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Data Processing with Missing Information

Abstract

We handle incomplete information in two aspects: One is about the web structure; the other is about information

system with missing values.

In the area of link analysis, the celebrated PageRank algorithm has proved to be a very effective paradigm for

ranking results of web search algorithms. However, as the web continues to grow, it becomes more impossible

for one search engine to crawl all the web page, as a result, the final page ranks computed by PageRank are only

based on a subset of the whole web, which is found or visited by a crawler. This results in inaccuracy because of

its incomplete information about the web structure. Can we find a way to get as much as information about the

web structure based on the limited subset of the whole web so that the inaccuracy of the PageRank can be avoided

as much as possible? We try to solve this kind of problem by proposing a new method for ranking pages. The main

idea is that during the process of crawling, the information for unknown links can be used for link analysis, more

specifically, we can use known information about links to predict the number of inlinks for each page that have

already been found, and thus we can predict the information about unknown links and the link structure based

on such information. In other words, the web pages already visited or found along with the known links form a

known directed graph, whose structure is somewhat certain, and a random graph is formed based on the predicted

number of inlinks, whose structure is somewhat uncertain, we then apply the combination of the known graph

and the random graph to the PageRank algorithm to get the final page ranks. Experiments show this algorithm

achieves encouraging results both in speed and in accuracy.

In the area of information system, the dependency degree,γ is a traditional measure in Rough Set Theory

to measure the dependency between the conditional attributes and the decision attributes. However,γ does not

express the dependency accurately. More specifically, in extreme cases when there is no deterministic rule between

the conditional attributes and the decision attributes, the dependency degreeγ becomes zero, but there may exist

some kinds of dependency between the conditional attributes and the decision attributes. To avoid such inaccuracy

we introduce a generalized dependency degree,γ′ between two sets of attributes which counts both deterministic

rules and indeterministic rules whileγ only counts deterministic rules. Thereforeγ′ is a generalization ofγ.

We first give the definition of generalized dependency degree in terms of equivalence relation, then interpret it
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in terms of minimal rule, and further find its connection with conditional entropy used in literature of decision

tree. In order to obtain a deeper understanding of the generalized dependency degree, we investigate its various

properties. Furthermore we can extend its formulation in incomplete information systems based on probabilistic

distribution for missing values. After the theoretical study on this measure, encouraged by its simplicity and its

good properties, we turn to empirical study by replacing with it the measure used in the well-known C4.5 algorithm

such that a new C4.5 algorithm is formed. The original C4.5 algorithm needs the MDL principle and the pruning

procedure to achieve better prediction accuracy, while the new C4.5 algorithm discards both. Experiments show

that the speed of the new C4.5 algorithm is improved greatly, while the prediction accuracy of the new C4.5

algorithm is a little better than the original C4.5 algorithm.
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Chapter 1

Introduction

Information that we do not know is called missing information. When a crawler crawls the web, it visits one page

after another. If the crawler visits all the pages on the web and thus finds all the link information for the web page,

then there is no missing link information. However, in most cases, it is impossible for a crawler to visit all the web

pages, consequently, the missing link information arises. In a database, if some of the values for some attributes

are unknown, then this database is an information system with missing information.

In our work, we do not try to guess exactly what the missing information is. What we do is to process them so

that the original algorithms can be changed to new algorithms that perform better. In case of missing information

for links, we handle the missing information by predicting web structure, thereby the original PageRank algorithm

is changed to Predictive ranking algorithm; in case of missing information for database, the C4.5 algorithm is

changed to new C4.5 algorithm.

Because our ways of handling missing information are oriented to algorithms, and because the two algorithms

we care belong to different areas, the details for them are very different, and we have to introduce different methods

for handling missing information in different chapters. However, the common things of the two chapters are that

we estimate the missing information in a similar statistic way, i.e., using the sample to estimate the probability

density.

In the area of link analysis, PageRank in [22] gives the relative importance of web page based on the link

structure of the web. The intuition behind PageRank is that it uses information which is external to the web pages

themselves–their in-links, and that in-links from “important” pages are more significant than in-links from average

pages.

More formally presented in [6], the web is modelled by a directed graphG = (V, E) in the PageRank algo-

rithms, and the rank or “importance”xi of each for then pagesi ∈ V is defined recursively in terms of pages
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which point to it:

xi =
∑

(j,i)∈E

aijxj (1.1)

whereaij is assumed to be1/dj , dj is the out-degree of pagej. Or in matrix terms,x = Ax.

This form has three problems. One is that if the matrixA is not a positive matrix (although non-negative), and

therefore can not guarantee the convergence of the power iterative method for the linear system. For example, in

the graph, the corresponding matrix is

1

2 3




0 0 1

1 0 0

0 1 0




If we use the power iterative method to solve the above page rank problem, then we will suffer the problem

of convergence unless the entire initial values ofxi (i = 1, 2, 3) take the value of1/3, which usually can not be

found in practice.

Another problem is that in practice, the users do not follow the link all the time, and when they become bored,

they may jump to some other page, and therefore the model 1.1 can not model the reality accurately.

In [22], these two problems are handled by one technique, i.e., introducing the concept of “random jump”

or “teleportation”, and therefore avoid the problem of inaccuracy and the problem of convergence (the modified

matrix is a positive stochastic matrix, and so one is its largest absolute eignvalue and no other eignvalue whose

absolute value is equal to 1, which is guaranteed by the famous Perron Theorem [19] ).

Theorem 1:Perrons theorem. The eigenvalue of largest absolute value of a positive (square) matrix A is both

simple and positive and belongs to a positive eigenvector. All other eigenvalues are smaller in absolute value.

This technique is presented formally in model 1.

Model 1 : The matrix form of the equation 1.1 is changed to

x = [(1− α)feT + αA]x, (1.2)
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where the parameterα is the probability of following the actual link from a page,(1 − α) is the probability of

taking a “random jump”,f is a stochastic vector (i.e.eT f = 1). It has become a standard to use the valueα = 0.85

ande is the vector of all ones.

The third problem in Equation 1.1 (also in Equation 1.2) is that the matrixA is not column stochastic unless

every node has at least one outlink. This kind of problem is called dangling node problem [6]. Pages that either

have no outlink or for which no outlink is known are called dangling nodes. In the following, we analyze the

reasons that cause the dangling nodes, and classify dangling nodes into 3 classes according to these reasons.

Pages unvisited or not visited successfully are dangling nodes, besides, some pages visited successfully may be

dangling nodes, for example, PostScript, Pdf, and TXT files on the web are dangling nodes because such kinds of

files have no outlinks. In more details, we explain three reasons that cause dangling pages.

That we can not visit all the page is one reason to produce dangling pages. Pages that are not visited are called

dangling pages of class 1. In this paper, we focus on this kind of dangling nodes.

The second reason is that there exit many pages that we try to visit but can not visit them successfully. These

pages may exist some time ago, but now is damaged or is in maintenance, or they are protected by a robot.txt.

Pages that have been tried but not visited successfully are called dangling pages of class 2.

The third reason is that there are many files on the web that have not hyperlink structure. Pages which have

been visited successfully and from which no outlink is found are called dangling pages of class 3.

In [22], the authors suggested simply removing the pages that have no outlink and the links that point to them.

After doing so it was suggested that they can be ”added back in” without significantly affecting the results. How-

ever the situation is changed now and the dangling nodes problem has to be handled more accurately and directly.

On one hands, from model 1, we can see that the PageRank algorithm depends on the web structure. When

we only know part of the web structure, is PageRank algorithm still accurate? As the web continues to grow, the

visited fraction of the whole web page by a crawler becomes smaller and smaller, unfortunately this becomes a fact.

It is hard to sample the entire web. In [22], the authors reported that they have 51 million URLs not downloaded

yet when they have 24 million pages downloaded. In [10], dynamic pages are estimated to be 100 times more

than static pages, and in [6], the authors point out in their experiment that the number of uncrawled pages still far

exceeds the number of crawled pages and that there are an essentially infinite number of URLs which is estimated

to be at least642000. The database-driven pages may produce many pages at a short time. These experimental

results and theoretical analysis mean that in reality, unvisited pages are so many that we have to face them.

On the other hands, some dangling pages worthy of ranking because they contain important information. More-

over, including dangling nodes in the overall ranking may have significant effect on the ranks of non-dangling
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pages, this will be shown in the next section.

We handle different class of dangling nodes in different way. For dangling nodes of class 2 and 3, we treat it

in traditional way, however we handle dangling nodes of class 1 by predicting the link information about them.

Dangling nodes of class 1 exits only because the crawler has not visited them at current time, and they contain

some information that we can not know directly. These dangling nodes cause incomplete information about the

web, which can fortunately be partly inferred from the known information. Dangling nodes of class 1 become the

focus of this paper.

Different from dangling nodes of class 1 that have been found but not visited yet, nodes, which have been not

found by the crawler, cause more serious incomplete information problem, however, we have to ignore this kind

of nodes because we can do nothing about them.

Our Predictive Ranking Model based on the above consideration can be found in Chapter 3.

In the area of information system with missing values, we handle the missing information more systematically,

first we introduce a generalized dependency degree based on a well-known dependency degree in Rough Set

Theory, then we extend it to incomplete information system, and finally we change the C4.5 algorithm to new

C4.5 algorithm, which can be found in Chapter 4.

According to Rough Set Theory an information system is a four-tupleS = (U,A, V, f), whereU represents

the universe of objects,A represents the set of attributes or features,V represents the set of possible attribute

or feature values,Va, the domain of the attributea, is the set of all possible value of attributea andf is the

information function which maps an given object and a given attribute to a value, i.e.,

f : U ×A → V.

By a(x) we denote the value off(x, a). An information system is represented by an attribute-value table in which

rows are labelled by objects of the universe and columns by the attributes. LetP be a subset ofA, that is,P is a

subset of attributes. TheP -indiscernibility relation, denoted byIND(P ), defined as

IND(P ) = {(x, y) ∈ U × U | (∀a ∈ P ) a(x) = a(y)},

is an equivalence relation. The set of equivalence classes is denoted byU/IND(P ) or byU/P and the equivalence

class inU/P is calledP -class. Forx ∈ X, let P (x) denote theP -class containingx. For any classX where

X ⊆ U , and for any subset of attributesP , theP -lower approximation ofX, denoted byP (X), is defined as

P (X) = ∪{Y ∈ U/IND(P ) |Y ⊆ X}.
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Let C andD be two subsets ofA, the dependency degreeγ(C, D) is defined in [23] as

γ(C, D) = 1/|U |
∑

X∈U/D

|C(X)|.

γ(C,D) expresses the percentage of objects which can be correctly classified intoD-class by employing attribute

C. It is also the relative number of elements ofU which can be described by deterministic rules since eachC-

class contained in aD-class corresponds to a deterministic rule (and vice versa). Because of this, Gediga, et al [7]

considerγ as a traditional measure in Rough Set Theory to evaluate the classification success of attributes in term

of numerical evaluation of the dependency properties generated by these attributes. For example, Hassanien [11]

usesγ to generate rules in a case study.

However,γ(C, D) does not accurately express the dependency among different attributes in any case. The

problem of inaccurateness ofγ(C, D) can be seen more clearly in the extreme cases when there is no deterministic

rule. Specifically, when there is no deterministic rule betweenC andD, the dependency degreeγ(C,D) will

be equal to zero, whereas this may not mean that there is no dependency betweenC andD. For example, in

Table 1.1 wherea, b, c, andd representheadache, muscle pain, body temperatureand influenza, respectively, it

is easy to calculate thatγ(C, D) = 0 whenC = {a}, D = {d}. This happens because none of these rules

a = Y ⇒ d = Y, a = Y ⇒ d = N, a = N ⇒ d = N, a = N ⇒ d = N is deterministic. This seems

contradictory to our intuition.

Here, we propose the generalized dependency degreeγ′(C, D). Because every rule whose confidence is not

equal to zero reflects to a certain degree the relation between the conditional attributes and the decision attributes,

theoretically we should not ignore any rule whose confidence is not equal to zero. Based on this consideration,

we count in the proposedγ′(C, D) all the minimal rules whose confidence are not equal to zero and hence all the

rules whose confidence are not equal to zero (since every rule is a join of some minimal rules). The generalized

dependency degreeγ′(C, D) is different from theγ-like statistics introduced by Gediga, et al [7], the idea of which

is to count the number of error whileγ′(C, D) counts every object by a corresponding fraction (as we will explain

later, it is equivalent to count all the minimal rules whose confidence are not equal to zero).

In literature of decision tree, Breiman, et al [2] recommends in their CART algorithm adopting the Gini index

as an impurity measure and choosing the split that maximizes the decrease in impurity. The Gini index in fact is a

special case ofγ′.

We try to make a deeper understanding of the generalized dependency degree in Chapter 4, and justify it both

theoretically and empirically. Theoretically, we give its various forms and develop its various properties, and

extend the definition of the generalized dependency degree to incomplete information system. Empirically, we
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headache (a) muscle pain (b) body temperature (c) influenza (d)

e1 Y Y 0 N

e2 Y Y 1 Y

e3 Y Y 2 Y

e4 N Y 0 N

e5 N N 1 N

e6 N Y 2 Y

e7 Y N 1 Y

Table 1.1. Influenza Data

compare this measure with the conditional entropy by replacing the conditional entropy with the generalized

dependency degree in well-known C4.5 classification algorithm.
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Chapter 2

Related Work

We first introduce the related work in the area of link analysis, then we show the related work in information

system.

For convenience,1 denotes the matrix of all ones,e denotes the vector of all ones. In the original PageRank

paper [22] the authors suggested simply removing the links to dangling pages from the graph, calculating the

PageRank on the remaining pages, and dangling nodes problem has received relatively less attention in the past.

In [1], an absorbing model was suggested. This model can handle dangling nodes by modifying the original

graph. Specifically speaking, It adds additional nodes (called clones), adds links from all the original nodes to

their clones on the web, and adds links from all the clones to themselves. As a result, the modified graph has no

dangling node and so it is robust against dangling nodes.

In [12], pages whose out-degree is zero are handled by adding jump to a randomly selected page with probability

1 from every dangling node, and then by adding teleportation. More formally, the model 1 is modified as

Model 2:

x = [(1− α)E + αP ′]x, (2.1)

whereE = feT , P ′ = A + fdT , f = e/n, andd denotes then−dimensional column vector identifying the

dangling nodes:

di =





1

0

if i is a dangling node,

otherwise.

f is referred as the personalization vector, it models the behavior of users when they get bored in following the

link and decide to jump randomly.

Further, Kamavar et. al. [12]speed up the PageRank algorithm by exploiting the block structure of the web.
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In [6], dangling pages are handled in similar way, but more computationally efficient though scarifying some

kind of accuracy. We reinterpret the model formally as follows.

Model 3:




x

y


 =




αC + (1− α)/m · 1 1/m1

αD 0







x

y




= (αA + (1− α)B)




x

y




(2.2)

whereA =




C 1/m1

D 0


 , B =




1/m · 1 1/m1

0 0


, m is number of nodes that have been crawled successfully,n

is the number of nodes that have been found by the crawler,C = (cij), D = (dij) and if dj is the out-degree of

nodej,

cij =





d−1
j

0

if there is a link nodei nodej,

otherwise.

dij =





d−1
j

0

if there is a link nodei nodej,

otherwise.

Respectively byC andD we also denote the set of all nodes that have been crawled successfully and the set of

remaining nodes.

In this model, the matrixA models the users’ behavior in case of following the actual links and the unknown

links from dangling nodes to visited nodes. The matrixB models the users’ teleportation. Then the linear convex

combination of the matrixA and the matrixB models the total behaviors of the users.

By adding a virtual noden + 1, the Eq. 2.2 is equivalent to the following




x

y

z




=




αC O e/m

αD O 0

(1− α)eT eT 0







x

y

z




(2.3)

which can be found in [6]. Exploiting this structure, the authors developed the following reduced eigen-system:



x

z


 =




αC e/m

(1− α)eT + αeT D 0







x

z
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After solving the reduced eigen-system iteratively, the vectory can be calculated in one step:

y = αDx.

While this form of linear equation can be calculated efficiently by exploiting the special structure of the above

matrix and the computation complexity is a very important thing, if not most important, in the case of extremely

large web, it is not as accurate as the model 2.

From Eq 2.2, we can see what the problem is. For our convenience, we denote the matrix




C 1/m1

D 0


 as




X M

Y N


, the link information aboutX andY is already known because the crawler has visited all the nodes

in C and therefore all the link from the nodes inC to nodes inC andD have been known by the crawler.

But the information about links from the nodes inD to nodes inC andD is unknown by the crawler because the

nodes inD have not been visited yet or have not been visited successfully. Hidden in the matrix




C 1/m1

D 0


,

there is an assumption, in which users will jump randomly and uniformly from every node inD only to nodes in

C , and thereforeM = 1/m1. This assumption can be improved to be more accurate. In reality, users may jump

from nodes inD to nodes inD, and thus the assumption that all the elements in the right-bottom part of the matrix

are zero is problematic, and the assumption about the right-top part of the matrix need to be adjusted accordingly.

In our model, we assume that users will jump randomly but not uniformly from every node inD to both nodes in

C and nodes inD.

Our model is different from the absorbing model in that our model try to predict the unknown link information

and therefore handle the dangling node robustly and accurately while the absorbing model is new paradigm for

ranking. So the ranking values derived from these two models are not comparable.

Our model is different from model 2 in that we get the information about the unknown part of the matrix by

prediction while the model 2 assume the uniform distribution about the unknown part of the matrix. The authors

in [12] also suggest re-defining the vectorf as non-uniform distribution, however, they only consider the vectorf

as the personalization factor, which is a subjective factor, and from which the PageRank vector can be biased to

prefer certain kinds of pages.

Our model is different from model 3 in two folds:

1. The users will not jump uniformly from every node inD to other nodes.

2. The users will jump from every node inD not only to nodes inC but also to nodes inD.

The authors in [6] further discuss the “link rot” problem and suggest new methods of ranking motivated by the
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hierarchical structure of the web. Although we can combine our model with the technique used in solve these

kinds of problem, we do not focus them in this paper.

Other related work is the Page Popularity Evolution Model in [3, 4], in which the popularity of a page evolves

with the time; it is also a kind of prediction, which looks outside the web structure while our model looks inside

the web structure at current time.

A Simple Example

1

32

Figure 2.1. A case in which considering dangling node will have significant effect on the ranks of

non-dangling nodes

We consider a case in which dangling nodes are so significant that including them in the overall ranking may

not only change the rank value of non-dangling nodes but also change the order of the non-dangling nodes.

In the example of figure 2, there are three pages, with one of them being a dangling node with a link from page

2. If we compute pagerank by the model 2, and letα = 0.85, the matrix in the model 2 is




0.05 0.475 1/3

0.9 0.05 1/3

0.05 0.475 1/3




By power iteration, the RageRank scores are(x1, x2, x3) = (0.3032, 0.3936, 0.3032). So in model 2, rank

for node 2 is much higher than node 1. If we simply remove the dangling node 3, then by Equation 1.1, the

PageRAnk scores for nodes 1 and 2 are(x1, x2) = (0.5, 0.5), in which the rank for node 1 is same as that for node

2. From this example, we can see that whether we handle dangling nodes will not only change the rank value of

the non-dangling nodes but also change their order.

In the area of information system, Nambiar [21], Malvestuto [20], and Lee [15] introduce the idea of applying

the Shannon entropy function to measure the ”information content” of the data in the columns of an attribute set.

They extend the idea to develop a measure that, given a finite tableT , quantifies the amount of information the

columns ofC contain aboutD. This measure is the conditional entropy [8]. The conditional entropy is a well

known measure for dependency degree between attributes. Its formulation is as follows:
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H(D|C) = −
∑

c

∑

d

(Pr[c] · Pr[d|c] · log2(Pr[d|c]))

= −
∑

c

(Pr[c] ·
∑

d

Pr[d|c] · log2(Pr[d|c])),

wherec andd denote the vectors consisting of the values of attributes inC and inD respectively.

Dalkilic, et al [5] calls the conditional entropy as information dependency measure, denoted byHC→D. He

develops a variety of arithmetic inequalities for this measure.

The formulation of entropy is

H(D) = −
∑

d

Pr[d] · log2(Pr[d]).

The third form of the generalized dependency degreeγ′(C,D), which can be found in Chapter 4, is written as

γ′(C, D) =
∑

c

∑

d

(Pr[c] · Pr2[d|c])

=
∑

c

(Pr[c] ·
∑

d

Pr2[d|c]),

whose form is similar to that of the conditional entropy. To computeH(D|C), we need to computelog2(Pr[d|c])
which is more time-consuming. While inγ′(C, D), we do not need to compute such time-consuming logarithm

function.

A variation of this probabilistic form is originally defined by Goodman, et al [9] in literature of statistics, later

independently by Piatetsky-Shapiro [26] in literature of machine learning. Unfortunately, they do not focus on

this measure itself. Goodman, et al [9] do not discuss it further after giving its normalized form while Piatetsky-

Shapiro [26] focuses more on its expected value under randomization. Nor they conduct experiments to support

this measure. Giannella, et al [8] interpret it as the probability of a correct guess in situation when the drawer is

told the value of the conditional attributes, and compares empirically the numerical values of the normalized form

of the generalized dependency degree with that of the normalized InD measure IFD, and find that the average of

the difference between these two normalized measures tends to be close to zero (this does not mean the difference

between these two measures themselves tends to be close to zero). Our theoretical work focuses on the generalized

dependency degree itself, not the normalized form, and our empirical work focus on changing a well-known

classification algorithm C4.5 by replacing the conditional entropy with the generalized dependency degree.

11



Breiman, et al [2] recommends in their CART algorithm adopting the Gini index as an impurity measure and

choosing the split that maximizes the decrease in impurity. The Gini index in fact isγ′(U × U, IND(D)) which

is a special case of the generalized dependency degree, and the corresponding decrease in impurity is actually

γ′({a}, D)− γ′(U × U, IND(D)) which is ensured to be larger than zero by Theorem 5 and is called as depen-

dency gain in next section. This fact is also proved, but no further properties are given in [2].

None of the above work formulate the generalized dependency degree in terms of equivalence relation or in

terms of minimal rule, which can bring us a better understanding for this measure as we have seen in the previous

sections. By formulating it in terms of equivalence relation, we can find its connection to the dependency degree

frequently used in Rough Set Theory, by reformulating it we find its connection to the minimal rules, and by

interpreting it in terms of probability distribution, we find its connection to the measure that is presented but not

fully investigated in the above work.

We give three different forms of the generalized dependency degree, in terms of equivalence relation, minimal

rule, and probability respectively. These three different forms can be used in different situations. When we want

to extend the measure to more complicated data structure than equivalence relation, or when we want to find some

properties about this measure, we can resort to the first two forms of the measure. When we use it in the computing

situation, the third form of the measure may be the best choice. In fact, in this paper, we guess its various properties

by the first two forms, and in the experiments, we use the third form.

If an information system has some missing values, we call this information system as incomplete information

system. For example, there are three missing value in the Table 2.1 with “*” in the space.

a b c d

e1 Y Y Normal(0) N

e2 Y * High(1) Y

e3 Y Y * Y

e4 N * Normal(0) N

e5 N N High(1) N

e6 N Y Very High(2) Y

e7 Y N High(1) Y

Table 2.1. Influenza Data

The problem of rule generation from incomplete information systems is considered in literature. The simplest

method is to remove examples with unknown values. Replacing every value by set all possible values is another

12



method [18]. Introducing the similarity relation and completion of an incomplete information system is a more

accurate way to handle missing values [13, 14, 16]. To extend the definition of generalized dependency degree to

the case of incomplete information systems, we handle missing values by replacing them with their probabilistic

distribution at first, then extending the definition of confidence and strength of a rule to incomplete information

system.
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Chapter 3

Handle Missing Information for Link Analysis

3.1 Predictive Ranking Model

The intuition behind our model is that the link structure inM andN can be estimated from the known informa-

tion. In general, it is difficult to estimate such link structure accurately; however, some elementary estimation is

possible. In this paper, we only estimate the in-degree of each node in the setC ∪D, and thus some information

about the link structure inM andN can be inferred statistically. The dogma in the predictive ranking is that: the

more we know the structure of the web, the more accurate we can infer about the web.

We formulate our model as follows.

1. Suppose that all the nodesV of the graph (n = |V |) can be partitioned into three subsets:C, D1, andD2,

whereC (|C| = m) denotes the subset of all nodes that have been crawled successfully and have at least one

out-link; D1 (|D1| = m1) denotes the subset of all dangling nodes of class 3, i.e., the set of those nodes that the

crawler has visited successfully but from which no outlink is found;D2 (|D2| = n−m−m1) denotes the set of

all dangling nodes of class 1, i.e., the set of all nodes that have not been visited but have been found by the crawler

through other visited nodes. Dangling nodes of class 2 are ignored here.

2. For every nodevi (i = 1, 2, ...,m) in C, the real out-degreed+(vi) (i = 1, 2, ..., m) has been known since

the crawler has found all its outlinks, but the real in-degreed−(vi) (i = 1, 2, ...,m) is unknown since the crawler

has not visited all the nodes inV and there maybe unknown links from the nodes inD2 to the nodevi.

3. For every nodevi (i = m + 1,m + 2, ..., m + m1) in D1, sincevi is a dangling node of class 3, the real

out-degreed+(vi) = 0. Again the real in-degreed−(vi) (i = m + 1, 2, ..., m + m1) is unknown.

4. For every nodevi (i = m + m1 + 1,m + 2, ..., n) in D2, neither the real out-degreed+(vi) (i = m + 1,m +

2, ..., n) nor the real in-degreed−(vi) (i = m + 1,m + 2, ..., n) has been known since the crawler has not crawled
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it yet.

5. We predict the real in-degreed−(vi) (i = 1, 2, ..., n) by the number of found linksfd−(vi) (i = 1, 2, ..., n)

from visited nodes to the nodevi. With the breadth-first crawling method, we assume that the number of found

links fd−(vi) (i = 1, 2, ..., n) from visited nodes to the nodevi is proportional to the real number of links from

all nodes inV to the nodevi, and further we assume that

d−(vi) ≈ n

(m + m1)
· fd−(vi)(i = 1, 2, . . . , n)

This assumption is meaningful. Although the crawler crawls the web from a given web site to other sites in a

definite way, but its ability of finding new link to a given nodevi depends on the density of these links. The density

of these links to the nodevi is equal tod−(vi)
n .

The crawler has foundfd−(vi) such kind of links when it has crawledm nodes, and we considerfd−(vi)
(m+m1) as an

approximate estimate of the density of these links. Following this, the above approximate equality holds.

6. With the approximate in-degreed−(vi), we can re-arrange the matrix. All the found links (fd−(vi)) are

from the nodes inC, and the remaining links (d−(vi) − fd−(vi)) are from the nodes inD2 (it is impossible

that some of these links are from the nodes inD1). Without any prior information about the distribution of these

remaining links, we have to assume that they are distributed uniformly from the nodes inD2 to the nodevi, i.e.,

these remaining links are shared by all the nodes inD2. So the column normalized matrixA modelling the uses’

behavior of following the actual links and estimated actual links isA =




C P M

D Q N


, where




C

D


 is

defined as in Model 3, and it is used to model the known link structure fromC to V ,




P

Q


 will be defined later,

and




M

N


 is used to model the link structure fromD2 to V , and it is defined as follows:




M

N


 =




l1 0 0 0

0 l2 0 0
...

...
...

...

0 0 · · · ln




1n×(n−m−m1),

li = d−(vi)−fd−(vi)
(n−m−m1)Σ , (i = 1, 2, . . . , n), n − m − m1 means that the remaining inlinksd−(vi) − fd−(vi) are

shared uniformly by all nodes inD2 andΣ =
n∑

i=1
d−(vi)− fd−(vi) is multiplied to the denominator to make the
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matrix to be stochastic.

7. When we want to model the users’ teleportation, we assume that the users will jump to nodevi (i =

1, 2, ..., m) with a probability offi when they get bored in following the actual links. So the matrix modelling the

teleportation isfeT . We denote here(f1 f2 . . . fn)T by f . Previous suggestions include the choice of a uniform

distribution among all pages, among a set of trusted ”seed sites”, uniformly among a set of all ”top-level” pages

of sites, or a personalized set of preferred pages.

8. When the user encounters a dangling node of class 3, there is no outlink that the user can follow. In this case,

we assume that the same kind of teleportation as in 6 will happen, and so the matrix




P

Q


 in 5 is used to model

the link structure fromD1 to V and it is assumed to be




P

Q


 =




f1 0 0 0

0 f2 0 0
...

...
...

...

0 0 · · · fn




1n×m1 .

9. We further assume thatα is the probability of following an actual out-link from a page,1−α is the probability

of taking a “random jump” rather than following a link. Then the rankxi of ith page should satisfy

x = [(1− α)feT + αA]x, (3.1)

Wherex is the vector consisting ofxi. .

Because we use the predictable information to construct the link analysis model, we name it as predictive

ranking.

3.2 Block Predictive Ranking Model

The predictive ranking model can be handled more accurate than we have done in the previous section if we

see into the block structure of the web. We can assume that there isp blocks found in the web, and they are

B1, B2, . . . , Bp. Thesep blocks are disjoint with each other, and their union isC ∪ D1 ∪ D2. Let Cj =

C ∩Bj (|Cj | = mj), D1
j = D1 ∩Bj (|D1

j | = m′
j), D2

j = D2 ∩Bj (|D2
j | = nj −mj −m′

j), |Bj | = nj . We only

need to change the fifth and sixth points of our previous model. The fifth point of our previous is changed to be

5’. We predict the real numberd−j (vi) of links from nodes in blockBj to nodevi (i = 1, 2, . . . , n) by the

number of found linksfd−j (vi) from nodes inCj (the visited non-dangling nodes in blockBj) to the nodevi
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(i = 1, 2, . . . , n). With the breadth-first crawling method, we assume thatfd−j (vi) is proportional tod−j (vi)

(i = 1, 2, . . . , n), and further we assume that

d−j (vi) ≈ nj

(mj + m′
j)
· fd−j (vi) (i = 1, 2, . . . , n)

wheremj = |Bj ∩ C| = |Cj |, m′
j = |Bj ∩D1| = |D1

j |, nj = |Bj |.
The sixth point of our previous model can be changed to be

6’. With the approximate in-degreed−j (vi), we can re-arrange the matrix. All the found links (fd−j (vi) ) are

from the nodes inCj , and the remaining links (d−j (vi) − fd−j (vi)) are from the nodes inDj . Without any prior

information about the distribution of these remaining links, we have to assume that they are distributed uniformly

from the nodes inDj to the nodevi, i.e., these remaining links are shared by all the nodes inDj . So the column

normalized matrixA modelling the uses’ behavior of following the actual links and modelling estimated actual

links is

A =




C P M1 M2 · · · Mp

D Q N1 N2 · · · Np




where




C P

D Q


 has the same meaning as in the previous section,




Mj

Nj


 is used to model the link structure

from D2
j to V , and




Mj

Nj


 =




lj1 0 0 0

0 lj2 0 0
...

...
...

...

0 0 · · · ljn




1n×(nj−mj−m′
j)

,

wherelji =
d−j (vi)−fd−j (vi)

(nj−mj−m′
j)Σj

, (i = 1, 2, . . . , n), nj −mj −m′
j means that the remaining inlinksd−j (vi)− fd−j (vi)

are shared uniformly by all nodes inD2
j andΣj =

n∑
i=1

d−j (vi)− fd−j (vi).

Note that all the link structure fromD1
j (j = 1, 2, ..., p) to V are modelled together in the matrix




P

Q


.

We can divide all the web pages into blocks by their top level domains (for example, edu), or by domains (for

example, stanford.edu), or by the countries (for example, cn) . This block predictive ranking model should be

more accurate than our previous one; however, we can not conduct experiment to support this model because of

our limitation of resource.

Note that whenp = 1, this model becomes our previous model.
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Time t 1 2 3 4 5 6

Vnum[t] 7712 78662 109383 160019 252522 301707

Tnum[t] 18542 120970 157196 234701 355720 404728

Time t 7 8 9 10 11

Vnum[t] 373579 411724 444974 471684 502610

Tnum[t] 476961 515534 549162 576139 607170

Table 3.1. Description of Data Sets Within Domain cuhk.edu.hk

3.3 Experimental Setup

Due to our limited network and storage resource we had to restrict our experiments to a relatively small subset

of the web, the network restricted within the domain cuhk.edu.hk. Another reason we choose this subset of the

network is that we can get the relatively complete information about all the pages in this subset so that the relatively

accurate pages ranks can be calculated to make an easier comparison.

We also get a small subset of network by crawling outside the domain cuhk.edu.hk. We show these results in

the following subsections.

3.3.1 Experiments Within Domain cuhk.edu.hk

Because the importance of a web page is an inherently subjective matter, it is difficult to measure whether a link

analysis algorithm is better than another. Due to the success of the PageRank, we consider it as an ideal algorithm

in the case that we have complete information about the web structure. However, in case of handling dangling

nodes, we consider the model 2 as an ideal algorithm. In real cases when we do not know the whole structure of

the web, we use both the predictive ranking algorithms and the modified PageRank algorithm in Model 2 to get

the results of the ranks of the web Pages, and then compare both of them to the ranks of the web Pages calculated

by the modified PageRank Algorithms in case that we have relatively more information about the web structure.

More specifically, we snapshot the 11 matrices during process of crawling the page restricted within the domain

cuhk.edu.hk, namely,A1, A2, . . . , A11. The numbersV num[t] of pages visited successfully at time t and the

total numbersTnum[t] of pages only found at time t are shown in the table 3.1.

By applying both the predictive algorithm and the modified PageRank Algorithm in Model 2 to these 11 data

sets, we get different rank results

PreRank[t] t=1,2,. . . ,12;

PageRank[t] t=1,2,. . . ,12.
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In our experiment we setα = 0.85 and set the personalized factorf to be a uniform distribution in both

algorithms. The iterative algorithm stops when the norm||.||1 between the current ranking and the previous

ranking is less than 0.000001. The numbers of iteration are shown in the table 3.2.

Time t 1 2 3 4 5 6 7 8 9 10 11

PreRank 5 3 2 2 2 2 2 2 2 2 2

PageRank 12 4 3 2 2 2 2 2 2 2 2

Table 3.2. Numbers of Iterations

From this table, in 3 cases out of 11 cases, the PreRank needs less iterations than PageRank. In the other 8 cases,

they needs the same iterations. The computing complexities of both algorithms areCn2, wheren is the number

of all the nodes found.

We then calculate the ranking difference for nodes already found at timet betweenPreRank[t] (PageRank[t])

andPageRank[11] by the formula:

Diff1[t] = ||PreRank[t]− Cut(t, PageRank[11])/Sum[t]||1,

Diff2[t] = ||PageRank[t]− Cut(t, PageRank[11])/Sum[t]||1,

wherecut(t, PageRank[11]) means the vector cut from PageRank[11] such that it has the same dimension as

PreRank[t] and PageRank[t] ,Sum[t] means the sum of values in vectorcut(t, PageRank[11]).

Cut(t, PageRank[11])/Sum[t] is a normalized vector. Since we have more link information at time 11 than

we have at time t (t ≤ 11), we considerCut(t, PageRank[11])/Sum[t] as an ”ideal” reference.

The value diff1[t] measure the difference between PreRank[t] and PageRank[11];

The value diff2[t] measure the difference between PageRank[t] and PageRank[11];

The results of diff1[t] and diff2[t] are shown in the following table and figure:

Time t 1 2 3 4 5 6

Diff1[t] 1.12 1.42 1.08 0.72 0.47 0.31

Diff2[t] 1.07 1.51 1.21 0.81 0.55 0.39

Time t 7 8 9 10 11

Diff1[t] 0.19 0.16 0.13 0.11 0.09

Diff2[t] 0.24 0.19 0.12 0.08 0.0

Table 3.3. Results Within Domain CUHK Based on PageRank at time 11
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Figure 3.1. Results Within Domain CUHK Based on PageRank at time 11

From the figure, we can see that at time 1, PageRank[1] is closer than PreRank[i] to PageRank[11], this happen

because at time 1, the data set is so small that the statistic estimation is not accurate sometimes. But as the time

grows, from time 2 to time 8, PreRank[t] is closer than PageRank[t] to PageRank[11]. As we expected, as time t

is near to the end 11, PageRank[t] again is closer than PreRank[i] to PageRank[11], this happen because

1. At time 11, the information contained in the data set is still incomplete, so the results from both the algorithms

are not accurate.

2. We use the PageRank[11] as comparison reference, it is biased against PreRank[t], therefore it is natural that

PageRank[t] is near to PageRank[t].

3. If we use PreRank[11] as comparison reference, at all time t except 1, PreRank[t] is closer to PreRank[11]

than PageRank[t] does. The Results can be seen in the following figure:
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Figure 3.2. Results Within Domain CUHK Based on PreRank at time 11
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3.3.2 Experiment Outside Domain cuhk.edu.hk

We also snapshot the 9 matrices during process of crawling the page outside the domain cuhk.edu.hk, namely,

A1, A2, . . . , A9. The denotationsV num[t] andTnum[t] have the same meaning as the previous subsection.

The values of them are shown in the table 3.4.

Time t 1 2 3 4 5

Vnum[t] 4611 6785 10310 16690 20318

Tnum[t] 87930 121961 164701 227682 290731

Time t 6 7 8 9

Vnum[t] 23453 25417 28847 39824

Tnum[t] 322774 362440 413053 882254

Table 3.4. Description of Data Sets Outside Domain cuhk.edu.hk

By applying both the predictive algorithm and the modified PageRank Algorithm to these 9 data sets, we get

different rank results

PreRank[t] t = 1, 2, . . . , 9;PageRank[t] t = 1, 2, . . . , 9;

Other experiment setting is same as the local experiments. The numbers of iteration are shown in the table 3.5

Time t 1 2 3 4 5 6 7 8 9

PreRank 2 2 2 1 1 1 1 1 1

PageRank 3 3 3 2 2 2 2 2 1

Table 3.5. Numbers of Iterations at Time t

From this table, in most cases, the PreRank needs less iterations than PageRank.

We then calculate the ranking difference for nodes already found at time t between PreRank[t] (PageRank[t]

)and PageRank[12] by the same procedure as the previous subsection. But the value diff1[t] measure the differ-

ence between PreRank[t] and PageRank[9]; The value diff2[t] measure the difference between PageRank[t] and

PageRank[9];

The results of diff1[t] and diff2[t] are shown in figure 3.3:

From the figure, we can see that only at time 1, 2, and 3, PreRank[t] is closer than PageRank[t] to PageRank[9].

Although we only win these 3 cases, it is a surprise because the reference PageRank[9] is biased against our model,

and PageRank[9] is extremely inaccurate because of the extremely small dataset compared to the extremely large

whole web. As the time grows, from time 4 to time 8, PageRank[t] is closer than PreRank[t] to PageRank[9]. This
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Figure 3.3. Results Outside Domain CUHK Based on PageRank at time 9

result seems that the accuracy in the case of crawling outside the doamin cuhk.edu.hk is worse than in the case of

crawling with the domain. But the truth is that the data set obtained at time 9 is too much small compared to the

whole web containing more than 4 billions of pages, and so the information at time 9 is extremely incomplete, and

therefore both PreRank[9] and PageRank[9] are not accurate. This happens within our expectation.

If we use PreRank[9] as comparison reference, at all time t, PreRank[t] is closer to PreRank[9] than PageRank[t]

does. The Results can be seen in the figure 3.4:
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Figure 3.4. Results Outside Domain CUHK Based on PreRank at time 9

3.4 Discussion

In the previous model, we ignore dangling nodes of class 2. Dangling nodes of class 2 is different from dangling

nodes of class 3. dangling nodes of class 2 can not be visited successfully while dangling nodes of class 3 have

been successfully visited. So it is reasonable to handle them in different way. From the point of view that dangling

nodes of class 2 contain useless information (because we can not visit them), our model does not need further
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modification. However, dangling nodes of class 2 reflect bad structure about the web, and if a pages contains too

many links that point to these nodes, then this page should be penalized. For this reason, dangling nodes of class 2

should not to be ignored simply and we suggest adopting the push-back algorithm in [6], in which dangling nodes

of class 2 is called as penalty pages. We believe that push-back algorithm can be combined with our PreRank

algorithm.

All the above experimental results except the number of iterations are within our expectation. Because our

model mines more information about the web structure, the results of Predictive Ranking is more accurate than

PageRank. In the local experiment, even in the case that we consider the results of PageRank as the reference, i.e.,

even in the case the reference is biased against our model, most early results calculated by PreRank are closer to

the reference (calulated by PageRank) than the results calculated by PageRank. In the outside experiment, if we

consider the results of PageRank as the reference, then we only win 3 cases; if we consider the results of PreRank

as the reference, then we will all the cases. This suggests that PreRank performs better than PageRank in accuracy.

However, that PreRank needs less iteration exceeds our expectation. We can not explain why PreRank can

perform better in speed. One possible reason is that the structure in the MatrixA in Predictive Ranking Model

contains more accurate information (nearer to the global information) and thus each iteration adds more ”correct”

value onto the ranking result, and finally less iteration can get the right answer. This suggests that PreRank

performs better than PageRank in speed.
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Chapter 4

Handle Missing Information for Decision Tree

4.1 Definition of the Generalized Dependency Degree

In this section, we first cite the formal language in complete information systems, which is used to describe

decision rule. Then we give the definition of the generalized dependency degree. Finally we connect the minimal

decision rules and the generalized dependency degree.

4.1.1 Formal Language to Describe Decision Rule

The decision language is defined by Pawlak [24, 25]. LetS = (U,A, V, f) be an information system. With

everyB ⊆ A we associate a formal language, i.e., a set of formulasFor(B). Formulae ofFor(B) are built up

from attribute-value pairsa = v wherea ∈ B andv ∈ Va by means of logical connectives∧ (and)∨ (or), ∼(not)

in the standard way. For anyΦ ∈ For(B), we denote the set of all object objectsx ∈ U satisfyingΦ by ||Φ||S
called the support ofΦ.

A decision rule inS is an expressionΦ → Ψ, whereΦ ∈ For(C), Ψ ∈ For(D), C,D are condition and

decision attributes respectively;Φ andΨ are referred to as condition and decision of the rule respectively. A

decision ruleΦ → Ψ is called adeterministic rulein S if ||Φ||S ⊆ ||Ψ||S , anindeterministic ruleotherwise. With

every decision ruleΦ → Ψ we associate a conditional probability called thecertainty factor(theconfidenceof the

ruleΦ → Ψ), we denote it byCon(Φ → Ψ) which can be written as

Con(Φ → ψ) =
card(||Φ ∧Ψ||S)

card(||Φ||S)
.

We denote thestrengthof decision ruleΦ → Ψ by Str(Φ → Ψ) which is defined in [24] as:

Str(Φ → ψ) =
card(||Φ ∧Ψ||S)

card(U)
.
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4.1.2 Generalized Dependency Degree

We give our first form of the generalized dependency degreeγ′(C,D) in terms of equivalence relation as follows,

Definition 1:

γ′(C, D) =
1
|U |

∑

x∈U

|D(x) ∩ C(x)|
|C(x)| , (4.1)

whereD(x) andC(x) denote theD-class containingxandC-class containingx respectively (recall that in the

introduction section, we have definedP -class for any attribute setP ).

Note that, the dependency degreeγ(C,D) can be rewritten as

γ(C,D) =
1
|U |

∑

x∈U∧C(x)⊆D(x)

|D(x) ∩ C(x)|
|C(x)| , (4.2)

and that|D(x) ∩ C(x)|/|C(x)| is the confidence of the ruleC(x) → D(x) (the meaning of the ruleC(x) → D(x)

will be explained later). From this, one can tell the difference betweenγ′(C,D) andγ(C, D) easily. Inγ(C, D),

if |D(x) ∩ C(x)|/|C(x)| < 1, thenx is not counted, while inγ′(C, D) every object is counted by a fraction

|D(x) ∩ C(x)|/|C(x)| that may be or not equal to 1.

Next we will interpretγ′(C, D) from another point of view, i.e., we will change our view from the equivalence

class to minimal decision rule.

Example 1: In Table 1,A = {a, b, c, d}, U = {e1, e2, e3, e4, e5, e6, e7}. We use Equation (4.1) to calculate

γ′(C, D) whenC = {a, b, c}, D = {d}. SinceC(e1) = {e1}, C(e2) ={e2}, C(e3) ={e3}, C(e4) ={e4},
C(e5) ={e5}, C(e6) ={e6}, C(e7) ={e7}, D(e1) =D(e4) = D(e5) ={e1, e4, e5}, D(e2) = D(e3) =

D(e6) = D(e7) = {e2, e3, e6, e7}, we have

γ′(C, D) = ( |D(e1)∩C(e1)|
|C(e1)| + |D(e2)∩C(e2)|

|C(e2)| + |D(e3)∩C(e3)|
|C(e3)| + |D(e4)∩C(e4)|

|C(e4)| + |D(e5)∩C(e5)|
|C(e5)| + |D(e6)∩C(e6)|

|C(e6)| + |D(e7)∩C(e7)|
|C(e7)| )/7 =

(1 + 1 + 1 + 1 + 1 + 1 + 1)/7 = 1.

Example 2:Also in Table 1, We calculateγ′(C, D) andγ(C, D) whenC = {a},D = {d}. SinceC(e1) =

C(e2) = C(e3) = C(e7) = {e1, e2, e3, e7}, C(e4) = C(e5) = C(e6) = {e4, e5, e6},D(e1) = D(e4) =

D(e5) = {e1, e4, e5},D(e2) = D(e3) = D(e6) = D(e7) = {e2, e3, e6, e7}, we haveγ′(C, D) = 1/7(1/4 +

3/4 + 3/4 + 2/3 + 2/3 + 1/3 + 3/4) = 25/42, while we haveγ(C,D) = 0 according to Equation (4.2).

4.1.3 Connection between the Generalized Dependency Degree and Minimal Rule

We first give the definition of the minimal rule.

Definition 2: Let C = {a1, a2, a3, ..., an}, D = {b1, b2, b3, ..., bm}. Then we call the rule

a1 = u1 ∧ a2 = u2 ∧ ... ∧ an = un → b1 = v1 ∧ b2 = v2 ∧ ... ∧ bm = vm
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a minimal rule, whereu1 ∈ Va1 , u2 ∈ Va2 , u3 ∈ Va3 , · · · , un ∈ Van , v1 ∈ Vb1 , v2 ∈ Vb2 , · · · , vm ∈ Vbm .

If x ∈ U , by C(x) → D(x) we denote the rulea1 = a1(x) ∧ a2 = a2(x) ∧ a3 = a3(x) ∧ ... ∧ an =

an(x) → b1 = b1(x) ∧ b2 = b2(x) ∧ ... ∧ bm = bm(x), whereC(x) is theC-Class containingx, D(x) is the

D-class containingx, ai(x) is the value ofx at the attributeai andbj(x) is the value ofx at the attributebj .

Note that the ruleC(x) → D(x) is a minimal rule, and that any minimal rule, whose confidence and strength

are not equal to zero, can be written asC(x) → D(x).

Let MinR(C, D) be the set of all the minimal rules,r be any rule inMinR(C,D), Con(r) be the confidence

of the ruler andStr(r) be the strength of the ruler. Then

∑

r∈MinR(C,D)

Str(r) · Con(r) (4.3)

the weighted average of the confidenceCon(r) of minimal ruler weighted by the strengthStr(r), is exactly the

generalized dependency degreeγ′(C, D). This is our second form of the generalized dependency degreeγ′(C,D)

which is defined in terms of minimal rule. We explain this by the following.

LetX be a(C∪D)-class. Then for ally, x ∈ X,C(y) = C(x), D(y) = D(x), so forx ∈ X we denoteC(x) by

C(X), D(x) by D(X), and|D(x) ∩ C(x)|/|C(x)| by |D(X) ∩ C(X)|/|C(X)|. Since|X| = |D(X) ∩ C(X)|,
we have

γ′(C, D) =
1
|U |

∑

x∈U

|D(x) ∩ C(x)|
|C(x)|

=
1
|U |

∑

X∈U/(C∪D)

∑

x∈X

|D(x) ∩ C(x)|
|C(x)|

=
1
|U |

∑

X∈U/(C∪D)

∑

x∈X

|D(X) ∩ C(X)|
|C(X)|

=
1
|U |

∑

X∈U/(C∪D)

|X| |D(X) ∩ C(X)|
|C(X)|

=
1
|U |

∑

X∈U/(C∪D)

|D(X) ∩ C(X)|2
|C(X)|

=
∑

X∈U/(C∪D)

1
|U |

|D(X) ∩ C(X)|2
|C(X)|

=
∑

X∈U/(C∪D)

|D(X) ∩ C(X)|
|U | · |D(X) ∩ C(X)|

|C(x)|
=

∑

X∈U/(C∪D)

Str(C(X) → D(X)) · Con(C(X) → D(X))
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=
∑

r∈MinR(C,D)

Str(r) · Con(r)

The dependency degreeγ(C, D) can be rewritten correspondingly as

γ(C, D) =
∑

r∈MinR(C,D)∧Con(r)=1

Str(r) · Con(r),

which means that inγ(C, D), only those minimal rules whose confidences are equal to 1 are counted while in

γ′(C, D), every minimal rule whose confidence is not equal to zero is counted. In other words,γ(C,D) only

counts deterministic minimal rules whileγ′(C, D) counts both deterministic minimal rules and indeterministic

minimal rules.

In fact, we can includeγ(C, D) andγ′(C,D) in a general formγε(C,D), which is defined as

γε(C, D) =
∑

r∈MinR(C,D)∧Con(r)≥ε

Str(r) · Con(r).

Whenε = 0, γε(C, D) = γ′(C,D); whenε = 1, γε(C, D) = γ(C, D). In this paper, we only focus on

γ′(C, D).

4.2 Properties of the Generalized Dependency Degree

Recall that in the introduction section, we define theP - indiscernibility relation for a subsetP of attributes,

denoted byIND(P ), which is an equivalence relation onU , the universe of objects.γ′(C, D) is actually defined

on two equivalence relations induced by subsetsC andD of attributes. The definition ofγ′(C,D) can be easily

generalized to the definition ofγ′(R1, R2) for any two equivalence relationsR1 andR2 on the universeU as

follows:

γ′(R1, R2) =
1
|U |

∑

x∈U

|R2(x) ∩R1(x)|
|R1(x)| , (4.4)

γ′(R1, R2) =
∑

r∈MinR(R1,R2)

Str(r) · Con(r). (4.5)

Here the setMinR(R1, R2) is the set of all the minimal rules,r is any rule inMinR(R1, R2), by Con(r) and

Str(r) we denote the confidence and strength of the ruler respectively. The minimal rule inMinR(R1, R2) is

defined as

x ∈ G → x ∈ H,
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whereG andH are anyR1−class andR2−class respectively.

Note thatγ′(C,D) = γ′(IND(C), IND(D)). In fact, Lingras, et al (1998) extends the rough set model to any

binary relation. The Equation (4.4) is a general form, in which the equivalence relations can be understood as any

binary relations. This explains why we say that the first form of the generalized dependency degree is a flexible

form. In this paper, we only focus on the case of equivalence relation.

The definition ofγ(C, D) can also be generalized toγ(R1, R2) for any equivalence relationsR1, R2 on the

universeU . We rewriteγ(R1, R2) as follows:

γ(R1, R2) =
1
|U |

∑

x∈U ∧R1(x)⊆R2(x)

|R2(x) ∩R1(x)|
|R1(x)| , (4.6)

γ(R1, R2) =
1
|U |

∑

x∈U ∧R1(x)⊆R2(x)

Str(r) · Con(r). (4.7)

Throughout the rest of this paper, all the relations we use are all on the finite universeU . By the definition of

γ(R1, R2) andγ′(R1, R2) we have

Theorem 1:For any equivalence relationsR1 andR2, the inequalityγ(R1, R2) ≤ γ′(R1, R2) ≤ 1 holds.

Theorem 2:For any equivalence relationsR1 andR2,

γ(R1, R2) = 1 ⇔ γ′(R1, R2) = 1 ⇔ γ(R1, R2) = γ′(R1, R2).

Proof. Note that
∑

r∈MinR(R1,R2)
Str(r) = 1. If γ(R1, R2)=1, then by Theorem 1, we have

1 = γ(R1, R2) ≤ γ′(R1, R2) ≤ 1,

and henceγ′(R1, R2) = 1.

If γ′(R1, R2) = 1, then by Equation (4.4), we have

1 =
1
|U |

∑

x∈U

|R2(x) ∩R1(x)|
|R1(x)| ,

and hence the equality1 = |R2(x) ∩R1(x)|/|R1(x)| holds for anyx ∈ U . This yieldsR1(x) ⊆ R2(x) for any

x ∈ U (recall thatU is a finite set). Therefore we haveγ(R1, R2) = γ′(R1, R2) by Equation (4.4) and (4.6).

If γ(R1, R2) = γ′(R1, R2), also by Equation 4.4) and (4.6), we haveR1(x) ⊆ R2(x) for anyx ∈ U , which

yieldsγ(R1, R2) = 1.

Based on above discussion, the conclusion is true.

Theorem 3:(Partial Order Preserving Property) For any equivalence relationsR1, R2 andR. If R2 ⊆ R,

thenγ′(R1, R2) ≤ γ′(R1, R).
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Proof. According to Equation (4.4), the conclusion follows immediately.

This means that the finer the equivalence relationR2 is, the less the equivalence relationR2 depends on the

equivalence relationR1. From the viewpoint of classification, the more the decision attribute values group together,

i.e., the lager equivalence class induced by the decision attribute is, the easier we can classify the objects into

new D-class by employing attributeC. For example, in Table 1,D = {d}, Vd = {Y, N}, if we groupY

andN together such that bothY andN become a new valueZ, thenD′ = {d}, Vd = {Z}, and the Table

1.1 becomes Table 4.1.D induces the equivalence relationIND(D), and the set of the equivalence classes

is calculated asU/D = {{e1, e4, e5}, {e2, e3, e6, e7}}; D′ induces the equivalence relationIND(D′), and

U/D′ = {{e1, e2, e3, e4, e5, e6, e7}}. Then we classify object intoU/D′ easier than intoU/D.

a b c d

e1 Y Y 0 Z

e2 Y Y 1 Z

e3 Y Y 2 Z

e4 N Y 0 Z

e5 N N 1 Z

e6 N Y 2 Z

e7 Y N 1 Z

Table 4.1. Influenza Data

By Theorem 3, we have

Theorem 4:For any given equivalence relationR1.

min
R2

γ′(R1, R2) = γ′(R1, IU ), max
R2

γ′(R1, R2) = γ′(R1, U × U) = 1,

whereIU is the identity relation onU , andU × U is the universal relation onU .

Proof. SinceIU ⊆ R2 ⊆ U × U , the conclusion is immediate by Theorem 3.

In order to obtain more properties about the generalized dependency degreeγ′(R1, R2), we need the following

lemma.

Lemma 1:The inequality
a2

1

b1
+

a2
2

b2
+ · · ·+ a2

n

bn
≥ (a1 + a2 + · · · an)2

b1 + b2 + · · ·+ bn

holds for anyai ∈ R, and0 < bi ∈ R,i = 1, 2, . . . , n.

29



Proof. It is well known that for any functionf(x) in whichf ′′(x) > 0, the inequality

f(µ1x1 + µ2x2 + · · ·+ µnxn) ≤ µ1f(x1) + µ2f(x2) + · · ·+ µnf(xn)

holds ifµ1, µ2, . . . , µn ≥ 0, µ1 + µ2 + · · ·+ µn = 1. In this inequality, let

f(x) = x2, xi = (b1 + b2 + · · ·+ bn)ai/bi, µi = bi/(b1 + b2 + · · ·+ bn),

i = 1, 2, . . . , n. Then the desired inequality follows.

Theorem 5:For any given equivalence relationR2,

min
R1

γ′(R1, R2) = γ′(U × U,R2).

Proof. Suppose that there arem R2-classes, and they areX1, X2, X3, . . . , Xm. We will calculateγ′(R1, R2)

whenR1 = U × U . By Equation (4.4), whenR1 = U × U , we have

γ′(R1, R2) =
1
|U |

∑

X∈U/R2

∑

x∈X

|X ∩R1(x)|
|R1(x)|

=
1
|U |

∑

X∈U/R2

∑

x∈X

|X ∩ U |
|U |

=
1
|U |

∑

X∈U/R2

∑

x∈X

|X|
|U |

=
1
|U |

∑

X∈U/R2

|X|2
|U |

=
1
|U |2

m∑

i=1

|Xi|2.

Then we analyzeγ′(R1, R2) for any givenR1. In order to achieve this goal, we need to see into the setXi. We

assume there areki different nonempty subsets ofXi of the formR1(x) ∩ Xi, for i = 1, 2, ..., m. Note that for

anyx, y ∈ U, eitherR1(x) = R1(y) or R1(x) ∩R1(y) = φ, and ∪
x∈U

R1(x) = U.So we can assume that theseki

different nonempty subsets ofXi take the forms

R1(xi1) ∩ Xi, R1(xi2) ∩ Xi, . . . , R1(xiki) ∩ Xi,

and they satisfy

(R1(xip) ∩Xi) ∩ (R1(xiq) ∩Xi) = φ,

30



for p 6= q,p, q = 1, 2, . . . , ki; and
ki∪

p=1
(R1(xip) ∩Xi) = Xi.

Note that fory ∈ R1(xij) ∩Xi,

R1(y) ∩Xi = R1(xij) ∩Xi.

By Equation (4.4), we have

γ′(R1, R2) =
1
|U |

m∑

i=1

∑

x∈Xi

|Xi ∩R1(x)|
|R1(x)|

=
1
|U |

m∑

i=1

ki∑

j=1

∑

x∈R1(xij)∩Xi

|Xi ∩R1(xij)|
|R1(xij)|

=
1
|U |

m∑

i=1

ki∑

j=1

|Xi ∩R1(xij)|2
|R1(xij)|

=
1
|U |2

m∑

i=1

ki∑

j=1

|U |
|R1(xij)| |Xi ∩R1(xij)|2.

Because thatU ⊇ R1(xi1) ∪ R1(xi2) ∪ · · · ∪ R1(xiki) and thatR1(xi1), R1(xi2), · · · , R1(xiki) are disjoint

with each other, we have

|U | ≥ |R1(xi1)|+ |R1(xi2)|+ · · ·+ |R1(xiki)|.

Note that

|Xi| = |R1(xi1) ∩Xi|+ |R1(xi2) ∩Xi|+ · · ·+ |R1(xiki
) ∩Xi|,

so by Lemma 1, we have

|Xi|2
ki∑

j=1
|R1(xij)|

≤ |R1(xi1) ∩Xi|2
|R1(xi1)| +

|R1(xi2) ∩Xi|2
|R1(xi2)| + · · ·+ |R1(xiki) ∩Xi|2

|R1(xiki)|
,

and hence

|Xi|2 ≤ (
ki∑

j=1

|R1(xij)|)( |R1(xi1) ∩Xi|2
|R1(xi1)| +

|R1(xi2) ∩Xi|2
|R1(xi2)| + · · ·+ |R1(xiki) ∩Xi|2

|R1(xiki)|
)

≤ |U ||R1(xi1) ∩Xi|2
|R1(xi1)| +

|U ||R1(xi2) ∩Xi|2
|R1(xi2)| + · · ·+ |U ||R1(xiki) ∩Xi|2

|R1(xiki)|
).

Thereforeγ′(U × U,R2) ≤ γ′(R1, R2).
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This theorem means that the generalized dependency degree is minimal when there is only one equivalence class

induced byR1, therefore fromR1 we can not learn more useful information aboutR2 in such case.

Similarly we have

Theorem 6:(Anti-Partial Order Preserving Property) For any equivalence relationsR1, R2, R. If R1 ⊆ R,

thenγ′(R1, R2) ≥ γ′(R,R2).

Proof. SinceR1 ⊆ R, eachR-class is the union of someR1-classes, each setR(yj)∩Xi is the union of some sets

of the formR(xj) ∩Xi. We assume that inXi, there areli different nonempty subsets of the formR(yij) ∩Xi.

We assume without loss of generality that

R(yi1) ∩Xi = (R1(xi1) ∩Xi) ∪ (R1(xi2) ∩Xi) ∪ · · · ∪ (R1(xip1) ∩Xi),

R(yi1) ⊇ R1(xi1) ∪R1(xi2) ∪ · · · ∪R1(xip1),

R(yi2) ∩Xi = (R1(xip1+1) ∩Xi) ∪ (R1(xip1+2) ∩Xi) ∪ · · · ∪ (R1(xip2) ∩Xi),

R(yi2) ⊇ R1(xip1+1) ∪R1(xip1+2) ∪ · · · ∪R1(xip2),

. . .,

R(yili) ∩Xi = (R1(xipli−1+1) ∩Xi) ∪ (R1(xipli−1+2) ∩Xi) ∪ · · · ∪ (R1(xipli
) ∩Xi),

R(yili) ⊇ R1(xipli−1+1) ∪R1(xipli−1+2) ∪ · · · ∪R1(xipli
).

By the proof of Theorem 5, we have

γ′(R1, R2) =
1
|U |2

m∑

i=1

ki∑

j=1

|U |
|R1(xij)| |Xi ∩R1(xij)|2

=
1
|U |2

m∑

i=1

ki∑

j=1

a2
ij

bij
,

whereaij = |Xi ∩R1(xij)|, bij = |R1(xij)|/|U |, i = 1, 2, . . . , m; j = 1, 2, . . . , ki. And
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γ′(R, R2) =
1
|U |2

m∑

i=1

li∑

j=1

|U |
|R(yij)| |Xi ∩R(yij)|2

=
1
|U |2

m∑

i=1

li∑

j=1

a′ij
2

b′ij
,

where

a′i1 = |Xi ∩R(yi1)| = ai1 + ai2 + · · ·+ aip1 ,

a′i2 = |Xi ∩R(yi2)| = aip1+1 + aip1+2 + · · ·+ aip2 ,

. . . ,

a′ili = |Xi ∩R(yili)| = aipli−1+1 + aipli−1+2 + · · ·+ aipli
,

b′i1 = |R(yi1)|/|U | ≥ bi1 + bi2 + · · ·+ bip1 ,

b′i2 = |R(yi2)|/|U | ≥ bip1+1 + bip1+2 + · · ·+ bip2 ,

. . . ,

b′ili = |R(yili)|/|U | ≥ bipli−1+1 + bipli−1+2 + · · ·+ bipli
,

i = 1, 2, . . . , m. By Lemma 1, we have

ki∑

j=1

a2
ij

bij
=

a2
i1

bi1
+

a2
i2

bi2
+ · · ·+ a2

ip1

bip1

+
a2

ip1+1

bip1+1
+

a2
ip1+2

bip1+2
+ · · ·+ a2

ip2

bip2

+ · · ·

+
a2

ipli−1+1

bipli−1+1
+

a2
ipli−1+2

bipli−1+2
+ · · ·+

a2
ipli

bipli
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≥
(

p1∑
j=1

aij)2

p1∑
j=1

bij

+
(

p2∑
j=p1+1

aij)2

p1∑
j=p1+1

bij

+ · · ·+
(

pli∑
j=pli−1+1

aij)2

pli∑
j=pli−1+1

bij

≥ a′i1
2

b′i1
+

a′i2
2

b′i2
+ · · ·+ a′ili

2

b′ili
.

Thereforeγ′(R1, R2) = 1
|U |2

m∑
i=1

ki∑
j=1

a2
ij

bij
≥ 1

|U |2
m∑

i=1

li∑
j=1

a′ij
2

b′ij
= γ′(R, R2).

This means that the finer the equivalence relationR1 is, the moreR2 depends onR1. From the viewpoint of

classification, the more the condition attribute values group together, i.e., the larger equivalence class induced by

the decision attribute is, the more difficult we can classify the objects into newD-class by employing attributeC.

For example, in Table 1, letC = {c}, Vc = {0, 1, 2}, if we group 0, 1 and 2 together such that 0, 1, 2 become a

new value 3, thenC ′ = {c},Vc = {3}, and the Table 1 becomes Table 3. Thus it is harder for us to classify objects

into D-class by employing the attributeC ′.

a b c d

e1 Y Y 3 N

e2 Y Y 3 Y

e3 Y Y 3 Y

e4 N Y 3 N

e5 N N 3 N

e6 N Y 3 Y

e7 Y N 3 Y

Table 4.2. Influenza Data

BecauseIND(C) = ∩c∈C IND({c}), when we drop some attributes fromC such that a new attribute setC ′

is formed, we haveIND(C ′) ⊇ IND(C). So by Theorem 6,γ′(C ′, D) ≤ γ′(C, D). This means that generally,

the less the condition attribute set contains attributes, the harder we classify the objects intoD-class by employing

the condition attribute set.

Theorem 7:For any given equivalence relationR2, we have

max
R1

γ′(R1, R2) = γ′(IU , R2) = 1, min
R1

γ′(R1, R2) = γ′(U × U,R2).

Proof. It is immediate by Theorem 6.
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Theorem 8:

min
R1,R2

γ′(R1, R2) =
1
|U | , max

R1,R2

γ′(R1, R2) = 1.

Proof. By Theorem 3 and Theorem 6, we only need to verify thatγ′(U ×U, IU ) = 1/|U |. LetR1 = U ×U,R2 =

IU . According to Equation (4.4), we have

γ′(U × U, IU ) =
1
|U |

∑

x∈U

|R2(x) ∩R1(x)|
|R1(x)|

=
1
|U |

∑

x∈U

|{x} ∩ U |
|U |

=
1
|U |

∑

x∈U

1
|U | =

1
|U | .

This means that for any two equivalence relationsR1, R2, R2 depends onR1 to some degree at least1/|U |.
When the number of objects tends to infinity, the minimum tends to zero.

4.3 Probabilistic Form of Generalized Dependency Degree

The third form of the generalized dependency degreeγ′(C,D) can be rewritten as

γ′(C, D) =
∑

c

∑

d

(Pr[c] · Pr2[d|c]) (4.8)

=
∑

c

(Pr[c] ·
∑

d

Pr2[d|c]),

Next we will explain why the generalized dependency degreeγ′(C, D) can be rewritten as the above form.

Let C = {a1, a2, ..., an},D = {b1, b2, ..., bm}. Then the minimal rule

a1 = u1 ∧ a2 = u2 ∧ ... ∧ an = un → b1 = v1 ∧ b2 = v2 ∧ ... ∧ bm = vm

can be denoted byc → d, wherec = (u1, u2, . . . , un), d = (v1.v2, . . . , vm). Then

Con(c → d) = Pr(d|c),

Str(c → d) = Pr(c, d).

According toPr(c, d)/Pr(c) = Pr(d|c) and Equation (4.3), we have
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γ′(C,D) =
∑

r∈MinR(C,D)

Str(r) · Con(r)

=
∑

c,d

Str(c → d) · Con(c → d)

=
∑

c,d

Pr(c, d) · Pr(d|c)

=
∑

c

∑

d

Pr(c, d) · Pr(d|c)

=
∑

c

∑

d

Pr(c) · Pr(c, d)
Pr(c)

· Pr(d|c)

=
∑

c

(Pr(c) ·
∑

d

Pr2(d|c)).

Before we move on to the next section, we give one more property of the generalized dependency degree based

on the form of Equation (4.8), i.e., in term of probability.

Theorem 9:If the decision attributes are independent of the conditional attributes, thenγ′(C, D) = γ′(U ×
U, IND(D)), i.e., the generalized dependency degreeγ′(C, D) takes the minimal value ofγ′(R1, IND(D))

among all possible equivalence relationR1

Proof. If D is independent ofC, thenPr(d|c) = Pr(d), and so we have

γ′(C, D) =
∑

c

(Pr[c] ·
∑

d

Pr2[d|c])

=
∑

c

(Pr[c] ·
∑

d

Pr2[d])

= (
∑

c

Pr[c]) · (
∑

d

Pr2[d])

=
∑

d

Pr2[d].

By the proof of Theorem 5, the above formula is exactlyγ′(U × U, IND(D)), which means that under the

condition of independency,γ′(C, D) = γ′(U × U, IND(D)), and that under the same condition,γ′(C, D) takes

the minimal value ofγ′(R1, IND(D)) among all possible equivalence relationR1.
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4.4 Definition of the Generalized Dependency Degreeγ′ in Incomplete Information Systems

In this Section, we expand the definition of the generalized dependency degree to incomplete information sys-

tems by reinterpreting the meaning of the support of a formula and the cardinality of the support in incomplete

information systems and using minimal rule.

4.4.1 How to Handle Missing Values in Incomplete Information Systems

Here we introduce a new approach by replacing the missing value by its possible attribution shown in Table 4.3:

a b c d

e1 Y Y Normal(0) N

e2 Y {P1/Y, P2/N} High(1) Y

e3 Y Y {S1/0, S2/1, S3/2} Y

e4 N {Q1/Y, Q2/N} Normal(0) N

e5 N N High(1) N

e6 N Y Very High(2) Y

e7 Y N High(1) Y

Table 4.3. Influenza Data

In thee2-row, by{P1/Y, P2/N} we mean thate2 takes the valueY with a probabilityP1, andN with a prob-

ability P2. In thee4-row, the expression{Q1/Y, Q2/N} has a similar meaning. Ine3-row, {S1/0, S2/1, S3/2}
means thate3 takes the value 0, 1, and 2 with probabilityS1, S2, andS3 respectively.

In order to reduce the complexity of computing, we introduce an approximate method to determining the values

of all the unknown parametersP1, P2, Q1, Q2, S1, S2, S3. We letP1, P2, Q1, Q2 take the values of the distribution

of Y andN in the columnb, i.e.,P1 = Q1 = 3/5, P2 = Q2 = 2/5; letS1, S2, S3 take the values of the distribution

of 0,1 and 2 in columnc, i.e.,S1 = 2/6, S2 = 3/6, S3 = 1/6.

4.4.2 Definition ofγ′ in Incomplete Information Systems

Although we can also define some kinds of equivalence relations induced by the attributes in an incomplete in-

formation table, here we introduce a direct way to calculate the generalized dependency degreeγ′ in an incomplete

information table. That is, we choose the Equation 4.3
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γ′(C, D) =
∑

r∈MinR(C,D)

Str(r) · Con(r),

as our definition of the generalized dependency degreeγ′ in an incomplete information table. To carry out this

idea, we have to define the Confidence and the Strength of a rule in an incomplete information table. We show our

definition by example of the Influenza Data in Table 4.3.

Before going forward, we need to re-interpret the meaning of||Φ||S and the meaning of thecard(||Φ||S) where

the set||Φ||S may be a “fractional” set in an incomplete information table.

If x ∈ U satisfiesΦ with a probability ofp, then the objectx belongs to the set||Φ||S with a probability ofp,

and we write the elementx in ||Φ||S asp/x. For example, in the Table 4.3, letΦ be the formulab = Y . e1 satisfies

the formulab = Y with a probability of 1, the probability ofY in e1-row, b-column;e2 satisfies the formulab = Y

with a probability ofP1 = 3/5, the probability ofY in e2-row, b-column. We have

||Φ||S = {1/e1, 0.6/e2, 1/e3, 0.6/e4, 0/e5, 1/e6, 0/e7}.

We can delete all the elements whose probability are equal to zero, i.e., we often write||Φ||S as ||Φ||S =

{1/e1, 0.6/e2, 1/e3, 0.6/e4, 1/e6}.
Then we define||Φ||S inductively as follows: Ifx satisfiesΦ with a probability ofp, andx satisfiesΨ with a

probability of q, thenx satisfiesΦ ∧ Ψ with a probability ofpq; x satisfies∼ Φ with a probability of1 − p; x

satisfiesΦ∨Ψ with a probability of1− (1− p)(1− q). Note that our support||Φ||S of Φ has the same expression

as fuzzy set. So we can also define||Φ||S inductively in term of fuzzy set as follows:

F1 : ||a = v||S = {p(x)/x|x ∈ U,P [a(x) = v] = p(x)}

for a ∈ B andv ∈ Va

F2 : ||Φ ∨Ψ||S = ||Φ||S + ||Ψ||S
F3 : ||Φ ∧Ψ||S = ||Φ||S · ||Ψ||S
F4 : || ∼ Φ||S =∼ ||Φ||S

where||Φ||S + ||Ψ||S is the algebraic sum of the fuzzy sets||Φ||S and||Ψ||S , ||Φ||S · ||Ψ||S is the algebraic product

of the fuzzy sets||Φ||S and||Ψ||S , and∼ ||Φ||S is the complement of the fuzzy set||Φ||S [29].
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The cardinalitycard(||Φ||S) can be defined in term of fuzzy set, i.e.,

card(||Φ||S) =
∑

x∈||Φ||S
p(x). (4.9)

Then as an example we will calculate the generalized dependency degree betweenC = {a, b, c} andD = {d} in

Table 4.3 by the Equation 4.3. We first need to calculate the confidence and strength of each minimal decision rule

using the following definitions in which we have already defined whatever we need.

Con(Φ → Ψ) = card(||Φ ∧Ψ||S)/card(||Φ||S) (4.10)

Str(Φ → Ψ) = card(||Φ ∧Ψ||S)/card(U) (4.11)

Example 3:We show in the following the process of calculation of confidence and strength of one minimal rule

while the results of all minimal rules is listed in Table 4.4. Since||a = Y ∧ b = Y ∧ c = 0 ∧ d = Y ||S =

{S1/e3},|{S1/e3}| = S1 = 2/6,||a = Y ∧ b = Y ∧ c = 0||S = {1/e1, S1/e3},|{1/e1, S1/e3}| = 1 + S1 =

1 + 2/6 = 4/3, we have the minimal rulea = Y ∧ b = Y ∧ c = 0 → d = Y with confidence=1/4, strength=1/21;

a b c d Con Str a b c d Con Str

Y Y 0 Y 1
4

1
21 N Y 0 Y 0 0

Y Y 0 N 3
4

1
7 N Y 0 N 1 3

35

Y Y 1 Y 1 11
70 N Y 1 Y 0 0

Y Y 1 N 0 0 N Y 1 N 0 0

Y Y 2 Y 1 1
42 N Y 2 Y 1 1

7

Y Y 2 N 0 0 N Y 2 N 0 0

Y N 0 Y 0 0 N N 0 Y 0 0

Y N 0 N 0 0 N N 0 N 1 2
35

Y N 1 Y 1 1
5 N N 1 Y 0 0

Y N 1 N 0 0 N N 1 N 1 1
7

Y N 2 Y 0 0 N N 2 Y 0 0

Y N 2 N 0 0 N N 2 N 0 0

Table 4.4. Results of All Minimal Rules

So we haveγ′(C,D) =
∑

r∈MinR(C,D)
Str(r) ·Con(r) = 1/21 · 1/4 + 1/7 · 3/4 + 11/70 · 1 + 1/42 · 1 + 1/5 ·

1 + 3/35 · 1 + 1/7 · 1 + 2/35 · 1 + 1/7 · 1 = 13/14.

By the next theorem, we show one more property of the generalized dependency.
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Theorem 10:In an incomplete information system, we have0 ≤ γ′(C,D) ≤ 1

Proof. Because every object contributes1/|U | to the sum of
∑

r∈MinR(C,D)
Str(r) and there are totally|U | objects,

we have
∑

r∈MinR(C,D)
Str(r) = 1 . It is obvious thatCon(r) ≤ 1 for all ruler, so we have

∑
r∈MinR(C,D)

Str(r) · Con(r) ≤ ∑
r∈MinR(C,D)

Str(r) = 1

Note that our method enables us to handle an information table whose values are probabilistic distribution, and

that information table without missing values can be understood as a special case of incomplete information table.

4.5 Experiments

In the above sections, we have given a deeper understanding of the generalized dependency degree by presenting

its various forms and developing its various properties. Next, we will replace the conditional entropy used in the

C4.5 algorithm with the generalized dependency degree such that a new C4.5 algorithm is formed. We discard in

the new C4.5 algorithm the MDL principal by which the original C4.5 can correct the split selection bias towards

the continuous attribute. Since the conditional entropy has the meaning of average code length, it is compatible

with the MDL principal in the original C4.5, however the generalized dependency degree means that to what

degree the decision attribute depend on the condition attribute, so the new C4.5 using the generalized dependency

degree is not compatible with the MDL principal and we discard it. One more thing that we change the original

C4.5 is that we let the procedure of building tree stop earlier by a new criterion: in the current node, if for every

attribute, the number of the gain cases is less than a given value (< 1.0), then the splitting procedure stops. The

number of the gain cases is calculated by multiplying the number of cases in current node and the dependency

gain.

C4.5 algorithm uses a divide-and-conquer approach to grow decision trees [27]. Next, we describe the C4.5

algorithm roughly. The readers are recommended to read the book [27] for a better understanding.

If the algorithm is run under the option –g, then for every condition attributea, its information gain is computed

by the formula

G(D, {a}) = H(D)−H(D|{a}).

Then choose the attribute which has the maximum gain among all the condition attributes, then the training cases

T are partitioned into subsetsT1, T2, . . . , Tn according to the value of the chosen attribute. The same procedure

is applied recursively to each subset of the training cases. If the algorithm is run under the default option, then for

every condition attributea, its information gain ratio is computed by the formula

H(D)−H(D|{a})
H(C)

.
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If the algorithm is run under the option –s, then the values of discrete attributes will be grouped for test, and again

the gain ration criterion will be used. If the algorithm is run under the option –g –s, then the values of discrete

attributes will be grouped for test, and the gain criterion will be used.

We replace the information gain in the original C4.5 algorithm with

G(D, {a}) = γ′({a}, D)− γ′(D)

in our new C4.5 algorithm, whereγ′(D) = γ′(U × U, IND(D)). Note that by Theorem 5,G(D, {a}) ≥ 0.

To make it easier for the readers to repeat the experiments, we describe in the Appendix how the new C program

is obtained and how our experiments are conducted in details.

Both the original C4.5 and the new C4.5 are applied to all the same eleven data sets with missing values as

used in [28]. These eleven data sets are from the UCI Repository. Note that the datasets we use may have slight

difference with what Quinlan [28] uses, as Quinlan points out in our private corresponding. For example, the

anneal dataset we use has a different order of the cases with what Quinlan uses. The Table 4.5 is a description of

the datasets we use. The first column refers to the names of the datasets, the second column refers to the numbers

of cases in each datasets, the third column refers to the number of continuous attributes, and the final column refers

to the number of discrete attribute.

dataset Cases Classes Cont Discr

Anneal 898 6 6 32

Auto 205 6 15 10

Breast-w 699 2 9 0

Colic 368 2 7 15

Credit-a 690 2 6 9

Heart-c 303 2 6 7

Heart-h 294 2 8 5

Hepatitis 155 2 6 13

Allhyper 3772 5 7 22

Labor 57 2 8 8

Sick 3772 2 7 22

Table 4.5. Description of the Datasets

The experiments are conducted on the workstation whose hardware model is Nix Dual Intel Xeon 2.2GHz,
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whose RAM is 1GB, and whose OS is Linux Kernel 2.4.18-27smp (RedHat7.3).

Both algorithms use ten-fold cross-validations with each task. The figures shown in the Table 4.6 is the mean

error rate of ten-fold cross-validations.

dataset O-g-s(%) pruned(%) N-g-s(%) pruned (%)

Anneal 3.9 4.6 6.1 7.9

Auto 20.5 22.0 22.0 22.5

Breast-w 5.7 4.3 4.2 4.5

Colic 19.8 16.0 16.3 15.4

Credit-a 19.7 17.1 15.2 15.6

Heart-c 22.4 21.4 23.4 23.1

Heart-h 24.2 22.8 20.7 21.1

Hepatitis 20.0 19.9 19.3 19.3

Allhyper 1.4 1.4 1.1 1.2

Labor 24.7 26.3 15.7 19.3

Sick 1.2 1.1 1.0 1.0

Table 4.6. Mean error rates of the original C4.5 and the new C4.5 on the data sets with missing values

The second column and third column in Table 4.6 are the results before pruning and after pruning respectively

obtained by running the command

xval.sh filestem 10 –g –s

in the original C4.5 system. Which means the gain criteria (not the gain ratio) is used, and the MDL principle

is used to correct the bias towards continuous attributes with numerous distinct values. Moreover the grouping

method is used. The fourth column and the fifth column are the results before pruning and after pruning respec-

tively obtained by running the same command in the new C4.5 system. Which means the new gain criteria based

on the generalized dependency degree is used, and the MDL principle is not used. The grouping method is also

used. The final row refers to the sum of results of the experiments on the twenty datasets.

The figures shown in the Table 4.7 is about the average run time of ten-fold cross-validations. The time unit in

Table 4.7 is 0.01 second. The second column in Table 4.7 refers to the average run time of the original procedure

C4.5 in the ten-fold cross-validations. The third column and the forth column refer to the average run time

and the reduced time rate based on the second column of the changed C4.5 procedure without and with the
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pruning procedure respectively. Note that the run time does not include the run time for data preparation for

cross-validation and the run time for final result report in both C4.5 systems.

dataset O-g-s N-g-s unpruned reduced rate(%) N-g-s pruned reduced rate(%)

Anneal 6.800 4.600 32.4 5.100 25.0

Auto 9.700 2.600 73.2 2.600 73.2

Breast-w 1.600 1.000 37.5 1.000 37.5

Colic 4.100 1.500 63.4 1.500 63.4

Credit-a 8.300 2.400 71.1 2.500 69.9

Heart-c 2.000 0.700 65.0 0.900 55.0

Heart-h 1.900 0.700 63.2 0.600 68.4

Hepatitis 0.900 0.600 33.3 0.700 22.2

Allhyper 45.000 18.500 58.9 18.500 58.9

Labor 0.400 0.100 75.0 0.400 0.0

Sick 38.100 17.100 55.1 20.800 45.4

Table 4.7. Average run time of the original C4.5 and the new C4.5

The experiments show that the generalized dependency degreeγ′(C, D) is a useful measure in incomplete

information systems. We compare in three folds the new C4.5 algorithm using the generalized dependency degree

with the original C4.5 algorithm using the conditional entropy:

1. Theoretical complexity: The generalized dependency degreeγ′(C, D) itself is somewhat complete. In the

new C4.5 it does not need the MDL principal to correct the bias towards the continuous attribute, while the

conditional entropy needs the MDL principal to achieve the competitive prediction accuracy. Moreover, from the

experiment, we find that the pruning procedure in the original C4.5 algorithm can be omitted in the new C4.5

algorithm. Table 4.6 and Table 4.7 show that in the new C4.5 algorithm, omitting the pruning procedure can

achieve a better performance both in speed and prediction accuracy.

2. Speed: To computeγ′(C, D), we only need to compute the square of the frequency, while the computation of

the often used conditional entropy needs to compute the time consuming logarithm of the frequency. Furthermore,

the building tree procedure in the new C4.5 algorithm stops earlier. Omitting the pruning procedure can also save

us an amount of time. This explained why the new C4.5 procedure with pruning procedure runs much faster than

the original C4.5 procedure. In fact, the new C4.5 procedure run at about half of the time run by the original C4.5

procedure, and the new C4.5 procedure without pruning procedure can run a little faster further. Note that the
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original C4.5 algorithm is the fastest algorithm in training time among the thirty-three old and new classification

algorithms [17].

3. Prediction accuracy: The original C4.5 algorithm performs best by using the option –g –s and using the

pruning procedure, while the new C4.5 algorithm also performs best by using the same option, but it does not

need the extra pruning procedure. So we only compare the third column with the fourth column in Table 4.6, i.e.,

the result after pruning of original C4.5 algorithm with option –g –s with the result before pruning of the new

C4.5 algorithm with the same option. In the third column and fourth column, the less one is written in bold. And

we find that the new C4.5 algorithm performs better than the original C4.5 algorithm in prediction accuracy in

these eleven data sets with missing values. Note that the prediction accuracy of the original C4.5 algorithm is not

statistically significantly different from POL whose prediction accuracy is best among the thirty-three old and new

classification algorithms [17]. The new C4.5 algorithm seems more successful in the dataset labor, on which the

algorithm achieve a 15.7% prediction error rate while the original has 26.3% error rate.

We believe that after further investigation on the new C4.5 algorithm, the overall performance of the new C4.5

algorithm will perform better.
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Chapter 5

Conclusions and Future Work

Using simple statistic method to handle missing values in the area of link analysis and in the area of decision tree

achieves better performance both in accuracy and in speed.

Using known information to predict the number of inlinks for each page that have already been found is an

efficient way to predict the unknown web structure in link analysis. Our experimental results suggest that PreRank

need less iteration and performs better than PageRank in accuracy. Continue this work, there is much work we can

do:

1. Speed up the Predictive ranking algorithm. Because the matrix A has special structure, it is possible to exploit

this special structure to speed up the algorithm without losing accuracy. Moreover, the special web structures, such

as block structure, hierarchy structure and directory structure, can also be used to speed up the algorithm.

2. Look both inside and outside a single matrix to get a more accurate model. In this work, we only predict a

kind of information contained in the single data. In fact, we also can predict more by exploiting the information

changed dynamically, for example, use the ARMA model to predict the future rank. Moreover, we can use the

history information to adjust the link densityd−(vi)/n (or d−j (vi)/n ).

3. Conduct experiment on large real data set to support the block predictive ranking model.

Using the estimated probabilistic distribution as a method to extend the generalized dependency degree to the

case of incomplete information system is a natural idea. This way work well in decision tree. Moreover, the

generalized dependency degree is a good measure, it has three different kind of form, and it has many properties.

Among our three different forms of the generalized dependency degree, the first form (in terms of equivalence

relation) of the measure is most important. Besides its simplicity, the first form is flexible, and therefore can

be extended not only to equivalence relation but also to arbitrary relation. Moreover, it bridges the gap between

the dependency degreeγ defined in terms of rough set and the probabilistic form of the generalized dependency
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degreeγ′. The first form (in terms of equivalence relation) and the second form (in terms of minimal rule) share the

advantage of being easily understood while the third form (in terms of probability) of the measure is computing-

efficient. So these three forms of the measure can be used in different situations. When we want to extend the

measure to more complicated data structure (such as partial order relation, totally order relation or others) than

equivalence relation, or when we want to find some properties about this measure, we can resort to the first two

forms of the measure. When we use it in the computing situation, the third form of the measure may be the best

choice.

The generalized dependency degreeγ′ has good properties, such as Partial Order Preserving Property and Anti-

Partial Order Preserving Property. Besides, its value is between zero and one. Therefore, it can be served as

an index to measure how well decision attributes depend on conditional attributes. Its ability of being used in

incomplete information systems is its another advantage. Furthermore, because it is more accurate than the de-

pendency degreeγ, it can be a substitute of the dependency degree in Rough Set Theory, and because it is less

time-consuming and simpler than the conditional entropy, it can be a possible substitute as an information mea-

sure. Our experiments only show one possible such substitute in the field of decision tree. While the new C4.5

algorithm using the generalized dependency degree performs better in run time and in precision accuracy in these

11 data sets with missing values, we point out that we seem not to exploit fully in our experiments the properties of

the generalized dependency degreeγ′. For example, the generalized dependency degree is defined as the relation

between two sets of attributes, which suggests that we can split the node on more than two attributes while in the

current version of C4.5 algorithm, we only split the node only on one attribute.

Further study on the new C4.5 algorithm and on the possible application of the generalized dependency degree

will be our future work.

The success of the Predictive Ranking Algorithm in Chapter 3 and the new C4.5 algorithm in Chapter 4 suggests

that it is possible to deepen and widen the current work. For example, we can estimate the web structure more

accurately (Block Predictive Ranking Model in Section 3.2 is just one possible), we can branch on more than one

attribute to improve the current new C4.5 algorithm, and we need to investigate other areas in which such simple

processing missing information method can work.
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