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Heat Diffusion Model and its Applications

Abstract

We establish a heat diffusion model on a graph by imitating the way that heat flows in a medium with a geometric
structure, and we apply the heat diffusion model in classification and in similarity ranking on the Web Pages.

In application on classification, we propose two novel classification algorithms, Non-propagating Heat Dif-
fusion Classifier (NHDC) and Propagating Heat Diffusion Classifier (PHDC). In NHDC, an unlabelled data is
classified into the class that diffuses the most heat to the unlabelled data after one local diffusion from time O to
a small time period, while in PHDC, an unlabelled data is classified into the class that diffuses the most heat to
the unlabelled data in the propagating effect of the heat flow from time O tottidmeother words, we measure
the similarity between an unlabelled data and a class by the heat amount that the unlabelled data receives from
the set of labelled data in the class, and then classify the unlabelled data into the class with the most similarity.
Unlike the traditional method, in which the heat kernel is applied to a kernel-based classifier we employ the heat
kernel to construct the classifier directly; moreover, instead of imitating the way that the heat flows along a linear
or nonlinear manifold, we let the heat flow along a graph formed bykthearest neighbors. An important and
special feature in both NHDC and PHDC is that the kernel is not symmetric. We show theoretically that PWA
(Parzen Window Approach when the window function is a multivariate normal kernel) and KNN are actually spe-
cial cases of NHDC model, and that PHDC has the ability to approximate NHDC. Experiments show that NHDC
performs better than PWA and KNN in prediction accuracy, and that PHDC performs better than NHDC.

In application on the Web pages, we propose a novel ranking algorithm called DiffusionRank, motivated by the
way that heat flows, which reflects the complex relationship between nodes in a graph (or points on a geometry).
Since the incomplete information about the Web structure causes inaccurate results of various ranking algorithms,
we also propose a solution to this problem by formulating a new framework called, Predictive Random Graph
Ranking, in which we generate a random graph based on the known information about the Web structure. The
random graph can be considered as the predicted Web structure, on which ranking algorithm are expected to be
improved in accuracy. For this purpose, we extend some current ranking algorithms from a static graph to a
random graph. Experimental results show that the Predictive Random Graph Ranking framework can improve the

accuracy of the ranking algorithms such as PageRank, Common Neighbor, and DiffusionRank.
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Chapter 1

Introduction

Heat diffusion is a physical phenomena. In a medium, heat always flow from position with high temperature to
position with low temperature. Heat kernel is used to describe the amount of heat that one point receives from
another point.

Recently, the idea of heat kernel on a manifold is borrowed successfully in applications such as dimension
reduction [1] and classification[15, 12]. In [15], the authors approximate the heat kernel for multinomial family
in a closed form, from which great improvements are obtained over the use of Gaussian or linear kernels. In
[12], the authors propose the use of discrete diffusion kernel to discrete or categorical data, and show that the
simple diffusion kernel on the hypercube can result in good performance for such data. In [1], the authors employ
heat kernel to construct weight of a neighborhood graph, and apply it to a non-linear dimensionality reduction
algorithm.

Based on the successful applications of the heat kernel on the classification problem, it is natural to explore
the use of heat kernel in a wider area where the underlying geometry is unknown or its heat kernel cannot be
approximated in the same way as in [15]. To achieve our goal, we represent the underlying geometry by a finite
neighborhood graph in the application on classification, instead of approximating the heat kernel in a given geom-
etry; in application on the Web pages, the link structure is a well-defined graph. Then we establish a heat diffusion
model based on this graph, instead of on the manifold.

All the proposed applications mentioned in this paper are established on a graph, and some of them will be
established on a random graph. For our convenience, we first give some notations, and all common notations can
be seen in the Appendix. Throughout the paper, all the graphs mentioned are directed graphs. We denote a static
graph byG = (V, E), whereV = {vi,v2,...,v,}, E = {(v;, v;) | there is an edge fromy to v, } is the set of all

edges. Let/(v;) and/(v;) denote the nodes that link to nodgandv; respectively, and/(v;)|, |I(v;)| means



the in-degree of the; andv; respectively. The definition of a random graph is given below, and is denoted by
RG = (V, P).
Definition 1: A random graphRG = (V, P = (py;)) is defined as a graph with a vertex $ein which the
edges are chosen independently, andferi, j < |V| the probability of(v;, v;) being an edge is exactly;.
The original definition of random graphs in [3], is slightly changed to consider the situation of directed graphs.
The remaining of the paper is organized as follows. In Chapter 2, we establish a heat diffusion model on
the graph. In Chapter 3, we preséfn-propagating Heat Diffusion Classifi@dlHDC) andPropagating Heat
Diffusion Classifie(PHDC). In Chapter 4, we propose tBéffusionRankalgorithm. To improve the accuracy
of the various ranking algorithms includirigiffusionRank in Chapter 5, we establish a framewd?kedictive
Random Graph Rankingn Chapter 6, we demonstrate the experimental results. Finally, in Chapter 7, we show

the conclusions and future work.



Chapter 2

Heat Diffusion Model

2.1 Heat Diffusion Model on a Manifold

If the manifold is known, the heat flow throughout a geometric manifold with initial conditions can be described

by the following second order differential equation:

d

g _Af = 0,

f(l',()) = fO(x)a
wheref(z,t) is the heat at location at timet, beginning with an initial distribution of heat given ly(x) at time
zero,Af is theLaplace-Beltrami operatoon a functionf. In local coordinates)\ f is given by

1 0 . of

Af—=—_——— . ./ —J
f \/de'rg zj: (%j (21:9 de@81‘2>
[15]. When the manifold is the familiar Euclidean Spafeis the Laplacian, and f is simplified as
0’ f
The heat or diffusion kerné{; (x, y) [15] is a special solution to the heat equation with a special initial condition

called the delta functiodi(x—y), which has the following propertied(z—y) = 0 for z # v; f:fj d(z—y)dzr = 1.
The delta functio (x — y) in the heat diffusion setting has the physical meaning — it describes a unit heat source
at positiony when there is no heat in other positions. Based on this, the heat K€rfely) describes the heat
distribution at timet diffusing from the initial unit heat source at positignand thus describes the connectivity
(which is considered as a kind of similarity) betweeandy,.

Since arbitrary initial conditions can be considered as a combination of heat sources with different intensities at

different positions, as a consequence of the linearity of the heat equation, the heat kernel can be used to generate
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the solution to the heat equation according to the following equation

Pt = [ Kiw.y)folw)dy.

The heat kernek;(x, y) can be considered as a generalization of Gaussian density. This is because that when the

underlying manifold is a flat n-dimensional Euclidean space, the heat kE€f(tely) has an explicit form

z— ull2
(4rt)~% exp(—W), (2.1)

which is the same as the Gaussian density. When the geometric manifold varies, the corresponding heat ker-
nel varies and can be considered as the generalization of Gaussian density from flat Euclidean space to general
manifold.

However, it is very difficult to find the manifold that the data or the Web pages lie in; even the manifold is
known, it is very difficult to find the heat kerné{,(z, y), which involves solving Eq.3?) with the delta function
as the initial condition. This motivates us to investigate the heat flow on a graph, and employ the heat diffusion

behavior between nodes as the similarity measure between nodes.
2.2 Heat Diffusion Model on a Static Graph

On graphG, the edg€v;, v;) is considered as a pipe that connects to negasdv;. The valuef;(t) describes
the heat at node; at timet, beginning from an initial distribution of heat given (i) at time zero.f(t) (f(0))
denotes the vector consisting fft) (fo(7)). We establish our model as follows. Suppose, at tingach node;

receiveskH (i, j, t, At) amount of heat from its antecedentduring a period ofAt. We have three assumptions:
1. The heatRH (i, j, t, At) should be proportional to the time peridd.
2. The heatRH (i, j, t, At) should be proportional to the the heat at nogle
3. The heatRH (i, j, t, At) is zero if there is no link fromy; to v;.

As aresulty; will receive’;. . . er 05 f;(t)At amount of heat from all its antecedents.

On the other hand, node diffusesD H (i, t, At) amount of heat to its subsequent nodes. We assume that

1. The heatD H (i, t, At) should be proportional to the time peridd.
2. The heatD H (i, t, At) should be proportional to the the heat at node
3. The heatD H (i, t, At) is proportional to its out-degre& (v;).

4



As aresult, node; will diffuse 3;d* (v;) f;(t) At amount of heat to all its subsequent nodes.
To sum up, the heat difference at nagebetween time + At and timet will be equal to the sum of the heat
that it receives, deducted by what it diffuses. This is formulated as
filt+ At) = fi(t) = =Bid () )AL+ D" ojf;(t)At (2.2)
j:(vj,v;)€EE

For simplicity, we assume; = o, andf; = (. To find a closed form solution to Eq. (2.2), we express it in a

matrix form:
Ut D) =IO ey 2.3
At
whereH = (H;;), and
—Ddt(@), j=i,
Hij =14 1, (vj,v;) € E, (2.4)
0, otherwise
Lett = 0, EqQ. (2.3) can be rewritten as
f(At) = (I +oAtH)f(0). (2.5)

AssumeN = 1/At is an integer, then we have

f) = f(N-AY
= (I+0AtH)f((N —1)-At) (2.6)

= (I+ocAtH)Nf(0).

Eg. (2.6) is one closed form solution to Eq. (2.2) in the setting of discrete heat diffusion, where it describes the
N —step heat distribution at a time period Af from time 0 to time 1. The matrix/ + cAtH)" is called as
Discrete Diffusion Kernein the sense that the heat diffusion process stops after a number of steps, and in each
step, nodes diffuse their heat only to their subsequent nodes.
Next, we try to find another closed form solution to Eq. (2.2) in the setting of continuous heat diffusion. In the
limit At — 0, Eq. (2.3) becomes
&1ty = oH 1 (0) 2.7)

Solving Eq. (2.7), we gef(t) = e“* £(0), especially we have

F(1) = e £(0), (2.8)



wheree?H is defined as
oH T H o H2 o
2! 3!

The matrixe is called asContinuous Diffusion Kerneh the sense that the heat diffusion process continues

H3 4. (2.9)

infinitely many times after the nodes diffuse their heat to their subsequent nodes for the first time. In Figure 2.1,

Step 1 Step 2 Step 3

Figure 2.1. lllustration on Heat Diffusion

we illustrate the heat flow on a graph. There are six nodes in the graph, and there are links between them. We want
to show how the heat diffuse from nodeo nodeb. Initially there is heat only in node, at Step 1, heat diffuse

from a to its two subsequent nodes along the links, in Step 2, the heat diffuse further from nodes with high heat to
nodes with low heat. At Step 3, nodeeceives heat from it two antecedents. The heat distribution in Step 3 can
reflect the relationship between nodand other nodes, which is caused by the graph structure.

In case of weighted graphs, Eq. (2.2) can be changed to

2

it + A0 = filt) = 3 a-exp(=—0)(fi(t) — fit) At (2.10)
j:(ji)EE
And the matrixH = (H;;) is changed to be
= ki(kiyer XP(— ), j=1i;
w?.
Hij = exp(——3), (j,i) € E; (2.11)
0, otherwise

Theorem 1:The solution in Eq. (2.8) has the property of heat preserving.
2.3 Heat Diffusion Model on a Random Graph

When the graph is uncertain, we need to establish heat diffusion model on a random graph.
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On a random graplRG = (V, P), whereP = (p;;) is the probability of the edgév;,v;) exists. In such a
random graph, the expected heat difference at nds#ween time + At and timet will be equal to the sum of
the expected heat that it receives from all its antecedents, deducted by the expected heat that it diffuses. Since the
probability of the link(v;, v;) is p;i, we have
filt+ At) — fi(t) = =BRD™ (vy) fi(t) At + > opjif;(t)At, (2.12)
j:(vj,v)€EE
whereR D™ (v;) is the expected out-degree of naggit is defined a§"), p;x. The Eq. (2.3) is changed accordingly

ft+ AL — f(t)

N = oRf (1), (2.13)

whereR = (R;;), and
—§ DDk, J=1
Ry = (2.14)
Djis J# i
AssumeN = 1/At is an integer, then we have Eqg. (2.6) is changed to be

f(1) = (I + ocAtR)N £(0). (2.15)
Moreover, Eq. (2.8) is changed to be
F(1) =€ £(0), (2.16)
wheree?f is defined as
0'2 0'3 <
QUR:I+O'R+§R2+§R3+"" (217)

The matrix(I + cAtR)" in Eq. (2.15) and matrix?’ in Eq. (2.16) are calle®iscrete Diffusion Kernebn the
random graph and theéontinuous Diffusion Kernain the random graph respectively.

First we give our notation for the heat diffusion model on graph. Consider a directed weighted®raph
(V,E,W),whereV = {vi,va,...,v,}, E = {(v;,v;) | there is an edge
fromwv; tov;} is the set of all edges, afd = (w;;) is the weight matrix. Different from the normal undirected
weighed graph, the edge;, v;) is considered as a pipe that connects to nadasd j, and the weightv;; is
considered as the length of the pifpe, v;). The valuef;(t) describes the heat at nodlat timet, beginning from
an initial distribution of heat given byj () at time zero.

Based on the two closed form solutions Eq. (2.5) and Eq. (2.8), we establish two different classifiers in the next

two sections.



Chapter 3

Heat Diffusion Classifiers

3.1 Non-propagating Heat Diffusion Classifier

Assume that there akeclasses, namely,;, Cs, ..., C.. Let the labelled data set containg samples, repre-
sented by(x;, k;) (i = 1,2, ..., M), which means that the data poitbelongs to clas€’,. Suppose the labelled
data set containd/;, points in class”y so that)", M;, = M. Let an unlabelled data set contaiNsunlabelled
samples, represented ky(i = M +1,M +2,..., M + N).

We first employ the neighborhood construction algorithm commonly used in the literature, for example in [1],
[23], [21] and [22], to form a graph for all the data. Then we apply the non-propagating heat diffusion kernel to
the graphs. For the purpose of classification, for each ¢lass turn, we set the initial heat at the labelled data in
classC}, to be one and all other data to be zero, then calculate the amount of heat that each unlabelled data receives
from the labelled data in clags;. Finally, we assign the unlabelled data to the class from which it receives most
heat. More specifically, we describe the resulting non-propagating Heat Diffusion-Based Classifier as follows.

[Step 1: Construct neighborhood graph]Define graphG over all data points both in the training data set and
in the unlabelled data set by connecting poigtandx; fromx; to x; if x; is one of theK nearest neighbors af
measured by the Euclidean distance. d€t j) be the Euclidean distance between paijrand pointx;. Set edge
weightw;; equal tod(¢, j) if X; is one of the/ nearest neighbors af;, and sets = M + N.

[Step 2: Compute the Non-propagating Heat KernellUsing Eq. (2.14), get the Non-propagating Heat Kernel
H.

[Step 3: Compute the Heat Distribution] Let

fk(O) = (xlf,azé:, ... ,:c’fw,o,o, .. .,O)T,
—_————
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k=1,2,...,c, wherez? = 1if C}, = C}, 2¥ = 0 otherwise. Then we obtainresults forf(At), namely,
fE(Aat) = Hf*0),k=1,2,...,c.

By Eq. (2.5),f*(At) should be equal to +aAtH) f*(0), but the identity matri¥ and the constantAt have
no effect on the classifier introduced in Step 4, so we simplyAént) = H f¥(0). £#(0) means that all the data
points in class” have a unit heat at the initial time while other data points have no heat, and the corresponding
result f*(At) means that the heat distribution at ti’e is caused by the initial heat distributigi¥(0).

[Step 4: Classify the dataJForl = 1,2, ..., N, compare the-th (p = M-+I) components of ! (At), f2(At),..., f¢(At),
and choose class), such thatf¥(At) = max¢_,; f¢(At), i.e., choose the class that distributes the most heat to
the unlabelled data,, then classify the unlabelled datato classCy,.

In Figure 3.1, we illustrate a neighborhood graph, in which three cases are represented by circle and labelled as
class 1, two cases are represented by square and labelled as class 2, and one case is represented by a triangle and
is unlabelled. According to Step 1, there is an edge frgno x; if X; is one of theX nearest neighbors of, and

hence the in-degree of each nodédsisIn the graph in Figure 3.1 is set to be 2.

Figure 3.1. Neighborhood Graph

Figure 3.2 shows how heat flows from one node to another node when the initial heat is 1 at nodes in class 1
and 0 at other nodes. A node diffuses heat only to its successors through the directed edge. As a result of the
non-propagating heat diffusion, one square receives heat, represented by two small circles, from its two circle pre-
decessors; one square receives heat, represented by one small circle, from its one circle predecessor; the unlabelled
data (triangle) receives heat, represented by one small circle, from its one circle predecessor.

Similarly Figure 3.3 shows the result of non-propagating heat flow when the initial heat is 1 at nodes in class 2
and O at other nodes.

The unlabelled data (triangle) receives heat both from nodes in class 1 and nodes in class 2. According to Step
4, we classify the unlabelled data as the class from which it receives the most heat. Through comparison the

amount of heat in the triangle in Figure 3.2 and Figure 3.3, we classify the unlabelled data to class 2.



Figure 3.2. Non-propagating Heat Diffusion Result on the Neighborhood Graph

Figure 3.3. Non-propagating Heat Diffusion Result on the Neighborhood Graph

In this non-propagating heat diffusion classifier (NHDC), we only consider the heat flow in a small time period,
and heat diffuses only once during such a period. We have two free parameters in NHBG@ 3. In the
next section, we consider the propagating effect of infinitely many times of heat flow: The heat diffuses to its
neighbors first, then these neighbors diffuse the heat further to their own neighbors. This process continues until

an appropriate timeis reached.
3.2 Propagating Heat Diffusion Classifier

In this classifier, we replace the non-propagating heat diffusion kéfneith the propagating heat diffusion
kernele”. Consequently, the algorithm in Section 3.1 changes to the following.

[Step 1: Construct neighborhood graph]The same as Step 1 in Section 3.1.

[Step 2: Compute the Propagating Heat KernellUsing Eq. (2.14) and Eq. (2.9), get the Heat Kewié{ .

[Step 3: Compute the Heat Distribution] f*(0) is the same as Step 3 in Section 3.1. Using Eq. (2.8), we
obtainc results forf (t), namely,f*(t) = e f¥(0), k = 1,2, ..., c.

[Step 4: Classify the dataJForl = 1,2,..., N, compare the-th (p = M+I) components of }(t), f2(t), ..., f<(t),
and choose class}, such thatfz’f(t) = maxg_; f(t), i.e., choose the class that distributes the most heat to the

unlabelled data, from time O to timet, then classify the unlabelled datato classCj,.
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Since we consider the propagating effect of heat diffusion, this classifier is called Propagating Heat Diffusion
Classifier (PHDC). We have three free parameters in AHDECS and-y.

Different from NHDC, after the first heat diffusion, the heat will continue to diffuse in PHDC. The second heat
diffusion is based on the result of the first diffusion, which is roughly illustrated by Figure 3.4 and Figure 3.5.
The tiny circles mean less amount of heat transmitted in the second diffusion, which may directly come from data
(circle) in class 1 or indirectly from data (square) in class 2. The tiny squares have similar meaning. For example,
there are two tiny circles in the left-lowest large square. They are the results of the second diffusion: One tiny
circle is transmitted indirectly from the small circle in the right large triangle, and the other tiny circle is directly
from the large circle in the middle. When the time peritd tends to zero and in fact our model acts this way,

there is infinitely many times/ At of heat diffusion from time 0 to time

Figure 3.5. Second Heat Diffusion Result on the Neighborhood Graph

Remark In Step 1, we construct only one graph over both labelled data and unlabelled data by the method of

K nearest neighbors. There are many variants in this step:

1. We can construct the graph by other methods suchresghborhood.

2. We can construat graphs: For each clag$, in turn, construct graph by connecting all the unlabelled data

points and data points with labkl In such case, Step 3 and Step 4 need to be changed correspondingly.

11



3.3 Interpretation

In Section 2, we assume that the heat diffuses in the pipe in the same way as it doeshtlithensional
Euclidean space. Next we will justify this assumption.

It turns out [1] that in an appropriate coordinate syst€pir, y) on a manifold is approximately the Gaussian:

=yl
Kifa,y) = ()% exp(—— 20 (6(2,) + O(0),

where¢(z,y) is a smooth function withp(x,z) = 1 andO(t) represents an ignorable term whers small.

Therefore wherr andy are close andis small, we have

Hx_yHQ)
4t ’

Ki(x,y) ~ (47t) ™% exp(—
For more details, see [1] and [20].
In our graph heat diffusion model in Section 2, we first consider the heat flow in a small time periatd
the pipe length between nodand nodej is small (recall that only whep is one of theK nearest neighbors, we
create an edge fromto i). So the above approximation can be used in our model, and we rewrite it as follows:

w2

Kad(i, j) = (4nAt) ™% eXp(‘r&)- 3.1

According to the Mean-Value Theorem and the fact tigti, j) = 0, we have

KAt(iaj) = KAt(ivj)_KO(iaj)

dE a¢(i.5)

2

SR exp(—ig )AL,

where the last approximation is based on Eq. (3113,a parameter that dependsAn, anda = iw%ﬁ*m/zfz —
%mﬁ—mﬂ—l. To make our model concise,andj3 simply serve as free parameters that unrelatefittandw;;.

w?,
This explains why we assume that the at timeach node receivesM (i, j, ¢, At) = a - exp(——3")(f;(t) —

fi(t))At amount of heat from its neighbgr

3.4 Connections with Other Models and Related Work

In this section, we establish connections between NHDC and other models, and connection between NHDC

and PHDC. We show that PWA (Parzen Window Approach [2] when the window function is a multivariate normal

12



kernel) and KNN {-Nearest-Neighbors) are actually special cases of NHDC, and that PHDC can approximate

NHDC. Finally, we compare our heat kernel with those in the related work.
3.4.1 NHDC and Parzen Window Approach

First we review the Parzen Windows non-parametric method for density estimation, using Gaussian kernels.
When the kernel functiodf (v) is a multivariate normal kernel, a common choice for the window function, the
estimate of the density at the points

_ 1L [Ix — ;|2
X) = — IR Ay, 3.2

When applying it for classification, we need to construct the classifier through the use of Bayes’s theorem. This
involves modelling the class-conditional densities for each class separately, and then combining them with priors
to give models for the posterior probabilities which can then be engaged to make classification decisions [2]. The

class-conditional densities for claS can be obtained by extending Eq. (3.2):

e PLEN R SN |t (39
My s i, (2mh2)%2 2h2 7

while the priors can be estimated usip@,) = % Using Bayes’ theorem, we get

~ _X:||2
p(Cklx) = W > eXP(—%)- (3.4)

Z:Cki:Ck
If K = n — 1, then the graph constructed in Step 1 will be a complete graph, and the Haimi¥q. (2.14)

becomes

w?

— Yz exp(—4), J=14
w?,

exp(—52), j i

Hyj = (3.5)

Then, in NHDC, the heafﬁ(At) that unlabelled data, receives from the data points in claSg will be equal
t0 Y .0, —c, exp(—||Xy — Xi||2/3), which is the Eq. (3.4) if we ley = 1/Mp(x)(2rh?)%?, andB = 2h2. This
means that Parzen Window Approach when the window function is a multivariate normal kernel can be considered

as a special case of NHDC (when we lét=n — 1 in NHDC).

13



3.4.2 NHDC and KNN

w2, . S
If 5 tends to infinity, themxp(—%) will tend to one, and the matrik in Eq. (2.14) becomes

-Ki, j=1
Hij =1 1, X; is one of theK nearest neighbors of; (3.6)
0, otherwise

Here K; is the outdegree of the poirt (note that the indegree of the poixtis K). Then, in NHDC, the heat
[ (At) that unlabelled data, receives from the data points in claSgwill be equal to
By = > 1=K,
1:l;=CYq
where K, is the number of the labelled data points from clé§s which are theK nearest neighbors of the
unlabelled data poin,. Note that whenV = 1, i.e., when the number of unlabelled data is equal to one,
o=1 K4 = K. According to Step 4, we will classify the unlabelled dgjao the clas€’;, such thay";“(At) = K
is the maximal among alff(At) = K,. This is exactly what KNN does, and so KNN can be considered as a

special case of NHDC (whet tends to infinity andV = 1).
3.4.3 NHDC and PHDC

When the parameteris small, we can approximat&’ in Eq. (2.9) by its first two items, i.e.,
M ~ T+ ~H, (3.7)

then in PHDC,f*(t) = e fk(0) ~ f*(0) + vH f*(0). As the constany and the first itemf*(0) impose no
effect on the classifier, PHDC possesses a similar classification ability in this case as NHDC, iy {dieh =

H £*(0). This denotes the relation between NHDC and PHDC.
3.4.4 Related Work

The success in [15] is achieved partly because of the speciality of the geometry in the problem. For most
geometries, however, there is no closed form solution for the heat kernel. Even worse, in most cases, the underlying
geometry structure is unknown. In such cases, it is impossible to construct the heat kernel for the geometry in a
closed form. In contrast, there is always a closed form solution — a heat kernel for the graph that approximates the
geometry in our model. In [15] and [12], heat kernel is applied to a large margin classifier; in contrast, our kernel

is employed directly to construct a classifier.
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It is worthy to make a theoretical comparison between the heat kernel in our model and that in [12] because itis
impossible to make an empirical comparison between them (as shown below in the second item, their applications
are different), and because our heat kernel shows the same appeafamsghat in [12]. We list below the major

differences between them:

1. When the graph is symmetric artitends to infinity, the matri¥/ and the heat kernel” in our model

take the same form as that in [12].

2. Our classifier is mainly concerned with the real-valued data, while the proposed classifier in [12] aims at

categorical data in their experiments.

3. Our graph is constructed by th€é nearest neighbors in order to approximate the discrete structure of the
unknown manifold, while in [12], for each attribute, a graph is constructed by a hypercube, and then the

final diffusion kernel is the product of each individual diffusion kernel.

4. Our model is created by the imitation of the non-propagating heat diffusion and the propagating effect of
the local heat diffusion. The heat flow in the pipe behaves in the way of locality, and thus it can approximate
the heat kernel in the Euclidean space because the time period and the pipe length are small. However, in

[12], there is no such consideration.

5. Limited to narrow applications, the kernel in [12] must satisfy two mathematical requirements to be able to
serve as a kernel: It must be symmetric and positive semi-definite. In contrast, without the limitation of being

applied to a kernel-based classifier, our heat kernel is not necessarily symmetric and positive semi-definite.

Nevertheless, it is interesting to combine these two models by considering the cases when there are both con-
tinuous attributes and categorical attributes in the data set. Besides, it is a challenge to apply our heat kernel to a
kernel-based classifier when the kernel is not symmetric. These deserve further investigations, but are outside the

scope of this paper.
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Chapter 4

Heat Diffusion Ranking

In this section, we propose a new ranking model caldéftlsionRank The intuition is that all the Web pages in

the World Wide Web are imagined to be drawn from a manifold. On the manifold, the heat flows from one point
to another point, and in a given time period, if one paimeceives much heat from another pajntve can say:

andy are connected well, and thusandy have a high similarity in the meaning of a high mutual connection.

We simulate the heat flow on a manifold by the heat flow on a graph since the World Wide Web is so complex
that we cannot model it as a regular geometry with a known dimension. In this paper, the Web pages are considered
to be drawn from an unknown manifold, and the link structure forms a directed graph, which is considered as an
approximation to the unknown manifold. The heat kernel established on the Web graph is considered as the
representation of relationship between Web pages. According to the Heat Kernel proposed in Section 2.2 and
Section 2.3, we descrili@iffusionRanlkas follows.

For a random graph, the matrix 4+ cAtR)"Y or e°® can measure the similarity relationship between nodes.

Let f;(0) = 1, f;(0) = 0if j # 4, then the vectorf (0) represent the unit heat at nodewhile all other nodes

has zero heat. For sugh0) in a random graph, we can find the heat distribution at time 1 by using Eq. (2.15)
or Eg. (2.16). The heat distribution is exactly theth row of the matrix of(I + o AtR)N or e°F. So thei-row
j-column element;; in the matrix(I + o AtR)" or e”f means the amount of heat thatcan receive from;

from time0 to 1. Thus the valué;; can be used to measure the similarity froprto v;.

For a static graph, similarly the matriX + cAtH)" or e’/ can measure the similarity relationship between
nodes.

The intuition behind is that the amou:, j) of heat that a page; receives from a unit heat in a paggin a
unit time embodies the extent of the link connections from pggde pagev;. Roughly speaking, when there are

more paths fromy; to v;, v; will receive more heat from;, on the other hand, when the path length fronto v;
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is shorterw; will receive more heat frona;. The final heat that; receives will depend on various paths frem
to v;.

The four advantages f@iffusionRankare shown below.

First, its solution has two forms, both of which are closed form. One takes the discrete form, and has the
advantage of fast computing while the other takes the continuous form, and has the advantage of being analyzed
theoretically.

Second, its solution is not symmetric, which better models the nature of relativity of similarity. For example,
that one page links to an important page does not mean that this page is also important unless it is linked by the
important page.

Third, it can be naturally employed to detect group-group relation. For example, if group 2 contains pages
(j1,J2; - - -, Js) group 1 contains pages (is, . . ., i), then the suny_, , h;, ;, has the meaning of total heat that
group 1 receives from group 2, whelg, ;, is thei,-row j,-column element of the heat kernel.

Fourth, it can be used to anti-manipulation. Let group 2 contains trusted Web gaggs.( ., js), then for
each page, >, h; ;, is the heat that pagereceives from the group 2, and can be computed by Eq. (2.6) in case of
a static graph or Eq. (2.15) in case of a random graph, in wh{ohis set to be a special initial heat distribution
so that the trusted Web pages have unit heat while all the others have zero heat. In doing so, manipulated Web
page will get a lower rank unless it has strong in-links from the trusted Web pages directly or indirectly. For
such application obiffusionRankthe computation complexity fdbiscrete Diffusion Kerneis the same as that
for PageRankn cases of both a static graph and a random graph. This can be seen in Eq. (2.6) and Eq. (2.15),
by which we needV iterations and for each iteration we need a multiplication operation between a matrix and a
vector, while in Eqg. (5.1) and Eq. (5.2) we also need a multiplication operation between a matrix and a vector for

each iteration.
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Chapter 5

Predictive Random Graph Ranking on the
Web

While thePageRanlalgorithm [19] has proven to be very effective for ranking Web pages, inacdeageRank
results are induced because of the incomplete information about the Web structure. This problem is caused by the

following phenomena.

1. The Web is Dynamic (temporal dimensiefifie link structure evolves temporally. Some links are created

and modified, while others are destroyed.

2. The Observer is Partial (spatial dimensiefor different observers (or crawlers), the Web structure may be

different.

3. Links are Different (local dimensionNot all out-links are created equal. Some out-links are more signif-
icant than others. For example, some people may tend to put the most important link on the top of their

pages.

For the problem of the incompleteness and impreciseness of the Web structure, we eBtabidtve Random

Graph Rankingramework. As illustrated in Figure 5, the framework consists of two stages:

¢ Random Graph Generation Stage The first stage engages the temporal, spatial and local link information
to construct a random graph that can better model the Web. Statistical and other methods can be applied to

generate this random graph that can better approximate the incomplete Web.

e Random Graph Ranking Stage-The second stage takes the random graph output and then calculates the
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ranking result based on a candidate ranking algorithm, sudRaggRankCommon Neighbors, Jaccard’s

Coefficient, SimRanlktc.

Predictive Random Graph Ranking Framework

|
I
Random Graph Generation Random Graph Ranking | |
|
—L Tempord Links ~ |—  -PageRank
! -Spatial Links -Common Neighbors |
I Weighted Links -DiffusionRank |
|

Figure 5.1. The Predictive Random Graph Ranking Framework.

The intuition in thePredictive Random Graph Rankirigpamework is that: the more accurately we know the
structure of the Web, the more accurately we can infer about the Web.

DiffusionRankis another candidate in th&redictive Random Graph Rankifigamework.
5.1 Some Standard Ranking Algorithms

We classify ranking techniques into two type&bsolute Rankingind Relative Ranking Absolute Ranking
assigns a real number to each page, and thus gives a total order for all PageRanK19] belongs toAbsolute
Ranking Relative Rankin@ssigns a real number to each pair of pages, and thus, for each one given page, deter-
mines a total order relative to the given pa@mmmon Neighborgl8], Jaccard’s Coefficientl6], andSimRank

[9] belong toRelative Ranking
5.1.1 Absolute Ranking

As a kind ofAbsolute RankindPageRank19] gives the importance rank of Web page based on the link structure
of the Web. The intuition behinBageRanks that it uses information external to the Web pages themselves—their
in-links, and that in-links from “important” pages are more significant than in-links from average pages. Formally
presented in [4], the Web is modelled by a directed gr@ph (V, E) in the PageRanlkalgorithms, and the rank
or “importance”z; for pagev; € V is defined recursively in terms of pages which point to it:

T = Z a;jTj, (5.1
(Ji)eFE
wherea;; is assumed to be/d;, d; is the out-degree of page Or in matrix termsz = Axz. When the concept

of “random jump” is introduced, the matrix form in Eqg. (5.1) is changed to
z=[1—-a)gel + adlz, (5.2)
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where the parameter is the probability of following the actual link from a pagé, — «) is the probability of
taking a “random jump”, ang is a stochastic vector (i.el'g = 1). Typically, « = 0.85 ande is the vector of all

ones.
5.1.2 Relative Ranking

In [16], the authors survey an array of methodsRelative RankingncludingCommon Neighborgaccard’s
CoefficientandSimRankAll the methods assign a connection weigl, ;) to pairs of nodes; andv;, based on
the input graph. The development of similarity search algorithms is motivated by the “related pages” queries of
Web search engines and Web document classification [6]. Both applications require a similarity measure, which
is computed by either the textual content of pages or the hyperlink structure or both. As in previous work [6, 9, 8],

we focus on similarities solely determined by hyperlink structure of the Web graph.

Common Neighbors

Common neighbomodel is based on the idea that two pages are more similar if they have more common neigh-
bors. The common neighbors @fandv; can be defined as(i, j) = |I(v;) N I(v;)|. It means that if more nodes
points tov; andv; at the same timey; andv; are more similar. In [18], the author computes the probability of
collaboration between scientists in the Los Alamos as a function of the times of their past collaboration. A pair
of scientists with more previous collaborators are more likely to collaborate than those with less previous collab-
orators. In [16], the authors employ common neighbors to predict if any two authors will coauthor papers in the

future.

Jaccard’s Coefficient

Another commonly used similarity metric is tlaccard coefficienwhich is used to measure the probability that
bothv; andv; share a feature. In [16], the authors take features to be neighbors in graph, which corresponds to
the measure(i, j) = |1(v;) N1 (v;)|/|I(v;) UI(vj)]. Inthis paper we utilize this approach as well to measure the

similarity between two pages in the Web.

SimRank

SimRanks introduced in [9] to formalize the intuition that “two pages are similar if they are referenced by similar

pages.” Numerically this is specified by defining tBienRankscores(i, j) of two pagesy; andv; as the fixed
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point of the following recursive definition,

1, =7,
s(i,j) =14 0, [ (o) |1 (vg)] = 0,7 # j,

K S s(u,v), others
u€l(v;)wel(vy)

for some constant decay factore (0,1), whereK = m TheSimRankteration starts withs(i, j) = 1

i

fori = j ands(i, j) = 0 otherwise.
5.2 Predictive Strategy

In this section, we first show the origin of the idea of the predictive strategy, then we show that the concept
of a random graph is necessary, next we show how a random graph can be generated in various situations. This
forms the first stage of the framewadfkedictive Random Graph Ranking/e continue to extend several ranking
models from static graphs to random graphs. These are the second stagereflibtve Random Graph Ranking

framework .
5.2.1 Origin of Predictive Strategy

In [24], the authors propose a predictive ranking technique to improve the accurBageiRankhrough the
estimation of the incomplete information caused by partial crawling on the Web. The more accurately estimated
Web structure leads to a more accurBsgeRankesult. In this paper, we extend the basic idea in [24] from
PageRanko a collection of ranking algorithms, from temporal incomplete information to spatial uncertainty and

weighted links.
5.2.2 From Static Graphs to Random Graphs

The concept of a random graph is necessaryPlgeRank For example, the graph in Figure 5.2 may be
encountered by a crawler in the early stage if all the unvisited nodes are ignored. If we employ Eq. (5.1) and use
the power iterative method to solve the page rank problem, then we will suffer the problem of divergence unless the
entire initial values of; (i = 1,2, 3) take the value of /3, which usually can not be found in practice. However,
if we employ Eq. (5.2), the power iterative method will converge. This is because the modified matrix in Eq. (5.2)
is a positive stochastic matrix, and so 1 is its largest absolute eigenvalue and no other eigenvalue whose absolute

value is equal to 1, which is guaranteed by the Perron Theorem [17]. Behind Eqg. (5.2), we can see that the Web
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graph has been modelled as a random graph, in which, the original link exists with a probahilitgraf there is
a link that connects each pair of pages with a probability efc.
Furthermore, in the following, we discuss three situationstefiporal links (2) spatial linksand (3)weighted

links, in which the concept of a random graph is also necessary.

Random Graph Generated Temporal Links

Figure 5.2. A static graph.

If we want to model the estimation about the temporal links, the concept of a random is necessary. In Figure 5.2,
when the time continues, the crawler will visit more nodes, but at current time, the links (called temporal links)
from the currently unvisited node are unknown. In general, it is difficult to estimate the temporal link structure
accurately; however, some elementary estimation is possible. In this paper, we only estimate the in-degree of each
node in the set of nodes that have been found, and thus some information about the link structure can be inferred

statistically. For more discussions, see Section 5.2.3.

Random Graph Generated by Several Graphs

Several crawlers may visit some pages at different times and from different starting sites, and a link may exist
for one crawler, but disappear for another. This causes the partial observer problem—the web graph is viewed
differently from different points. Suppose that different Web gra@hs- (V;, E;), (i = 1,2,..., N) are obtained

by N different observers (or crawlers). We can combine these different graphs and generate a random graph
RG = (V, P), whereV = UN Vi, P = (p;j),pij = n(i, j)/N, n(i, j) is the number of the graphs where the link

(i,7) appears. The intuition behind is that the more a link is reliable, the more times different observers will find

it.

Random Graph Generated by Weighted Links

We have observed that some out-links are more significant than others. As an example, we may model the out-link
significance by the exponential decay ruté—* wheref is the out-link order number from a particular page.

Then a random graph generated by this rule willlbe= (p;;) wherep;; = 0 if there is no link fromi to j, and
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pij = ' 7FI) if jis thek(i, j)-th out-link fromi. By doing so, the significance of different out-links from a
particular page is distinguished. The original static graph is changed to a random graph.

In next subsection, we emphasis on the problem of dangling nodes, which is caused by the nature of the dynamic
Web. This problem is handled by predicting the link structure as a random graph. To sum up, it is necessary to

extend the current ranking algorithms from a static graph to a random graph.
5.2.3 From Visited Nodes to Dangling Nodes

Why We Consider Dangling Nodes

Pages that either have no out-link or have no known out-link are called dangling nodes [4]. In [19], the authors sug-
gested simply removing the pages without out-link and the links pointing to them. After doing so, it is suggested
that they can be “added back in” without significantly affecting the results. However the situation is changed now
and the dangling nodes problem has to be handled more accurately and directly:

On the one hand, we can see that BageRanlkalgorithm depends on part of the Web structure, and that the
visited fraction of the whole Web page by a crawler becomes smaller and smaller as the Web continues to grow.
More and more dangling nodes appear because of the difficulty of sampling the entire Web. In [19], the authors
reported that they have 51 million URLs not downloaded yet when they have 24 million pages downloaded. In
[7], dynamic pages are estimated to be 100 times more than static pages, and in [4], the authors point out in their
experiment that the number of uncrawled pages still far exceeds the number of crawled pages and that there are
an essentially infinite number of URLs which is estimated to be at &8°. These experimental results and
theoretical analysis mean that in reality, the huge number of unvisited pages tends to exceed the ability of a crawler.

On the other hand, some dangling pages are worthy of ranking because they contain important information. In
such a situation, ranking those pages that only have been found may enrich the content of a search engine. As an
example, a search engine may return the users the URLSs of unvisited pages with high ranking scores. Moreover,
including dangling nodes in the overall ranking may have significant effect not only on the rank value of non-

dangling pages but also on the rank order. This will be shown in the Experiment section.

How to Classify Dangling Nodes

In the following, we follow the ideas in [4] in analyzing the reasons that cause the dangling nodes, and we classify
dangling nodes into 3 classes according to these reasons.
Dangling nodes of class IXNC1) are defined as nodes that have been found but have not been visited. One

reason to produce such kind of dangling nodes is that the Web is so large that we cannot visit all the pages; another
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reason is that new Web pages are always being created.

Dangling nodes of class 2V (C2) are defined as nodes that have been tried but not visited successfully. The
reason to produce dangling nodes of class 2 is that some pages may exist before, but now are damaged or are in
maintenance, or they are protected by a robot.txt, or they are wrongly created.

Dangling nodes of class IXNC3) are defined as nodes that have been visited successfully but from which
no out-link is found. Dangling nodes of class 3 exist because there are many files on the Web with no hyperlink

structure.

How to Handle Dangling Nodes

We first partition all the node¥ of the graphG (|[V| = n) into three subsetsD, D!, and D?, whereC®
(|C°| = m) denotes the subset of all nodes that have been crawled successfully and have at least one out-link;
D! (|D'| = m,) denotes the set of nodes BXNC3; D? (|D?| = n — m — m;) denotes the set of nodes of
DNC1. Nodes ofDN(C?2 are ignored here. The main idea of handling dangling nodes is to handle different nodes
in different ways. In the following, we describe our method in detail.

1. We predict the real in-degree (v;) by the number of found linkgd~ (v;) from visited nodes to the nods.
With the breadth-first crawling method, we assume that the real number of links from all nddes e node
v; is proportional to the number of found linksl~ (v;) from visited nodes to the node, and further we assume

that
n

d” (v;) = mtmy) fd (vi)(i=1,2,...,n).

This assumption is based on the intuition that a crawler’s ability of finding new links to a givervnddpends
on the density of these links. The density of these links to the npdeequal tad ™ (v;) /n. The crawler has found
fd~(v;) such kind of links when it has crawled nodes, and we consid m;gfju)) as an approximate estimate of
the density of these links. Following this, the above approximate equality holds.

2. With the approximate in-degree (v;), we can re-arrange the matrix. All the found linkgé~ (v;) are from
the nodes i, and the remaining linké~ (v;) — fd~ (v;) are from the nodes iW? (it is impossible that some of
these links are from the nodesin'). Since we infer the number of the remaining links only outof m; visited
nodes and the total number nodesjshere is a risk of over-prediction. To prevent the over-prediction, we adopt a
confidence index (or certaintyjn-+m; ) /n about this estimation, and so we expett (v;)— fd~ (v;))(m+m1)/n
remaining links. Without any prior information about the distribution of these remaining links, we have to assume

that they are distributed uniformly from the nodeslif to the nodey;, i.e., these remaining links are shared by
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all the nodes inD?. So matrixA” representing the random graph can be divided into six blocks shown below

C X M
AT =
DY N

where(C, D)7 is used to model the known link structure fra¥ to V. LetC' = (¢;;), D = (d;;), then

1, thereis a link fromj to ¢,
Cijy dij =

0, otherwise.

In AT, (X, Y)T will be defined later(M, N)T is used to model the link structure froP? to V, and is defined as

follows:
lh 0 0 O
M
0 o 0 O
- 1n><(n7mfm1)7
N
0 0 In
wherel; = (d‘(vi)*fd_(vi))(erml), (¢t =1,2,...,n), n — m — my; means that the expected remaining in-links

n(n—m—mq

(d=(vi) — fd~(v;))(m + mq)/n are shared uniformly by all nodes i’

3. When we want to model the users’ teleportation, we assume that the users will jump to; vaite a
probability of g; when they get bored in following the actual links. So the matrix modelling the teleportation is
ge™. We denote herég; g2 ... gn)7 by g.

4. When the user encounters a nodeda¥ (3, there is no out-link that the user can follow. In this case, we
assume that the same kind of teleportation as in step 3 will happen, and so the(iXakfiX in step 2 is used to

model the link structure fron®! to V" and it is assumed to be

5. We further assume thatis the probability of following an actual out-link from a page; « is the probability

of taking a “random jump” rather than following a link. Then the random ma#is modelled as
PT = (1 —a)ge’ +aAT. (5.3)
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The matrix P corresponds to a random graph, which models the temporal Web—-to predict a future Web graph by
an early Web graph. This is calld@mporal Web Prediction Model
From the static graph in Figure 5.3(a), where node 4 and node 5 are assumed to be doN&siofa random

graph in Figure 5.3(b) is generated by the above madet (1).

(a) Original Static Graph (b) Random Graph produced

Figure 5.3. lllustration on the random graph

5.2.4 Random Graph Ranking

For DiffusionRankwe have extended it to random graphs. For the standard ranking algorithms, we also need
to extend them to random graphs in order to handle the random graph outputs produced by the predictive strategy

in three situations: (1) temporal links, (2) spatial links and (3) weighted links.

PageRank on a Random Graph

We extend théageRankrom the setting of a static graph to the setting of a random graph. SimiRageRank

the page rank vectar on a random graph can be defined recursively in terms of random graphs:
T =) i,
J

whereg;; = pji/ >, pjk. Orin matrix form,z = Qx, where@Q = (g¢;;). In a static graph, if there is a link
from v; to v;, then the probability of a random surfer will follow the linkigd;, whered; is the out-degree of
vj. In a random graph, since the sy, p;; is the expected out-degree ©f and the link fromw; to v; exists
with a probability ofp;;, the expected probability of a random surfer will follow the lifk, v;) is pj;/ > 5 Dj.-

Consequently, the above equation is established.
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Common Neighbor on a Random Graph

We extend th&€€ommon Neighboapproach from the setting of a static graph to the setting of a random graph.

First, the random neighbor s&t (v;) of v; is defined as

RI(Uz) = {(Uk7pki)|vk’ € V}7

wherepy; is the probability ofv,, as a neighbor of;. In the setting of a random graph, each nogdes linked to
nodew; with a probabilityp,;, Sovy is the neighbor ofy; with a probabilitypy;. This extends the definition of the
set of neighbors of node in the setting of a static graph.

Second, the set of the common random neighbots ahdv; is defined as
RI(v;) N RI(vi) = {(vk, priprj)|vw € V'}.

The sets of random neighbors @fandv; are RI(v;) and RI(v;) respectively.v;, is the neighbor ob; with a
probability p,;, andvy, is the neighbor of; with a probabilityp;,;, then we can say;, is the common neighbor of
v; andv; with a probabilityp;py; since the random edges are drawn independently. This extends the meaning of
the common neighbor.

Third, the expected number of nodesid (v;) N RI(v;) is considered as the similarity measute, j), and is

defined as
s(i,5) =D DriDij-
k

This extends the definition of number of common neighbors ahdv; in the setting of a static graph.

Jaccard's Coefficient on a Random Graph
TheJaccard’s Coefficienin the setting of a random graph is defined as

s(i,j) = |RI(vi) N RI(vj)|/|RI(vi) U RI(vj)]
= Dk PriPrj/ 2k (Pri + Pkj — Prilkj)

whereRI(v;) U RI(v;) = {(vk, Pki + Prj — PriPrj)|ve € V'}. The expected number elementsifi(v;) U RI(v;)

is equal to)_. (pri + prj — PriPkj)- Sincevy, is not the neighbor of; with a probabilityl — py;, and is not the
neighbor ofv; with a probabilityl — p;, we assume that, is not the neighbor of either; or v; with a probability
(1—pi;)(1—p;), and we have that, is the neighbor of either; or v; with a probabilityl — (1 —p;) (1 —px;) =
Pki + Drj — Pripkj. Therefore,RI(v;) U RI(v;) = {(vk, pri + Prj — Dripkj)|ve € V'}. The expected number

elements is thus equal 36, (pr; + Prj — PriDkj)-
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SimRank on a Random Graph

In the setting of a random graph, t8émRankscores(i, j) of two pagesy; andv; can be naturally redefined as

the fixed point of the following recursive definition,
1, =7,
s(i,J) =
m D uw PuiDvjs(u,v), others,
for some constant decay factore (0, 1), where|RI(v;)| = > Pri, |[RI(v5)| = Dok Prj-
Note that one can easily conclude that when the random graph becomes a static graph, the algorithms described

in the above subsections degrade into the original algorithms. This means ranking algorithms on a random graph

generalize the original ones.
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Chapter 6

Experiments

6.1 Heat Diffusion Classifiers

The Parzen Window Approach (PWA), KNN, NHDC and PHDC are applied to six datasets from the UCI
Repository. Table 6.1 describes the datasets we use. The first column refers to the names of the datasets, the
second column refers to the number of cases in each dataset, the third column refers to the number of classes, and
the fourth column is the number is the number of attributes. In the dataset Credit-g, we only consider the seven

continuous attributes while the thirteen discrete attributes are ignored.

Table 6.1. Description of the Datasets

dataset | Cases| Classes| Attributes
Credit-g | 1000 2 7
Diabetes| 768 2 8
Glass 214 6 9

Iris 150 3 4
Sonar 208 2 60
Vehicle 846 4 18

In order to make each attribute in the same scale, we preprocess the datasets by transforming the domain of
each attribute to the interval [0,1]. Specifically, for each attribytee transform the value for attributei by
(z — min(7))/(max(i) — min(7)), wheremin(¢) andmax(z) are the minimum and maximum value of attribute
respectively.

The parameter setting is shown in Table 6.2. The figures shown in Table 6.3 are the mean error rates of ten-fold
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cross-validations, and the last row in Table 6.3 shows the average results.
The experimental results show that NHDC uniformly outperforms PWA and KNN in accuracy, indicating the

superiority of our approach. Furthermore, PHDC improves over NHDC.

Table 6.2. parameters setting of PWA KNN NHDC and PHDC
dataset || PWA | KNN NHDC PHDC

s | K | K| 18| K|1/8]| ~
Credit-g 50 31 13 0 11 0 0.02
Diabetes| 300 34 33| 50 34| 150 | 0.05
Glass 7500 3 40| 1750 38| 1500 0.27
Iris 350 7 15 0 13| 50 | 0.47
Sonar 1150 3 24| 16501 24 | 1200| 0.41
Vehicle 650 10 8 | 350 || 10| 600 | 0.11

Table 6.3. Mean error rates of PWA KNN NHDC and PHDC

dataset | PWA(%) | KNN (%) | NHDC (%) | PHDC (%)
Credit-g | 27.65 | 24.41 23.90 23.94
Diabetes| 25.04 | 24.22 23.70 23.78
Glass 28.44 | 29.36 27.01 26.88
Iris 2.93 2.64 2.64 2.21
Sonar 1172 | 17.14 11.25 10.93
Vehicle | 2755 | 28.59 27.10 27.07
Average | 20.56 | 21.06 19.26 19.14

6.2 Predictive Random Graph Ranking

The temporal dimension of theredictive Random Graph Rankifiggmework can actually be designed to be
tested in experiments, although it is difficult to measure whether a link analysis algorithm is better than another
because of the different intuitions for different ranking algorithms. For this, we design a comparison method by
calculating the ranking difference and order difference between the early results (less accurate) and the final results

(relatively accurate, and considered as a ground truth). For more details, see Section 6.2.2.
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t 1 2 3 4 5 6

V[t] || 1000 | 1100 | 1200 | 1300 | 1400 | 1500

T[] || 1764 | 1778 | 1837 | 1920 | 1927 | 1936

t 7 8 9 10 11

V[t] || 1600 | 1700 | 1800 | 1900 | 2000

T[t] || 1952 | 1954 | 1964 | 1994 | 2000

Table 6.4. Description of the Synthetic Graph Series
6.2.1 Data

Our input data consists of a synthetic data set and a real-world data set. A detailed description follows.

Synthetic Web Graph

The degree sequences of the World Wide Web are shown to be well approximated by a power law distribution
[11, 14, 13]. That is, the probability that a Web page kasitgoing (incoming) links follows a power law over
many orders of magnitudg,,; (k) ~ k== and Py, (k) ~ k™ in.

The power law distribution of the degree sequence appears to be a very robust property of the Web despite
its dynamic nature, therefore, we can generate synthetic Web-like random graphs to test the performance of our
algorithms.

Several approaches to modelling power law graphs [11, 13] have been proposed. In our numerical experiment,
we use thé«, 5) model [13] to generate random graphs. By setting 0.52 and = 0.58, the model generates
a random power law graph with,,; = 2.1 and~;,, = 2.38, both of these values match the Web.

By simulating the procedure of crawling, we can obtain a series of growing incomplete graphs containing pages
of DNC1. The numbelV/[t] of pages visited and the total numtigft] of pages found at timé are shown in
Table 6.4.

Real Web Graph

The data of a real Web graph were obtained from the domatik.edu.hk The graph series are snapshot during
process of crawling pages restricted within this domain. The nuiviiérof pages visited and the total number

T'[t] of pages found at timeare shown in Table 6.5.
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t 1 2 3 4 5 6

VI[t] 7712 | 78662 | 109383 | 160019 | 252522 | 301707

T[] 18542 | 120970| 157196| 234701 | 355720| 404728

t 7 8 9 10 11

V[t] || 373579 | 411724 | 444974| 471684 | 502610

T[t] || 476961 | 515534 | 549162 | 576139 | 607170

Table 6.5. Description of Real Data Sets Within Domain cuhk.edu.hk
6.2.2 Methodology

The algorithms we run includBageRankand DiffusionRank For each algorithmd, we have two versions
denoted byA and PreA. A is the original version without using thEemporal Web Prediction Modeland
PreA is the version using th&emporal Web Prediction ModelBoth PreA and A are run on two data series—
the synthetic data series and the real data series. Each data series contains 11 data sets, which are obtained by
taking snapshots during the process of a crawler or a simulated crawler. Finally, for each data series and for each

algorithm A, we obtained 22 ranking results, namely,

Ay, A, sy At
PreAy, PreAs, ..., PreAi.

The results on the first 10 data is not accurate because these data are incomplete, and the Web is dynamically
changing. The resulti;; on the synthetic data should be the samé&asA;; becausdemporal Web Prediction
Modelwill not have effect on complete information, but the resii on the real data is not the samefas A1,
because of the existence of dangling node®afC'1 in time 11.

If the difference between the results on titrend the results on time 11 is smaller, we think it is more accurate.

We calculate the value difference and order difference described below.

Value DifferenceThe value difference betweety (PreA;) and A;; is measured as
||Ai/Mazxy — Cut(t, A11)/CutMazy||2

(||PreAs/Mazy — Cut(t, A11)/CutMaxt||2). Wherecut(t, A1) is the results cut fromd;; such that it has the
same dimension ad;, andCutMaz; (M ax;) means the maximal value among resultgdn(t, A11) (Ay).
Order Difference. The order difference betwees; (PreA;) and A;; is measured as the significant order

difference betweer; andCut(t, A11) (PreA; andCut(t, A11)). The significant order difference between two
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similarity matricesM and N is calculated by the sum of the significant order difference for each raW aind
N, and for each rowM (i), N (i) of M and N, the pair(M (i, j), M (i, k)) and(N (4, 5), N (i, k)) is considered as
a significant order difference if both/ (i, j) > M (i, k) + 0.005Maxp andN (i, k) > N(i,j) + 0.005Max n,
or bothM (i, k) > M(i,j) + 0.006M azxps andN (i, 5) > N(i,k) + 0.005M ax N, whereMax s (Mazy) is the

maximum value of\/ (V).
6.2.3 SetUp

The experiments are conducted on the workstation whose hardware model is Nix Dual Intel Xeon 2.2GHz,
whose RAM is 1GB, and whose OS is Linux Kernel 2.4.18-27smp (RedHat7.3).

We seta = 0.85 and sety to be the uniform distribution in botRageRankand PrePageRankNote that we
use the modifiedPageRanlkalgorithm [10], in which dangling nodes dd NC'1 are considered to have random
links uniformly to each node. FdpiffusionRankand PreDiffusionRank we use theDiscrete Diffuse Kernel
for computing, and we set = 1, N = 20 and g to be the inverse of the maximal out-degree in both. Note
that DiffusionRankuses théiscrete Diffuse Kernebn a static graph an@reDiffusionRankisesDiscrete Diffuse

Kernelon a random graph.
6.2.4 Experimental Results

Figure 6.1 demonstrate titageRankesults on the synthetic data and the real data. On the synthetic data, in
60% early stage®reRageRanls closer to the final result in value difference; in 100% early stagefageRank
is closer to the final result in significant order difference. Since the graph in time 11 is complete, there is no
difference between thBrePageRankand PageRankand the curves meet at time 11. On the real data, since
the data at time 11 contains unvisited pagesePageRankand PageRankhave a difference on this data, the
employment ofPageRankesults on this data as a reference will cause a bias adaieBageRankEven so, in
60% early stageRreRageRanks closer to the finaPageRankesult in value difference; in 70% early stages,
PrePageRaniks closer to the finaPageRankesult in significant order difference.

Figure 6.2 demonstrate tHgiffusionRankresults. On the synthetic data, in 100% early staBesDiffusion-
Rankis closer to the final result in value difference, and in 100% early st&yeBiffusionRanks closer to the
final result in significant order difference. On the real data, since the data at time 11 contains unvisited pages,
PreDiffusionRankandDiffusionRankhave a difference on this data, the employmerDiffusionRankresults on
this data as a reference will cause a bias ag&nsbiffusionRank Even so, in 70% early stagdteDiffusion-

Rankis closer to the finaPageDiffusionRankesult in value difference; in 70% early stagesgDiffusionRanks
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Figure 6.1. PageRank Comparison Results
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closer to the finaDiffusionRankresult in significant order difference.
6.2.5 Discussion

For Common Neighbgiaccard’s coefficientandSimRanksimilar experiments are conducted. Gommon
Neighbor slight improvement is achieved, but daccard’s coefficierdandSimRankve do not obtained expected
results for theTemporal Web Prediction Modellhese abnormal results may be caused by the ignorance of the
power law distribution. Befordemporal Web Prediction Moddhe data satisfies the power law distribution, but
after the model, the in-degrees of all nodes are increased with the same proportions. This in fact breaks the power
law distribution, for example, nodes whose in-degree is 1 do not exist after prediction while nodes whose in-degree
is 1 should have the highest density according to the power law distributamtard’s coefficienand SimRank
seem to be sensitive to the distribution of in-degrees and out-degrees. It is interesting and challenging to preserve
the power law distribution in th&éemporal Web Prediction Modeb that better accuracy can be achieved on all

these algorithms.
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Chapter 7

Conclusion and Future Work

We have presented two classifiers NHDC and PHDC by imitating the way that heat flows in a medium with a
geometric structure. By approximating the manifold by Eh@earest neighbors graph, we can avoid the difficulty

of finding the explicit expression for the unknown geometry in most cases. By establishing the heat diffusion equa-
tion on the graph, we avoid the difficulty of finding a closed form heat kernel for some complicated geometries.
Moreover, our solution to heat equation has the property of heat preserving, but our heat kernel is not symmet-
ric and positive definite. While NHDC is a generalization of both Parzen Window Approach (when the window
function is a multivariate normal kernel) and KNN, PHDC can approximate NHDC if parameétesmall. Both

NHDC and PHDC are proven to be efficient in our experiments.

We have shown thaDiffusionRankis another candidate of ranking algorithms, and we have shown that the
Temporal Web Prediction Modé&s effective inPageRankand DiffusionRank Because our model mines more
information about the Web structure, the results of Predictive strategy on these two algorithms are more accurate
than those without it, even our model breaks the power law distribution. We conclude that the random graph input
indeed extends the scope of some original ranking techniques, and significantly improve some of them.

In our experiments, we only test thiredictive Random Graph Rankirigamework in the viewpoint of dy-
namic Web. Besides the challenging work to consider the power law distribution in this viewpoint, it deserves
further investigation in other two viewpoints of partial observers and weighted links. Such future work involves

investigating page-makers’ preference on link orders and substantial users-based research.
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Appendix

Some general terms are shown below.

v;! node with an index

V: set of nodes

(vs,v5): edge fromy; to v;

E: set of edges

G=(V,E): agraph

RG = (V,P): arandom graph

x; rank value for node;

x: rank vector consisting af;

s(i,7): similarity score for; andwv;

I(v;): set of nodes that have links tg

RI(v;): random neighbor set

DNC1: dangling node of class 1, which is not
visited but has been found by a crawler

DNC2: dangling node of class 2, which has been
tried but not visited successfully

DNC3: dangling node of class 3, which has been
visited successfully and from which no
out-link is found

d* (v;) out-degree of node;

d—(v;i) in-degree of node;

fi(t): heat aty; at time t

(I +cAtH)N: discrete diffusion kernel on a static graph

e”H: continuous diffusion kernel on a static graph

(I +oAtR)N: discrete diffusion kernel on a random graph

et continuous diffusion kernel on a random graph
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