

In the real data analysis, we often face problems where we cannot employ the FD method directly:
1. The graph constructed from the data points is irregular;

2. The density of data varies; this also results in an irregular graph;

3. The manifold is unknown;

4. The differential equation expression is unknown even if the manifold is known.

We aim to solve these problems using a Volume-based Heat Diffusion Maédd1) by generalizing the
FD method. The novel heat diffusion model on the graph leads to a novel classifier \dallede-based Heat
Diffusion Classifie(VHDC).
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The remainder of this chapter is organized as follows. In Section 4.2, we esteblBN. In Section 4.3, we
establishvHDC. In Section 4.4, we interpret the parameters in more detail. Then in Section 4.5, we show the

related work. In Section 4.6, we show the experimental results.
4.2 \olume-based Heat Diffusion Model on a Graph

First, we give our notation for the heat diffusion model. Consider a directed weighted @rapkV, E, W),
whereV = {vi,v2,...,v,}, E = {(v;,v;) [there is an edge from; to v;} is the set of all edges, andl’ = (w;;)
is the weight matrix. In contrast to the normal undirected weighed graph, thgedgg) is considered as a pipe
that connects to nodésand;j, and the weightv;; is considered as the length of the pipg, v;). The valuef;(t)
describes the temperature at noge timet, beginning from an initial distribution of temperature given £{0)
at time zero.

Note that the heat and the temperature at points with unit mass are equivalent. As a result, the terms of tem-
perature and heat at such a point are interchangeable. However, we employ these two term carefully to fit the
traditional usage.

We establish our model as follows. Suppose, at tireach node receives an amourd{ M (i, j, t, At) of heat
from its neighborj during a period ofA¢t. The heatH M (i, j,t, At) should be proportional to the time period
At and the temperature differenge(t) — f;(¢t). Moreover, the heat flows from nodeto nodei through the
pipe that connects nodésand j, and therefore the heat diffuses in the pipe in the same way as it does in the
m-~dimensional Euclidean space, as described in Eq. (3.7). Based on the above consideration, we assume that
HM(i,j, t,At) = « - e‘wfj/ﬁ(fj(t) — fi(t))At. Next we consider the representation ability of each node. There
are only a finite number of nodes in the graph that are transparent to a certain observer. But in a manifold, there

are infinitely many nodes, most of which are unreachable to the observer. We can assume that

1. There is a small patchP[j] of space containing nodeand many nodes around nogienodej is seen by

the observer, but the small patch is unseen to the observer.

2. The volume of the small patchP[5] is V' (j), and the heat diffusion ability of the small patch is proportional
to its volume. This assumption is reasonable because not only do the nodes take part in the heat diffusion

process, but also the unseen small patch has an effect on the heat diffusion.

3. The temperature in the small pat6t®[;] at timet is almost equal tgf;(¢) because every unseen node in

the small patch is near noge

4. The small patcly P[j] diffuses an amount M (i, j, ¢, At)V (j) of heat to node.
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As a result, the heat difference at nodeetween time + At and timet will be equal to the sum of the heat

that it receives from all its neighbors and the small patches around these neighbhors. This is formulated as

fi(t + At) —
At

it —w2, .
B _ o 32 e 0050 - £V G) @3)
(Ji)EE
To find a closed form solution to Eq. (4.3), we express it as a matrix foiﬁq%;m) = aHf(t), where
H= (Hij)v and
— D ki(kii)eE e n/PV (k) =1,
Hij={ e /v (j), (j.i) € E, (44)

0, otherwise

In the limit At — 0, we have%f(t) = aH f(t). Solving it, we get a close form expression:

) = e f(0) = 7 £(0), (4.5)
wherey = at, ande?" is defined as
7 ol g
M =Tty H + S H? o HP o f~v(I+5H)p. (4.6)

The matrixe™ is called thediffusion kernein the sense that the heat diffusion between nodes fromaitoet
is completely described by the elements in the matrix. For the sake of computational consider&figig) can
be approximated ad + %H)pf(o), wherep is a large integer. The latter can be calculated by iteratively applying
the operato(/ + 2 H) to f(0).

In the model,V (7) is used to estimate the volume of the small patch around nodietuitively, if the data
density is high around node the nodes around nodewill have a high probability of being selected, and thus
there are fewer unseen nodes around nodk this paper, we defin& (i) to be the volume of the hypercube

whose side length is the average distance betweeniramuits neighbors. Formally,

V(i) = 77(}; >

J:(di)eE
wherev is the dimension of the space in which graghies, K; is the number of neighbors of nodeandr is a
normalized parameter such thal, ., V (i) = 1.

One may notice that, in the current definition, if one point is far from all the other points, the volume of the
hypercube will be very high and so this point will dominate after normalizationyyitrhich contradicts the basic
idea of local volumes. The truth is that if one poiftis far from all the other points, its volume will certainly

be large, but the amount of heat thatiffuses to other points is small because, in the teﬂ’ﬁgj/BV(j) in H,
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e~ wiilP drops very quickly whem;; increases. This is further explained by the fact that a term of the doffnkd

tends to zero quickly whed tends to infinity. So there is no contradiction here with the idea of local volumes.
Volumes are theoretically important because heat diffuses throughout the whole of any given volume in a phys-

ical system, and the concept of the volume is crucial in its ability to represent the whole space, including both

known points and other points between them. Moreover, the idea of volume can be explained further by the

definition of local charts in a differential manifold as shown in [20].

Definition 2: An m—dimensional differential manifold\ is a set of points that is locally equivalent to the
m—dimensional Euclidean spa@&™ by smooth transformations, supporting operations such as differentiation.
Formally, a differentiable manifold is a s&t together with a collection of local chaféU;, ¢;) }, wherelU; ¢ M
with U;U; = M, and¢; : U; C M — R™ is a bijection. For each pair of local chafis;, ¢;) and(Uj;, ¢;), itis
required thatp;(U; N U;) is open andp;; = ¢; o gzsj‘l is a diffeomorphism.

The small patch around each pointan be considered as a local chdftsand the volume of is the volume of

U;. Consequently the whole manifalti is formed by sticking the small patches together.
4.2.1 Calculation ofv

In the definition of volumes, we introduce the parametdescribing the dimension of the space in which graph
G lies. From the definition of a differential manifold, corresponds to the unknown dimensienof the local

Euclidean space. In the following, we consider how to determine the value off this parameter.

Why PCA is unsuitable

PCA is a traditional method for dimension estimation. In this method, the intrinsic dimension is determined by
the number of eigenvalues greater than a given threshold. Both global PCA and local PCA have the disadvantage
of introducing another parameter—the threshold. Moreover, global PCA methods fail on nonlinear manifolds, on
which our model is established; local methods depend heavily on the precise choice of local regions [32].

Thus, instead of PCA, we choose the maximum likelihood estimation method proposed in [21]. Apart from
avoiding the problems with PCA just mentioned, this method also has the advantage that the graph is constructed

by K nearest neighbors, as described in Section 4.3, where the pardtnistéte same as that in [21].

Maximum Likelihood Estimation of Intrinsic Dimension

If T;(z) is the Euclidean distance from a fixed point x toitth nearest neighbor in the sample, then the local

dimensionik (x) at pointz can be estimated by a maximum likelihood estimation, as described in [21], as
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follows.
-1

K—1
R 1 Tk ()
i (0) = | o ; log T00) . (4.7
To avoid overflow of the float calculation whéf(x) is very small, we slightly change formula (4.7) to the
following:
-1
K-1
~ 1 TK(J}) +e€
= |—=— log ——— . 4.
riug () K—l;OgTj(x)—ire (4.8)

e is set to be 0.0000001 in this paper. Thes 1 >~ i (z;).

=1

4.2.2 Generalization of FD Method

In VHDM, if 8 — 400, the graph is of the form as shown in Figure (4.1)(a), which means each node has four
neighbors, and if the volume of each node is set to be one, then Eq. (4.3) becomes Eq. (4.2). Therefore we can say
thatVHDM generalizes the FD method from Euclidean space to unknown space. The generalization is interesting

for its ability to solve the following problems.

1. Irregularity of the graph. By setting/ to be finite, we actually soften the neighborhood relation between
the data points, and thus we avoid the difficulty in handling the irregularity of the graph constructed by
the data points. For example, in Figure (4.1)(b), the central data point has four neighbors, which are not
positioned on nodes in the grid. The FD method has difficulty in handling such a case. Even worse, in real

data sets, each data point has many neighbors, which are positioned in a space with an unknown dimension.

2. Variation of density. The data points are not drawn uniformly, and we use the volume of the hypercube
around a node to perform the local density estimation around the node. In Figure (4.1)(c), the whole space is
covered by small patches, and in Figure (4.1)(d) each small patch is approximated by a small square. In this
way, we actually consider the unseen points so that the concept of heat diffusion on a graph can be treated

as an approximation of heat diffusion in a space. There is no such consideration in the FD method.

3. Unknown manifold and unknown differential equation expression.In most cases, we do not know the
true manifold that the data points lie in, or we cannot find the exact expression foapitece-Beltrami
operator, therefore we cannot employ the FD method. In contrast, our model has the advantage of not
depending on the manifold expression and the differential equation expression. Moreover, volumes serve as
patches that are connected together to form the underlying unknown manifold, while each volume is a local

Euclidean space. The idea of volume fits the definition of local charts in differential manifold.
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Based on the closed form solution in Eq. (4.5), we establish a classifier as described in the next section.
4.3 Volume-based Heat Diffusion Classifier

Assume that there areclasses, namely,,2,...,c. Let the labelled data set conta samples,(x;, k;)
(- =1,2,...,M), which means that the data poitbelongs to clas;. Suppose the labelled data set contain
M;, points in class: so that) |, M), = M. Let an unlabelled data set contaihunlabelled samples, represented
byx; (i =M+ 1,M +2,...,M+ N).
We first employ the neighborhood construction algorithm commonly used in the literature, for example in
[2, 27, 28, 31], to form a graph for all the data. Then we apply the heat diffusion kernel to the graphs. For the
purpose of classification, for each clasi turn, we set the initial heat at the labelled data point in ckaksbe
one and all other data points to be zero, then calculate the amount of heat that each unlabelled data point receives
from the labelled data points in clags Finally, we assign the unlabelled data point to the class from which it

receives most heat. More specifically, we describe the resAHIQC as follows.

Step 1: Construct neighborhood graph Define graphZ over all data points both in the training data set and in
the unlabelled data set by connecting poitaindx; from x; to x; if X; is one of theK nearest neighbors
of x;, measured by the Euclidean distance. d(gt j) be the Euclidean distance between pairgnd point

X;. Set edge weight;; equal tod(i, j) if X; is one of theK nearest neighbors of;, and sets = M + N.

Step 2: Compute the Heat Distribution Using Eq. (4.6), we obtaiaresults forf (¢), namely,f*(t) = e f¥(0),
k=1,2,...,c. Wheref*(0) = («%,25,...,2%,,0,0,...,007, k = 1,2,...,¢, 28 = 1if k; = k, and
z¥ = 0 otherwise. Heref*(0) means that all the data points in cldstave unit heat at the initial time,
while other data points have no heat, and the corresponding fé€tjtmeans that the heat distribution at

time ¢ is caused by the initial temperature distributiti(0).

Step 3: Classify the dataForl = 1,2, ..., N, compare the-th (p = M+1) componentoff'(t), f2(¢), ..., f<(t),
and choose clagssuch thatfl’f(t) = max(_, f;(t), i.e., choose the class that distributes the most heat to

the unlabelled point,, then classify the unlabelled poix} to classk.

As an example of Step 1, in Figure 4.2(a), we show 2,000 points on a 2-dimensional spiral manifold which is
embedded into 3-dimensional space. In Figure 4.2(b), we show the neighborhood graph approximation of the
spiral manifold, which contains 1000 points drawn from the 2000 points in Figure 4.2(a), and in which each node

has 3 neighbors. In Step 2, the heat diffuses from the labelled data to the unlabelled data along the graph, and
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() (b)

Figure 4.2. An illustration of the spiral manifold and its graph approximation. (a) The 2000 data points

on a spiral manifold. (b) Neighborhood Graph of the 1000 data points on the spiral manifold.

consequently, the heat flows along the spiral manifold. In Step 3, if the unlabelled data point is closer to one class
in the sense that it receives more heat in total from this class of data, then the unlabelled data point is classified
into this class; otherwise, it is classified into the other class.

Before discussing the roles of the parameters, we show one advantage of the generaliz&tibnlofs well
known that expected error rate KNN is betweenP and2P whenN tends to infinity, whereP is the Bayes error
rate. Therefore the upper bound of the expected error raf@10fC is less thar2 P if S is infinity and volume is

constant. It should be tighter if appropriate parameter¥fDC are found.
4.4 Roles of the Parameters

It is easy to find thafs is employed to control the manifold approximation, and thetused to model the true

dimensionality of the manifold that the data lie in.
4.4.1 Local Heat Diffusion Controlled by 3

In Section 4.2, we assumed that the heat diffuses in the pipe in the same way as it does-dithensional
Euclidean space. It turns out [2] that in an appropriate coordinate systéxny) on a manifold is approximately
the Gaussian:

Ki(x,y) = (drt)~ % e K g(x y) + O(1)),

whereg(x,y) is a smooth function witk(x, x) = 1, and whert is small,O(t) can be neglected. Therefore when

x andy are close andis small, we have<;(x,y) ~ (47t)~ 2 e~ I*YI*/4_For more details, see [2, 26]. WHDM
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in Section 4.2, heat flows in a small time peridd, and the pipe length between nadend nodegj is small (recall
that we create an edge frojrto ¢ only whenj is one of theK nearest neighbors). So the above approximation
can be used in our model, and we rewrite itFas; (i, j) ~ (47rAt)‘%e_wi2j/4At. According to the Mean-Value
Theorem and the fact th&fy (7, j) = 0, we have

dKAt(iu .7)

At~ a-e Vil B AL
7N VP

Kau(i,j) = Kauli, j) — Ko(i, j) =

where is a parameter that depends An, anda = jw? 372~™/2 — ImB~'~™/2. To make our model concise,
« and 3 simply serve as free parameters because the relation betiweand 5 is unknown. This explains the
statement that controls the local heat diffusion from tint¢o ¢ + At, and the reason why we assume that at time

t, each nodé receives an amourdf M (i, j, t, At) = « - e‘“’?f/ﬁ(fj(t) — fi(t))At of heat from its neighboy.
4.4.2 Global Heat Diffusion Controlled by~

From~ = at, we can see that controls the global heat diffusion from tinfeto ¢. Another interesting finding
is that~ can be explained as a regularization parameter: when0, we havee?” (0) = I1f(0) = f(0), which
results in a classifier that has zero error on the training set. When+oo, the system will stop diffusing heat,
and the heat at each node are equal. This means the function on the graph becomes the smoothest in the sense
that the variance between values on neighbors is the smallest. Theibestradeoff of the training error and the
smoothness, and should not be zero or infinity.

Finally, we investigate the singular behavior\@HDC in the limit v — 0. If we simply lety = 0 in the
equatione”” £(0), then we only get a trivial classifier as shown above. From a different viewpoint, we observe
the following interesting phenomena:

Subtracting/ from e then dividing byy changes the values of the testing data in the same scale, and so does
not change the performance of the classifier, thaeid! — 1) /v f(0) behaves the same &% f(0) as a classifier.

Then we can take the limit ovée”’ — )/~ £(0), and we obtain

(e —T . [ty Ht L H2 T

tg D 0) =i,y P
= limy_o(H + ZH + ) f(0)
- HF(0).

We considetH f(0) as the singular behavior ¥HDC in the limity — 0.
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4.4.3 Stability of VHDC with respect to parameters

If the parameters in a model is not stable, then a small deviation from the best value of a parameter may result
in a totally different performance. This instability of the parameters is not desirable. In this section, we try to show
that the parameters, v, andv are not sensitive to the classifieHDC.

Sincee? is continuous orB, v, andv in the sense that small changes in these parameters result in a small
change ire”" , VHDC is not sensitive to these three parameters if they are changed slightly. This can be seen from

the existence of the derivatives ©f with respect tq3, v, andv:

H
de'y _ e,YHH
dy
G gdH dH _ dHy,
a3 ¢ ag g~ \ap
= D ki (ki)EE e~ Wi/Pw B2V (k) j =1,
AHij ) w25 2 0ors »
g e v wi]ﬂ V() (J,i) € E,
0, otherwise
et pdH dH _ (dH’“)
v ¢ ddr Vdv

dH. N Zk:(k,i)EE e_w?k/ﬁv(k) IOg(%k Zlt(lyk)EE wit) =1
g = . .
dy] = e i/ By (y) 10%(;% 2_(5)eE Wil) (4,1) € E,

0, otherwise

It is well-known thatAf ~ %At. Since there exist derivatives et with respect to3, v, andv, we can say
thate? is stable with respect to these parameters, and €d'ig(0).

For the parametek’, it has an unstable effect on the classiitDC. Increasing or decreasing by one will
result in a structural change in the underlyiiyN graph; as a result, the values in the matrigeande” will
change dramatically. However, this property of instability has no impact on the performavied®®af becausd<
is a natural number and all possikié can be tested by the cross-validation on the training data, so that the best
value can be chosen successfully.

The discrete parameter is quite different from the continuous parameté@ndy, for which we must choose
the appropriate values by testing a subset of all their possible values. Under such a circumstance, stability is

important for continuous parameters because there may be a small variation between the best value and the nearest
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one in the subset, and the property of stability can guarantee that there is no big difference on the performance

between the true best value and the best-performing value chosen from the subset tested.
4.5 Discussions

In Section 4.1, we have shown that the heat diffusion kei€k, y) is a special solution to Eq. (2.3) with a
special initial condition called the delta functiéfx — y). From this point of view, the heat kerngl;(x, y) can be
considered as a generalization of Gaussian density—when the geometric manifold varies, the corresponding heat
kernel varies and can be considered as the generalization of Gaussian density from a flat Euclidean space to a
general manifold. Since we approximate the unknown manifold by a neighborhood graph, it is interesting to show

the similarity between heat diffusion on a manifold and heat diffusion on a neighborhood graph.
4.5.1 Neighborhood Graph and Manifold

In the case that the underlying geometry is unknown or its heat kernel cannot be approximated in the same way
as used by [20], it is natural to approximate the unseen manifold by the graph createdsdbyéaeest neighbors
in our model, and to establish a heat diffusion model on the neighborhood graph rather than on the underlying
geometry. The graph embodies the discrete structure of the nonlinear manifold. By doing so, we can imitate the
way that heat flows through a nonlinear manifold.
Next, we list some correspondences between the heat diffusion model on graphs and the heat diffusion model
on manifolds:
1. The heat diffusion equation on a graphgjsf(t) = «H f(t); the heat diffusion equation on a manifold is,
from Eq. (2.3),
o = Af
F0) = fo(x).
2. The solution to the heat diffusion equation on a grapf(i$ = e f(0) = 7 £(0); the solution to the
heat diffusion equation on a manifold f$x, 1) = [,, K:(X,y) fo(y)dy.
3. The delta functiod(x — y) is used to represent a unit heat source at positiche vectore;, whosej—th

element is one while other elements are zero, is used to represent a unit heat source at node
4.5.2 Manifold Learning

When the data points lie on a low-dimensional nonlinear manifold that is embedded into a high-dimensional

Euclidean space, the straight-line Euclidean distance may not be accurate because of the nonlinearity of the mani-
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fold. For example, on the surface of a sphere, the distance between two points is better measured by the geodesic
path. Much recent work has captured the nonlinearity of the curved manifold. One common idea is that the local
information such as local distance used by [31], local linearity used by [27], and local covariance matrix used by
[33] in a nonlinear manifold is relatively accurate, and can be used to construct the global information. This idea is
reasonable because, in a manifold, every small area is equivalent to an Euclidean space, and can be mapped to it by
a smooth transformation. While inheriting this idea in our model, we also adopt the concept of thinking globally
and fitting locally described by [28]. In practice, we fit the unknown manifold structure locally by the neighbor-
hood graph, and we also fit the heat diffusion locally. Then in the final step we think globally by accumulating the

local heat flow.
45.3 HeatKernel

The Heat Kernel is proposed in [19, 20, 29]. The success in [20] is achieved because a closed form approxi-
mation to the heat kernel on the multinomial family is found. While this approximation fits the problem of text
classification well, for some other geometries, however, there is no closed form solution for the heat kernel. Even
worse, in most cases, the underlying geometry structure is unknown. In such cases, it is impossible to construct
the heat kernel for the geometry in a closed form. In contrast, there is always a closed form solution — a heat kernel
for the graph that approximates the geometry — in our model.

The outside appearancedf? is the same as that in [19, 29]; however, the numerical valeg/din our paper
is quite different from [19, 29] (refer to Eq. (4.4)). The heat kernel in [19, 20, 29] is applied to a large margin
classifier; in contrast, the heat kernel is employed directly to construct a classifier in our model. Admittedly, our
method has the limitation of being applied in the inductive learning setting. Nonetheless, it is interesting and
challenging to apply the proposed” to SVMwhen it is not symmetric (which is usually true when the volume
is considered). The heat kernel issues deserve further investigations, but are outside the scope of this paper, and so

the empirical comparison on heat kernels is not provided.
4.5.4 Transductive Learning

VHDC is built on a graph and it is actually a semi-supervised algorithm: it needs access to the unlabelled data.
Along these lines, our method is related to [38, 39, 40] . The models in [39, 40] are mainly concerned with directed
graphs such as the Web link, on which the co-citation is meaningful. This co-citation calculation, however, is not
being considered in our model; hence a comparison with [39, 40] is inappropriate, and is not provided empirically.

We are interested in comparing the model proposed in [38], which is the model in the literature most closely
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related to our proposedHDC. Although our model adopts a different approach, there is an overlap between our
solution and that in [38]. The overlap happens when our volume is not being consideredsaahall in our
model, while« is small and the normalization is not performed in [38]. This can be seen from the approximation
(I —aS)~! ~ I +aS whenais small. As aresult, — a.S)~1Y has similar performance Y. Itis easy to see
that, wher is small,e?®Y has the similar performance &Y. Consequently, when the normalization in [38]
is not performed, and when the volume is not considefednd H are equal except for the diagonal elements,
which have no effect on the classifieg¥3” and HY . Another interesting point is that the classifiér— .S) 1Y is
supported by a regularization framework. It is true that currently we cannot find a similar regularization approach
that can output the proposed classifi€f Y, but we can interpret it in another way; plays a role like the
regularization parameter as shown in Section 4.4.2.

Employed as baselines, two other popular transductive SVM algorithimis€rSVM8], SVMLigh{17]) are

compared to our method in the experiment section.
4.6 Experiments

The Parzen Window ApproactP{WA-P) , KNN-K, two Transductive SVMsUniverSVM-U [8] and SVM-
Light-L [17], Consistency Method—C [38] and its two variant, C1 and C2, WH®C and HDC (the special
version ofVHDC when the volume is not considered) are applied here to three synthetic datasets and ten datasets
from the UCI Repository [13].

Since discrete attributes and the problem of missing values are out of the scope of this paper, we simply remove
all the discrete attributes and remove all the cases that contain missing values. The boolean attributes in the Zoo
dataset are considered as continuous attributes. The first four columns in Table 4.1 describe the resulting datasets
we usen, c andd are the number of cases, classes and features, respectively. Syn-1, Syn-2 and Syn-3 are synthetic
datasets. Syn-2 and Syn-3 are from the same spiral data as shown in Figure (4.2)(b), but with different numbers
of data. Syn-1 is obtained from Syn-2 by ignoring the third attribute. In the spiral data set, the data points in one
class are distributed on a spiral rotated clockwise while the data points in another class are distributed on a spiral
rotated counter-clockwise.

We obtain the free parametersRWVA KNN, C, C1, C2, HDC andVHDC via nine-fold cross-validations on the
training dataset including the testing data without labels. We employ the Gaussian kerndtéviEnSVM and
SVMLight the width parameter and penalty parametér for them are also tuned via nine-fold cross-validation
on the training dataset.

Note that the results are quite different if we choose the best values in each cross-validation in hindsight, i.e.,
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Table 4.1.

Mean Accuracy on the 13 Datasets

Dataset n c|d K P U L C Cl1| C2 | HD | VHD | VHD-v
Syn-1 100 | 2| 2 67.0| 80.0| 88.0| 86.0| 94.0| 93.0| 90.0| 93.0| 95.0 96.0
Syn-2 100 | 2|3 | 67.0/ 83.0/89.0/ 86.0{93.0| 93.0| 93.0| 93.0| 940 | 94.0
Syn-3 200 | 2|3 79.5(192.0]92.1]925|92.0| 91.5| 90.0| 91.0| 92.5 925
Breast-w || 683 | 2|9 941 96.6| 64.1| 67.8|98.4| 97.4| 98.1| 96.9| 974 994
Credit-a 666 | 2|6 | 655|63.7| 76.1| 76.9| 84.5| 84.5| 84.5|89.8| 89.6 | 90.7
Credit-g 1000 2 | 7 70.8| 70.0| 70.0| 70.7| 97.0| 97.0| 97.0| 96.2| 96.2 96.2
Diabetes 768 | 2| 8 73.5|73.4|78.4| 785| 86.8| 86.7| 84.9| 78.9| 88.4 88.8
Glass 214 16| 9 61.2| 63.5| 67.6| 73.7| 72.3| 69.6| 70.5| 68.1| 72.9 72.9
Hepatitis 148 | 2| 3 79.8|79.8| 785| 79.1| 79.8| 79.8| 79.8| 79.8| 79.8 79.8
lono 351 | 2| 34| 83.2| 89.2| 93.7| 94.3| 96.3| 96.3| 96.3| 96.3| 96.3 96.3
Iris 150 | 3|4 | 97.3] 95.3|96.7| 96.7| 95.3| 95.3| 95.3| 98.0| 98.7 98.7
Waveform| 300 | 3| 21| 85.0| 85.3| 86.7| 85.3| 86.3| 86.0| 87.0| 88.3| 88.3 88.3
Zoo 101 | 7| 16| 40.6| 40.6| 97.2| 97.0| 40.6| 40.6| 40.6 | 40.6 | 40.6 40.6
Zoo+PCA| 101 | 7|8 | 87.0/90.1|97.1| 98.0| 96.0|,94.0| 96.0| 94.0| 97.0 97.0
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the testing data with label is given when we choose the parameters.

The figure shown in Table 4.1 is the mean accuracy of the ten-fold cross-validations. The last column indicates
the results o#HDC when we choose the valuemthat corresponds to the best classification accuracy in hindsight.
The performance of this choice gives us a benchmark to measure the performance of our calculatipn of
employing the method in [21].

From the results, we observe that bétBC andVHDC uniformly outperformWAandKNN in accuracy, as
we expected. The better resultsviiDC-v overHDC show the necessity of introducing the volume representation
of a node in a graph.

VHDC has the same results ¥8IDC-v in nine of the thirteen datasets. Among four other dataS&4C is
worse significantly thavHDC-v only on one dataset Breast-w, adtiDC achieves slightly worse results than
VHDC- on Synl, Credit-a and Diabetes. This shows that the local dimension estimatibii@ is successful.

The overall results on the ten Benchmark data indicate that our appv4DE is competitive with the Con-
sistency Method and Transductive SVM on problems withoutapyiori knowledge. The better results on the
three synthetic datasets show t&tDC fits problems with a manifold structure especially well.

We also observe th&WA KNN, C, C1, C2, HDC andVHDC perform more poorly than Transductive SVM
on dataset Zoo; indeed, the difference is as high as 46.6%. This can be explained by the fact that all these
methods depend heavily on the distance measure, and as a consequence, if the direct Euclidean distance is not
accurate, these methods will perform poorly. We think that the noises in the Zoo dataset causes inaccurate distance
measurement between data points. To find the performance of there algorithms on dataset Zoo with less noise, we
preprocess it witlPCAsuch that the dimensionality is reduced from the original 16 to 8. The results are shown in

the last row of Table 4.1. The difference betw&ddDC andUniverSVMis thus reduced to 1%.
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Chapter 5

Conclusions

We conclude thabDiffusionRankis a generalization dPageRankwhich is interesting in that the heat diffusion
coefficienty can balance the extent that we want to model the original Web graph and the extent that we want
to reduce the effect of link manipulations. The experimental results show that we can actually achieve such a
balance by setting = 1, although the best setting is still under further investigation. This anti-manipulation
feature enable®iffusionRankio be a candidate as a penicillin for Web spamming. MoredvéfusionRank

can be employed to find group-group relations and to partition Web graph into small communities. All these
advantages can be achieved in the same computational complex@ggaRank For the special application of
anti-manipulation DiffusionRankperforms better both in precision-recall curves and in reduction effects while
keeping best stability among all the three algorithms.

All the three classifier&KNN-HDC, SKNN-HDG andMST-HDCcan be employed as candidates for Graph-
based Heat Diffusion Classifiers. They share the idea of approximating the manifold by the graph so that we can
avoid the difficulty of finding the explicit expression for the unknown geometry in most cases. By establishing
the heat diffusion equation on the graph, we avoid the difficulty of finding a closed form heat kernel for some
complicated geometries. Our experiments have showrStKaN-HDCandMST-HDCare promising, and enrich
the family of heat diffusion classifiers.

The proposed/HDM has the following advantages: it can model the effect of unseen points by introducing
the volume of a node, it avoids the difficulty of finding the explicit expression for the unknown geometry by
approximating the manifold by a finite neighborhood graph, and it has a closed form solution that describes the
heat diffusion on a manifold. While the proposédDC is a generalization of both the Parzen Window Approach
(when the window function is a multivariate normal kernel) &NN, our experiments have demonstrated that

VHDC gives accurate results in a classification task. In order to capitalize on these promising achievements,
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further study is needed on the following problems: How to appiDC to inductive learning, how to find a
graph that better approximates the manifold in stead okiN&l graph, and how to construct a better volume

representation of the unseen points.
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