
The Chinese University of Hong Kong
Department of Computer Science and Engineering

Ph.D. – Term Paper

Title: Heat Diffusion Model and its Applications

Name: Yang Haixuan

Student I.D.: 03499020

Contact Tel. No.: 6201-4825 Email A/C: hxyang@cse.cuhk.edu.hk

Supervisor: Prof. Irwin King & Prof. Michael R. Lyu

Markers: Prof. Christopher C. Yang (SEEM) & Prof. Evangeline F.Y. Young

Mode of Study: Full-time

Submission Date: November 30, 2005

Term: 4

Fields:

Presentation Date: December 2, 2005

Time: 2:15–3:00 pm (to be confirmed)

Venue: Rm. 1027, Ho Sin-Hang Engineering Building

Heat Diffusion Model and its Applications

Abstract

We establish a heat diffusion model on a graph by imitating the way that heat flows in a medium with a geometric

structure, and we apply the heat diffusion model in classification and in similarity ranking on the Web Pages.

In application on classification, we propose two novel classification algorithms, Non-propagating Heat Dif-

fusion Classifier (NHDC) and Propagating Heat Diffusion Classifier (PHDC). In NHDC, an unlabelled data is

classified into the class that diffuses the most heat to the unlabelled data after one local diffusion from time 0 to

a small time period, while in PHDC, an unlabelled data is classified into the class that diffuses the most heat to

the unlabelled data in the propagating effect of the heat flow from time 0 to timet. In other words, we measure

the similarity between an unlabelled data and a class by the heat amount that the unlabelled data receives from

the set of labelled data in the class, and then classify the unlabelled data into the class with the most similarity.

Unlike the traditional method, in which the heat kernel is applied to a kernel-based classifier we employ the heat

kernel to construct the classifier directly; moreover, instead of imitating the way that the heat flows along a linear

or nonlinear manifold, we let the heat flow along a graph formed by thek-nearest neighbors. An important and

special feature in both NHDC and PHDC is that the kernel is not symmetric. We show theoretically that PWA

(Parzen Window Approach when the window function is a multivariate normal kernel) and KNN are actually spe-

cial cases of NHDC model, and that PHDC has the ability to approximate NHDC. Experiments show that NHDC

performs better than PWA and KNN in prediction accuracy, and that PHDC performs better than NHDC.

In application on the Web pages, we propose a novel ranking algorithm called DiffusionRank, motivated by the

way that heat flows, which reflects the complex relationship between nodes in a graph (or points on a geometry).

Since the incomplete information about the Web structure causes inaccurate results of various ranking algorithms,

we also propose a solution to this problem by formulating a new framework called, Predictive Random Graph

Ranking, in which we generate a random graph based on the known information about the Web structure. The

random graph can be considered as the predicted Web structure, on which ranking algorithm are expected to be

improved in accuracy. For this purpose, we extend some current ranking algorithms from a static graph to a

random graph. Experimental results show that the Predictive Random Graph Ranking framework can improve the

accuracy of the ranking algorithms such as PageRank, Common Neighbor, and DiffusionRank.

I

Contents

1 Introduction 1

2 Heat Diffusion Model 3

2.1 Heat Diffusion Model on a Manifold . 3

2.2 Heat Diffusion Model on a Static Graph . 4

2.3 Heat Diffusion Model on a Random Graph . 6

3 Heat Diffusion Classifiers 8

3.1 Non-propagating Heat Diffusion Classifier . 8

3.2 Propagating Heat Diffusion Classifier . 10

3.3 Interpretation . 12

3.4 Connections with Other Models and Related Work . 12

3.4.1 NHDC and Parzen Window Approach . 13

3.4.2 NHDC and KNN . 14

3.4.3 NHDC and PHDC . 14

3.4.4 Related Work . 14

4 Heat Diffusion Ranking 16

5 Predictive Random Graph Ranking on the Web 18

5.1 Some Standard Ranking Algorithms . 19

5.1.1 Absolute Ranking . 19

5.1.2 Relative Ranking . 20

5.2 Predictive Strategy . 21

5.2.1 Origin of Predictive Strategy . 21

II

5.2.2 From Static Graphs to Random Graphs . 21

5.2.3 From Visited Nodes to Dangling Nodes . 23

5.2.4 Random Graph Ranking . 26

6 Experiments 29

6.1 Heat Diffusion Classifiers . 29

6.2 Predictive Random Graph Ranking . 30

6.2.1 Data . 31

6.2.2 Methodology . 32

6.2.3 Set Up . 33

6.2.4 Experimental Results . 33

6.2.5 Discussion . 35

7 Conclusion and Future Work 37

III

Chapter 1

Introduction

Heat diffusion is a physical phenomena. In a medium, heat always flow from position with high temperature to

position with low temperature. Heat kernel is used to describe the amount of heat that one point receives from

another point.

Recently, the idea of heat kernel on a manifold is borrowed successfully in applications such as dimension

reduction [1] and classification[15, 12]. In [15], the authors approximate the heat kernel for multinomial family

in a closed form, from which great improvements are obtained over the use of Gaussian or linear kernels. In

[12], the authors propose the use of discrete diffusion kernel to discrete or categorical data, and show that the

simple diffusion kernel on the hypercube can result in good performance for such data. In [1], the authors employ

heat kernel to construct weight of a neighborhood graph, and apply it to a non-linear dimensionality reduction

algorithm.

Based on the successful applications of the heat kernel on the classification problem, it is natural to explore

the use of heat kernel in a wider area where the underlying geometry is unknown or its heat kernel cannot be

approximated in the same way as in [15]. To achieve our goal, we represent the underlying geometry by a finite

neighborhood graph in the application on classification, instead of approximating the heat kernel in a given geom-

etry; in application on the Web pages, the link structure is a well-defined graph. Then we establish a heat diffusion

model based on this graph, instead of on the manifold.

All the proposed applications mentioned in this paper are established on a graph, and some of them will be

established on a random graph. For our convenience, we first give some notations, and all common notations can

be seen in the Appendix. Throughout the paper, all the graphs mentioned are directed graphs. We denote a static

graph byG = (V,E), whereV = {v1, v2, . . . , vn}, E = {(vi, vj) | there is an edge fromvi to vj} is the set of all

edges. LetI(vi) andI(vj) denote the nodes that link to nodevi andvj respectively, and|I(vi)|, |I(vj)| means

1

the in-degree of thevi andvj respectively. The definition of a random graph is given below, and is denoted by

RG = (V, P).

Definition 1: A random graphRG = (V, P = (pij)) is defined as a graph with a vertex setV in which the

edges are chosen independently, and for1 ≤ i, j ≤ |V | the probability of(vi, vj) being an edge is exactlypij .

The original definition of random graphs in [3], is slightly changed to consider the situation of directed graphs.

The remaining of the paper is organized as follows. In Chapter 2, we establish a heat diffusion model on

the graph. In Chapter 3, we presentNon-propagating Heat Diffusion Classifier(NHDC) andPropagating Heat

Diffusion Classifier(PHDC). In Chapter 4, we propose theDiffusionRankalgorithm. To improve the accuracy

of the various ranking algorithms includingDiffusionRank, in Chapter 5, we establish a frameworkPredictive

Random Graph Ranking. In Chapter 6, we demonstrate the experimental results. Finally, in Chapter 7, we show

the conclusions and future work.

2

Chapter 2

Heat Diffusion Model

2.1 Heat Diffusion Model on a Manifold

If the manifold is known, the heat flow throughout a geometric manifold with initial conditions can be described

by the following second order differential equation:




∂f
∂t −∆f = 0,

f(x, 0) = f0(x),

wheref(x, t) is the heat at locationx at timet, beginning with an initial distribution of heat given byf0(x) at time

zero,∆f is theLaplace-Beltrami operatoron a functionf . In local coordinates,∆f is given by

∆f =
1√
detg

∑

j

∂

∂xj

(∑

i

gij
√

detg
∂f

∂xi

)

[15]. When the manifold is the familiar Euclidean Space,∆ is the Laplacian, and∆f is simplified as

∆f =
∑

i

∂2f

∂x2
i

.

The heat or diffusion kernelKt(x, y) [15] is a special solution to the heat equation with a special initial condition

called the delta functionδ(x−y), which has the following properties:δ(x−y) = 0 for x 6= y;
∫ +∞
−∞ δ(x−y)dx = 1.

The delta functionδ(x− y) in the heat diffusion setting has the physical meaning – it describes a unit heat source

at positiony when there is no heat in other positions. Based on this, the heat kernelKt(x, y) describes the heat

distribution at timet diffusing from the initial unit heat source at positiony, and thus describes the connectivity

(which is considered as a kind of similarity) betweenx andy.

Since arbitrary initial conditions can be considered as a combination of heat sources with different intensities at

different positions, as a consequence of the linearity of the heat equation, the heat kernel can be used to generate

3

the solution to the heat equation according to the following equation

f(x, t) =
∫

M
Kt(x, y)f0(y)dy.

The heat kernelKt(x, y) can be considered as a generalization of Gaussian density. This is because that when the

underlying manifold is a flat n-dimensional Euclidean space, the heat kernelKt(x, y) has an explicit form

(4πt)−
m
2 exp(−||x− y||2

4t
), (2.1)

which is the same as the Gaussian density. When the geometric manifold varies, the corresponding heat ker-

nel varies and can be considered as the generalization of Gaussian density from flat Euclidean space to general

manifold.

However, it is very difficult to find the manifold that the data or the Web pages lie in; even the manifold is

known, it is very difficult to find the heat kernelKt(x, y), which involves solving Eq. (??) with the delta function

as the initial condition. This motivates us to investigate the heat flow on a graph, and employ the heat diffusion

behavior between nodes as the similarity measure between nodes.

2.2 Heat Diffusion Model on a Static Graph

On graphG, the edge(vi, vj) is considered as a pipe that connects to nodesvi andvj . The valuefi(t) describes

the heat at nodevi at timet, beginning from an initial distribution of heat given byf0(i) at time zero.f(t) (f(0))

denotes the vector consisting offi(t) (f0(i)). We establish our model as follows. Suppose, at timet, each nodevi

receivesRH(i, j, t,∆t) amount of heat from its antecedentvj during a period of∆t. We have three assumptions:

1. The heatRH(i, j, t,∆t) should be proportional to the time period∆t.

2. The heatRH(i, j, t,∆t) should be proportional to the the heat at nodevj .

3. The heatRH(i, j, t,∆t) is zero if there is no link fromvj to vi.

As a result,vi will receive
∑

j:(vj ,vi)∈E σjfj(t)∆t amount of heat from all its antecedents.

On the other hand, nodevi diffusesDH(i, t, ∆t) amount of heat to its subsequent nodes. We assume that

1. The heatDH(i, t, ∆t) should be proportional to the time period∆t.

2. The heatDH(i, t, ∆t) should be proportional to the the heat at nodevi.

3. The heatDH(i, t, ∆t) is proportional to its out-degreed+(vi).

4

As a result, nodevi will diffuse βid
+(vi)fi(t)∆t amount of heat to all its subsequent nodes.

To sum up, the heat difference at nodevi between timet + ∆t and timet will be equal to the sum of the heat

that it receives, deducted by what it diffuses. This is formulated as

fi(t + ∆t)− fi(t) = −βid
+(vi)fi(t)∆t +

∑

j:(vj ,vi)∈E

σjfj(t)∆t (2.2)

For simplicity, we assumeσj = σ, andβi = β. To find a closed form solution to Eq. (2.2), we express it in a

matrix form:
f(t + ∆t)− f(t)

∆t
= σHf(t), (2.3)

whereH = (Hij), and

Hij =





−β
σd+(i), j = i,

1, (vj , vi) ∈ E,

0, otherwise.

(2.4)

Let t = 0, Eq. (2.3) can be rewritten as

f(∆t) = (I + σ∆tH)f(0). (2.5)

AssumeN = 1/∆t is an integer, then we have

f(1) = f(N ·∆t)

= (I + σ∆tH)f((N − 1) ·∆t)

= . . .

= (I + σ∆tH)Nf(0).

(2.6)

Eq. (2.6) is one closed form solution to Eq. (2.2) in the setting of discrete heat diffusion, where it describes the

N−step heat distribution at a time period of∆t from time 0 to time 1. The matrix(I + σ∆tH)N is called as

Discrete Diffusion Kernelin the sense that the heat diffusion process stops after a number of steps, and in each

step, nodes diffuse their heat only to their subsequent nodes.

Next, we try to find another closed form solution to Eq. (2.2) in the setting of continuous heat diffusion. In the

limit ∆t → 0, Eq. (2.3) becomes
d

dt
f(t) = σHf(t). (2.7)

Solving Eq. (2.7), we getf(t) = eσtHf(0), especially we have

f(1) = eσHf(0), (2.8)

5

whereeσH is defined as

eσH = I + σH +
σ2

2!
H2 +

σ3

3!
H3 + · · · . (2.9)

The matrixeσH is called asContinuous Diffusion Kernelin the sense that the heat diffusion process continues

infinitely many times after the nodes diffuse their heat to their subsequent nodes for the first time. In Figure 2.1,

Step 1 Step 2 Step 3

Figure 2.1. Illustration on Heat Diffusion

we illustrate the heat flow on a graph. There are six nodes in the graph, and there are links between them. We want

to show how the heat diffuse from nodea to nodeb. Initially there is heat only in nodea, at Step 1, heat diffuse

from a to its two subsequent nodes along the links, in Step 2, the heat diffuse further from nodes with high heat to

nodes with low heat. At Step 3, nodeb receives heat from it two antecedents. The heat distribution in Step 3 can

reflect the relationship between nodea and other nodes, which is caused by the graph structure.

In case of weighted graphs, Eq. (2.2) can be changed to

fi(t + ∆t)− fi(t) =
∑

j:(j,i)∈E

α · exp(−w2
ij

β
)(fj(t)− fi(t))∆t (2.10)

And the matrixH = (Hij) is changed to be

Hij =





−∑
k:(k,i)∈E exp(−w2

ik
β), j = i;

exp(−w2
ij

β), (j, i) ∈ E;

0, otherwise.

(2.11)

Theorem 1:The solution in Eq. (2.8) has the property of heat preserving.

2.3 Heat Diffusion Model on a Random Graph

When the graph is uncertain, we need to establish heat diffusion model on a random graph.

6

On a random graphRG = (V, P), whereP = (pij) is the probability of the edge(vi, vj) exists. In such a

random graph, the expected heat difference at nodei between timet + ∆t and timet will be equal to the sum of

the expected heat that it receives from all its antecedents, deducted by the expected heat that it diffuses. Since the

probability of the link(vj , vi) is pji, we have

fi(t + ∆t)− fi(t) = −β RD+(vi) fi(t)∆t +
∑

j:(vj ,vi)∈E

σpjifj(t)∆t, (2.12)

whereRD+(vi) is the expected out-degree of nodevi, it is defined as
∑

k pik. The Eq. (2.3) is changed accordingly

f(t + ∆t)− f(t)
∆t

= σRf(t), (2.13)

whereR = (Rij), and

Rij =





−β
σ

∑
k pik, j = i;

pji, j 6= i.

(2.14)

AssumeN = 1/∆t is an integer, then we have Eq. (2.6) is changed to be

f(1) = (I + σ∆tR)Nf(0). (2.15)

Moreover, Eq. (2.8) is changed to be

f(1) = eσRf(0), (2.16)

whereeσR is defined as

eσR = I + σR +
σ2

2!
R2 +

σ3

3!
R3 + · · · . (2.17)

The matrix(I + σ∆tR)N in Eq. (2.15) and matrixeσR in Eq. (2.16) are calledDiscrete Diffusion Kernelon the

random graph and theContinuous Diffusion Kernelon the random graph respectively.

First we give our notation for the heat diffusion model on graph. Consider a directed weighted graphG =

(V, E, W), whereV = {v1, v2, . . . , vn}, E = {(vi, vj) | there is an edge

from vi to vj} is the set of all edges, andW = (wij) is the weight matrix. Different from the normal undirected

weighed graph, the edge(vi, vj) is considered as a pipe that connects to nodesi and j, and the weightwij is

considered as the length of the pipe(vi, vj). The valuefi(t) describes the heat at nodei at timet, beginning from

an initial distribution of heat given byf0(i) at time zero.

Based on the two closed form solutions Eq. (2.5) and Eq. (2.8), we establish two different classifiers in the next

two sections.

7

Chapter 3

Heat Diffusion Classifiers

3.1 Non-propagating Heat Diffusion Classifier

Assume that there arec classes, namely,C1, C2, . . . , Cc. Let the labelled data set containsM samples, repre-

sented by(xi, ki) (i = 1, 2, . . . , M), which means that the data pointxi belongs to classCki . Suppose the labelled

data set containsMk points in classCk so that
∑

k Mk = M . Let an unlabelled data set containsN unlabelled

samples, represented byxi (i = M + 1,M + 2, . . . ,M + N).

We first employ the neighborhood construction algorithm commonly used in the literature, for example in [1],

[23], [21] and [22], to form a graph for all the data. Then we apply the non-propagating heat diffusion kernel to

the graphs. For the purpose of classification, for each classCk in turn, we set the initial heat at the labelled data in

classCk to be one and all other data to be zero, then calculate the amount of heat that each unlabelled data receives

from the labelled data in classCk. Finally, we assign the unlabelled data to the class from which it receives most

heat. More specifically, we describe the resulting non-propagating Heat Diffusion-Based Classifier as follows.

[Step 1: Construct neighborhood graph]Define graphG over all data points both in the training data set and

in the unlabelled data set by connecting pointsxj andxi from xj to xi if xj is one of theK nearest neighbors ofxi

measured by the Euclidean distance. Letd(i, j) be the Euclidean distance between pointxi and pointxj . Set edge

weightwij equal tod(i, j) if xi is one of theK nearest neighbors ofxj , and setn = M + N .

[Step 2: Compute the Non-propagating Heat Kernel]Using Eq. (2.14), get the Non-propagating Heat Kernel

H.

[Step 3: Compute the Heat Distribution] Let

fk(0) = (xk
1, x

k
2, . . . , x

k
M , 0, 0, . . . , 0︸ ︷︷ ︸

N

)T ,

8

k = 1, 2, . . . , c, wherexk
i = 1 if Cki

= Ck, xk
i = 0 otherwise. Then we obtainc results forf(∆t), namely,

fk(∆t) = Hfk(0), k = 1, 2, . . . , c.

By Eq. (2.5),fk(∆t) should be equal to(I +α∆tH)fk(0), but the identity matrixI and the constantα∆t have

no effect on the classifier introduced in Step 4, so we simply letfk(∆t) = Hfk(0). fk(0) means that all the data

points in classCk have a unit heat at the initial time while other data points have no heat, and the corresponding

resultfk(∆t) means that the heat distribution at time∆t is caused by the initial heat distributionfk(0).

[Step 4: Classify the data]Forl = 1, 2, . . . , N , compare thep-th (p = M+l) components off1(∆t), f2(∆t), . . . , f c(∆t),

and choose classCk such thatfk
p (∆t) = maxc

q=1 f q
p (∆t), i.e., choose the class that distributes the most heat to

the unlabelled dataxp, then classify the unlabelled dataxp to classCk.

In Figure 3.1, we illustrate a neighborhood graph, in which three cases are represented by circle and labelled as

class 1, two cases are represented by square and labelled as class 2, and one case is represented by a triangle and

is unlabelled. According to Step 1, there is an edge fromxj to xi if xj is one of theK nearest neighbors ofxi, and

hence the in-degree of each node isK. In the graph in Figure 3.1,K is set to be 2.

Figure 3.1. Neighborhood Graph

Figure 3.2 shows how heat flows from one node to another node when the initial heat is 1 at nodes in class 1

and 0 at other nodes. A node diffuses heat only to its successors through the directed edge. As a result of the

non-propagating heat diffusion, one square receives heat, represented by two small circles, from its two circle pre-

decessors; one square receives heat, represented by one small circle, from its one circle predecessor; the unlabelled

data (triangle) receives heat, represented by one small circle, from its one circle predecessor.

Similarly Figure 3.3 shows the result of non-propagating heat flow when the initial heat is 1 at nodes in class 2

and 0 at other nodes.

The unlabelled data (triangle) receives heat both from nodes in class 1 and nodes in class 2. According to Step

4, we classify the unlabelled data as the class from which it receives the most heat. Through comparison the

amount of heat in the triangle in Figure 3.2 and Figure 3.3, we classify the unlabelled data to class 2.

9

Figure 3.2. Non-propagating Heat Diffusion Result on the Neighborhood Graph

Figure 3.3. Non-propagating Heat Diffusion Result on the Neighborhood Graph

In this non-propagating heat diffusion classifier (NHDC), we only consider the heat flow in a small time period,

and heat diffuses only once during such a period. We have two free parameters in NHDC:K andβ. In the

next section, we consider the propagating effect of infinitely many times of heat flow: The heat diffuses to its

neighbors first, then these neighbors diffuse the heat further to their own neighbors. This process continues until

an appropriate timet is reached.

3.2 Propagating Heat Diffusion Classifier

In this classifier, we replace the non-propagating heat diffusion kernelH with the propagating heat diffusion

kerneleγH . Consequently, the algorithm in Section 3.1 changes to the following.

[Step 1: Construct neighborhood graph]The same as Step 1 in Section 3.1.

[Step 2: Compute the Propagating Heat Kernel]Using Eq. (2.14) and Eq. (2.9), get the Heat KerneleγH .

[Step 3: Compute the Heat Distribution] fk(0) is the same as Step 3 in Section 3.1. Using Eq. (2.8), we

obtainc results forf(t), namely,fk(t) = eγHfk(0), k = 1, 2, . . . , c.

[Step 4: Classify the data]Forl = 1, 2, . . . , N , compare thep-th (p = M+l) components off1(t), f2(t), . . . , f c(t),

and choose classCk such thatfk
p (t) = maxc

q=1 f q
p (t), i.e., choose the class that distributes the most heat to the

unlabelled dataxp from time 0 to timet, then classify the unlabelled dataxp to classCk.

10

Since we consider the propagating effect of heat diffusion, this classifier is called Propagating Heat Diffusion

Classifier (PHDC). We have three free parameters in AHDBC:K, β andγ.

Different from NHDC, after the first heat diffusion, the heat will continue to diffuse in PHDC. The second heat

diffusion is based on the result of the first diffusion, which is roughly illustrated by Figure 3.4 and Figure 3.5.

The tiny circles mean less amount of heat transmitted in the second diffusion, which may directly come from data

(circle) in class 1 or indirectly from data (square) in class 2. The tiny squares have similar meaning. For example,

there are two tiny circles in the left-lowest large square. They are the results of the second diffusion: One tiny

circle is transmitted indirectly from the small circle in the right large triangle, and the other tiny circle is directly

from the large circle in the middle. When the time period∆t tends to zero and in fact our model acts this way,

there is infinitely many timest/∆t of heat diffusion from time 0 to timet.

Figure 3.4. Second Heat Diffusion Result on the Neighborhood Graph

Figure 3.5. Second Heat Diffusion Result on the Neighborhood Graph

Remark In Step 1, we construct only one graph over both labelled data and unlabelled data by the method of

K nearest neighbors. There are many variants in this step:

1. We can construct the graph by other methods such asε-neighborhood.

2. We can constructc graphs: For each classCk in turn, construct graph by connecting all the unlabelled data

points and data points with labelk. In such case, Step 3 and Step 4 need to be changed correspondingly.

11

3.3 Interpretation

In Section 2, we assume that the heat diffuses in the pipe in the same way as it does in them-dimensional

Euclidean space. Next we will justify this assumption.

It turns out [1] that in an appropriate coordinate systemKt(x, y) on a manifold is approximately the Gaussian:

Kt(x, y) = (4πt)−
m
2 exp(−||x− y||2

4t
)(φ(x, y) + O(t)),

whereφ(x, y) is a smooth function withφ(x, x) = 1 andO(t) represents an ignorable term whent is small.

Therefore whenx andy are close andt is small, we have

Kt(x, y) ≈ (4πt)−
m
2 exp(−||x− y||2

4t
).

For more details, see [1] and [20].

In our graph heat diffusion model in Section 2, we first consider the heat flow in a small time period∆t, and

the pipe length between nodei and nodej is small (recall that only whenj is one of theK nearest neighbors, we

create an edge fromj to i). So the above approximation can be used in our model, and we rewrite it as follows:

K∆t(i, j) ≈ (4π∆t)−
m
2 exp(− w2

ij

4∆t
). (3.1)

According to the Mean-Value Theorem and the fact thatK0(i, j) = 0, we have

K∆t(i, j) = K∆t(i, j)−K0(i, j)

= dK∆t(i,j)
d∆t

∣∣∣
∆t=β

∆t

≈ α · exp(−w2
ij

4β)∆t,

where the last approximation is based on Eq. (3.1),β is a parameter that depends on∆t, andα = 1
4w2

ijβ
−m/2−2−

1
2mβ−m/2−1. To make our model concise,α andβ simply serve as free parameters that unrelated to∆t andwij .

This explains why we assume that the at timet, each nodei receivesM(i, j, t,∆t) = α · exp(−w2
ij

β)(fj(t) −
fi(t))∆t amount of heat from its neighborj.

3.4 Connections with Other Models and Related Work

In this section, we establish connections between NHDC and other models, and connection between NHDC

and PHDC. We show that PWA (Parzen Window Approach [2] when the window function is a multivariate normal

12

kernel) and KNN (K-Nearest-Neighbors) are actually special cases of NHDC, and that PHDC can approximate

NHDC. Finally, we compare our heat kernel with those in the related work.

3.4.1 NHDC and Parzen Window Approach

First we review the Parzen Windows non-parametric method for density estimation, using Gaussian kernels.

When the kernel functionH(u) is a multivariate normal kernel, a common choice for the window function, the

estimate of the density at the pointx is

p̃(x) =
1
M

M∑

i=1

1
(2πh2)d/2

exp(−||x− xi||2
2h2

). (3.2)

When applying it for classification, we need to construct the classifier through the use of Bayes’s theorem. This

involves modelling the class-conditional densities for each class separately, and then combining them with priors

to give models for the posterior probabilities which can then be engaged to make classification decisions [2]. The

class-conditional densities for classCk can be obtained by extending Eq. (3.2):

p̃(x|Ck) =
1

Mk

∑

i:Cki
=Ck

1
(2πh2)d/2

exp(−||x− xi||2
2h2

), (3.3)

while the priors can be estimated usingp̃(Ck) = Mk
M . Using Bayes’ theorem, we get

p̃(Ck|x) = 1
Mp(x)(2πh2)d/2

∑
i:Cki

=Ck

exp(− ||x−xi||2
2h2). (3.4)

If K = n − 1, then the graph constructed in Step 1 will be a complete graph, and the matrixH in Eq. (2.14)

becomes

Hij =




−∑

k 6=i exp(−w2
ik
β), j = i;

exp(−w2
ij

β), j 6= i.
(3.5)

Then, in NHDC, the heatfk
p (∆t) that unlabelled dataxp receives from the data points in classCk will be equal

to
∑

i:Cki
=Ck

exp(−||xp − xi||2/β), which is the Eq. (3.4) if we letγ = 1/Mp(x)(2πh2)d/2, andβ = 2h2. This

means that Parzen Window Approach when the window function is a multivariate normal kernel can be considered

as a special case of NHDC (when we letK = n− 1 in NHDC).

13

3.4.2 NHDC and KNN

If β tends to infinity, thenexp(−w2
ij

β) will tend to one, and the matrixH in Eq. (2.14) becomes

Hij =





−Ki, j = i;

1, xj is one of theK nearest neighbors ofxi;

0, otherwise.

(3.6)

HereKi is the outdegree of the pointxi (note that the indegree of the pointxi is K). Then, in NHDC, the heat

f q
p (∆t) that unlabelled dataxp receives from the data points in classCq will be equal to

f q
p (∆t) =

∑

i:li=Cq

1 = Kq,

whereKq is the number of the labelled data points from classCq, which are theK nearest neighbors of the

unlabelled data pointxp. Note that whenN = 1, i.e., when the number of unlabelled data is equal to one,
∑c

q=1 Kq = K. According to Step 4, we will classify the unlabelled dataxp to the classCk such thatfk
p (∆t) = Kk

is the maximal among allf q
p (∆t) = Kq. This is exactly what KNN does, and so KNN can be considered as a

special case of NHDC (whenβ tends to infinity andN = 1).

3.4.3 NHDC and PHDC

When the parameterγ is small, we can approximateeγH in Eq. (2.9) by its first two items, i.e.,

eγH ≈ I + γH, (3.7)

then in PHDC,fk(t) = eγHfk(0) ≈ fk(0) + γHfk(0). As the constantγ and the first itemfk(0) impose no

effect on the classifier, PHDC possesses a similar classification ability in this case as NHDC, in whichfk(∆t) =

Hfk(0). This denotes the relation between NHDC and PHDC.

3.4.4 Related Work

The success in [15] is achieved partly because of the speciality of the geometry in the problem. For most

geometries, however, there is no closed form solution for the heat kernel. Even worse, in most cases, the underlying

geometry structure is unknown. In such cases, it is impossible to construct the heat kernel for the geometry in a

closed form. In contrast, there is always a closed form solution – a heat kernel for the graph that approximates the

geometry in our model. In [15] and [12], heat kernel is applied to a large margin classifier; in contrast, our kernel

is employed directly to construct a classifier.

14

It is worthy to make a theoretical comparison between the heat kernel in our model and that in [12] because it is

impossible to make an empirical comparison between them (as shown below in the second item, their applications

are different), and because our heat kernel shows the same appearanceeγH as that in [12]. We list below the major

differences between them:

1. When the graph is symmetric andβ tends to infinity, the matrixH and the heat kerneleγH in our model

take the same form as that in [12].

2. Our classifier is mainly concerned with the real-valued data, while the proposed classifier in [12] aims at

categorical data in their experiments.

3. Our graph is constructed by theK nearest neighbors in order to approximate the discrete structure of the

unknown manifold, while in [12], for each attribute, a graph is constructed by a hypercube, and then the

final diffusion kernel is the product of each individual diffusion kernel.

4. Our model is created by the imitation of the non-propagating heat diffusion and the propagating effect of

the local heat diffusion. The heat flow in the pipe behaves in the way of locality, and thus it can approximate

the heat kernel in the Euclidean space because the time period and the pipe length are small. However, in

[12], there is no such consideration.

5. Limited to narrow applications, the kernel in [12] must satisfy two mathematical requirements to be able to

serve as a kernel: It must be symmetric and positive semi-definite. In contrast, without the limitation of being

applied to a kernel-based classifier, our heat kernel is not necessarily symmetric and positive semi-definite.

Nevertheless, it is interesting to combine these two models by considering the cases when there are both con-

tinuous attributes and categorical attributes in the data set. Besides, it is a challenge to apply our heat kernel to a

kernel-based classifier when the kernel is not symmetric. These deserve further investigations, but are outside the

scope of this paper.

15

Chapter 4

Heat Diffusion Ranking

In this section, we propose a new ranking model calledDiffusionRank. The intuition is that all the Web pages in

the World Wide Web are imagined to be drawn from a manifold. On the manifold, the heat flows from one point

to another point, and in a given time period, if one pointx receives much heat from another pointy, we can sayx

andy are connected well, and thusx andy have a high similarity in the meaning of a high mutual connection.

We simulate the heat flow on a manifold by the heat flow on a graph since the World Wide Web is so complex

that we cannot model it as a regular geometry with a known dimension. In this paper, the Web pages are considered

to be drawn from an unknown manifold, and the link structure forms a directed graph, which is considered as an

approximation to the unknown manifold. The heat kernel established on the Web graph is considered as the

representation of relationship between Web pages. According to the Heat Kernel proposed in Section 2.2 and

Section 2.3, we describeDiffusionRankas follows.

For a random graph, the matrix(I + σ∆tR)N or eσR can measure the similarity relationship between nodes.

Let fi(0) = 1, fj(0) = 0 if j 6= i, then the vectorf(0) represent the unit heat at nodevi while all other nodes

has zero heat. For suchf(0) in a random graph, we can find the heat distribution at time 1 by using Eq. (2.15)

or Eq. (2.16). The heat distribution is exactly thei−th row of the matrix of(I + σ∆tR)N or eσR. So thei-row

j-column elementhij in the matrix(I + σ∆tR)N or eσR means the amount of heat thatvi can receive fromvj

from time0 to 1. Thus the valuehij can be used to measure the similarity fromvj to vi.

For a static graph, similarly the matrix(I + σ∆tH)N or eσH can measure the similarity relationship between

nodes.

The intuition behind is that the amounth(i, j) of heat that a pagevi receives from a unit heat in a pagevj in a

unit time embodies the extent of the link connections from pagevj to pagevi. Roughly speaking, when there are

more paths fromvj to vi, vi will receive more heat fromvj , on the other hand, when the path length fromvj to vi

16

is shorter,vi will receive more heat fromvj . The final heat thatvi receives will depend on various paths fromvj

to vi.

The four advantages forDiffusionRankare shown below.

First, its solution has two forms, both of which are closed form. One takes the discrete form, and has the

advantage of fast computing while the other takes the continuous form, and has the advantage of being analyzed

theoretically.

Second, its solution is not symmetric, which better models the nature of relativity of similarity. For example,

that one page links to an important page does not mean that this page is also important unless it is linked by the

important page.

Third, it can be naturally employed to detect group-group relation. For example, if group 2 contains pages

(j1, j2, . . . , js) group 1 contains pages (i1, i2, . . . , it), then the sum
∑

u,v hiu,jv has the meaning of total heat that

group 1 receives from group 2, wherehiu,jv is theiu-row jv-column element of the heat kernel.

Fourth, it can be used to anti-manipulation. Let group 2 contains trusted Web pages (j1, j2, . . . , js), then for

each pagei,
∑

v hi,jv is the heat that pagei receives from the group 2, and can be computed by Eq. (2.6) in case of

a static graph or Eq. (2.15) in case of a random graph, in whichf(0) is set to be a special initial heat distribution

so that the trusted Web pages have unit heat while all the others have zero heat. In doing so, manipulated Web

page will get a lower rank unless it has strong in-links from the trusted Web pages directly or indirectly. For

such application ofDiffusionRank, the computation complexity forDiscrete Diffusion Kernelis the same as that

for PageRankin cases of both a static graph and a random graph. This can be seen in Eq. (2.6) and Eq. (2.15),

by which we needN iterations and for each iteration we need a multiplication operation between a matrix and a

vector, while in Eq. (5.1) and Eq. (5.2) we also need a multiplication operation between a matrix and a vector for

each iteration.

17

Chapter 5

Predictive Random Graph Ranking on the

Web

While thePageRankalgorithm [19] has proven to be very effective for ranking Web pages, inaccuratePageRank

results are induced because of the incomplete information about the Web structure. This problem is caused by the

following phenomena.

1. The Web is Dynamic (temporal dimension)–The link structure evolves temporally. Some links are created

and modified, while others are destroyed.

2. The Observer is Partial (spatial dimension)–For different observers (or crawlers), the Web structure may be

different.

3. Links are Different (local dimension)–Not all out-links are created equal. Some out-links are more signif-

icant than others. For example, some people may tend to put the most important link on the top of their

pages.

For the problem of the incompleteness and impreciseness of the Web structure, we establishPredictive Random

Graph Rankingframework. As illustrated in Figure 5, the framework consists of two stages:

• Random Graph Generation Stage–The first stage engages the temporal, spatial and local link information

to construct a random graph that can better model the Web. Statistical and other methods can be applied to

generate this random graph that can better approximate the incomplete Web.

• Random Graph Ranking Stage–The second stage takes the random graph output and then calculates the

18

ranking result based on a candidate ranking algorithm, such as,PageRank, Common Neighbors, Jaccard’s

Coefficient, SimRank,etc.

Predictive Random Graph Ranking Framework

Random Graph Generation

 -Temporal Links
 -Spatial Links
 -Weighted Links

Random Graph Ranking

 -PageRank
 -Common Neighbors
 -DiffusionRank

RankingCrawler

Figure 5.1. The Predictive Random Graph Ranking Framework.

The intuition in thePredictive Random Graph Rankingframework is that: the more accurately we know the

structure of the Web, the more accurately we can infer about the Web.

DiffusionRankis another candidate in thePredictive Random Graph Rankingframework.

5.1 Some Standard Ranking Algorithms

We classify ranking techniques into two types:Absolute RankingandRelative Ranking. Absolute Ranking

assigns a real number to each page, and thus gives a total order for all pages.PageRank[19] belongs toAbsolute

Ranking. Relative Rankingassigns a real number to each pair of pages, and thus, for each one given page, deter-

mines a total order relative to the given page.Common Neighbors[18], Jaccard’s Coefficient[16], andSimRank

[9] belong toRelative Ranking.

5.1.1 Absolute Ranking

As a kind ofAbsolute Ranking, PageRank[19] gives the importance rank of Web page based on the link structure

of the Web. The intuition behindPageRankis that it uses information external to the Web pages themselves–their

in-links, and that in-links from “important” pages are more significant than in-links from average pages. Formally

presented in [4], the Web is modelled by a directed graphG = (V, E) in thePageRankalgorithms, and the rank

or “importance”xi for pagevi ∈ V is defined recursively in terms of pages which point to it:

xi =
∑

(j,i)∈E

aijxj , (5.1)

whereaij is assumed to be1/dj , dj is the out-degree of pagej. Or in matrix terms,x = Ax. When the concept

of “random jump” is introduced, the matrix form in Eq. (5.1) is changed to

x = [(1− α)geT + αA]x, (5.2)

19

where the parameterα is the probability of following the actual link from a page,(1 − α) is the probability of

taking a “random jump”, andg is a stochastic vector (i.e.eT g = 1). Typically,α = 0.85 ande is the vector of all

ones.

5.1.2 Relative Ranking

In [16], the authors survey an array of methods forRelative Ranking, includingCommon Neighbors, Jaccard’s

Coefficient, andSimRank. All the methods assign a connection weighs(i, j) to pairs of nodesvi andvj , based on

the input graph. The development of similarity search algorithms is motivated by the “related pages” queries of

Web search engines and Web document classification [6]. Both applications require a similarity measure, which

is computed by either the textual content of pages or the hyperlink structure or both. As in previous work [6, 9, 8],

we focus on similarities solely determined by hyperlink structure of the Web graph.

Common Neighbors

Common neighbormodel is based on the idea that two pages are more similar if they have more common neigh-

bors. The common neighbors ofvi andvj can be defined ass(i, j) = |I(vi) ∩ I(vj)|. It means that if more nodes

points tovi andvj at the same time,vi andvj are more similar. In [18], the author computes the probability of

collaboration between scientists in the Los Alamos as a function of the times of their past collaboration. A pair

of scientists with more previous collaborators are more likely to collaborate than those with less previous collab-

orators. In [16], the authors employ common neighbors to predict if any two authors will coauthor papers in the

future.

Jaccard’s Coefficient

Another commonly used similarity metric is theJaccard coefficient, which is used to measure the probability that

bothvi andvj share a feature. In [16], the authors take features to be neighbors in graph, which corresponds to

the measures(i, j) = |I(vi)∩ I(vj)|/|I(vi)∪ I(vj)|. In this paper we utilize this approach as well to measure the

similarity between two pages in the Web.

SimRank

SimRankis introduced in [9] to formalize the intuition that “two pages are similar if they are referenced by similar

pages.” Numerically this is specified by defining theSimRankscores(i, j) of two pagesvi andvj as the fixed

20

point of the following recursive definition,

s(i, j) =





1, i = j,

0, |I(vi)||I(vj)| = 0, i 6= j,

K
∑

u∈I(vi),v∈I(vj)
s(u, v), others,

for some constant decay factorC ∈ (0, 1), whereK = C
|I(vi)||I(vj)| . TheSimRankiteration starts withs(i, j) = 1

for i = j ands(i, j) = 0 otherwise.

5.2 Predictive Strategy

In this section, we first show the origin of the idea of the predictive strategy, then we show that the concept

of a random graph is necessary, next we show how a random graph can be generated in various situations. This

forms the first stage of the frameworkPredictive Random Graph Ranking. We continue to extend several ranking

models from static graphs to random graphs. These are the second stage of thePredictive Random Graph Ranking

framework .

5.2.1 Origin of Predictive Strategy

In [24], the authors propose a predictive ranking technique to improve the accuracy ofPageRankthrough the

estimation of the incomplete information caused by partial crawling on the Web. The more accurately estimated

Web structure leads to a more accuratePageRankresult. In this paper, we extend the basic idea in [24] from

PageRankto a collection of ranking algorithms, from temporal incomplete information to spatial uncertainty and

weighted links.

5.2.2 From Static Graphs to Random Graphs

The concept of a random graph is necessary forPageRank. For example, the graph in Figure 5.2 may be

encountered by a crawler in the early stage if all the unvisited nodes are ignored. If we employ Eq. (5.1) and use

the power iterative method to solve the page rank problem, then we will suffer the problem of divergence unless the

entire initial values ofxi (i = 1, 2, 3) take the value of1/3, which usually can not be found in practice. However,

if we employ Eq. (5.2), the power iterative method will converge. This is because the modified matrix in Eq. (5.2)

is a positive stochastic matrix, and so 1 is its largest absolute eigenvalue and no other eigenvalue whose absolute

value is equal to 1, which is guaranteed by the Perron Theorem [17]. Behind Eq. (5.2), we can see that the Web

21

graph has been modelled as a random graph, in which, the original link exists with a probability ofα, and there is

a link that connects each pair of pages with a probability of1− α.

Furthermore, in the following, we discuss three situations: (1)temporal links, (2) spatial linksand (3)weighted

links, in which the concept of a random graph is also necessary.

Random Graph Generated Temporal Links

1

2

3

Figure 5.2. A static graph.

If we want to model the estimation about the temporal links, the concept of a random is necessary. In Figure 5.2,

when the time continues, the crawler will visit more nodes, but at current time, the links (called temporal links)

from the currently unvisited node are unknown. In general, it is difficult to estimate the temporal link structure

accurately; however, some elementary estimation is possible. In this paper, we only estimate the in-degree of each

node in the set of nodes that have been found, and thus some information about the link structure can be inferred

statistically. For more discussions, see Section 5.2.3.

Random Graph Generated by Several Graphs

Several crawlers may visit some pages at different times and from different starting sites, and a link may exist

for one crawler, but disappear for another. This causes the partial observer problem–the web graph is viewed

differently from different points. Suppose that different Web graphsGi = (Vi, Ei), (i = 1, 2, . . . , N) are obtained

by N different observers (or crawlers). We can combine these different graphs and generate a random graph

RG = (V, P), whereV = ∪N
i=1Vi, P = (pij), pij = n(i, j)/N, n(i, j) is the number of the graphs where the link

(i, j) appears. The intuition behind is that the more a link is reliable, the more times different observers will find

it.

Random Graph Generated by Weighted Links

We have observed that some out-links are more significant than others. As an example, we may model the out-link

significance by the exponential decay rule:e1−k wherek is the out-link order number from a particular page.

Then a random graph generated by this rule will beP = (pij) wherepij = 0 if there is no link fromi to j, and

22

pij = e1−k(i,j) if j is thek(i, j)-th out-link from i. By doing so, the significance of different out-links from a

particular page is distinguished. The original static graph is changed to a random graph.

In next subsection, we emphasis on the problem of dangling nodes, which is caused by the nature of the dynamic

Web. This problem is handled by predicting the link structure as a random graph. To sum up, it is necessary to

extend the current ranking algorithms from a static graph to a random graph.

5.2.3 From Visited Nodes to Dangling Nodes

Why We Consider Dangling Nodes

Pages that either have no out-link or have no known out-link are called dangling nodes [4]. In [19], the authors sug-

gested simply removing the pages without out-link and the links pointing to them. After doing so, it is suggested

that they can be “added back in” without significantly affecting the results. However the situation is changed now

and the dangling nodes problem has to be handled more accurately and directly:

On the one hand, we can see that thePageRankalgorithm depends on part of the Web structure, and that the

visited fraction of the whole Web page by a crawler becomes smaller and smaller as the Web continues to grow.

More and more dangling nodes appear because of the difficulty of sampling the entire Web. In [19], the authors

reported that they have 51 million URLs not downloaded yet when they have 24 million pages downloaded. In

[7], dynamic pages are estimated to be 100 times more than static pages, and in [4], the authors point out in their

experiment that the number of uncrawled pages still far exceeds the number of crawled pages and that there are

an essentially infinite number of URLs which is estimated to be at least642000. These experimental results and

theoretical analysis mean that in reality, the huge number of unvisited pages tends to exceed the ability of a crawler.

On the other hand, some dangling pages are worthy of ranking because they contain important information. In

such a situation, ranking those pages that only have been found may enrich the content of a search engine. As an

example, a search engine may return the users the URLs of unvisited pages with high ranking scores. Moreover,

including dangling nodes in the overall ranking may have significant effect not only on the rank value of non-

dangling pages but also on the rank order. This will be shown in the Experiment section.

How to Classify Dangling Nodes

In the following, we follow the ideas in [4] in analyzing the reasons that cause the dangling nodes, and we classify

dangling nodes into 3 classes according to these reasons.

Dangling nodes of class 1 (DNC1) are defined as nodes that have been found but have not been visited. One

reason to produce such kind of dangling nodes is that the Web is so large that we cannot visit all the pages; another

23

reason is that new Web pages are always being created.

Dangling nodes of class 2 (DNC2) are defined as nodes that have been tried but not visited successfully. The

reason to produce dangling nodes of class 2 is that some pages may exist before, but now are damaged or are in

maintenance, or they are protected by a robot.txt, or they are wrongly created.

Dangling nodes of class 3 (DNC3) are defined as nodes that have been visited successfully but from which

no out-link is found. Dangling nodes of class 3 exist because there are many files on the Web with no hyperlink

structure.

How to Handle Dangling Nodes

We first partition all the nodesV of the graphG (|V | = n) into three subsets:D0, D1, andD2, whereC0

(|C0| = m) denotes the subset of all nodes that have been crawled successfully and have at least one out-link;

D1 (|D1| = m1) denotes the set of nodes ofDNC3; D2 (|D2| = n − m − m1) denotes the set of nodes of

DNC1. Nodes ofDNC2 are ignored here. The main idea of handling dangling nodes is to handle different nodes

in different ways. In the following, we describe our method in detail.

1. We predict the real in-degreed−(vi) by the number of found linksfd−(vi) from visited nodes to the nodevi.

With the breadth-first crawling method, we assume that the real number of links from all nodes inV to the node

vi is proportional to the number of found linksfd−(vi) from visited nodes to the nodevi, and further we assume

that

d−(vi) ≈ n

(m + m1)
· fd−(vi)(i = 1, 2, . . . , n).

This assumption is based on the intuition that a crawler’s ability of finding new links to a given nodevi depends

on the density of these links. The density of these links to the nodevi is equal tod−(vi)/n. The crawler has found

fd−(vi) such kind of links when it has crawledm nodes, and we considerfd−(vi)
(m+m1) as an approximate estimate of

the density of these links. Following this, the above approximate equality holds.

2. With the approximate in-degreed−(vi), we can re-arrange the matrix. All the found linksfd−(vi) are from

the nodes inD0, and the remaining linksd−(vi)−fd−(vi) are from the nodes inD2 (it is impossible that some of

these links are from the nodes inD1). Since we infer the number of the remaining links only out ofm+m1 visited

nodes and the total number nodes isn, there is a risk of over-prediction. To prevent the over-prediction, we adopt a

confidence index (or certainty)(m+m1)/n about this estimation, and so we expect(d−(vi)−fd−(vi))(m+m1)/n

remaining links. Without any prior information about the distribution of these remaining links, we have to assume

that they are distributed uniformly from the nodes inD2 to the nodevi, i.e., these remaining links are shared by

24

all the nodes inD2. So matrixAT representing the random graph can be divided into six blocks shown below

AT =




C X M

D Y N




,

where(C, D)T is used to model the known link structure fromD0 to V . Let C = (cij), D = (dij), then

cij , di,j =





1, there is a link fromj to i,

0, otherwise.

In AT , (X, Y)T will be defined later,(M, N)T is used to model the link structure fromD2 to V , and is defined as

follows:



M

N




=




l1 0 0 0

0 l2 0 0
...

...
...

...

0 0 · · · ln




1n×(n−m−m1),

whereli = (d−(vi)−fd−(vi))(m+m1)
n(n−m−m1) , (i = 1, 2, . . . , n), n − m − m1 means that the expected remaining in-links

(d−(vi)− fd−(vi))(m + m1)/n are shared uniformly by all nodes inD2.

3. When we want to model the users’ teleportation, we assume that the users will jump to nodevi with a

probability ofgi when they get bored in following the actual links. So the matrix modelling the teleportation is

geT . We denote here(g1 g2 . . . gn)T by g.

4. When the user encounters a node ofDNC3, there is no out-link that the user can follow. In this case, we

assume that the same kind of teleportation as in step 3 will happen, and so the matrix(X,Y)T in step 2 is used to

model the link structure fromD1 to V and it is assumed to be




X

Y




=




g1 0 0 0

0 g2 0 0
...

...
...

...

0 0 · · · gn




1n×m1 .

5. We further assume thatα is the probability of following an actual out-link from a page,1−α is the probability

of taking a “random jump” rather than following a link. Then the random matrixP is modelled as

P T = (1− α)geT + αAT . (5.3)

25

The matrixP corresponds to a random graph, which models the temporal Web–to predict a future Web graph by

an early Web graph. This is calledTemporal Web Prediction Model.

From the static graph in Figure 5.3(a), where node 4 and node 5 are assumed to be nodes ofDNC1, a random

graph in Figure 5.3(b) is generated by the above model (α = 1).

2 4

53

1

2

4

1

5

1

3

1

1

1

1

1/5

1/5

1/5

2/5

1/5

1/5

1/5

2/5

(a) Original Static Graph (b) Random Graph produced

Figure 5.3. Illustration on the random graph

5.2.4 Random Graph Ranking

For DiffusionRank, we have extended it to random graphs. For the standard ranking algorithms, we also need

to extend them to random graphs in order to handle the random graph outputs produced by the predictive strategy

in three situations: (1) temporal links, (2) spatial links and (3) weighted links.

PageRank on a Random Graph

We extend thePageRankfrom the setting of a static graph to the setting of a random graph. Similar toPageRank,

the page rank vectorx on a random graph can be defined recursively in terms of random graphs:

xi =
∑

j

qijxj ,

whereqij = pji/
∑

k pjk. Or in matrix form,x = Qx, whereQ = (qij). In a static graph, if there is a link

from vj to vi, then the probability of a random surfer will follow the link is1/dj , wheredj is the out-degree of

vj . In a random graph, since the sum
∑

k pjk is the expected out-degree ofvj and the link fromvj to vi exists

with a probability ofpji, the expected probability of a random surfer will follow the link(vj , vi) is pji/
∑

k pjk.

Consequently, the above equation is established.

26

Common Neighbor on a Random Graph

We extend theCommon Neighborapproach from the setting of a static graph to the setting of a random graph.

First, the random neighbor setRI(vi) of vi is defined as

RI(vi) = {(vk, pki)|vk ∈ V },

wherepki is the probability ofvk as a neighbor ofvi. In the setting of a random graph, each nodevk is linked to

nodevi with a probabilitypki, sovk is the neighbor ofvi with a probabilitypki. This extends the definition of the

set of neighbors of nodevi in the setting of a static graph.

Second, the set of the common random neighbors ofvi andvj is defined as

RI(vi) ∩RI(vi) = {(vk, pkipkj)|vk ∈ V }.

The sets of random neighbors ofvi andvj areRI(vi) andRI(vj) respectively.vk is the neighbor ofvi with a

probabilitypki, andvk is the neighbor ofvj with a probabilitypkj , then we can sayvk is the common neighbor of

vi andvj with a probabilitypkipkj since the random edges are drawn independently. This extends the meaning of

the common neighbor.

Third, the expected number of nodes inRI(vi) ∩RI(vi) is considered as the similarity measures(i, j), and is

defined as

s(i, j) =
∑

k

pkipkj .

This extends the definition of number of common neighbors ofvi andvj in the setting of a static graph.

Jaccard’s Coefficient on a Random Graph

TheJaccard’s Coefficientin the setting of a random graph is defined as

s(i, j) = |RI(vi) ∩RI(vj)|/|RI(vi) ∪RI(vj)|
=

∑
k pkipkj/

∑
k(pki + pkj − pkipkj),

whereRI(vi)∪RI(vj) = {(vk, pki +pkj−pkipkj)|vk ∈ V }. The expected number elements inRI(vi)∪RI(vj)

is equal to
∑

k(pki + pkj − pkipkj). Sincevk is not the neighbor ofvi with a probability1 − pki, and is not the

neighbor ofvj with a probability1−pkj , we assume thatvk is not the neighbor of eithervi or vj with a probability

(1−pkj)(1−pkj), and we have thatvk is the neighbor of eithervi or vj with a probability1−(1−pkj)(1−pkj) =

pki + pkj − pkipkj . Therefore,RI(vi) ∪ RI(vj) = {(vk, pki + pkj − pkipkj)|vk ∈ V }. The expected number

elements is thus equal to
∑

k(pki + pkj − pkipkj).

27

SimRank on a Random Graph

In the setting of a random graph, theSimRankscores(i, j) of two pagesvi andvj can be naturally redefined as

the fixed point of the following recursive definition,

s(i, j) =





1, i = j,

C
|RI(vi)||RI(vj)|

∑
u,v puipvjs(u, v), others,

for some constant decay factorC ∈ (0, 1), where|RI(vi)| =
∑

k pki, |RI(vj)| =
∑

k pkj .

Note that one can easily conclude that when the random graph becomes a static graph, the algorithms described

in the above subsections degrade into the original algorithms. This means ranking algorithms on a random graph

generalize the original ones.

28

Chapter 6

Experiments

6.1 Heat Diffusion Classifiers

The Parzen Window Approach (PWA), KNN, NHDC and PHDC are applied to six datasets from the UCI

Repository. Table 6.1 describes the datasets we use. The first column refers to the names of the datasets, the

second column refers to the number of cases in each dataset, the third column refers to the number of classes, and

the fourth column is the number is the number of attributes. In the dataset Credit-g, we only consider the seven

continuous attributes while the thirteen discrete attributes are ignored.

Table 6.1. Description of the Datasets

dataset Cases Classes Attributes

Credit-g 1000 2 7

Diabetes 768 2 8

Glass 214 6 9

Iris 150 3 4

Sonar 208 2 60

Vehicle 846 4 18

In order to make each attribute in the same scale, we preprocess the datasets by transforming the domain of

each attribute to the interval [0,1]. Specifically, for each attributei, we transform the valuex for attributei by

(x−min(i))/(max(i)−min(i)), wheremin(i) andmax(i) are the minimum and maximum value of attributei,

respectively.

The parameter setting is shown in Table 6.2. The figures shown in Table 6.3 are the mean error rates of ten-fold

29

cross-validations, and the last row in Table 6.3 shows the average results.

The experimental results show that NHDC uniformly outperforms PWA and KNN in accuracy, indicating the

superiority of our approach. Furthermore, PHDC improves over NHDC.

Table 6.2. parameters setting of PWA KNN NHDC and PHDC

dataset PWA KNN NHDC PHDC

1/β K K 1/β K 1/β γ

Credit-g 50 31 13 0 11 0 0.02

Diabetes 300 34 33 50 34 150 0.05

Glass 7500 3 40 1750 38 1500 0.27

Iris 350 7 15 0 13 50 0.47

Sonar 1150 3 24 1650 24 1200 0.41

Vehicle 650 10 8 350 10 600 0.11

Table 6.3. Mean error rates of PWA KNN NHDC and PHDC

dataset PWA(%) KNN (%) NHDC(%) PHDC (%)

Credit-g 27.65 24.41 23.90 23.94

Diabetes 25.04 24.22 23.70 23.78

Glass 28.44 29.36 27.01 26.88

Iris 2.93 2.64 2.64 2.21

Sonar 11.72 17.14 11.25 10.93

Vehicle 27.55 28.59 27.10 27.07

Average 20.56 21.06 19.26 19.14

6.2 Predictive Random Graph Ranking

The temporal dimension of thePredictive Random Graph Rankingframework can actually be designed to be

tested in experiments, although it is difficult to measure whether a link analysis algorithm is better than another

because of the different intuitions for different ranking algorithms. For this, we design a comparison method by

calculating the ranking difference and order difference between the early results (less accurate) and the final results

(relatively accurate, and considered as a ground truth). For more details, see Section 6.2.2.

30

t 1 2 3 4 5 6

V[t] 1000 1100 1200 1300 1400 1500

T[t] 1764 1778 1837 1920 1927 1936

t 7 8 9 10 11

V[t] 1600 1700 1800 1900 2000

T[t] 1952 1954 1964 1994 2000

Table 6.4. Description of the Synthetic Graph Series

6.2.1 Data

Our input data consists of a synthetic data set and a real-world data set. A detailed description follows.

Synthetic Web Graph

The degree sequences of the World Wide Web are shown to be well approximated by a power law distribution

[11, 14, 13]. That is, the probability that a Web page hask outgoing (incoming) links follows a power law over

many orders of magnitudePout(k) ∼ k−γout andPin(k) ∼ k−γin .

The power law distribution of the degree sequence appears to be a very robust property of the Web despite

its dynamic nature, therefore, we can generate synthetic Web-like random graphs to test the performance of our

algorithms.

Several approaches to modelling power law graphs [11, 13] have been proposed. In our numerical experiment,

we use the(α, β) model [13] to generate random graphs. By settingα = 0.52 andβ = 0.58, the model generates

a random power law graph withγout = 2.1 andγin = 2.38, both of these values match the Web.

By simulating the procedure of crawling, we can obtain a series of growing incomplete graphs containing pages

of DNC1. The numberV [t] of pages visited and the total numberT [t] of pages found at timet are shown in

Table 6.4.

Real Web Graph

The data of a real Web graph were obtained from the domaincuhk.edu.hk. The graph series are snapshot during

process of crawling pages restricted within this domain. The numberV [t] of pages visited and the total number

T [t] of pages found at timet are shown in Table 6.5.

31

t 1 2 3 4 5 6

V[t] 7712 78662 109383 160019 252522 301707

T[t] 18542 120970 157196 234701 355720 404728

t 7 8 9 10 11

V[t] 373579 411724 444974 471684 502610

T[t] 476961 515534 549162 576139 607170

Table 6.5. Description of Real Data Sets Within Domain cuhk.edu.hk

6.2.2 Methodology

The algorithms we run includePageRankandDiffusionRank. For each algorithmA, we have two versions

denoted byA and PreA. A is the original version without using theTemporal Web Prediction Model, and

PreA is the version using theTemporal Web Prediction Model. Both PreA andA are run on two data series–

the synthetic data series and the real data series. Each data series contains 11 data sets, which are obtained by

taking snapshots during the process of a crawler or a simulated crawler. Finally, for each data series and for each

algorithmA, we obtained 22 ranking results, namely,

A1, A2, . . . , A11,

P reA1, P reA2, . . . , P reA11.

The results on the first 10 data is not accurate because these data are incomplete, and the Web is dynamically

changing. The resultA11 on the synthetic data should be the same asPreA11 becauseTemporal Web Prediction

Modelwill not have effect on complete information, but the resultA11 on the real data is not the same asPreA11

because of the existence of dangling nodes ofDNC1 in time 11.

If the difference between the results on timet and the results on time 11 is smaller, we think it is more accurate.

We calculate the value difference and order difference described below.

Value Difference.The value difference betweenAt (PreAt) andA11 is measured as

||At/Maxt − Cut(t, A11)/CutMaxt||2

(||PreAt/Maxt − Cut(t, A11)/CutMaxt||2). Wherecut(t, A11) is the results cut fromA11 such that it has the

same dimension asAt, andCutMaxt (Maxt) means the maximal value among results incut(t, A11) (At).

Order Difference. The order difference betweenAt (PreAt) and A11 is measured as the significant order

difference betweenAt andCut(t, A11) (PreAt andCut(t, A11)). The significant order difference between two

32

similarity matricesM andN is calculated by the sum of the significant order difference for each row ofM and

N , and for each rowM(i), N(i) of M andN , the pair(M(i, j),M(i, k)) and(N(i, j), N(i, k)) is considered as

a significant order difference if bothM(i, j) > M(i, k) + 0.005MaxM andN(i, k) > N(i, j) + 0.005MaxN ,

or bothM(i, k) > M(i, j) + 0.005MaxM andN(i, j) > N(i, k) + 0.005MaxN , whereMaxM (MaxN) is the

maximum value ofM (N).

6.2.3 Set Up

The experiments are conducted on the workstation whose hardware model is Nix Dual Intel Xeon 2.2GHz,

whose RAM is 1GB, and whose OS is Linux Kernel 2.4.18-27smp (RedHat7.3).

We setα = 0.85 and setg to be the uniform distribution in bothPageRankandPrePageRank. Note that we

use the modifiedPageRankalgorithm [10], in which dangling nodes ofDNC1 are considered to have random

links uniformly to each node. ForDiffusionRankand PreDiffusionRank, we use theDiscrete Diffuse Kernel

for computing, and we setσ = 1, N = 20 andβ to be the inverse of the maximal out-degree in both. Note

thatDiffusionRankuses theDiscrete Diffuse Kernelon a static graph andPreDiffusionRankusesDiscrete Diffuse

Kernelon a random graph.

6.2.4 Experimental Results

Figure 6.1 demonstrate thePageRankresults on the synthetic data and the real data. On the synthetic data, in

60% early stages,PreRageRankis closer to the final result in value difference; in 100% early stages,PrePageRank

is closer to the final result in significant order difference. Since the graph in time 11 is complete, there is no

difference between thePrePageRankand PageRank, and the curves meet at time 11. On the real data, since

the data at time 11 contains unvisited pages,PrePageRankand PageRankhave a difference on this data, the

employment ofPageRankresults on this data as a reference will cause a bias againstPrePageRank. Even so, in

60% early stages,PreRageRankis closer to the finalPageRankresult in value difference; in 70% early stages,

PrePageRankis closer to the finalPageRankresult in significant order difference.

Figure 6.2 demonstrate theDiffusionRankresults. On the synthetic data, in 100% early stages,PreDiffusion-

Rankis closer to the final result in value difference, and in 100% early stages,PreDiffusionRankis closer to the

final result in significant order difference. On the real data, since the data at time 11 contains unvisited pages,

PreDiffusionRankandDiffusionRankhave a difference on this data, the employment ofDiffusionRankresults on

this data as a reference will cause a bias againstPreDiffusionRank. Even so, in 70% early stages,PreDiffusion-

Rankis closer to the finalPageDiffusionRankresult in value difference; in 70% early stages,PreDiffusionRankis

33

1 2 3 4 5 6 7 8 9 10 11
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time

V
a
lu

e
 D

iff
e
re

n
ce

PrePageRank
PageRank

1 2 3 4 5 6 7 8 9 10 11
0

2000

4000

6000

8000

10000

12000

14000

16000

Time

O
rd

e
r

D
iff

e
re

n
ce

PrePageRank
PageRank

(a)-VD in synthetic data (b)-OD in synthetic data

1 2 3 4 5 6 7 8 9 10 11
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time

V
al

ue
 D

iff
er

en
ce

PrePageRank
PageRank

1 2 3 4 5 6 7 8 9 10 11
0

500

1000

1500

2000

2500

3000

3500

4000

Time

O
rd

e
r

D
iff

e
re

n
ce

PrePageRank
PageRank

(c)-VD in real data (b)-OD in real data

Figure 6.1. PageRank Comparison Results

34

closer to the finalDiffusionRankresult in significant order difference.

6.2.5 Discussion

For Common Neighbor, Jaccard’s coefficient, andSimRank, similar experiments are conducted. OnCommon

Neighbor, slight improvement is achieved, but onJaccard’s coefficientandSimRankwe do not obtained expected

results for theTemporal Web Prediction Model. These abnormal results may be caused by the ignorance of the

power law distribution. BeforeTemporal Web Prediction Model, the data satisfies the power law distribution, but

after the model, the in-degrees of all nodes are increased with the same proportions. This in fact breaks the power

law distribution, for example, nodes whose in-degree is 1 do not exist after prediction while nodes whose in-degree

is 1 should have the highest density according to the power law distribution.Jaccard’s coefficientandSimRank

seem to be sensitive to the distribution of in-degrees and out-degrees. It is interesting and challenging to preserve

the power law distribution in theTemporal Web Prediction Modelso that better accuracy can be achieved on all

these algorithms.

35

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

Time

V
al

ue
 D

iff
er

en
ce

PreDiffusionRank
DiffusionRank

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

Time

O
rd

er
 D

iff
er

en
ce

PreDiffusionRank
DiffusionRank

(a)-VD in synthetic data (b)-OD in synthetic data

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

V
al

ue
 D

iff
er

en
ce

PreDiffusionRank
DiffusionRank

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9
x 10

4

Time

O
rd

er
 D

iff
er

en
ce

PreDiffusionRank
DiffusionRank

(c)-VD in real data (b)-OD in real data

Figure 6.2. DiffusionRank Comparison Results on small synthetic data

36

Chapter 7

Conclusion and Future Work

We have presented two classifiers NHDC and PHDC by imitating the way that heat flows in a medium with a

geometric structure. By approximating the manifold by theK nearest neighbors graph, we can avoid the difficulty

of finding the explicit expression for the unknown geometry in most cases. By establishing the heat diffusion equa-

tion on the graph, we avoid the difficulty of finding a closed form heat kernel for some complicated geometries.

Moreover, our solution to heat equation has the property of heat preserving, but our heat kernel is not symmet-

ric and positive definite. While NHDC is a generalization of both Parzen Window Approach (when the window

function is a multivariate normal kernel) and KNN, PHDC can approximate NHDC if parameterγ is small. Both

NHDC and PHDC are proven to be efficient in our experiments.

We have shown thatDiffusionRankis another candidate of ranking algorithms, and we have shown that the

Temporal Web Prediction Modelis effective inPageRankandDiffusionRank. Because our model mines more

information about the Web structure, the results of Predictive strategy on these two algorithms are more accurate

than those without it, even our model breaks the power law distribution. We conclude that the random graph input

indeed extends the scope of some original ranking techniques, and significantly improve some of them.

In our experiments, we only test thePredictive Random Graph Rankingframework in the viewpoint of dy-

namic Web. Besides the challenging work to consider the power law distribution in this viewpoint, it deserves

further investigation in other two viewpoints of partial observers and weighted links. Such future work involves

investigating page-makers’ preference on link orders and substantial users-based research.

Acknowledgments

I thank Prof. Irwin King and Prof. Michael R. Lyu for their kind guidance. I thank Mr. Patrick Lau, Mr. Zhen-

jiang Lin and Mr. Zenglin Xu for their help. I thank Prof. Miroslaw Malek for his useful comments. The UCI

37

Data Repository owes its existence to David Aha and Patrick Murphy.

Appendix

Some general terms are shown below.

vi: node with an indexi

V : set of nodes

(vi, vj): edge fromvi to vj

E: set of edges

G = (V, E): a graph

RG = (V, P): a random graph

xi: rank value for nodevi

x: rank vector consisting ofxi

s(i, j): similarity score forvi andvj

I(vi): set of nodes that have links tovi

RI(vi): random neighbor set

DNC1: dangling node of class 1, which is not

visited but has been found by a crawler

DNC2: dangling node of class 2, which has been

tried but not visited successfully

DNC3: dangling node of class 3, which has been

visited successfully and from which no

out-link is found

d+(vi): out-degree of nodevi

d−(vi): in-degree of nodevi

fi(t): heat atvi at time t

(I + σ∆tH)N : discrete diffusion kernel on a static graph

eσH : continuous diffusion kernel on a static graph

(I + σ∆tR)N : discrete diffusion kernel on a random graph

eσR: continuous diffusion kernel on a random graph

38

Bibliography

[1] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.Neural

Computation, 15(6):1373–1396, 2003.

[2] C. M. Bishop.Neural Networks for Pattern Recognition. Oxford University Press, 1995.

[3] B. Bollobás.Random Graphs. Academic Press Inc. (London), 1985.

[4] N. Eiron, K. S. McCurley, and J. A. Tomlin. Ranking the web frontier. InProceeding of the 13th World Wide

Web Conference, pages 309–318, 2004.

[5] A. Ellis and T. Hagino, editors.Proceedings of the 14th international conference on World Wide Web, WWW

2005, Chiba, Japan, May 10-14. ACM, 2005.

[6] D. Fogaras and B. Ŕacz. Scaling link-based similarity search. In Ellis and Hagino [5], pages 641–650.

[7] S. Handschuh, S. Staab, and R. Volz. On deep annotation. InProceeding of the 12th World Wide Web

Conference, pages 431–438, 2003.

[8] H. Ino, M. Kudo, and A. Nakamura. Partitioning of web graphs by community topology. In Ellis and Hagino

[5], pages 661–669.

[9] G. Jeh and J. Widom. Simrank: A measure of structural-context similarity.Proc. of SIGKDD, 2002.

[10] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub. Exploiting the block structure of the web

for computing pagerank. Technical report, Stanford University, 2003.

[11] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. S. Tomkins. The Web as a graph: Measure-

ments, models and methods.Lecture Notes in Computer Science, 1627:1–18, 1999.

[12] R. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input spaces. InProceedings of the

International Conference on Machine Learning (ICML), 2002.

39

[13] S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Extracting large-scale knowledge bases from

the web. InThe VLDB Journal, pages 639–650, 1999.

[14] S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the Web for emerging cyber-

communities.Computer Networks (Amsterdam, Netherlands), 31(11–16):1481–1493, 1999.

[15] J. Lafferty and G. Lebanon. Diffusion kernels on statistical manifolds.Journal of Machine Learning Re-

search, 6:129–163, 2005.

[16] D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. InTwelfth International

Conference on Information and Knowledge Management, pages 556–559. ACM, November 2003.

[17] C. R. MacCluer. The many proofs and applications of perron’s theorem.SIAM Review, 42(3):487–498, 2000.

[18] M. E. J. Newman. Scientific collaboration networks. I. Network construction and fundamental results.Phys-

ical Review E, 64(016131):1–8, 2001.

[19] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the web.

Technical Report Paper SIDL-WP-1999-0120 (version of 11/11/1999), Stanford Digital Library Technolo-

gies Project, 1999.

[20] S. Rosenberg.The Laplacian on a Riemmannian Manifold. Cambridge University Press, 1997.

[21] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding.Science,

290(22):2323–2326, 2000.

[22] L. K. Saul and S. T. Roweis. Think globally, fit locally: unsupervised learning of low dimensinal manifolds.

Journal of Machine Learning Research, 4:119–155, 2003.

[23] J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality

reduction.Science, 290(22):2319–2323, 2000.

[24] H. Yang, I. King, and M. R. Lyu. Predictive ranking: a novel page ranking approach by estimating the web

structure. In A. Ellis and T. Hagino, editors,WWW (Special interest tracks and posters), pages 944–945.

ACM, 2005.

40

