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Further Investigations on Heat Diffusion Models

Abstract

In this paper, we investigate the Heat Diffusion Model further in three aspects: its applications in the ranking

algorithm on the Web, other graph constructions for its graph inputs, and the volume effects.

In applications on the Web, we propose a ranking algorithm DiffusionRank. On one hand, DiffusionRank is mo-

tivated by the heat diffusion phenomena, which can be connected to Web ranking because the activities flow on Web

can be imagined as heat flow, the link from a page to another can be imagined as the pipe of an air-conditioner,

and heat flow can embody the structure of the underlying Web graph. On the other hand, DiffusionRank is also

motivated by the manipulation problem: the PageRank scores of Web pages can be manipulated while the PageR-

ank algorithm has proven to be very effective for ranking Web pages. DiffusionRank is proposed to handle the

manipulation problem and to cast a new insight on the Web structure. Theoretically we show that DiffusionRank

can serve as a generalization of PageRank when the heat diffusion coefficientγ tends to infinity. In such a case

1/γ = 0, DiffusionRank (PageRank) has the lower ability of anti-manipulation. When the heat diffusion coeffi-

cient is set to be zero, DiffusionRank has the highest ability of anti-manipulation, but in such a caseγ = 0, the

web structure is completely ignored. Consequently, the heat diffusion coefficient is an interesting factor that can

control the balance between the extent that we want to model the original Web and the extent that we want to

reduce the effect of manipulation. It is found empirically that, whenγ = 1, DiffusionRank has a Penicillin-like

effect on the link manipulation. Moreover, DiffusionRank can be employed to find group-to-group relations on the

Web, can divide the Web graph into several parts, and can find link communities. Experimental results show that

the DiffusionRank algorithm achieves the above mentioned advantages.

In our previous work, a classifier is proposed based on a heat diffusion model on a finiteK nearest neighbor

(KNN) graph. To broaden the scope of the previous work, we separate the graph construction procedure and

classifier construction procedure by proposing Graph-based Heat Diffusion Classifiers (G-HDC). This separation

allows various graph inputs. Besides traditional KNN graph, we propose two other candidate graph inputs for

G-HDC: a graph with the shortest edges whose number is the same as the KNN graph, and the Minimum Spanning

Tree. These two graphs can be also considered as the representation of the underlying geometry, and the heat dif-

fusion model on them can be considered as the approximation to the way that heat flows on a geometric structure.
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Three graph construction methods lead to three classifiers when applied to the G-HDC. Experiments show that

the two classifiers with the two proposed graph inputs can be considered as two other candidate classifiers, which

enrich the family of heat diffusion classifiers.

We also propose the volume-based heat diffusion model (VHDM). VHDM is based on a graph model that takes

account of unseen input data, giving rise to a closed-form expression. We give related background on heat diffusion

models, the theoretical framework of our model, detailed analysis of the formulation, and a VHDC classifier as an

example application. Experiments show that VHDC performs uniformly better than the Parzen Window Approach

(PWA) and KNN in prediction accuracy, as we expected, and is competitive with recently proposed transductive

learning algorithms. The enhanced performance of VHDC over the form without the volume consideration shows

the necessity of introducing the volume representation.
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Chapter 1

Introduction

Some successful applications of heat kernels have been reported recently. In [2], a nonlinear dimensionality re-

duction algorithm was proposed based on a local heat kernel approximation and a graph heat kernel approximation

(i.e., the graph Laplacian). For givenk pointsx1, x2, . . . , xk in anm−dimensional spaceRm, an adjacency graph

was constructed first by eitherε−neighborhoods orK nearest neighbors. Then the local heat kernel approximation

e−||xi−xj ||2/t was employed to construct the weight of the neighborhood graph. To achieve efficient dimensionality

reduction, the minimization of the following smoothness penalty on the graph:ftLf =
∑k

i,j=1(f(xi)−f(xj)) was

converted to the generalized eigenvector problem:

Lf = λDf,

whereL = D−W is the graph Laplacian,W = (Wij), Wij = e−||xi−xj ||2/t if xi andxj are adjacent andwij = 0

otherwise, andD is a diagonal degree matrix given byDii =
∑

i Wij . Finally the eigenvectors corresponding to

the smallest eigenvalues except zero are used for dimensionality reduction.

In [19], a discrete diffusion kernel on graphs and other discrete input space was proposed. When it was applied

to a large margin classifier, good performance for categorical data was demonstrated by employing the simple

diffusion kernel on the hypercube. The proposed heat diffusion kernel takes the form ofeβH , whereH = (Hij),

Hij =





1, i ∼ j,

−di, i = j,

0, otherwise.

In [20], a general framework was proposed. The key idea was to begin with a statistical family that was

natural for the data being analyzed, and to represent data as points on the statistical manifold associated with the

Fisher information metric of this family. The investigation of the heat equation with respect to the Riemannian
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structure, given by the Fisher metric, led to a family of kernels, which generalized the familiar Gaussian kernel for

Euclidean space. When applied to the text classification, where the natural statistical family was the multinomial,

a closed form approximation to the heat kernel for a multinomial family was proposed, which yielded significant

improvements over the use of Gaussian or linear kernels. The proposed closed form approximation heat kernel on

them−dimensional multinomial was given by

K(θ, θ′) = (4πt)−
m
2 e−

1
t

arccos2(
√

θ·
√

θ).

These successful applications of the heat kernel motivate us to investigate the heat equation, since the heat

kernel can be explained as a special solution to the heat equation given a special initial condition called the delta

function δ(x − y). More specifically,δ(x − y) describes a unit heat source at positiony with no heat in other

positions, in other words,δ(x − y) = 0 for x 6= y and
∫ +∞
−∞ δ(x − y)dx = 1. If we let f0(x, 0) = δ(x − y), then

the heat kernelKt(x, y) is a solution to the following differential equation on a manifoldM:




∂f
∂t −∆f = 0,

f(x, 0) = f0(x),
(1.1)

wheref(x, t) is the temperature at locationx at timet, beginning with an initial distributionf0(x) at time zero,

and∆f is theLaplace-Beltrami operatoron a functionf . Eq. (2.3) describes the heat flow throughout a geometric

manifold with initial conditions. In local coordinates,∆f is given by

∆f =
1√
detg

∑

j

∂

∂xj

(∑

i

gij
√

detg
∂f

∂xi

)

[20]. When the underlying manifold is the familiarm−dimensional Euclidean Space,∆f is simplified as
∑
i

∂2f
∂x2

i
,

and the heat kernel takes the RBF form

Kt(x, y) = (4πt)−
m
2 e−

||x−y||2
4t . (1.2)

It is therefore observed that the RBF kernel is a special case of the heat kernel (when the underlying manifold

is the Euclidean space). The previous researches have shown that the heat kernel is a useful tool. However, the

special setting of the initial condition that results in the heat kernel in the heat equation may narrow the scope of

the possible applications of Eq. (2.3). In this paper we consider how to construct a classifier directly by employing

the solution to the heat equation on a graph in a wider setting of the initial condition. The heat equation on a graph

is considered as an approximation to Eq. (2.3).

In [34], we proposed the classifierHDC (the version without considering the volume effect), and proved the

following two claims: KNN can be considered as a special case ofHDC (whenβ → +∞, N = 1, andγ is
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small); and when the window function is a multivariate normal kernel, the Parzen Window Approach [3] can be

considered as a special case ofHDC (whenK = n − 1, andγ is small). As a result,KNN and Parzen Window

Approach are special cases ofVHDC, asVHDC generalizesHDC (let V (j) = 1). In [37], we discussed various

graph inputs forHDC.

In Chapter 2, we consider the application of the Heat Diffusion Model on the Web.

Different from the work in [34], in Chapter 3, we separate the graph construction procedure and classifier

construction procedure by proposing Graph-based Heat Diffusion Classifiers (G-HDC). Besides, we consider two

other candidate input graphs forG-HDC in this paper. This results in two novel classifiers called SKNN-based

Heat Diffusion Classifier (SKNN-HDC) and MST-based Heat Diffusion Classifier (MST-HDC). Moreover, more

interpretation and justification are provided to make the Heat Diffusion Model more convincing.

Along another aspect, Different from the work in [34], we consider the volume effects on the Heat Diffusion

Model in Chapter 4.
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Chapter 2

DiffusionRank: A Possible Penicillin for Web

Spamming

2.1 Preliminaries

While thePageRankalgorithm [24] has proven to be very effective for ranking Web pages, inaccuratePageR-

ank results are induced because of two problems: the incomplete information about the Web structure, and the

manipulated web pages by people for commercial interests.

The first problem is considered in [35, 36] by predicting the Web Structure as a random graph. In this paper we

aim to handle the second problem: the manipulation problem.

The manipulation problem is also called the Web spam, which refers to hyperlinked pages on the World Wide

Web that are created with the intention of misleading engines [12]. It is reported in [23] that approximately 70% of

all pages in the .biz domain are spam and that about 35% of the pages in the .us domain belong to spam category.

The reason for the increasing amount of Web spam is explained in [23]: some web site operators try to influence

the positioning of their pages within search results because of the large fraction of web traffic originating from

searches and the high potential monetary value of this traffic.

From the viewpoint of the Web site operators who want to increase the ranking value of a particular page for

search engines, two methods are being used widely [23, 12]:

• Link Stuffing. The creation of extraneous pages which link to a target page. Using link stuffing, web sites

can increase the desirability of target pages to search engines using link-based ranking.

• Keyword Stuffing. The creation of thousands of popular keywords to a target page, often making the text
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invisible to humans through ingenious use of color schemes. A search engine will then index the extra

keywords, and return the manipulated page as an answer to queries that contain some of the keyword.

From the viewpoint of the search engine managers, the Web spam is very harmful to the users’ evaluations

and thus their preference to choosing search engines because people believe that a good search engine should not

return irrelevant or low-quality results. There are two methods being employed to combat the Web spam:

• Machine Learning. It employed to handle the keyword stuffing. To successfully apply machine learning

method, we need to dig out some useful features for Web pages, to mark part of the Web pages as either

spam or non-spam, then to apply a supervised learning technique to mark other pages. For example in [23],

the authors proposed to use such features as number of words in the page, number of words in the page

title, average length of words, amount of anchor text, fraction of visible content, compressibility, fraction of

page drawn from globally popular words, and so on. Then the C4.5 decision tree is applied on the data set.

Another example is the RankNet, proposed in [5] and investigated further [25]. Although the authors did

not claim that RankNet can be employed as a method for spam detection, it has the potential to fulfill such

a task if appropriate features are given.

• Link Analysis. It is employed to handle the link stuffing. One example is theTrustRank[12], a link-based

method, in which the link structure is utilized so that human labelled trusted pages can propagate their trust

scores trough their links. This paper focuses on the link-based method.

The rest of the materials of this chapter are organized as follows. In the next section, we give a brief literature

review on various related ranking techniques. In Section 2.3, we propose the Heat Diffusion Model (HDM) on

various cases. In Section 2.5, we describe the data sets that we worked on and the experimental results.

2.2 Literature Review

Although the importance of a Web page is determined by either the textual content of pages or the hyperlink

structure or both. As in previous work [11, 16, 15], we focus on ranking methods solely determined by hyperlink

structure of the Web graph.

All the mentioned ranking algorithms are established on a graph. For our convenience, we first give some nota-

tions. We denote a static graph byG = (V, E), whereV = {v1, v2, . . . , vn}, E = {(vi, vj) | there is an edge fromvi to

vj} is the set of all edges.Ii anddi denote the in-degree and the out-degree of pagei respectively.
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2.2.1 PageRank

The importance of a Web page is an inherently subjective matter, which depends on the reader interests, knowl-

edge and attitudes [24]. However, the average importance of all readers can be considered as an objective matter.

PageRanktries to find such average importance based on the Web link structure, which is considered to contain

a large amount of statistical data. The intuition behindPageRankis that it uses information external to the Web

pages themselves—their in-links, and that in-links from “important” pages are more significant than in-links from

average pages. Formally presented in [9], the Web is modelled by a directed graphG in thePageRankalgorithms,

and the rank or “importance”xi for pagevi ∈ V is defined recursively in terms of pages which point to it:

xi =
∑

(j,i)∈E

aijxj , (2.1)

whereaij is assumed to be1/dj if there is a link fromj to i, and0 otherwise. Or in matrix terms,x = Ax. When

the concept of “random jump” is introduced, the matrix form in Eq. (2.1) is changed to

x = [(1− α)g1T + αA]x, (2.2)

where the parameterα is the probability of following the actual link from a page,(1 − α) is the probability of

taking a “random jump”, andg is a stochastic vector (i.e.1Tg = 1). Typically,α = 0.85 andg = 1
n1, where1 is

the vector of all ones.

2.2.2 TrustRank

TrustRank[12] is composed of two parts. The first part is the seed selection algorithm, in which the inverse

PageRankwas proposed to help an expert of determining a good node. The second part is to utilize the biased

PageRank, in which the stochastic distributiong is set to be shared by all the trusted pages found in the first

part. Moreover, the initial input ofx is also set to beg. The justification for the inversePageRankand the solid

experiments support its advantage in combating the Web spam.

2.2.3 Manifold Ranking

In [41], the idea of ranking on the data manifolds was proposed. The data points represented as vectors in

Euclidean space are considered to be drawn from a manifold. From the data points on such a manifold, an

undirected weighted graph is created, then the weight matrixW is given by the Gaussian Kernel smoothing. Then

we can show its next two steps:
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Step 1. NormalizeW by S = D−1/2WD−1/2 in whichD is the diagonal matrix with(i, i)−element equal to

the sum of thei−th row ofW.

Step 2. Iteratef(t + 1) = αSf(t) + (1 − α)y until convergence, whereα is a parameter in[0, 1), thei − th

element iny is set to be 1 if the corresponding data is a query, and zero otherwise.

2.2.4 Heat Diffusion

Heat diffusion is a physical phenomena. In a medium, heat always flow from position with high temperature

to position with low temperature. Heat kernel is used to describe the amount of heat that one point receives from

another point.

Recently, the idea of heat kernel on a manifold is borrowed in applications such as dimension reduction [2]

and classification [20,?, 34]. In these work, the input data is considered to lie in a special structure. In [20],

the authors apply the heat kernel on a continuous manifold to text classifications. In [?], the authors apply the

heat kernel on discrete structures to categorical data classifications. In [2], the authors employ the heat kernel to

construct weights of a neighborhood graph and reduce the dimension of the underlying data. In [34], the authors

represent the underlying geometry by a finite neighborhood directed graph, on which a heat kernel is established,

and construct classifiers by imitating the heat diffusion on the graph.

All the above topics are related to our work. The readers can find that our model is a generalization ofPageRank

in order to resist Web manipulation, that we inherit the first part ofTrustRank, that we actually are ranking on the

manifold, and that heat diffusion is a main scheme in this paper.

2.3 Heat Diffusion Model

Heat diffusion provides us with another perspective about how we can view the Web and also a way to calculate

ranking values. In this paper, the Web pages are considered to be drawn from an unknown manifold, and the link

structure forms a directed graph, which is considered as an approximation to the unknown manifold. The heat

kernel established on the Web graph is considered as the representation of relationship between Web pages. Then

the following problems arise naturally:

1. How can we describe heat diffusion behavior on a graph instead of on a manifold?

2. How can we model the page relationship by the diffusion behavior?

To address Problem 2, we propose a novelDiffusionRankmethod in Section 2.4 using the heat kernel. To

address Problem 1, we investigate the HDM in this section. First we show our motivations for the proposed

models.
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2.3.1 Motivation

There are two points to explain thatPageRankis susceptible to web spam.

• Over-democratic. There is a belief behindPageRank—all pages are born equal. This can be seen from the

equal voting ability of one page: the sum of each column is equal to one. This equal voting ability of all

pages gives the chance for a Web site operator to increase a manipulated page by creating a large number of

new pages pointing to this page since all the newly created pages can obtain an equal voting right.

• Input-independent. For any given non-zero initial input, the iteration will converge to the same stable

distribution corresponding to the maximum eigenvalue 1 of the transition matrix. This input-independent

property makes it impossible to set a special initial input (larger values for trusted pages and less values even

negative values for spam pages) to avoid web spam.

The input-independent feature ofPageRankcan be further explained as follows.P = [(1 − α)g1T + αA] is

a positive stochastic matrix ifg is set to be a positive stochastic vector (the uniform distribution is one of such

settings), and so 1 is its largest eigenvalue and no other eigenvalue whose absolute value is equal to 1, which is

guaranteed by the Perron Theorem [22]. Lety is the eigenvector corresponding to1, then we havePy = y. Let

{xk} is the sequence generated from the iterationsxk+1 = Pxk, andx0 is the initial input. If{xk} converges

to x, thenxk+1 = Pxk implies thatx must satisfyPx = x. Since 1 is the only maximum eigenvalue, we have

x = cy wherec is a constant, and if bothx andy are normalized by their sums, thenc = 1. The above discussions

show thatPageRankis independent of the initial inputx0.

We observe that the heat diffusion model is a natural way to avoid the over-democratic and input-independent

feature ofPageRank. Since heat always flows from a position with higher temperatures to one with lower tem-

peratures, points are not equal as some points are born with high temperatures while others are born with low

temperatures. On the other hand, different initial temperature distributions will give rise to different temperature

distributions after a fixed time period.

Based on these considerations, we propose the novelDiffusionRank. This ranking algorithm is also motivated

by the viewpoint for the Web structure. We view all the Web pages as points drawn from a highly complex ge-

ometric structure, like a manifold in a high dimensional space. On a manifold, heat can flow from one point to

another through the underlying geometric structure in a given time period. Different geometric structures deter-

mine different heat diffusion behaviors, and conversely the diffusion behavior can reflect the geometric structure.

More specifically, on the manifold, the heat flows from one point to another point, and in a given time period, if
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one pointx receives a large amount of heat from another pointy, we can sayx andy are connected well, and thus

x andy have a high similarity in the sense of a high mutual connection.

In the following, we first show the HDM on a manifold, which is the origin of HDM, but can not be employed

to the World Wide Web directly, and so is considered as the ideal case. To connect the ideal case and the practical

case, we then establish HDM on a graph as an intermediate case. To model the real world problem, we further

build HDM on a random graph as a practical case. Finally we demonstrate theDiffusionRankwhich is derived

from the HDM on a random graph.

We note that on a point with unit mass, the temperature and the heat of this point are equivalent, and these two

terms are interchangeable in this paper.

2.3.2 Heat Flow On a Known Manifold

If the underlying manifold is known, the heat flow throughout a geometric manifold with initial conditions can

be described by the following second order differential equation:

∂f(x, t)
∂t

−∆f(x, t) = 0, (2.3)

wheref(x, t) is the heat at locationx at timet, and∆f is theLaplace-Beltrami operatoron a functionf . The heat

diffusion kernelKt(x,y) is a special solution to the heat equation with a special initial condition—a unit heat

source at positiony when there is no heat in other positions. Based on this, the heat kernelKt(x,y) describes

the heat distribution at timet diffusing from the initial unit heat source at positiony, and thus describes the

connectivity (which is considered as a kind of similarity) betweenx andy.

However, it is very difficult to restore the World Wide Web as a regular geometry with a known dimension; even

the manifold, in which the Web pages lie in, is known, it is very difficult to find the heat kernelKt(x,y), which

involves solving Eq. (2.3) with the delta function as the initial condition. This motivates us to investigate the heat

flow on a graph: the graph is considered as an approximation to the underlying manifold, and so the heat flow on

the graph is considered as an approximation to the heat flow on the manifold.

2.3.3 On an Undirected Graph

On an undirected graphG, the edge(vi, vj) is considered as a pipe that connects to nodesvi andvj . The value

fi(t) describes the heat at nodevi at timet, beginning from an initial distribution of heat given byfi(0) at time

zero.f(t) (f(0)) denotes the vector consisting offi(t) (fi(0)).

We establish our model as follows. Suppose, at timet, each nodei receivesM(i, j, t,∆t) amount of heat from

its neighborj during a period of∆t. The heatM(i, j, t,∆t) should be proportional to the time period∆t and the
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heat differencefj(t)− fi(t). Moreover, the heat flows from nodej to nodei through the pipe that connects nodes

i andj. Based on this consideration, we assume thatM(i, j, t, ∆t) = γ(fj(t) − fi(t))∆t. As a result, the heat

difference at nodei between timet + ∆t and timet will be equal to the sum of the heat that it receives from all its

neighbors. This is formulated as

fi(t + ∆t)− fi(t) =
∑

j:(j,i)∈E

γ(fj(t)− fi(t))∆t. (2.4)

To find a closed form solution to Eq. (2.4), we express it in a matrix form:

f(t + ∆t)− f(t)
∆t

= γHf(t), (2.5)

whereH = (Hij), and

Hij =





−d(vj), j = i,

1, (vj , vi) ∈ E,

0, otherwise.

(2.6)

whered(v) denotes the degree of the nodev. In the limit ∆t → 0, Eq. (2.5) becomes

d

dt
f(t) = γHf(t). (2.7)

Solving Eq. (2.7), we getf(t) = eγtHf(0), especially we have

f(1) = eγHf(0), (2.8)

whereeγH is defined as

eγH = I + γH +
γ2

2!
H2 +

γ3

3!
H3 + · · · . (2.9)

The matrixeγH is called asContinuous Diffusion Kernelin the sense that the heat diffusion process continues

infinitely many times after the nodes begin to diffuse their heat to their subsequent nodes.

2.3.4 On a Directed Graph

The above heat diffusion model must be modified to fit the situation where the links between Web pages are

directed. On one Web page, when the page-maker creates a link(a, b) to another pageb, he actually forces the

energy flow, for example, people’s click-through activities, to that page, and so there is added energy imposed

on the link. As a result, heat flows in a one-way manner, only froma to b, not from b to a. Based on such

consideration, we modified the heat diffusion model on an undirected graph as follows.
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On a directed graphG, the edge(vi, vj) is considered as a pipe that connects to nodesvi andvj , and is forced

by added energy such that heat flows only fromvi to vj .

Suppose, at timet, each nodevi receivesRH(i, j, t, ∆t) amount of heat from its antecedentvj during a period

of ∆t. We have three assumptions:

1. The heatRH(i, j, t,∆t) should be proportional to the time period∆t.

2. The heatRH(i, j, t,∆t) should be proportional to the the heat at nodevj .

3. The heatRH(i, j, t,∆t) is zero if there is no link fromvj to vi.

As a result,vi will receive
∑

j:(vj ,vi)∈E σjfj(t)∆t amount of heat from all its antecedents.

On the other hand, nodevi diffusesDH(i, t, ∆t) amount of heat to its subsequent nodes. We assume that

1. The heatDH(i, t, ∆t) should be proportional to the time period∆t.

2. The heatDH(i, t, ∆t) should be proportional to the the heat at nodevi.

3. Each node has the same ability of diffusing heat. This fits the intuition that a Web surfer only has one choice

to find the next page that he wants to browse.

4. The heatDH(i, t, ∆t) should be uniformly distributed to its subsequent nodes. The real situation is more

complex than what we assume, but we have to take this simple assumption in order to make our model

concise.

As a result, nodevi will diffuse γfi(t)∆t/di amount of heat to any of its subsequent nodes, and each of its

subsequent node should receiveγfi(t)∆t/di amount of heat. Thereforeσj = γ/dj .

To sum up, the heat difference at nodevi between timet + ∆t and timet will be equal to the sum of the heat

that it receives, deducted by what it diffuses. This is formulated as

fi(t + ∆t)− fi(t) = −γfi(t)∆t +
∑

j:(vj ,vi)∈E

γ/djfj(t)∆t. (2.10)

Similarly, we obtain

f(1) = eγHf(0), (2.11)

whereH = (Hij), and

Hij =





−1, j = i,

1/dj , (vj , vi) ∈ E,

0, otherwise.

(2.12)
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To find another closed form solution to Eq. (2.10), we lett = 0, Eq. (2.11) can then be rewritten as

f(∆t) = (I + γ∆tH)f(0). (2.13)

AssumeN = 1/∆t is an integer, we then have

f(1) = f(N ·∆t)

= (I + γ∆tH)f((N − 1) ·∆t)
...

= (I + γ∆tH)N f(0)

= (I + γ
N H)N f(0).

(2.14)

Eq. (2.14) is one closed form solution to Eq. (2.10) in the setting of discrete heat diffusion, where it describes the

N−step heat distribution at a time period of∆t from time 0 to time 1. The matrix(I+ γ
N H)N is called asDiscrete

Diffusion Kernelin the sense that the heat diffusion process stops after a number of steps, and in each step, nodes

diffuse their heat only to their subsequent nodes. In Figure 2.1, we illustrate the heat flow on a graph. There are

Step 1 Step 2 Step 3

Figure 2.1. Illustration on Heat Diffusion

six nodes in the graph, and there are links between them. We want to show how the heat diffuses from nodea to

nodeb. Initially there is some amount of heat only in nodea, at Step 1, heat diffuses froma to its two subsequent

nodes along the links. In Step 2, the heat diffuses further from nodes with higher heat to nodes with lower heat. At

Step 3, nodeb receives heat from its two antecedents. The heat distribution in Step 3 can reflect the relationship

between nodea and other nodes, which is caused by the graph structure.
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2.3.5 On a Random Directed Graph

For real world applications, the heat diffusion model is not enough because some edges exist in a random way.

This can be seen in two viewpoints. The first one is that in Eq. (2.2), the Web graph is actually modelled as a

random graph, there is a edge from nodevi to nodevj with a probability of(1− α)gj (see the item(1− α)g1T ).

The second one is that in [35, 36], the Web structure is predicted as a random graph by its earlier structure found

by a crawler. For these reasons, the model would become more flexible if we extend it to random graphs. The

definition of a random graph is given below.

Definition 1: A random graphRG = (V,P = (pij)) is defined as a graph with a vertex setV in which the

edges are chosen independently, and for1 ≤ i, j ≤ |V | the probability of(vi, vj) being an edge is exactlypij .

The original definition of random graphs in [4], is slightly changed to consider the situation of directed graphs.

Note that every static graph can be considered as a special random graph in the sense thatpij takes only 0 or 1.

On a random graphRG = (V,P), whereP = (pij) is the probability of the edge(vi, vj) exists. In such a

random graph, the expected heat difference at nodei between timet + ∆t and timet will be equal to the sum of

the expected heat that it receives from all its antecedents, deducted by the expected heat that it diffuses.

Since the probability of the link(vj , vi) is pji, the expected heat flow from nodej to nodei should be multiplied

by pji, and so we have

fi(t + ∆t)− fi(t) = −γ fi(t)∆t +
∑

j:(vj ,vi)∈E

γpjifj(t)∆t

RD+(vj)
, (2.15)

whereRD+(vi) is the expected out-degree of nodevi, it is defined as
∑

k pik. Similarly we have

f(1) = eγRf(0), (2.16)

whereR = (Rij), and

Rij =




−1, j = i;

pji/RD+(vj), j 6= i.
(2.17)

By assuming thatN = 1/∆t is an integer, we also have

f(1) = (I +
γ

N
R)N f(0). (2.18)

The matrix(I + γ
N R)N in Eq. (2.18) and matrixeγR in Eq. (2.16) are calledDiscrete Diffusion Kernelon the

random graph and theContinuous Diffusion Kernelon the random graph respectively. Based on the Heat Diffusion

Models and their solutions, we can establish theDiffusionRankon undirected graphs, directed graphs, and random

graphs. In next section, we mainly focus on random graphs.
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2.4 DiffusionRank

For a random graph, the matrix(I + γ
N R)N or eγR can measure the similarity relationship between nodes. Let

fi(0)= 1, fj(0) = 0 if j 6= i, then the vectorf(0) represent the unit heat at nodevi while all other nodes has zero

heat. For suchf(0) in a random graph, we can find the heat distribution at time 1 by using Eq. (2.16) or Eq. (2.18).

The heat distribution is exactly thei−th row of the matrix of(I + γ
N R)N or eγR. So theith-row jth-column

elementhij in the matrix(I + γ∆tR)N or eγR means the amount of heat thatvi can receive fromvj from time0

to 1. Thus the valuehij can be used to measure the similarity fromvj to vi. For a static graph, similarly the matrix

(I + γ
N H)N or eγH can measure the similarity relationship between nodes.

The intuition behind is that the amounth(i, j) of heat that a pagevi receives from a unit heat in a pagevj in

a unit time embodies the extent of the link connections from pagevj to pagevi. Roughly speaking, when there

are more uncrossed paths fromvj to vi, vi will receive more heat fromvj ; when the path length fromvj to vi is

shorter,vi will receive more heat fromvj ; when the pipe connectingvj andvi is wide, the heat will flow quickly.

The final heat thatvi receives will depend on various paths fromvj to vi, their length and width.

2.4.1 Algorithm

For the ranking task, we adopt the heat kernel on a random graph. Formally theDiffusionRankis described as

follows.

In algorithm 1, the elementUij in the inverse transition matrixU is defined to be1/Ij if there is a link fromi to

j, and zero otherwise. This trusted pages selection procedure by inversePageRankis completely borrowed from

TrustRank[12] except for a fix number of the size of the trusted set. Although the inversePageRankis not perfect

in its ability of determining the maximum coverage , it is appealing because of its polynomial execution time and

its reasonable intuition—we actually inverse the original link when we try to build the seed set from those pages

that point to many pages that in turn point to many pages and so on. In the algorithm, the underlying random graph

is set asP = αB ·A + (1− αB) · 1
n · 1n×n, which is induced by the Web graph. As a result,R = −I + P.

2.4.2 Advantages

Next we show the four advantages forDiffusionRank.

Two closed forms

First, its solutions have two forms, both of which are closed form. One takes the discrete form, and has the

advantage of fast computing while the other takes the continuous form, and has the advantage of being easily
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analyzed in theoretical aspects. The theoretical advantage has been shown in the proof of theorem in next section.

Group-group relations

Second, it can be naturally employed to detect the group-group relation. For example, if group 2 contains pages

(j1, j2, . . . , js), and if group 1 contains pages (i1, i2, . . . , it), then the sum
∑

u,v hiu,jv denotes the total amounts

of heat that group 1 receives from group 2, wherehiu,jv is theiu−th rowjv−th column element of the heat kernel.

More specifically, we first need to setf(0) for such an application as follows.

In f(0) = (f1(0), f2(0), . . . , fn(0))T , if i ∈ {j1, j2, . . . , js}, thenfi(0) = 1, and0 otherwise. Then we employ

Eq. (2.16) to calculatef(1) = (f1(1), f2(1), . . . , fn(1))T , finally we sum thosefj(1) wherej ∈ {i1, i2, . . . , it}.
Figure 2.2 (a) shows the results generated by theDiffusionRank. We consider five groups—five departments

in our Engineering Faculty: CSE, MAE, EE, IE, and SE.γ is set to be 1, the numbers in Figure 2.2 (a) are

the amount of heat that they diffuse to each other. These results are normalized by the total number of each

group, and the edges are ignored if the values are less than 0.000001. The group-to-group relations are therefore

detected, for example, we can see that the most strong overall tie is from EE to IE. While it is a natural application

for DiffusionRankbecause of the easy interpretation by the amount heat from one group to another group, it is

difficult to apply other ranking techniques to such an application because they lack such a physical meaning.

Graph cut

Third, it can be used to partition the Web graph into several parts. A quick example is shown below.

The graph in Figure 2.2 (b) is an undirected graph, and so we employ the Eq. (2.8). If we know that node

1 belongs to one community and that node 12 belongs to another community, then we can put one unit positive

heat source on node 1 and one unit negative heat source on node 12. After time 1, if we setγ = 0.5, the heat

distribution is [0.25, 0.16, 0.17, 0.16, 0.15, 0.09, 0.01, -0.04, -0.18 -0.21, -0.21, -0.34], and if we setγ = 1, it

will be [0.17, 0.16, 0.17, 0.16, 0.16, 0.12, 0.02, -0.07, -0.18, -0.22, -0.24, -0.24]. In both settings, we can easily

divide the graph into two parts:{1, 2, 3, 4, 5, 6, 7} with positive temperatures and{8, 9, 10, 11, 12} with negative

temperatures. For directed graphs and random graphs, similarly we can cut them by employing corresponding

heat solution.

Anti-manipulation

Fourth, it can be used to anti-manipulation. Let group 2 contains trusted Web pages (j1, j2, . . . , js), then for each

pagei,
∑

v hi,jv is the heat that pagei receives from the group 2, and can be computed by Eq. (2.14) in the case of
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(a) Group to Group Relations (b) An undirected graph

Figure 2.2. Two graphs

a static graph or Eq. (2.18) in the case of a random graph, in whichf(0) is set to be a special initial heat distribution

so that the trusted Web pages have unit heat while all the others have zero heat. In doing so, manipulated Web page

will get a lower rank unless it has strong in-links from the trusted Web pages directly or indirectly. The situation

is quite different forPageRankbecausePageRankis input-independent as we have shown in Section 2.3.1.

Based on the fact that the connection from a trusted page to a “bad” page should be weak: less uncross paths,

longer distance and narrower pipe, we can sayDiffusionRankcan resist web spam if we can select trusted pages. It

is fortunate, the trusted pages selection method in [12]—the first part ofTrustRankcan help us to fulfill this task.

In fact, the more general setting forDiffusionRankis P = αB · A + (1 − αB) · 1
n · g · 1T , and as a result,

R = −I + P. By such a setting,DiffusionRankalso generalizeTrustRankwhenγ tends to infinity and wheng is

set in the same way asTrustRank. However, the second part ofTrustRankis not adopted by us. In our model,g

should be the true “teleportation” determined by the user’s browse habits, popularity distribution over all the Web

pages, and so on;P should be the true model of the random nature of the World Wide Web. Settingg according

to the trusted pages will not be consistent with the basic idea of Heat Diffusion on a random graph. We simply set

g = 1 only because we can not find it without any priori knowledge.

For such an application ofDiffusionRank, the computation complexity forDiscrete Diffusion Kernelis the
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same as that forPageRankin cases of both a static graph and a random graph. This can be seen in Eq. (2.14) and

Eq. (2.18), by which we needN iterations and for each iteration we need a multiplication operation between a

matrix and a vector, while in Eq. (2.1) and Eq. (2.2) we also need a multiplication operation between a matrix and

a vector for each iteration.

2.4.3 The Physical Meaning ofγ

γ plays an important role in the anti-manipulation effect ofDiffusionRank. γ is explained as the thermal

conductivity—the heat diffusion coefficient. If it has a high value, heat will diffuse very quickly. Conversely,

if it is small, heat will diffuse slowly. In the extreme case, if it is infinitely large, then heat will diffuse from one

node to other nodes immediately, and this is exactly the case corresponding toPageRank. Next, we will interpret

it mathematically.

Theorem 1:Whenγ tends to infinity andf(0) is not the zero vector,eγRf(0) is proportional to the stable

distribution produced byPageRank.

Let g = 1
n1. By the Perron Theorem [22], we have shown that 1 is the largest eigenvalue ofP = [(1− α)g1T +

αA], and that no other eigenvalue whose absolute value is equal to 1. Letx be the stable distribution, and so

Px = x. x is the eigenvector corresponding to the eigenvalue 1. Assume then − 1 other eigenvalues ofP are

|λ2| < 1, . . . , |λn| < 1, we can find an invertible matrixS = ( x S1 ) such that

S−1PS =




1 ∗ ∗ ∗
0 λ2 ∗ ∗
0 0

... ∗
0 0 0 λn




. (2.19)

Since

eγR = eγ(−I+P) = S−1




1 ∗ ∗ ∗
0 eγ(λ2−1) ∗ ∗
0 0

... ∗
0 0 0 eγ(λn−1)




S, (2.20)

all eigenvalues of the matrixeγR are1, eγ(λ2−1), . . . , eγ(λn−1). Whenγ → ∞, they become1, 0, . . . , 0, which

means that 1 is the only nonzero eigenvalue ofeγR whenγ →∞.

We can see that whenγ →∞, eγReγRf(0) = eγRf(0), and soeγRf(0) is an eigenvector ofeγR whenγ →∞.

On the other hand,eγRx = (I + γR + γ2

2! R
2 + γ3

3! R
3 + . . .)x = Ix + γRx + γ2

2! R
2x + γ3

3! R
3x + . . . = x

sinceRx = (−I + P)x = −x + x = 0, and hencex is the eigenvector ofeγR for any γ. Therefore bothx

17



andeγRf(0) are the eigenvectors corresponding the unique eigenvalue 1 ofeγR whenγ →∞, and consequently

x = ceγRf(0).

By this theorem, we see thatDiffusionRankis a generalization ofPageRank. Whenγ = 0, the ranking value

is most robust to manipulation since no heat is diffused and the system is unchangeable, but the Web structure is

completely ignored sinceeγRf(0) = e0Rf(0) = If(0) = f(0); whenγ = ∞, DiffusionRankbecomesPageRank,

it can be manipulated easily. We expect an appropriate setting ofγ that can balance both. For this, we have not

theoretical result, but in practice we find thatγ = 1 works well in Section 2.5. Next we discuss how to determine

the number of iterations if we employ the discrete heat kernel.

2.4.4 The Number of Iterations

While we enjoy the advantage of the concise form of the exponential heat kernel, it is better for us to calculate

DiffusionRankby employing Eq. (2.18) in an iterative way. Then the problem about determining theN—the

number of iterations arises. We can formulate the problem as follows.

For a given thresholdε, find N such that||((I + γ
N R)N − eγR)f(0)|| < ε for anyf(0) whose sum is one.

Since it is difficult to solve this problem, we propose a heuristic method motivated by the following observations.

WhenR = −I + P, by Eq. (2.19), we have(I + γ
N R)N = (I + γ

N (−I + P))N =

S−1




1 ∗ ∗ ∗
0 (1 + γ(λ2−1)

N )N ∗ ∗
0 0

... ∗
0 0 0 (1 + γ(λn−1)

N )N




S, (2.21)

Compare Eq. (2.20) and Eq. (2.21), we observe that the eigenvalues of(I + γ
N R)N − eγR are1 + γ(λn−1)

N )N −
eγ(λn−1). We propose a heuristic method to determineN so that the difference between the eigenvalues are less

than a threshold for only positiveλs.

We also observe that ifγ = 1, λ < 1, then |(1 + γ(λ−1)
N )N − eγ(λ−1)| < 0.005 if N ≥ 100, and |(1 +

γ(λ−1)
N )N − eγ(λ−1)| < 0.01 if N ≥ 30. So we can setN = 30, or N = 100, or others according to different

accuracy requirements. In this paper, we use the relatively accurate settingN = 100 to make the real eigenvalues

in (I + γ
N R)N − eγR less than 0.005.

2.5 Experiments

Since the ranking methods in [41] are mainly aimed to data manifolds, and the biased vector in the general

personalizedPageRankin [41] is unknown in the Web graph setting, we do not include the manifold ranking in
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the comparisons. Next we show the data, the methodology, the setting, and the results.

2.5.1 Data Preparation

Our input data consist of a toy graph, a middle-size real-world graph, and a large-size real-world graph. The

toy graph is shown in the left part in Figure 2.3. The graph below it shows node 1 is being manipulated by adding

new nodesA,B, C, . . . such that they all point to node 1, and node 1 points to them all.

The data of two real Web graph were obtained from the domaincuhk.edu.hk. The total number of pages found

are 18542 in the middle-size graph, and 607170 in the large-size graph respectively. The middle-size graph is a

subgraph of the large-size graph, and they were obtained by the same crawler: one is recorded by the crawler in

its earlier time, and the other is obtained when the crawler stopped.

2.5.2 Methodology

The algorithms we run includePageRank, TrustRankandDiffusionRank. All the rank values are multiplied by

the number of nodes so that the sum of the rank values is equal to the number of nodes. By this normalization,

we can compare the results on graphs with different sizes since the average rank value is one for any graph after

such normalization. We will need value difference and pairwise order difference as comparison measures. Their

definitions are as follows.

Value Difference.The value difference betweenA =

{Ai}n
i=1 andB = {Bi}n

i=1 is measured as
∑n

i=1 |Ai −Bi|.
Pairwise Order Difference.The order difference betweenA andB is measured as the number of significant

order differences betweenA andB. The pair(A[i], A[j]) and(B[i], B[j]) is considered as a significant order

difference if one of the following cases happen: bothA[i] > [<]A[j] + 0.1 andB[i] ≤ [≥]A[j]; bothA[i] ≤ [≥
]A[j] andB[i] > [ <]A[j] + 0.1.

Note that the the average ranking value is one after our normalization. Since all the ranking algorithms we

compared work in an iterative way, there may exit a large amount small errors caused by computation accuracy.

Therefore we set the significant order difference in order to reduce the effect of small errors.

2.5.3 Experimental Set-up

The experiments on the middle-size graph and the large-size graphs are conducted on the workstation whose

hardware model is Nix Dual Intel Xeon 2.2GHz, whose RAM is 1GB, and whose OS is Linux Kernel 2.4.18-27smp
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Figure 2.3. Left: the toy graph consisting of six nodes, and node 1 is being manipulated by adding

new nodes A,B,C, . . .; Right: the approximation tendency to PageRank by DiffusionRank
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(RedHat7.3). In calculatingDiffusionRank, we employ the discrete diffusion kernel in Eq. (2.14) and Eq. (2.18)

for such graphs. The related tasks are implemented using C language.

While in the toy graph, we employ the continuous diffusion kernel in Eq. (2.11) and Eq. (2.16), and implement

related tasks using Matlab.

For nodes that have zero out-degree (dangling nodes), we employ the method in the modifiedPageRankalgo-

rithm [18], in which dangling nodes of are considered to have random links uniformly to each node.

We setα = αI = αB = 0.85 in the all algorithms. We also setg to be the uniform distribution in both

PageRankandDiffusionRank. ForDiffusionRank, we setγ = 1. According to the discussions in Section 2.4.3 and

Section 2.4.4, we set the iteration number to beMB = 100 in DiffusionRank, and for accuracy consideration, the

iteration number in all the algorithms are set to be 100.

2.5.4 Approximation of PageRank

We show that whenγ tends to infinity, the value differences betweenDiffusionRankandPageRanktend to zero.

Figure 2.3 (b) shows the approximation property ofDiffusionRank, as proved in Theorem 1, on the toy graph.

The horizontal axis of figure 2.3 marks theγ value, and vertical axis corresponds to the value difference between

DiffusionRankandPageRank. All the possible trusted sets withL = 1 are considered, they are shown in the figure.

For L > 1, the results should be the linear combination of some of these curves because of the linearity of the

solutions to heat equations. On other graphs, the situations are similar, and we omit them.

2.5.5 Results of Anti-manipulation

In this section, we show how the rank values change as the intensity of manipulation increases. We measure the

intensity of manipulation by the number of new added points that point to the manipulated point. The horizontal

axes of Figure 2.4 stand for the numbers of new added points, and vertical axes show the corresponding rank

values of the manipulated nodes.

To be clear, we consider all the six situations. Every node in Figure 2.3 (a) is manipulated respectively, and its

corresponding values forPageRank, TrustRank(TR), DiffusionRank(DR) are shown in the one of six sub-figures

in Figure 2.4. The vertical axes show which node is being manipulated.

In each sub-figure, the trusted sets are computed below. Since the inversepagerankyields the results[1.26, 0.85, 1.31,

1.36, 0.51, 0.71]. Let L = 1. If the manipulated node is not 4, then the trusted set is{4}, and otherwise{3}.
We observe that in all the cases, rank values of the manipulated node for DiffusionRank grow slowest as

the number of the new added nodes increases. On the middle-size graph and the large-size graph, this con-
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Figure 2.4. The rank values of the manipulated nodes on the toy graph

clusion is also true, see Figure 2.5. In the left sub-figure, we show the rank values of the manipulated page

(www.cse.cuhk.edu.hk/˜hxyang).L = 1. We choose four trusted sets, on which we testDiffusionRankand

TrustRank, the results are denoted by DiffusionRanki and TrustRanki (i = 0, 1, 2, 3 denotes the four trusted set).

Moreover, we show the results forDiffusionRankwhen we have no trusted set, and we trust all the pages before

some of them are manipulated. We also test the order difference between the ranking orderA before the page is

manipulated and the ranking orderPA after the page is manipulated. Because after manipulation, the number of

pages changes, we only compare the common part ofA andPA. This experiment is used to test the stability of

all these algorithms. The less the order difference, the stabler the algorithm, in the sense that only a smaller part

of the order relations is affected by the manipulation.

Figure 2.6 shows that the rank values change when we add new nodes that point to the manipulated node. We

give severalγ setting in the left panel of the figure. We find that whenγ = 1, the least order difference is achieved

by DiffusionRank. It is interesting to point that asγ increases, the order difference will increase first; after reaching

a maximum value, it will decrease, and finally it tends to thePageRankresults. We show this tendency in the right

panel of the Figure 2.6, in which we choose three different setting—the number of manipulated nodes are 2000,

5000, and 10000 respectively. From this figure, we can see that whenγ < 2, the values are less than those for
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Figure 2.5. The rank values of the manipulated nodes on the middle-size graph (left) and the large-size

graph (right)
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PageRank, and that whenγ > 20, the difference betweenPageRankandDiffusionRankis very small.

After these investigations, we find that

1. For all these ranking algorithms, the larger the graph, the easier that the pages can be manipulated.

2. In all the graphs we tested,DiffusionRankis most robust to manipulation both in value difference and order

difference.

3. γ = 1 works well in all these cases.

4. The trust set selection algorithm proposed in [12] is effective for bothTrustRankandDiffusionRank.

5. The difference between thePageRankvalue and theDiffusionRank(TrustRank) value can help us to detect

pages being manipulated. The larger the difference, the more probably the page is manipulated. The remaining

part of this Section is devoted to this finding.

From the last item, we are encouraged to develop a simple manipulation detection algorithm. For a given

thresholdτ , if the difference between PageRankvalue for a particular page and itsDiffusionRankvalue is greater

thanτ , then we consider that the page is probably being manipulated.TrustRankcan be also employed to fulfil

such task in the same way.

2.5.6 Manipulation Detection

To test this idea, we random choose 100 pages, and manipulated them all in different extents. Then we draw the

Recall-Precision curves as follows: for a given recall rateν, find the maximum thresholdτ such that the recall rate

is exactlyν, and then calculate the ratio of the number of nodes being manipulated and the number of nodes whose

PageRank-DiffusionRank [PageRank-TrustRank] difference is greater thanτ . The higher precision rate under the

same recall rate means that the less “good” nodes are mixed with the ‘bad” nodes.

The upper panel in Figure 2.7 shows the results on the middle-size graph, and the lower panel shows the results

on the large-size graph. If no technique is employed, one have to guess the manipulated pages in a random way,

by which the precision will be100/18542 ≈ 0.0054 = 0.54% on the middle-size graph, and100/667170 ≈
0.000165 = 0.0165% on the large-size graph. We also draw the curve of the random detection rates on both

graphs.

We observe that bothDiffusionRankandTrustRankwork excellent on the detection precision on the middle-size

graph. Compared to the random detection rate, they also work well on the large-size graph. From size of the areas

below the curves, we findDiffusionRankperforms slightly better thanTrustRank.
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Algorithm 1 DiffusionRank Function
Input

A: transition matrix

U: the inverse transition matrix

αI : decay factor for the inverse PageRank

αB: decay factor for PageRank

MI : number of iterations for the inverse PageRank

L: the number of trusted pages

γ: the thermal conductivity coefficent

output

h∗: DiffusionRank scores

1: s = 1

2: for i = 1 TO MI do

3: s = αI ·U · s + (1− αI) · 1
n · 1

4: end for

5: Sorts in a decreasing order:π = Rank({1, . . . , n}, s)
6: d = 0

7: for i = 1 TO L do

8: if π(i) is evaluated as a trusted page if thethen

9: d(π(i)) = 1

10: else

11: L = L + 1

12: end if

13: end for

14: d = d/|d|
15: h = d

16: Find the iteration numberMB according toλ

17: for i = 1 TO MB do

18: h∗ = (1− γ
MB

)h + γ
MB

(αB ·A · h + (1− αB) · 1
n · 1)

19: end for

20: RETURNh∗
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Chapter 3

Graph-based Heat Diffusion Classifiers

This chapter is organized as follows. In Section 4.2, we establish a heat diffusion model based on a graph. In

Section 3.2, we establish the Graph-based Heat Diffusion Classifier (G-HDC). In Section 3.3, we present two

other candidate graph inputs forG-HDC. In Section 4.1, we interpret more about the model than what we did in

[34]. In Section 4.6, we show and discuss our experimental results.

3.1 Heat Diffusion Model on a Graph

First, we give our notation for the heat diffusion model. Consider a directed weighted graphG = (V,E, W ),

whereV = {v1, v2, . . . , vn}, E = {(vi, vj) |there is an edge fromvi to vj} is the set of all edges, andW = (wij)

is the weight matrix. In contrast to the normal undirected weighed graph, the edge(vi, vj) is considered as a pipe

that connects to nodesi andj, and the weightwij is considered as the length of the pipe(vi, vj). The valuefi(t)

describes the temperature at nodei at timet, beginning from an initial distribution of temperature given byfi(0)

at time zero.

We establish our model as follows. Suppose, at timet, each nodei receives an amountM(i, j, t,∆t) of heat

from its neighborj during a period of∆t. The heatM(i, j, t,∆t) should be proportional to the time period

∆t and the temperature differencefj(t) − fi(t). Moreover, the heat flows from nodej to nodei through the

pipe that connects nodesi and j, and therefore the heat diffuses in the pipe in the same way as it does in the

m-dimensional Euclidean space, as described in Eq. (3.7). Based on the above consideration, we assume that

M(i, j, t, ∆t) = α · e−w2
ij/β(fj(t)− fi(t))∆t.

As a result, the heat difference at nodei between timet + ∆t and timet will be equal to the sum of the heat
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that it receives from all its neighbors and small patches around these neighbhors. This is formulated as

fi(t + ∆t)− fi(t)
∆t

= α
∑

(j,i)∈E

e−w2
ij/β(fj(t)− fi(t)) (3.1)

To find a closed form solution to Eq. (4.3), we express it as a matrix form:

f(t + ∆t)− f(t)
∆t

= αHf(t), (3.2)

whereH = (Hij), and

Hij =





−∑
k:(k,i)∈E e−w2

ik/β j = i;

e−w2
ij/β, (j, i) ∈ E;

0, otherwise.

(3.3)

In the limit ∆t → 0, Eq. (3.2) becomes
d

dt
f(t) = αHf(t), (3.4)

Solving Eq. (3.4), we get

f(t) = eαtHf(0) = eγHf(0), (3.5)

whereγ = αt, andeγH is defined as

eγH = I + γH +
γ2

2!
H2 +

γ3

3!
H3 + · · · . (3.6)

The matrixeγH is called thediffusion kernelin the sense that the heat diffusion process continues infinitely many

times from the initial heat diffusion.

To make the Heat Diffusion Classifier in [34] more flexible, in the next section, we separate the classifier and

its KNN graph input, and consider a general graph input instead of the specific KNN graph.

3.2 Graph-based Heat Diffusion Classifiers (G-HDC)

Based on the closed form solution in Eq. (4.5), we establish a classifier by simulating the heat diffusion based

on the graph, as described follows.

Assume that there arec classes, namely,C1,C2, . . . , Cc. Let the labelled data set containM samples, repre-

sented by(xi, ki) (i = 1, 2, . . . , M ), which means that the data pointxi belongs to classCki . Suppose the labelled

data set containMk points in classCk so that
∑

k Mk = M . Let an unlabelled data set containsN unlabelled

samples, represented byxi (i = M + 1,M + 2, . . . ,M + N ).

For a give graph that can model the data relation, we apply the heat diffusion model to the graph. For the

purpose of classification, for each classCk in turn, we set the initial heat at the labelled data in classCk to be
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one and all other data to be zero, then calculate the amount of heat that each unlabelled data receives from the

labelled data in classCk. Finally, we assign the unlabelled data to the class from which it receives most heat. More

specifically, we describe the resulting Graph-based Heat Diffusion Classifier as follows.

[Step 1: Construct graph] Define graphG over all data points both in the training data set and in the unlabelled

data set by a graph construction algorithm.

[Step 2: Compute the Heat Kernel]Using Eq. (4.4) and Eq. (4.6), find the heat kerneleγH .

[Step 3: Compute the Heat Distribution] Let

fk(0) = (xk
1, x

k
2, . . . , x

k
M , 0, 0, . . . , 0︸ ︷︷ ︸

N

)T ,

k = 1, 2, . . . , c, wherexk
i = 1 if Cki = Ck, andxk

i = 0 otherwise. Then we obtainc results forf(t), namely,

fk(t) = eγHfk(0), k = 1, 2, . . . , c. fk(0) means that all the data points in classCk have unit heat at the initial

time, while other data points have no heat, and the corresponding resultfk(t) means that the heat distribution at

time t is caused by the initial temperature distributionfk(0).

[Step 4: Classify the data]Forl = 1, 2, . . . , N , compare thep-th (p = M+l) components off1(t), f2(t), . . . , f c(t),

and choose classCk such thatfk
p (t) = maxc

q=1 f q
p (t), i.e., choose the class that distributes the most heat to the

unlabelled dataxp, then classify the unlabelled dataxp to classCk.

Then we consider how to choose the input graph toG-HDC.

3.3 Candidate Graphs for G-HDC

In the case that the underlying geometry is unknown or its heat kernel cannot be approximated in the same way

as used by [20], it is natural to approximate the unseen manifold by a graph, and to establish a heat diffusion model

on the approximation graph rather than on the underlying geometry. The graph embodies the discrete structure of

the nonlinear manifold. By doing so, we can imitate the way that heat flows through a nonlinear manifold. Below

we consider three graph approximations.

3.3.1 KNN Graph

The KNN graph construction algorithm is commonly used in the literature [2, 31, 27, 28]. It is shown that

PWA (Parzen Window Approach [3] when the window function is a multivariate normal kernel) andKNN (K-

Nearest-Neighbors) are actually special cases of the classifier proposed in [34], in which the traditional KNN

graph construction algorithm is slightly changed as shown below.
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Define graphG over all data points by connecting pointsxj andxi from xj to xi if xj is one of theK nearest

neighbors ofxi, measured by the Euclidean distance. Letd(i, j) be the Euclidean distance between pointxi and

pointxj . Set edge weightwij equal tod(i, j) if xi is one of theK nearest neighbors ofxj .

Note that there areK ∗ (M + N) directed edges in the resulting graph. Despite its success of the KNN graph,

there is a room for other graph construction algorithms. Next we propose two other candidates.

3.3.2 SKNN-Graph

When the data lies on a low-dimensional nonlinear manifold that is embedded into a high-dimensional Eu-

clidean space, the straight-line Euclidean distance may be not accurate because of the nonlinearity of the manifold.

For example, on the surface of a sphere, the distance between two points is better measured by the geodesic path.

In intuition, the smaller the strait-line Euclidean distance in a manifold, the more accurate the distance will be.

This is shown in the Figure 3.1. Since AB is shorter than AC and AD, AB is more accurate than AC and AD as an

approximation to its geodesic path. Based on such consideration, to make full use of accurate information (shorter

A

D

C

B

 A

B

C
D 

Figure 3.1. Illustrations on a manifold on which the shorter line is more accurate.

edges), we propose to construct the SKNN graph with the Shortest edges whose number is the same as the KNN

graph: replace theK ∗ (M + N) edges in the KNN graph with the smallestK ∗ (M + N)/2 undirected edges,

which amounts toK ∗ (M + N) directed edges.

3.3.3 Minimum Spanning Tree

Given a connected, undirected weighted graph, a spanning tree of that graph is a subgraph which is a tree and

connects all the vertices together. A spanning tree is called a minimum spanning tree (MST) if its weight is less
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than or equal to the weight of every other spanning tree. The MST, constructed from the complete graph consisting

of all the data, is selected as a candidate input ofG-HDC because of the following reasons:

1. In KNN and SKNN, we need to adjust the parameterK, while in MST, we reduce one such kind of parameter.

2. Both KNN and SKNN cannot guarantee the connection of the resulting graph, while MST is a connected

graph.

However, MST cannot replace the KNN and SKNN in any case because there is no cycle in a MST, and thus it

lacks the ability of modelling the complex geometry. For example, a point on a sphere will diffuse heat to another

point through various paths. However, a tree-like graph cannot model this multi-connection since there is only one

path between two points.

As an example of these three candidate graph input, in Figure 4.2(a), we show 2000 points on a 2-dimensional

spiral manifold which is embedded into 3-dimensional space. In Figure 4.2(b) and 4.2(d), we show KNN graph

approximation (K = 6) and SKNN graph approximation (K = 6) of the spiral manifold, which contains 200

points drawn from the 2000 points in figure 4.2(a). In Figure 4.2(c) we show MST graph approximation. InG-

HDC, Step 1 consists of one of the above graph construction algorithms. In Step 2 and 3, the heat diffuses from

the labelled data to the unlabelled data along the graph, and consequently, the heat flows along the spiral manifold.

In Step 4, if the unlabelled data is closer to one class of points in the sense that it receives more heat in total from

data in such class, it is classified into this class, otherwise the other class.

3.3.4 Advantages and Disadvantages

The three input graphs have their own advantages and disadvantages, as described below.

The KNN Graph is democratic to each node because each node has exactly the same number of nodes that point

to it. Moreover, the resulting classifierKNN-HDC is a generalization of KNN. However, the KNN graph may not

be connected, and longer edges may be chosen in the KNN graph while shorter edges are removed.

The SKNN Graph loses the advantages of being democratic to each node, and may not be connected. However,

it fits the ideas that shorter edges are set more important than longer edges in a manifold.

For Minimum Spanning Tree, we enjoy its advantages of being connected. Moreover, the resulting matrixH

is a sparse matrix (it contains only2n nonzero elements), which helps faster calculation ofeγH using Eq. (4.6).

Also we reduce a parameterK while we need to ascertainK in KNN and SKNN.
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3.4 Interpretation

In [34], the local heat diffusion and the connection with other models such as KNN and Parzen Window Ap-

proach have been introduced. In this section, we will provide more justification for the proposedG-HDC.

3.4.1 Generalization of Gaussian Density

The heat diffusion kernelKt(x, y) is a special solution to Eq. (2.3) with a special initial condition called the

delta functionδ(x − y), which describes a unit heat source at positiony with no heat in other positions, in other

words,δ(x−y) = 0 for x 6= y and
∫ +∞
−∞ δ(x−y)dx = 1. Based on this, the heat kernelKt(x, y) describes the heat

distribution at timet diffusing from the initial unit heat source at positiony. Since arbitrary initial conditions can

be considered as a combination of heat sources with different intensities at different positions and the heat equation

is linear, the heat kernel can be used to generate the solution to Eq. (2.3) asf(x, t) =
∫
M Kt(x, y)f0(y)dy. It is

interesting to investigate the special case whenM is the familiarm−dimensional Euclidean Space. In such a case,

∆ is the Laplacian,∆f is simplified as∆f =
∑
i

∂2f
∂x2

i
, and the heat kernel has an explicit form

Kt(x, y) = (4πt)−
m
2 e−

||x−y||2
4t , (3.7)

which is the same as the Gaussian density. From this point of view, the heat kernelKt(x, y) can be considered as a

generalization of Gaussian density–when the geometric manifold varies, the corresponding heat kernel varies and

can be considered as the generalization of Gaussian density from a flat Euclidean space to a general manifold.

3.4.2 Hopfield Model

The Hopfield neural network1 [14] consists ofN pairwise connected neurons. Thei-th neuron can be either in

fi = −1 (off) or fi = +1 (on). The connections between points are undirected and have strengths that are fixed

real numbers. Letwij be the strength of the connection from neuronj to neuroni. The strengths usually satisfy:

wij = wji, andwii = 0. Define the state vectorf (to be a binary vector (+1) whosei-th component corresponds to

the state of thei-th neuron.

Each neuron examines its inputs and decides whether to turn itself on or off according to the effect of its

neighbors on it and the action threshold. More specifically, it is described as follows:

Let Ti be the threshold voltage of thei-th neuron. If the weighted sum over all of its inputs is greater than or

equal toTi, the i−th neuron turns on and its state becomes +1. If the sum is less thanTi, the neuron turns off

1Thank the anonymous reviewer for pointing out the relation between the Hopfield Model and the Heat Diffusion Model.
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and its state becomes -1. The action of each neuron at timet + 1 simulates a general threshold function ofN − 1

variables (the states of all the other neurons) at timet. If all the neurons update their values simultaneously, the

Hopfield network can be described:

fi(t + 1) = sgn(
N∑

j=1

wijfj(t)− Tj) (3.8)

Let W be anN ×N real-valued, zero-diagonal symmetric matrix. The entries ofW are thewij defined above;

Let the threshold vectort be a real-valued vector whosei-th component is the threshold voltage of thei-th neuron.

Then Eq. (3.8) can be written as a matrix form:

f(t + 1) = sgn(Wf(t)− T) (3.9)

From the viewpoint of referring to neighbors,G-HDC is similar to Hopfield model, which is the original model

which determines class by looking at immediate neighbors.

It is interesting to point out that Eq. (3.9) and Eq. (4.5) has similar appearance. However, it is difficult for us to

compare these two models in practice because we need to determine the matricesW andT if Eq. (3.9) is employed

as a classifier in the similar way as Eq. (4.5) althoughW andT can be calculated as a content-addressable memory

[14].

3.5 Experiments

The KNN graph, SKNN graph, and MST are considered as input of theG-HDC, and results in three algorithms

KNN-HDC, KN-HDC, MST-HDC. Moreover,KNN, PWA(Parzen Window Approach when the window function

is a multivariate normal kernel), andSVMare employed to be reference algorithms. All algorithms are applied to

three synthetic datasets and six datasets from the UCI Repository [13]. Since discrete attributes and the problem

of missing values are out of the scope of this paper, we simply remove all the discrete attributes and remove all the

cases that contain missing values. Table 3.1 describes the resulting datasets we use. Syn-1, Syn-2 and Syn-3 are

synthetic datasets. Syn-2 and Syn-3 are from the same spiral data as shown in Figure (4.2)(a), but with different

numbers of data. Syn-1 is obtained from Syn-2 by ignoring the third attribute. In the spiral data set, the data in one

class are distributed on a spiral rotated clockwise while the data in another class are distributed on a spiral rotated

anti-clockwise.

We obtain the free parameters inKNN-HDC, MST-HDC, andSKNN-HDCvia five cross-validations on the

training data and unlabelled data (a transductive learning setting), and those inPWAandKNN only on the training
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Table 3.1. Description of the Datasets

Dataset Cases Classes Attributes

Syn-1 100 2 2

Syn-2 100 2 3

Syn-3 200 2 3

Breast-w 683 2 9

Glass 214 6 9

Iono 351 2 34

Iris 150 3 4

Sonar 208 2 60

Vehicle 846 4 18

Table 3.2. Mean Accuracy of SVM, KNN,PWA, KNN-HDC (KNN-H), MST-HDC (MST-H) and SKNN-HDC

(SKNN-H) on the 6 datasets

Dataset SVM KNN PWA KNN-H MST-H SKNN-H

Syn-1 66.0 67.0 80.0 93.0 95.0 95.0

Syn-2 34.0 67.0 83.0 93.0 94.0 89.0

Syn-3 54.0 79.5 92.0 91.0 90.0 92.0

Breast-w 96.8 94.1 96.6 96.9 95.9 99.4

Glass 68.1 61.2 63.5 68.1 68.7 70.5

Iono 93.7 83.2 89.2 96.3 96.3 96.3

Iris 96 97.3 95.3 98 92.0 94.7

Sonar 88.5 80.3 53.9 90.9 91.8 94.7

Vehicle 84.8 63.0 66.0 65.5 83.5 66.6
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data. We employ the Gaussian kernels for theSVM; the experimental results are obtained by using the LIBSVM

software [6], in which the width parameter is obtained via five cross-validations on the training data. The figure

shown in Table 4.1 is the mean accuracy of the ten-fold cross-validations. Note that the results on Glass, Iris, Sonar,

and Vehicle are slightly different from those in [34], in which parameters are tuned outside the cross-validation.

In each row, the maximum results are shown in bold. From the results, we observe that bothSKNN-HDCand

MST-HDCperform better thanPWAandKNN in accuracy, which shows the necessity of introducing the new

graph constructing method forG-HDC. It is interesting to mention thatKNN-HDC, MST-HDC, andSKNN-HDC

can employ unlabelled data to construct graphs so that better accuracy is achieved.
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Figure 3.2. An illustration on the spiral manifold and its graph approximation. (a) The 2000 points (b)

KNN Neighborhood Graph (c) Minimum Spanning Tree (d)KN shortest edges
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Chapter 4

Novel Volume-based Heat Diffusion Model and

Its Resulting Classifier

4.1 Motivations

In order to develop the Heat Diffusion Model further, we investigate various methods of solving Eq. (2.3).

Numerical methods for differential equation in continuum mechanics have traditionally been classified into three

main approaches: finite element (FE), boundary element (BE), and finite difference (FD) methods [1]. For the

heat diffusion equation, the situation is similar. The FE method for the heat diffusion equation is used in surface

smoothing (for example, see [7, 30]). Because we do not know the true geometry in which the data points lie, we

cannot construct the triangle mesh in our model and therefore we cannot use the FE and BE methods.

Fortunately we find that we can generalize the FD method. In the following, we illustrate the FD method for the

heat diffusion equation by considering the special case when the manifold is a two-dimensional Euclidean space.

In such a case, the heat diffusion equation (2.3) becomes




∂f
∂t − ∂2f

∂x2 − ∂2f
∂y2 = 0,

f(x, y, 0) = f0(x, y).
(4.1)

The FD method begins with the discretization of space and time. For simplicity, we assume equal spacing of

the pointsxi in one dimension with intervals of size∆x = xi+1 − xi, equal spacing of the pointsyj in another

dimension with intervals of size∆y = yj+1 − yj (assume∆y = ∆x = d for simplicity), and equal spacing of

the time stepstk at intervals of∆t = tk+1 − tk. f(i, j, k) is the heat at positionxi, yj at timetk. The grid on

the plane is shown in Figure (4.1)(a). The grid creates a natural graph: the set of nodes is{(i, j)}, and node(i, j)

is connected to node(i′, j′) if and only if |i − i′| + |j − j′| = 1. Note that each node(i, j) has four neighbors:
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(i− 1, j), (i + 1, j), (i, j − 1), and(i, j + 1).

Based on this discretization and approximation of the function, we then write the following approximations of

its derivatives in space and time:

∂f

∂t

∣∣∣∣
(i,j,k)

≈ f(i, j, k + 1)− f(i, j, k)
∆t

,

∂2f

∂x2

∣∣∣∣
(i,j,k)

≈ f(i− 1, j, k)− 2f(i, j, k) + f(i + 1, j, k)
(∆x)2

,

∂2f

∂y2

∣∣∣∣
(i,j,k)

≈ f(i, j − 1, k)− 2f(i, j, k) + f(i, j + 1, k)
(∆y)2

.

This leads to the difference form of the heat equation as follows:

f(i,j,k+1)−f(i,j,k)
∆t = f(i−1,j,k)−2f(i,j,k)+f(i+1,j,k)

(∆x)2
+ f(i,j−1,k)−2f(i,j,k)+f(i,j+1,k)

(∆y)2

= [(f(i−1,j,k)−f(i,j,k))+(f(i+1,j,k)−f(i,j,k))
d2 + (f(i,j−1,k)−f(i,j,k))+(f(i,j+1,k)−f(i,j,k))]

d2

(4.2)

(a) (b) (c) (d)

Figure 4.1. (a) The grid on the two dimensional space. (b) The eight irregularly positioned points. (c)

The small patches around the irregular points. (d) The square approximations of the small patches.

In the real data analysis, we often face problems where we cannot employ the FD method directly:

1. The graph constructed from the data points is irregular;

2. The density of data varies; this also results in an irregular graph;

3. The manifold is unknown;

4. The differential equation expression is unknown even if the manifold is known.

We aim to solve these problems using a Volume-based Heat Diffusion Model (VHDM) by generalizing the

FD method. The novel heat diffusion model on the graph leads to a novel classifier calledVolume-based Heat

Diffusion Classifier(VHDC).
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The remainder of this chapter is organized as follows. In Section 4.2, we establishVHDM. In Section 4.3, we

establishVHDC. In Section 4.4, we interpret the parameters in more detail. Then in Section 4.5, we show the

related work. In Section 4.6, we show the experimental results.

4.2 Volume-based Heat Diffusion Model on a Graph

First, we give our notation for the heat diffusion model. Consider a directed weighted graphG = (V,E, W ),

whereV = {v1, v2, . . . , vn}, E = {(vi, vj) |there is an edge fromvi to vj} is the set of all edges, andW = (wij)

is the weight matrix. In contrast to the normal undirected weighed graph, the edge(vi, vj) is considered as a pipe

that connects to nodesi andj, and the weightwij is considered as the length of the pipe(vi, vj). The valuefi(t)

describes the temperature at nodei at timet, beginning from an initial distribution of temperature given byfi(0)

at time zero.

Note that the heat and the temperature at points with unit mass are equivalent. As a result, the terms of tem-

perature and heat at such a point are interchangeable. However, we employ these two term carefully to fit the

traditional usage.

We establish our model as follows. Suppose, at timet, each nodei receives an amountHM(i, j, t,∆t) of heat

from its neighborj during a period of∆t. The heatHM(i, j, t,∆t) should be proportional to the time period

∆t and the temperature differencefj(t) − fi(t). Moreover, the heat flows from nodej to nodei through the

pipe that connects nodesi and j, and therefore the heat diffuses in the pipe in the same way as it does in the

m-dimensional Euclidean space, as described in Eq. (3.7). Based on the above consideration, we assume that

HM(i, j, t,∆t) = α · e−w2
ij/β(fj(t)− fi(t))∆t. Next we consider the representation ability of each node. There

are only a finite number of nodes in the graph that are transparent to a certain observer. But in a manifold, there

are infinitely many nodes, most of which are unreachable to the observer. We can assume that

1. There is a small patchSP [j] of space containing nodej and many nodes around nodej; nodej is seen by

the observer, but the small patch is unseen to the observer.

2. The volume of the small patchSP [j] is V (j), and the heat diffusion ability of the small patch is proportional

to its volume. This assumption is reasonable because not only do the nodes take part in the heat diffusion

process, but also the unseen small patch has an effect on the heat diffusion.

3. The temperature in the small patchSP [j] at timet is almost equal tofj(t) because every unseen node in

the small patch is near nodej.

4. The small patchSP [j] diffuses an amountHM(i, j, t,∆t)V (j) of heat to nodei.
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As a result, the heat difference at nodei between timet + ∆t and timet will be equal to the sum of the heat

that it receives from all its neighbors and the small patches around these neighbhors. This is formulated as

fi(t + ∆t)− fi(t)
∆t

= α
∑

(j,i)∈E

e−w2
ij/β(fj(t)− fi(t))V (j) (4.3)

To find a closed form solution to Eq. (4.3), we express it as a matrix form:f(t+∆t)−f(t)
∆t = αHf(t), where

H = (Hij), and

Hij =





−∑
k:(k,i)∈E e−w2

ik/βV (k) j = i,

e−w2
ij/βV (j), (j, i) ∈ E,

0, otherwise.

(4.4)

In the limit ∆t → 0, we haved
dtf(t) = αHf(t). Solving it, we get a close form expression:

f(t) = eαtHf(0) = eγHf(0), (4.5)

whereγ = αt, andeγH is defined as

eγH = I + γH +
γ2

2!
H2 +

γ3

3!
H3 + · · · ≈ (I +

γ

p
H)p. (4.6)

The matrixeγH is called thediffusion kernelin the sense that the heat diffusion between nodes from time0 to t

is completely described by the elements in the matrix. For the sake of computational considerations,eγHf(0) can

be approximated as(I + γ
pH)pf(0), wherep is a large integer. The latter can be calculated by iteratively applying

the operator(I + γ
pH) to f(0).

In the model,V (i) is used to estimate the volume of the small patch around nodei. Intuitively, if the data

density is high around nodei, the nodes around nodei will have a high probability of being selected, and thus

there are fewer unseen nodes around nodei. In this paper, we defineV (i) to be the volume of the hypercube

whose side length is the average distance between nodei and its neighbors. Formally,

V (i) = η(
1
Ki

∑

j:(j,i)∈E

wij)ν ,

whereν is the dimension of the space in which graphG lies,Ki is the number of neighbors of nodei, andη is a

normalized parameter such that
∑

i∈V V (i) = 1.

One may notice that, in the current definition, if one point is far from all the other points, the volume of the

hypercube will be very high and so this point will dominate after normalization withη, which contradicts the basic

idea of local volumes. The truth is that if one pointA is far from all the other points, its volume will certainly

be large, but the amount of heat thatA diffuses to other points is small because, in the terme−w2
ij/βV (j) in H,
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e−w2
ij/β drops very quickly whenwij increases. This is further explained by the fact that a term of the forme−d2 ∗d

tends to zero quickly whend tends to infinity. So there is no contradiction here with the idea of local volumes.

Volumes are theoretically important because heat diffuses throughout the whole of any given volume in a phys-

ical system, and the concept of the volume is crucial in its ability to represent the whole space, including both

known points and other points between them. Moreover, the idea of volume can be explained further by the

definition of local charts in a differential manifold as shown in [20].

Definition 2: An m−dimensional differential manifoldM is a set of points that is locally equivalent to the

m−dimensional Euclidean spaceRm by smooth transformations, supporting operations such as differentiation.

Formally, a differentiable manifold is a setM together with a collection of local charts{(Ui, φi)}, whereUi ⊂M
with ∪iUi = M, andφi : Ui ⊂ M →Rm is a bijection. For each pair of local charts(Ui, φi) and(Uj , φj), it is

required thatφj(Ui ∩ Uj) is open andφij = φi ◦ φ−1
j is a diffeomorphism.

The small patch around each pointi can be considered as a local chartsUi, and the volume ofi is the volume of

Ui. Consequently the whole manifoldM is formed by sticking the small patches together.

4.2.1 Calculation ofν

In the definition of volumes, we introduce the parameterν describing the dimension of the space in which graph

G lies. From the definition of a differential manifold,ν corresponds to the unknown dimensionm of the local

Euclidean space. In the following, we consider how to determine the value off this parameter.

Why PCA is unsuitable

PCA is a traditional method for dimension estimation. In this method, the intrinsic dimension is determined by

the number of eigenvalues greater than a given threshold. Both global PCA and local PCA have the disadvantage

of introducing another parameter–the threshold. Moreover, global PCA methods fail on nonlinear manifolds, on

which our model is established; local methods depend heavily on the precise choice of local regions [32].

Thus, instead of PCA, we choose the maximum likelihood estimation method proposed in [21]. Apart from

avoiding the problems with PCA just mentioned, this method also has the advantage that the graph is constructed

by K nearest neighbors, as described in Section 4.3, where the parameterK is the same as that in [21].

Maximum Likelihood Estimation of Intrinsic Dimension

If Tj(x) is the Euclidean distance from a fixed point x to itsj-th nearest neighbor in the sample, then the local

dimensionm̂K(x) at point x can be estimated by a maximum likelihood estimation, as described in [21], as
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follows.

m̂K(x) =


 1

K − 1

K−1∑

j=1

log
TK(x)
Tj(x)



−1

. (4.7)

To avoid overflow of the float calculation whenTj(x) is very small, we slightly change formula (4.7) to the

following:

m̂K(x) =


 1

K − 1

K−1∑

j=1

log
TK(x) + ε

Tj(x) + ε



−1

. (4.8)

ε is set to be 0.0000001 in this paper. Thenν = 1
n

n∑
i=1

m̂K(xi).

4.2.2 Generalization of FD Method

In VHDM, if β → +∞, the graph is of the form as shown in Figure (4.1)(a), which means each node has four

neighbors, and if the volume of each node is set to be one, then Eq. (4.3) becomes Eq. (4.2). Therefore we can say

thatVHDM generalizes the FD method from Euclidean space to unknown space. The generalization is interesting

for its ability to solve the following problems.

1. Irregularity of the graph. By settingβ to be finite, we actually soften the neighborhood relation between

the data points, and thus we avoid the difficulty in handling the irregularity of the graph constructed by

the data points. For example, in Figure (4.1)(b), the central data point has four neighbors, which are not

positioned on nodes in the grid. The FD method has difficulty in handling such a case. Even worse, in real

data sets, each data point has many neighbors, which are positioned in a space with an unknown dimension.

2. Variation of density. The data points are not drawn uniformly, and we use the volume of the hypercube

around a node to perform the local density estimation around the node. In Figure (4.1)(c), the whole space is

covered by small patches, and in Figure (4.1)(d) each small patch is approximated by a small square. In this

way, we actually consider the unseen points so that the concept of heat diffusion on a graph can be treated

as an approximation of heat diffusion in a space. There is no such consideration in the FD method.

3. Unknown manifold and unknown differential equation expression.In most cases, we do not know the

true manifold that the data points lie in, or we cannot find the exact expression for theLaplace-Beltrami

operator; therefore we cannot employ the FD method. In contrast, our model has the advantage of not

depending on the manifold expression and the differential equation expression. Moreover, volumes serve as

patches that are connected together to form the underlying unknown manifold, while each volume is a local

Euclidean space. The idea of volume fits the definition of local charts in differential manifold.
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Based on the closed form solution in Eq. (4.5), we establish a classifier as described in the next section.

4.3 Volume-based Heat Diffusion Classifier

Assume that there arec classes, namely,1, 2, . . . , c. Let the labelled data set containM samples,(xi, ki)

(i = 1, 2, . . . , M ), which means that the data pointxi belongs to classki. Suppose the labelled data set contain

Mk points in classk so that
∑

k Mk = M . Let an unlabelled data set containN unlabelled samples, represented

by xi (i = M + 1,M + 2, . . . , M + N ).

We first employ the neighborhood construction algorithm commonly used in the literature, for example in

[2, 27, 28, 31], to form a graph for all the data. Then we apply the heat diffusion kernel to the graphs. For the

purpose of classification, for each classk in turn, we set the initial heat at the labelled data point in classk to be

one and all other data points to be zero, then calculate the amount of heat that each unlabelled data point receives

from the labelled data points in classk. Finally, we assign the unlabelled data point to the class from which it

receives most heat. More specifically, we describe the resultingVHDC as follows.

Step 1: Construct neighborhood graph Define graphG over all data points both in the training data set and in

the unlabelled data set by connecting pointsxj andxi from xj to xi if xj is one of theK nearest neighbors

of xi, measured by the Euclidean distance. Letd(i, j) be the Euclidean distance between pointxi and point

xj . Set edge weightwij equal tod(i, j) if xi is one of theK nearest neighbors ofxj , and setn = M + N .

Step 2: Compute the Heat Distribution Using Eq. (4.6), we obtainc results forf(t), namely,fk(t) = eγHfk(0),

k = 1, 2, . . . , c. Wherefk(0) = (xk
1, x

k
2, . . . , x

k
M , 0, 0, . . . , 0)T , k = 1, 2, . . . , c, xk

i = 1 if ki = k, and

xk
i = 0 otherwise. Herefk(0) means that all the data points in classk have unit heat at the initial time,

while other data points have no heat, and the corresponding resultfk(t) means that the heat distribution at

time t is caused by the initial temperature distributionfk(0).

Step 3: Classify the dataForl = 1, 2, . . . , N , compare thep-th (p = M+l) component off1(t), f2(t), . . . , f c(t),

and choose classk such thatfk
p (t) = maxc

q=1 f q
p (t), i.e., choose the class that distributes the most heat to

the unlabelled pointxp, then classify the unlabelled pointxp to classk.

As an example of Step 1, in Figure 4.2(a), we show 2,000 points on a 2-dimensional spiral manifold which is

embedded into 3-dimensional space. In Figure 4.2(b), we show the neighborhood graph approximation of the

spiral manifold, which contains 1000 points drawn from the 2000 points in Figure 4.2(a), and in which each node

has 3 neighbors. In Step 2, the heat diffuses from the labelled data to the unlabelled data along the graph, and
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Figure 4.2. An illustration of the spiral manifold and its graph approximation. (a) The 2000 data points

on a spiral manifold. (b) Neighborhood Graph of the 1000 data points on the spiral manifold.

consequently, the heat flows along the spiral manifold. In Step 3, if the unlabelled data point is closer to one class

in the sense that it receives more heat in total from this class of data, then the unlabelled data point is classified

into this class; otherwise, it is classified into the other class.

Before discussing the roles of the parameters, we show one advantage of the generalization ofKNN. It is well

known that expected error rate ofKNN is betweenP and2P whenN tends to infinity, whereP is the Bayes error

rate. Therefore the upper bound of the expected error rate ofVHDC is less than2P if β is infinity and volume is

constant. It should be tighter if appropriate parameters forVHDC are found.

4.4 Roles of the Parameters

It is easy to find thatK is employed to control the manifold approximation, and thatν is used to model the true

dimensionality of the manifold that the data lie in.

4.4.1 Local Heat Diffusion Controlled byβ

In Section 4.2, we assumed that the heat diffuses in the pipe in the same way as it does in them-dimensional

Euclidean space. It turns out [2] that in an appropriate coordinate systemKt(x, y) on a manifold is approximately

the Gaussian:

Kt(x, y) = (4πt)−
m
2 e−||x−y||2/4t(φ(x, y) + O(t)),

whereφ(x, y) is a smooth function withφ(x, x) = 1, and whent is small,O(t) can be neglected. Therefore when

x andy are close andt is small, we haveKt(x, y) ≈ (4πt)−
m
2 e−||x−y||2/4t. For more details, see [2, 26]. InVHDM
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in Section 4.2, heat flows in a small time period∆t, and the pipe length between nodei and nodej is small (recall

that we create an edge fromj to i only whenj is one of theK nearest neighbors). So the above approximation

can be used in our model, and we rewrite it asK∆t(i, j) ≈ (4π∆t)−
m
2 e−w2

ij/4∆t. According to the Mean-Value

Theorem and the fact thatK0(i, j) = 0, we have

K∆t(i, j) = K∆t(i, j)−K0(i, j) =
dK∆t(i, j)

d∆t

∣∣∣∣
∆t=β

∆t ≈ α · e−w2
ij/4β∆t,

whereβ is a parameter that depends on∆t, andα = 1
4w2

ijβ
−2−m/2 − 1

2mβ−1−m/2. To make our model concise,

α andβ simply serve as free parameters because the relation between∆t andβ is unknown. This explains the

statement thatβ controls the local heat diffusion from timet to t+∆t, and the reason why we assume that at time

t, each nodei receives an amountHM(i, j, t,∆t) = α · e−w2
ij/β(fj(t)− fi(t))∆t of heat from its neighborj.

4.4.2 Global Heat Diffusion Controlled byγ

Fromγ = αt, we can see thatγ controls the global heat diffusion from time0 to t. Another interesting finding

is thatγ can be explained as a regularization parameter: whenγ = 0, we haveeγHf(0) = If(0) = f(0), which

results in a classifier that has zero error on the training set. Whenγ → +∞, the system will stop diffusing heat,

and the heat at each node are equal. This means the function on the graph becomes the smoothest in the sense

that the variance between values on neighbors is the smallest. The bestγ is a tradeoff of the training error and the

smoothness, and should not be zero or infinity.

Finally, we investigate the singular behavior ofVHDC in the limit γ → 0. If we simply let γ = 0 in the

equationeγHf(0), then we only get a trivial classifier as shown above. From a different viewpoint, we observe

the following interesting phenomena:

SubtractingI from eγH then dividing byγ changes the values of the testing data in the same scale, and so does

not change the performance of the classifier, that is,(eγH − I)/γf(0) behaves the same aseγHf(0) as a classifier.

Then we can take the limit over(eγH − I)/γf(0), and we obtain

lim
γ→0

(eγH − I)
γ

f(0) = limγ→0
I+γH+ γ2

2!
H2+···−I

γ f(0)

= limγ→0(H + γ
2!H + · · · )f(0)

= Hf(0).

We considerHf(0) as the singular behavior ofVHDC in the limit γ → 0.
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4.4.3 Stability ofVHDC with respect to parameters

If the parameters in a model is not stable, then a small deviation from the best value of a parameter may result

in a totally different performance. This instability of the parameters is not desirable. In this section, we try to show

that the parametersβ, γ, andν are not sensitive to the classifierVHDC.

SinceeγH is continuous onβ, γ, andν in the sense that small changes in these parameters result in a small

change ineγH , VHDC is not sensitive to these three parameters if they are changed slightly. This can be seen from

the existence of the derivatives ofeγH with respect toβ, γ, andν:

deγH

dγ
= eγHH

deγH

dβ
= eγH dH

dβ
,

dH

dβ
= (

dHij

dβ
)

dHij

dβ
=





−∑
k:(k,i)∈E e−w2

ik/βw2
ikβ

−2V (k) j = i,

e−w2
ij/βw2

ijβ
−2V (j) (j, i) ∈ E,

0, otherwise.

deγH

dν
= eγH dH

dν
,
dH

dν
= (

dHij

dν
)

dHij

dν
=





−∑
k:(k,i)∈E e−w2

ik/βV (k) log( 1
Kk

∑
l:(l,k)∈E wkl) j = i,

e−w2
ij/βV (j) log( 1

Kj

∑
l:(l,j)∈E wjl) (j, i) ∈ E,

0, otherwise.

It is well-known that∆f ≈ df
dt ∆t. Since there exist derivatives ofeγH with respect toβ, γ, andν, we can say

thateγH is stable with respect to these parameters, and so iseγHf(0).

For the parameterK, it has an unstable effect on the classifierVHDC. Increasing or decreasingK by one will

result in a structural change in the underlyingKNN graph; as a result, the values in the matricesH andeγH will

change dramatically. However, this property of instability has no impact on the performance ofVHDC becauseK

is a natural number and all possibleK can be tested by the cross-validation on the training data, so that the best

value can be chosen successfully.

The discrete parameter is quite different from the continuous parametersγ, β andν, for which we must choose

the appropriate values by testing a subset of all their possible values. Under such a circumstance, stability is

important for continuous parameters because there may be a small variation between the best value and the nearest
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one in the subset, and the property of stability can guarantee that there is no big difference on the performance

between the true best value and the best-performing value chosen from the subset tested.

4.5 Discussions

In Section 4.1, we have shown that the heat diffusion kernelKt(x, y) is a special solution to Eq. (2.3) with a

special initial condition called the delta functionδ(x− y). From this point of view, the heat kernelKt(x, y) can be

considered as a generalization of Gaussian density–when the geometric manifold varies, the corresponding heat

kernel varies and can be considered as the generalization of Gaussian density from a flat Euclidean space to a

general manifold. Since we approximate the unknown manifold by a neighborhood graph, it is interesting to show

the similarity between heat diffusion on a manifold and heat diffusion on a neighborhood graph.

4.5.1 Neighborhood Graph and Manifold

In the case that the underlying geometry is unknown or its heat kernel cannot be approximated in the same way

as used by [20], it is natural to approximate the unseen manifold by the graph created by theK nearest neighbors

in our model, and to establish a heat diffusion model on the neighborhood graph rather than on the underlying

geometry. The graph embodies the discrete structure of the nonlinear manifold. By doing so, we can imitate the

way that heat flows through a nonlinear manifold.

Next, we list some correspondences between the heat diffusion model on graphs and the heat diffusion model

on manifolds:

1. The heat diffusion equation on a graph isd
dtf(t) = αHf(t); the heat diffusion equation on a manifold is,

from Eq. (2.3),




∂f
∂t = ∆f,

f(x, 0) = f0(x).

2. The solution to the heat diffusion equation on a graph isf(t) = eαtHf(0) = eγHf(0); the solution to the

heat diffusion equation on a manifold isf(x, t) =
∫
M Kt(x, y)f0(y)dy.

3. The delta functionδ(x − y) is used to represent a unit heat source at positiony; the vectorej , whosej−th

element is one while other elements are zero, is used to represent a unit heat source at nodej.

4.5.2 Manifold Learning

When the data points lie on a low-dimensional nonlinear manifold that is embedded into a high-dimensional

Euclidean space, the straight-line Euclidean distance may not be accurate because of the nonlinearity of the mani-
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fold. For example, on the surface of a sphere, the distance between two points is better measured by the geodesic

path. Much recent work has captured the nonlinearity of the curved manifold. One common idea is that the local

information such as local distance used by [31], local linearity used by [27], and local covariance matrix used by

[33] in a nonlinear manifold is relatively accurate, and can be used to construct the global information. This idea is

reasonable because, in a manifold, every small area is equivalent to an Euclidean space, and can be mapped to it by

a smooth transformation. While inheriting this idea in our model, we also adopt the concept of thinking globally

and fitting locally described by [28]. In practice, we fit the unknown manifold structure locally by the neighbor-

hood graph, and we also fit the heat diffusion locally. Then in the final step we think globally by accumulating the

local heat flow.

4.5.3 Heat Kernel

The Heat Kernel is proposed in [19, 20, 29]. The success in [20] is achieved because a closed form approxi-

mation to the heat kernel on the multinomial family is found. While this approximation fits the problem of text

classification well, for some other geometries, however, there is no closed form solution for the heat kernel. Even

worse, in most cases, the underlying geometry structure is unknown. In such cases, it is impossible to construct

the heat kernel for the geometry in a closed form. In contrast, there is always a closed form solution – a heat kernel

for the graph that approximates the geometry – in our model.

The outside appearance ofeγH is the same as that in [19, 29]; however, the numerical value ofeγH in our paper

is quite different from [19, 29] (refer to Eq. (4.4)). The heat kernel in [19, 20, 29] is applied to a large margin

classifier; in contrast, the heat kernel is employed directly to construct a classifier in our model. Admittedly, our

method has the limitation of being applied in the inductive learning setting. Nonetheless, it is interesting and

challenging to apply the proposedeγH to SVMwhen it is not symmetric (which is usually true when the volume

is considered). The heat kernel issues deserve further investigations, but are outside the scope of this paper, and so

the empirical comparison on heat kernels is not provided.

4.5.4 Transductive Learning

VHDC is built on a graph and it is actually a semi-supervised algorithm: it needs access to the unlabelled data.

Along these lines, our method is related to [38, 39, 40] . The models in [39, 40] are mainly concerned with directed

graphs such as the Web link, on which the co-citation is meaningful. This co-citation calculation, however, is not

being considered in our model; hence a comparison with [39, 40] is inappropriate, and is not provided empirically.

We are interested in comparing the model proposed in [38], which is the model in the literature most closely
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related to our proposedVHDC. Although our model adopts a different approach, there is an overlap between our

solution and that in [38]. The overlap happens when our volume is not being considered andγ is small in our

model, whileα is small and the normalization is not performed in [38]. This can be seen from the approximation

(I−αS)−1 ≈ I +αS whenα is small. As a result,(I−αS)−1Y has similar performance toSY . It is easy to see

that, whenγ is small,eγHY has the similar performance asHY . Consequently, when the normalization in [38]

is not performed, and when the volume is not considered,S andH are equal except for the diagonal elements,

which have no effect on the classifiersSY andHY . Another interesting point is that the classifier(I−αS)−1Y is

supported by a regularization framework. It is true that currently we cannot find a similar regularization approach

that can output the proposed classifiereγHY , but we can interpret it in another way:γ plays a role like the

regularization parameter as shown in Section 4.4.2.

Employed as baselines, two other popular transductive SVM algorithms (UniverSVM[8], SVMLight[17]) are

compared to our method in the experiment section.

4.6 Experiments

The Parzen Window Approach (PWA–P) , KNN–K, two Transductive SVMs:UniverSVM–U [8] andSVM-

Light–L [17], Consistency Method–C [38] and its two variant, C1 and C2, andVHDC and HDC (the special

version ofVHDC when the volume is not considered) are applied here to three synthetic datasets and ten datasets

from the UCI Repository [13].

Since discrete attributes and the problem of missing values are out of the scope of this paper, we simply remove

all the discrete attributes and remove all the cases that contain missing values. The boolean attributes in the Zoo

dataset are considered as continuous attributes. The first four columns in Table 4.1 describe the resulting datasets

we use.n, c andd are the number of cases, classes and features, respectively. Syn-1, Syn-2 and Syn-3 are synthetic

datasets. Syn-2 and Syn-3 are from the same spiral data as shown in Figure (4.2)(b), but with different numbers

of data. Syn-1 is obtained from Syn-2 by ignoring the third attribute. In the spiral data set, the data points in one

class are distributed on a spiral rotated clockwise while the data points in another class are distributed on a spiral

rotated counter-clockwise.

We obtain the free parameters inPWA, KNN, C, C1, C2, HDC andVHDCvia nine-fold cross-validations on the

training dataset including the testing data without labels. We employ the Gaussian kernels forUniverSVM, and

SVMLight; the width parameterσ and penalty parameterC for them are also tuned via nine-fold cross-validation

on the training dataset.

Note that the results are quite different if we choose the best values in each cross-validation in hindsight, i.e.,
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Table 4.1. Mean Accuracy on the 13 Datasets

Dataset n c d K P U L C C1 C2 HD VHD VHD-ν

Syn-1 100 2 2 67.0 80.0 88.0 86.0 94.0 93.0 90.0 93.0 95.0 96.0

Syn-2 100 2 3 67.0 83.0 89.0 86.0 93.0 93.0 93.0 93.0 94.0 94.0

Syn-3 200 2 3 79.5 92.0 92.1 92.5 92.0 91.5 90.0 91.0 92.5 92.5

Breast-w 683 2 9 94.1 96.6 64.1 67.8 98.4 97.4 98.1 96.9 97.4 99.4

Credit-a 666 2 6 65.5 63.7 76.1 76.9 84.5 84.5 84.5 89.8 89.6 90.7

Credit-g 1000 2 7 70.8 70.0 70.0 70.7 97.0 97.0 97.0 96.2 96.2 96.2

Diabetes 768 2 8 73.5 73.4 78.4 78.5 86.8 86.7 84.9 78.9 88.4 88.8

Glass 214 6 9 61.2 63.5 67.6 73.7 72.3 69.6 70.5 68.1 72.9 72.9

Hepatitis 148 2 3 79.8 79.8 78.5 79.1 79.8 79.8 79.8 79.8 79.8 79.8

Iono 351 2 34 83.2 89.2 93.7 94.3 96.3 96.3 96.3 96.3 96.3 96.3

Iris 150 3 4 97.3 95.3 96.7 96.7 95.3 95.3 95.3 98.0 98.7 98.7

Waveform 300 3 21 85.0 85.3 86.7 85.3 86.3 86.0 87.0 88.3 88.3 88.3

Zoo 101 7 16 40.6 40.6 97.2 97.0 40.6 40.6 40.6 40.6 40.6 40.6

Zoo+PCA 101 7 8 87.0 90.1 97.1 98.0 96.0 94.0 96.0 94.0 97.0 97.0
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the testing data with label is given when we choose the parameters.

The figure shown in Table 4.1 is the mean accuracy of the ten-fold cross-validations. The last column indicates

the results ofVHDCwhen we choose the value ofν that corresponds to the best classification accuracy in hindsight.

The performance of this choice gives us a benchmark to measure the performance of our calculation ofν by

employing the method in [21].

From the results, we observe that bothHDC andVHDC uniformly outperformsPWAandKNN in accuracy, as

we expected. The better results ofVHDC-ν overHDC show the necessity of introducing the volume representation

of a node in a graph.

VHDC has the same results asVHDC-ν in nine of the thirteen datasets. Among four other datasets,VHDC is

worse significantly thanVHDC-ν only on one dataset Breast-w, andVHDC achieves slightly worse results than

VHDC-ν on Syn1, Credit-a and Diabetes. This shows that the local dimension estimation inVHDC is successful.

The overall results on the ten Benchmark data indicate that our approachVHDC is competitive with the Con-

sistency Method and Transductive SVM on problems without anya priori knowledge. The better results on the

three synthetic datasets show thatVHDC fits problems with a manifold structure especially well.

We also observe thatPWA, KNN, C, C1, C2, HDC andVHDC perform more poorly than Transductive SVM

on dataset Zoo; indeed, the difference is as high as 46.6%. This can be explained by the fact that all these

methods depend heavily on the distance measure, and as a consequence, if the direct Euclidean distance is not

accurate, these methods will perform poorly. We think that the noises in the Zoo dataset causes inaccurate distance

measurement between data points. To find the performance of there algorithms on dataset Zoo with less noise, we

preprocess it withPCAsuch that the dimensionality is reduced from the original 16 to 8. The results are shown in

the last row of Table 4.1. The difference betweenVHDC andUniverSVMis thus reduced to 1%.
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Chapter 5

Conclusions

We conclude thatDiffusionRankis a generalization ofPageRank, which is interesting in that the heat diffusion

coefficientγ can balance the extent that we want to model the original Web graph and the extent that we want

to reduce the effect of link manipulations. The experimental results show that we can actually achieve such a

balance by settingγ = 1, although the best setting is still under further investigation. This anti-manipulation

feature enablesDiffusionRankto be a candidate as a penicillin for Web spamming. Moreover,DiffusionRank

can be employed to find group-group relations and to partition Web graph into small communities. All these

advantages can be achieved in the same computational complexity asPageRank. For the special application of

anti-manipulation,DiffusionRankperforms better both in precision-recall curves and in reduction effects while

keeping best stability among all the three algorithms.

All the three classifiersKNN-HDC, SKNN-HDC, andMST-HDCcan be employed as candidates for Graph-

based Heat Diffusion Classifiers. They share the idea of approximating the manifold by the graph so that we can

avoid the difficulty of finding the explicit expression for the unknown geometry in most cases. By establishing

the heat diffusion equation on the graph, we avoid the difficulty of finding a closed form heat kernel for some

complicated geometries. Our experiments have shown thatSKNN-HDCandMST-HDCare promising, and enrich

the family of heat diffusion classifiers.

The proposedVHDM has the following advantages: it can model the effect of unseen points by introducing

the volume of a node, it avoids the difficulty of finding the explicit expression for the unknown geometry by

approximating the manifold by a finite neighborhood graph, and it has a closed form solution that describes the

heat diffusion on a manifold. While the proposedVHDC is a generalization of both the Parzen Window Approach

(when the window function is a multivariate normal kernel) andKNN, our experiments have demonstrated that

VHDC gives accurate results in a classification task. In order to capitalize on these promising achievements,
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further study is needed on the following problems: How to applyVHDC to inductive learning, how to find a

graph that better approximates the manifold in stead of theKNN graph, and how to construct a better volume

representation of the unseen points.
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