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Data Processing with Missing Information

Abstract

We handle incomplete information in two aspects: One is about the web structure; the other is about information
system with missing values.

In the area of link analysis, the celebrated PageRank algorithm has proved to be a very effective paradigm for
ranking results of web search algorithms. However, as the web continues to grow, it becomes more impossible
for one search engine to crawl all the web page, as a result, the final page ranks computed by PageRank are only
based on a subset of the whole web, which is found or visited by a crawler. This results in inaccuracy because of
its incomplete information about the web structure. Can we find a way to get as much as information about the
web structure based on the limited subset of the whole web so that the inaccuracy of the PageRank can be avoidec
as much as possible? We try to solve this kind of problem by proposing a new method for ranking pages. The main
idea is that during the process of crawling, the information for unknown links can be used for link analysis, more
specifically, we can use known information about links to predict the number of inlinks for each page that have
already been found, and thus we can predict the information about unknown links and the link structure based
on such information. In other words, the web pages already visited or found along with the known links form a
known directed graph, whose structure is somewhat certain, and a random graph is formed based on the predicted
number of inlinks, whose structure is somewhat uncertain, we then apply the combination of the known graph
and the random graph to the PageRank algorithm to get the final page ranks. Experiments show this algorithm
achieves encouraging results both in speed and in accuracy.

In the area of information system, the dependency degreg,a traditional measure in Rough Set Theory
to measure the dependency between the conditional attributes and the decision attributes. Hpodessmot
express the dependency accurately. More specifically, in extreme cases when there is no deterministic rule betweer
the conditional attributes and the decision attributes, the dependency detresomes zero, but there may exist
some kinds of dependency between the conditional attributes and the decision attributes. To avoid such inaccuracy
we introduce a generalized dependency degiébgetween two sets of attributes which counts both deterministic
rules and indeterministic rules while only counts deterministic rules. Thereforéis a generalization ofy.

We first give the definition of generalized dependency degree in terms of equivalence relation, then interpret it



in terms of minimal rule, and further find its connection with conditional entropy used in literature of decision
tree. In order to obtain a deeper understanding of the generalized dependency degree, we investigate its various
properties. Furthermore we can extend its formulation in incomplete information systems based on probabilistic
distribution for missing values. After the theoretical study on this measure, encouraged by its simplicity and its
good properties, we turn to empirical study by replacing with it the measure used in the well-known C4.5 algorithm
such that a new C4.5 algorithm is formed. The original C4.5 algorithm needs the MDL principle and the pruning
procedure to achieve better prediction accuracy, while the new C4.5 algorithm discards both. Experiments show
that the speed of the new C4.5 algorithm is improved greatly, while the prediction accuracy of the new C4.5

algorithm is a little better than the original C4.5 algorithm.
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Chapter 1

Introduction

Information that we do not know is called missing information. When a crawler crawls the web, it visits one page
after another. If the crawler visits all the pages on the web and thus finds all the link information for the web page,
then there is no missing link information. However, in most cases, it is impossible for a crawler to visit all the web
pages, consequently, the missing link information arises. In a database, if some of the values for some attributes
are unknown, then this database is an information system with missing information.

In our work, we do not try to guess exactly what the missing information is. What we do is to process them so
that the original algorithms can be changed to new algorithms that perform better. In case of missing information
for links, we handle the missing information by predicting web structure, thereby the original PageRank algorithm
is changed to Predictive ranking algorithm; in case of missing information for database, the C4.5 algorithm is
changed to new C4.5 algorithm.

Because our ways of handling missing information are oriented to algorithms, and because the two algorithms
we care belong to different areas, the details for them are very different, and we have to introduce different methods
for handling missing information in different chapters. However, the common things of the two chapters are that
we estimate the missing information in a similar statistic way, i.e., using the sample to estimate the probability
density.

In the area of link analysis, PageRank in [22] gives the relative importance of web page based on the link
structure of the web. The intuition behind PageRank is that it uses information which is external to the web pages
themselves—their in-links, and that in-links from “important” pages are more significant than in-links from average
pages.

More formally presented in [6], the web is modelled by a directed graph (V, E) in the PageRank algo-

rithms, and the rank or “importance’; of each for then pagesi € V is defined recursively in terms of pages



which point to it:

Ty = Z Ai; T4 (11)

(Jr)eE
wherea;; is assumed to be/d;, d; is the out-degree of page Or in matrix termsg = Ax.
This form has three problems. One is that if the mattiis not a positive matrix (although non-negative), and

therefore can not guarantee the convergence of the power iterative method for the linear system. For example, in

the graph, the corresponding matrix is

0 01
1 00
010

If we use the power iterative method to solve the above page rank problem, then we will suffer the problem
of convergence unless the entire initial values:pfi = 1, 2, 3) take the value ot /3, which usually can not be
found in practice.

Another problem is that in practice, the users do not follow the link all the time, and when they become bored,
they may jump to some other page, and therefore the model 1.1 can not model the reality accurately.

In [22], these two problems are handled by one technique, i.e., introducing the concept of “random jump”
or “teleportation”, and therefore avoid the problem of inaccuracy and the problem of convergence (the modified
matrix is a positive stochastic matrix, and so one is its largest absolute eignvalue and no other eignvalue whose

absolute value is equal to 1, which is guaranteed by the famous Perron Theorem [19] ).

Theorem 1:Perrons theorem. The eigenvalue of largest absolute value of a positive (square) matrix A is both
simple and positive and belongs to a positive eigenvector. All other eigenvalues are smaller in absolute value.
This technique is presented formally in model 1.

Model 1 : The matrix form of the equation 1.1 is changed to

z=[(1-a)fel +adz, (1.2)



where the parameter is the probability of following the actual link from a pag@, — «) is the probability of
taking a “random jump”f is a stochastic vector (i.e! f = 1). It has become a standard to use the value 0.85
ande is the vector of all ones.

The third problem in Equation 1.1 (also in Equation 1.2) is that the matris not column stochastic unless
every node has at least one outlink. This kind of problem is called dangling node problem [6]. Pages that either
have no outlink or for which no outlink is known are called dangling nodes. In the following, we analyze the
reasons that cause the dangling nodes, and classify dangling nodes into 3 classes according to these reasons.

Pages unvisited or not visited successfully are dangling nodes, besides, some pages visited successfully may b
dangling nodes, for example, PostScript, Pdf, and TXT files on the web are dangling nodes because such kinds of
files have no outlinks. In more details, we explain three reasons that cause dangling pages.

That we can not visit all the page is one reason to produce dangling pages. Pages that are not visited are called
dangling pages of class 1. In this paper, we focus on this kind of dangling nodes.

The second reason is that there exit many pages that we try to visit but can not visit them successfully. These
pages may exist some time ago, but now is damaged or is in maintenance, or they are protected by a robot.txt.
Pages that have been tried but not visited successfully are called dangling pages of class 2.

The third reason is that there are many files on the web that have not hyperlink structure. Pages which have
been visited successfully and from which no outlink is found are called dangling pages of class 3.

In [22], the authors suggested simply removing the pages that have no outlink and the links that point to them.
After doing so it was suggested that they can be "added back in” without significantly affecting the results. How-
ever the situation is changed now and the dangling nodes problem has to be handled more accurately and directly.

On one hands, from model 1, we can see that the PageRank algorithm depends on the web structure. When
we only know part of the web structure, is PageRank algorithm still accurate? As the web continues to grow, the
visited fraction of the whole web page by a crawler becomes smaller and smaller, unfortunately this becomes a fact.
It is hard to sample the entire web. In [22], the authors reported that they have 51 million URLs not downloaded
yet when they have 24 million pages downloaded. In [10], dynamic pages are estimated to be 100 times more
than static pages, and in [6], the authors point out in their experiment that the number of uncrawled pages still far
exceeds the number of crawled pages and that there are an essentially infinite number of URLs which is estimated
to be at leas642°?°. The database-driven pages may produce many pages at a short time. These experimental
results and theoretical analysis mean that in reality, unvisited pages are so many that we have to face them.

On the other hands, some dangling pages worthy of ranking because they contain important information. More-

over, including dangling nodes in the overall ranking may have significant effect on the ranks of non-dangling



pages, this will be shown in the next section.

We handle different class of dangling nodes in different way. For dangling nodes of class 2 and 3, we treat it
in traditional way, however we handle dangling nodes of class 1 by predicting the link information about them.
Dangling nodes of class 1 exits only because the crawler has not visited them at current time, and they contain
some information that we can not know directly. These dangling nodes cause incomplete information about the
web, which can fortunately be partly inferred from the known information. Dangling nodes of class 1 become the
focus of this paper.

Different from dangling nodes of class 1 that have been found but not visited yet, nodes, which have been not
found by the crawler, cause more serious incomplete information problem, however, we have to ignore this kind
of nodes because we can do nothing about them.

Our Predictive Ranking Model based on the above consideration can be found in Chapter 3.

In the area of information system with missing values, we handle the missing information more systematically,
first we introduce a generalized dependency degree based on a well-known dependency degree in Rough Se
Theory, then we extend it to incomplete information system, and finally we change the C4.5 algorithm to new
C4.5 algorithm, which can be found in Chapter 4.

According to Rough Set Theory an information system is a four-tGpte (U, A,V f), whereU represents
the universe of objectsd represents the set of attributes or featuiégepresents the set of possible attribute
or feature valuesy,, the domain of the attribute, is the set of all possible value of attribuieand f is the

information function which maps an given object and a given attribute to a value, i.e.,
fiUxA->V.

By a(z) we denote the value ¢f(z, ). An information system is represented by an attribute-value table in which
rows are labelled by objects of the universe and columns by the attribute®. he subset oft, that is, P is a

subset of attributes. The-indiscernibility relation, denoted b{/N D(P), defined as
IND(P) = {(z,y) € U xU|(Va € P) a(x) = a(y)},

is an equivalence relation. The set of equivalence classes is dendtgd hyD (P) or by U/ P and the equivalence
class inU/P is called P-class. Forr € X, let P(x) denote theP-class containing:. For any classX where

X C U, and for any subset of attributéy the P-lower approximation ofX, denoted byP(X), is defined as

P(X)=U{Y € U/JIND(P)|Y C X}.



Let C and D be two subsets ofl, the dependency degreéC, D) is defined in [23] as

(G, D) =1/1U] Y |C(X)].
XeU/D

~v(C, D) expresses the percentage of objects which can be correctly classifido-aléss by employing attribute

C. Itis also the relative number of elementsiéfwhich can be described by deterministic rules since €&ch

class contained in &-class corresponds to a deterministic rule (and vice versa). Because of this, Gediga, et al [7]
considery as a traditional measure in Rough Set Theory to evaluate the classification success of attributes in term
of numerical evaluation of the dependency properties generated by these attributes. For example, Hassanien [11]
usesy to generate rules in a case study.

However,~(C, D) does not accurately express the dependency among different attributes in any case. The
problem of inaccuratenessofC, D) can be seen more clearly in the extreme cases when there is no deterministic
rule. Specifically, when there is no deterministic rule betwé€eand D, the dependency degreéC, D) will
be equal to zero, whereas this may not mean that there is no dependency b€étardi. For example, in
Table 1.1 wheres, b, ¢, andd represenheadache, muscle pain, body temperatamelinfluenza respectively, it
is easy to calculate that(C, D) = 0 whenC' = {a},D = {d}. This happens because none of these rules
a=Y =d=Ya=Y =d=Na=N=d= N,a= N = d = N is deterministic. This seems
contradictory to our intuition.

Here, we propose the generalized dependency ded(ée D). Because every rule whose confidence is not
equal to zero reflects to a certain degree the relation between the conditional attributes and the decision attributes,
theoretically we should not ignore any rule whose confidence is not equal to zero. Based on this consideration,
we count in the proposed (C, D) all the minimal rules whose confidence are not equal to zero and hence all the
rules whose confidence are not equal to zero (since every rule is a join of some minimal rules). The generalized
dependency degreé(C, D) is different from they-like statistics introduced by Gediga, et al [7], the idea of which
is to count the number of error whité(C, D) counts every object by a corresponding fraction (as we will explain
later, it is equivalent to count all the minimal rules whose confidence are not equal to zero).

In literature of decision tree, Breiman, et al [2] recommends in their CART algorithm adopting the Gini index
as an impurity measure and choosing the split that maximizes the decrease in impurity. The Gini index in fact is a
special case of’.

We try to make a deeper understanding of the generalized dependency degree in Chapter 4, and justify it both
theoretically and empirically. Theoretically, we give its various forms and develop its various properties, and

extend the definition of the generalized dependency degree to incomplete information system. Empirically, we



headache (a) muscle pain (b) body temperature (c) influenza (d)

el Y Y 0 N

e2

e3

ed

e5

e6

<|lzlz|lz|<|<
zl<|z|=<|=<|<

1
2
0
1
2
1

<|<|z|lz|=<|<

e’

Table 1.1. Influenza Data

compare this measure with the conditional entropy by replacing the conditional entropy with the generalized

dependency degree in well-known C4.5 classification algorithm.



Chapter 2

Related Work

We first introduce the related work in the area of link analysis, then we show the related work in information
system.

For conveniencel denotes the matrix of all ones,denotes the vector of all ones. In the original PageRank
paper [22] the authors suggested simply removing the links to dangling pages from the graph, calculating the
PageRank on the remaining pages, and dangling nodes problem has received relatively less attention in the past.

In [1], an absorbing model was suggested. This model can handle dangling nodes by modifying the original
graph. Specifically speaking, It adds additional nodes (called clones), adds links from all the original nodes to
their clones on the web, and adds links from all the clones to themselves. As a result, the modified graph has no
dangling node and so it is robust against dangling nodes.

In [12], pages whose out-degree is zero are handled by adding jump to a randomly selected page with probability
1 from every dangling node, and then by adding teleportation. More formally, the model 1 is modified as

Model 2:

r=[1-a)E+ aP'z, (2.1)

whereE = fel', P' = A+ fd', f = e/n, andd denotes thex—dimensional column vector identifying the

dangling nodes:
i = 1 if 4 is a dangling node,
0 otherwise.
f is referred as the personalization vector, it models the behavior of users when they get bored in following the
link and decide to jump randomly.

Further, Kamavar et. al. [12]speed up the PageRank algorithm by exploiting the block structure of the web.



In [6], dangling pages are handled in similar way, but more computationally efficient though scarifying some

kind of accuracy. We reinterpret the model formally as follows.

Model 3:
x aC+(1—a)/m-1 1/ml x
aD 0
Y Y 2.2)
X
= (@A +(1—-a)B)
Y
C 1/m1 1/m-1 1/ml _
whered = ,B = , m is number of nodes that have been crawled successfully,
D 0 0 0
is the number of nodes that have been found by the crawlet, (c;;), D = (d;;) and ifd; is the out-degree of
nodej,
d;! if there is a link node nodej,
Cij —
! 0 otherwise.
. d;! if there is a link node nodej,
Y 0 otherwise.

Respectively byC and D we also denote the set of all nodes that have been crawled successfully and the set of
remaining nodes.

In this model, the matrixd models the users’ behavior in case of following the actual links and the unknown
links from dangling nodes to visited nodes. The mafixnodels the users’ teleportation. Then the linear convex
combination of the matrixl and the matrix3 models the total behaviors of the users.

By adding a virtual node + 1, the Eq. 2.2 is equivalent to the following

x alC O e/m x
y | =1 aD O 0 Y (2.3)
z (1—a)el e 0 z

which can be found in [6]. Exploiting this structure, the authors developed the following reduced eigen-system:

x alC e/m x

z (1—a)el +ae’D 0 z



After solving the reduced eigen-system iteratively, the vegtoan be calculated in one step:

y=aDz.

While this form of linear equation can be calculated efficiently by exploiting the special structure of the above
matrix and the computation complexity is a very important thing, if not most important, in the case of extremely

large web, it is not as accurate as the model 2.

C 1/ml
From Eq 2.2, we can see what the problem is. For our convenience, we denote the|matrix / as
D 0
X L . . -
, the link information abouX” andY is already known because the crawler has visited all the nodes
Y N

in C' and therefore all the link from the nodesahto nodes inC' and D have been known by the crawler.

But the information about links from the nodes/into nodes inC' and D is unknown by the crawler because the

C 1/mil
nodes inD have not been visited yet or have not been visited successfully. Hidden in the fnatrix / ,
D 0

there is an assumption, in which users will jump randomly and uniformly from every nableomly to nodes in

C', and thereforéd/ = 1/m1. This assumption can be improved to be more accurate. In reality, users may jump
from nodes inD to nodes inD, and thus the assumption that all the elements in the right-bottom part of the matrix
are zero is problematic, and the assumption about the right-top part of the matrix need to be adjusted accordingly.
In our model, we assume that users will jump randomly but not uniformly from every naledrboth nodes in

C and nodes iD.

Our model is different from the absorbing model in that our model try to predict the unknown link information
and therefore handle the dangling node robustly and accurately while the absorbing model is new paradigm for
ranking. So the ranking values derived from these two models are not comparable.

Our model is different from model 2 in that we get the information about the unknown part of the matrix by
prediction while the model 2 assume the uniform distribution about the unknown part of the matrix. The authors
in [12] also suggest re-defining the vecjoas non-uniform distribution, however, they only consider the vettor
as the personalization factor, which is a subjective factor, and from which the PageRank vector can be biased to
prefer certain kinds of pages.

Our model is different from model 3 in two folds:

1. The users will not jump uniformly from every nodeiinto other nodes.

2. The users will jump from every node in not only to nodes i’ but also to nodes i.

The authors in [6] further discuss the “link rot” problem and suggest new methods of ranking motivated by the



hierarchical structure of the web. Although we can combine our model with the technigue used in solve these
kinds of problem, we do not focus them in this paper.

Other related work is the Page Popularity Evolution Model in [3, 4], in which the popularity of a page evolves
with the time; it is also a kind of prediction, which looks outside the web structure while our model looks inside
the web structure at current time.

A Simple Example

=)

Figure 2.1. A case in which considering dangling node will have significant effect on the ranks of

non-dangling nodes

We consider a case in which dangling nodes are so significant that including them in the overall ranking may
not only change the rank value of non-dangling nodes but also change the order of the non-dangling nodes.
In the example of figure 2, there are three pages, with one of them being a dangling node with a link from page

2. If we compute pagerank by the model 2, andhlet 0.85, the matrix in the model 2 is

0.05 0475 1/3
09 005 1/3
0.05 0475 1/3

By power iteration, the RageRank scores @re z2, 23) = (0.3032,0.3936,0.3032). So in model 2, rank
for node 2 is much higher than node 1. If we simply remove the dangling node 3, then by Equation 1.1, the
PageRANk scores for nodes 1 and 2 @rg z2) = (0.5, 0.5), in which the rank for node 1 is same as that for node
2. From this example, we can see that whether we handle dangling nodes will not only change the rank value of
the non-dangling nodes but also change their order.

In the area of information system, Nambiar [21], Malvestuto [20], and Lee [15] introduce the idea of applying
the Shannon entropy function to measure the "information content” of the data in the columns of an attribute set.
They extend the idea to develop a measure that, given a finite Talgjaantifies the amount of information the
columns ofC contain aboutD. This measure is the conditional entropy [8]. The conditional entropy is a well

known measure for dependency degree between attributes. Its formulation is as follows:

10



H(D|C) = —ZZ (Pr[c] - Pr[d|c] - logy(Prld|c]))
_ _Z (Prlc Z r(d|c] - logy(Pr[d]c])),

wherec andd denote the vectors consisting of the values of attribut&€s &amd in D respectively.
Dalkilic, et al [5] calls the conditional entropy as information dependency measure, denoféd by. He
develops a variety of arithmetic inequalities for this measure.

The formulation of entropy is

Z Pr[d] - log,(Pr[d]).

The third form of the generalized dependency degfé€, D), which can be found in Chapter 4, is written as

7 (C,D) = ZZ (Prc] - Pr?[d|c])
= > (Prfc -ZPr [d|c])
c d

whose form is similar to that of the conditional entropy. To comité>|C'), we need to computieg, (Pr{d|c])
which is more time-consuming. While i{(C, D), we do not need to compute such time-consuming logarithm
function.

A variation of this probabilistic form is originally defined by Goodman, et al [9] in literature of statistics, later
independently by Piatetsky-Shapiro [26] in literature of machine learning. Unfortunately, they do not focus on
this measure itself. Goodman, et al [9] do not discuss it further after giving its normalized form while Piatetsky-
Shapiro [26] focuses more on its expected value under randomization. Nor they conduct experiments to support
this measure. Giannella, et al [8] interpret it as the probability of a correct guess in situation when the drawer is
told the value of the conditional attributes, and compares empirically the numerical values of the normalized form
of the generalized dependency degree with that of the normalized InD measure IFD, and find that the average of
the difference between these two normalized measures tends to be close to zero (this does not mean the differenc
between these two measures themselves tends to be close to zero). Our theoretical work focuses on the generalize
dependency degree itself, not the normalized form, and our empirical work focus on changing a well-known

classification algorithm C4.5 by replacing the conditional entropy with the generalized dependency degree.

11



Breiman, et al [2] recommends in their CART algorithm adopting the Gini index as an impurity measure and
choosing the split that maximizes the decrease in impurity. The Gini index in fattlisx U, IN D(D)) which
is a special case of the generalized dependency degree, and the corresponding decrease in impurity is actually
v'({a}, D) —+'(U x U,IND(D)) which is ensured to be larger than zero by Theorem 5 and is called as depen-
dency gain in next section. This fact is also proved, but no further properties are given in [2].

None of the above work formulate the generalized dependency degree in terms of equivalence relation or in
terms of minimal rule, which can bring us a better understanding for this measure as we have seen in the previous
sections. By formulating it in terms of equivalence relation, we can find its connection to the dependency degree
frequently used in Rough Set Theory, by reformulating it we find its connection to the minimal rules, and by
interpreting it in terms of probability distribution, we find its connection to the measure that is presented but not
fully investigated in the above work.

We give three different forms of the generalized dependency degree, in terms of equivalence relation, minimal
rule, and probability respectively. These three different forms can be used in different situations. When we want
to extend the measure to more complicated data structure than equivalence relation, or when we want to find some
properties about this measure, we can resort to the first two forms of the measure. When we use it in the computing
situation, the third form of the measure may be the best choice. In fact, in this paper, we guess its various properties
by the first two forms, and in the experiments, we use the third form.

If an information system has some missing values, we call this information system as incomplete information

system. For example, there are three missing value in the Table 2.1 with “*” in the space.

a c d
er | Y |Y | Normal(0) | N
ea | Y | * High(1) Y
es | Y Y * Y
eq | N | * Normal(0) | N
es | N|N| High(1 |N
es | N | Y | VeryHigh(2) | Y
e | Y|N High(1) Y

Table 2.1. Influenza Data

The problem of rule generation from incomplete information systems is considered in literature. The simplest

method is to remove examples with unknown values. Replacing every value by set all possible values is another

12



method [18]. Introducing the similarity relation and completion of an incomplete information system is a more
accurate way to handle missing values [13, 14, 16]. To extend the definition of generalized dependency degree to
the case of incomplete information systems, we handle missing values by replacing them with their probabilistic
distribution at first, then extending the definition of confidence and strength of a rule to incomplete information

system.

13



Chapter 3

Handle Missing Information for Link Analysis

3.1 Predictive Ranking Model

The intuition behind our model is that the link structurélihand N can be estimated from the known informa-
tion. In general, it is difficult to estimate such link structure accurately; however, some elementary estimation is
possible. In this paper, we only estimate the in-degree of each node in the_sét, and thus some information
about the link structure id/ and/N can be inferred statistically. The dogma in the predictive ranking is that: the
more we know the structure of the web, the more accurate we can infer about the web.

We formulate our model as follows.

1. Suppose that all the nod&sof the graph ¢ = |V|) can be partitioned into three subsefs: D!, and D?,
whereC (|C| = m) denotes the subset of all nodes that have been crawled successfully and have at least one
out-link; D' (|D'| = m;) denotes the subset of all dangling nodes of class 3, i.e., the set of those nodes that the
crawler has visited successfully but from which no outlink is fouRd;(| D?| = n — m — m1) denotes the set of
all dangling nodes of class 1, i.e., the set of all nodes that have not been visited but have been found by the crawler
through other visited nodes. Dangling nodes of class 2 are ignored here.

2. For every node; (i = 1,2,...,m) in C, the real out-degreé* (v;) (: = 1,2, ...,m) has been known since
the crawler has found all its outlinks, but the real in-degteév;) (i = 1,2, ..., m) is unknown since the crawler
has not visited all the nodes I and there maybe unknown links from the node®ihto the nodey;.

3. For every node; (i = m + 1,m + 2,...,m + my) in D', sincew; is a dangling node of class 3, the real
out-degreel™ (v;) = 0. Again the real in-degre¢ (v;) (i = m + 1,2, ..., m + mq) is unknown.

4. For every node; (i = m +my +1,m +2,...,n) in D2, neither the real out-degree (v;) (i = m +1,m +

2,...,n) nor the real in-degre€ (v;) (i = m + 1, m + 2, ..., n) has been known since the crawler has not crawled
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it yet.

5. We predict the real in-degrek (v;) (i = 1,2, ...,n) by the number of found linkgd~(v;) (i = 1,2, ...,n)
from visited nodes to the nodg. With the breadth-first crawling method, we assume that the number of found
links fd—(v;) (¢ = 1,2,...,n) from visited nodes to the node is proportional to the real number of links from

all nodes inV to the nodey;, and further we assume that

n

d(v;) = 7(771 )

fd ()i =1,2,...,n)

This assumption is meaningful. Although the crawler crawls the web from a given web site to other sites in a
definite way, but its ability of finding new link to a given nodedepends on the density of these links. The density
of these links to the nodg is equal to%.

The crawler has foundd ™ (v;) such kind of links when it has crawled nodes, and we consid m;g}jjl)) as an
approximate estimate of the density of these links. Following this, the above approximate equality holds.

6. With the approximate in-degre& (v;), we can re-arrange the matrix. All the found link&I( (v;)) are
from the nodes irC, and the remaining links ¢~ (v;) — fd~(v;)) are from the nodes i®? (it is impossible
that some of these links are from the node®il). Without any prior information about the distribution of these
remaining links, we have to assume that they are distributed uniformly from the nod@¥stinthe nodev;, i.e.,

these remaining links are shared by all the node®in So the column normalized matrik modelling the uses’

: . : : o ¢ P M c .
behavior of following the actual links and estimated actual linkslis= , Where is

D Q N D

P
defined as in Model 3, and it is used to model the known link structure framV’, will be defined later,

Q
M\ . - .
and is used to model the link structure froP¥ to V, and it is defined as follows:
N
i1 0 0 O
M 0 I, 0 0
N = 1n><(n7mfm1)7
0 O ln
I = %, (i =1,2,...,n), n — m — m; means that the remaining inlinks (v;) — fd~(v;) are

shared uniformly by all nodes iR? andX = fj d~ (v;) — fd~(v;) is multiplied to the denominator to make the
=1
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matrix to be stochastic.

7. When we want to model the users’ teleportation, we assume that the users will jump te;node
1,2, ...,m) with a probability of f; when they get bored in following the actual links. So the matrix modelling the
teleportation isfe”. We denote heréf; f» ... f,,)T by f. Previous suggestions include the choice of a uniform
distribution among all pages, among a set of trusted "seed sites”, uniformly among a set of all "top-level” pages
of sites, or a personalized set of preferred pages.

8. When the user encounters a dangling node of class 3, there is no outlink that the user can follow. In this case,

P
we assume that the same kind of teleportation as in 6 will happen, and so the matrix| in 5 is used to model

Q

the link structure fronD?! to V and it is assumed to be

0 0 - fn
9. We further assume thatis the probability of following an actual out-link from a pade; « is the probability

of taking a “random jump” rather than following a link. Then the ranlof ith page should satisfy

r=[1-a)fe’ +aAz, (3.2)

Wherez is the vector consisting of;. .
Because we use the predictable information to construct the link analysis model, we name it as predictive

ranking.
3.2 Block Predictive Ranking Model

The predictive ranking model can be handled more accurate than we have done in the previous section if we
see into the block structure of the web. We can assume that therblixks found in the web, and they are
By, Bs, ..., B,. Thesep blocks are disjoint with each other, and their uniornCisJ D' U D?. Let C; =
CNB; (ICj] = my), Di = D' N B; (|Dj| = m}), D = D*>N B; (|D3| = nj —mj —m}), | Bj| = n;. We only
need to change the fifth and sixth points of our previous model. The fifth point of our previous is changed to be
5. We predict the real numbet; (v;) of links from nodes in blockB; to nodev; (i = 1,2,...,n) by the

number of found linksfd; (v;) from nodes inC; (the visited non-dangling nodes in blodk;) to the nodev;
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(i = 1,2,...,n). With the breadth-first crawling method, we assume that (v;) is proportional tod (v3)
(:=1,2,...,n), and further we assume that

nj
(mj +m)

,m}; = |B;jN D' = |Dj|, n; = |Bj.

d; (UZ) ~

j fd;(vz) (i=1,2,...,n)

wherem; = |B; N C| = |C}
The sixth point of our previous model can be changed to be
6'. With the approximate in-degred;.*(vi), we can re-arrange the matrix. All the found Iinlgédf(vi) ) are
from the nodes irC’;, and the remaining linksd; (v;) — fd; (v;)) are from the nodes iv;. Without any prior
information about the distribution of these remaining links, we have to assume that they are distributed uniformly
from the nodes irD; to the nodey;, i.e., these remaining links are shared by all the nodds3;inSo the column
normalized matrixA modelling the uses’ behavior of following the actual links and modelling estimated actual
links is
C P My My --- M,
D Q N Ny --- N,

Cc P M.
where has the same meaning as in the previous sec ion,” | is used to model the link structure
D Q N;

from DJQ- toV, and

0 0 0
Mj) |0 o0 0 AN
N, . jm;
0 0 1
Wherelf = % (i=1,2,...,n),n; —m; —mj means that the remaining inlink$ (v;) — fd; (v;)

are shared uniformly by all nodes I»} and%; = i d; (vi) — fdj (vi).
=1

Note that all the link structure frorﬁ)} (j =1,2,...,p) to V are modelled together in the matrjx
Q

We can divide all the web pages into blocks by their top level domains (for example, edu), or by domains (for
example, stanford.edu), or by the countries (for example, cn) . This block predictive ranking model should be
more accurate than our previous one; however, we can not conduct experiment to support this model because of
our limitation of resource.

Note that whem = 1, this model becomes our previous model.
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Time t 1 2 3 4 5 6
Vnum(t] 7712 | 78662 | 109383| 160019 | 252522| 301707
Tnum[t] | 18542 | 120970 157196| 234701| 355720| 404728
Time t 7 8 9 10 11
Vnumlt] | 373579| 411724| 444974| 471684 | 502610
Tnum[t] | 476961| 515534 | 549162| 576139| 607170

Table 3.1. Description of Data Sets Within Domain cuhk.edu.hk

3.3 Experimental Setup

Due to our limited network and storage resource we had to restrict our experiments to a relatively small subset
of the web, the network restricted within the domain cuhk.edu.hk. Another reason we choose this subset of the
network is that we can get the relatively complete information about all the pages in this subset so that the relatively
accurate pages ranks can be calculated to make an easier comparison.

We also get a small subset of network by crawling outside the domain cuhk.edu.hk. We show these results in

the following subsections.
3.3.1 Experiments Within Domain cuhk.edu.hk

Because the importance of a web page is an inherently subjective matter, it is difficult to measure whether a link
analysis algorithm is better than another. Due to the success of the PageRank, we consider it as an ideal algorithm
in the case that we have complete information about the web structure. However, in case of handling dangling
nodes, we consider the model 2 as an ideal algorithm. In real cases when we do not know the whole structure of
the web, we use both the predictive ranking algorithms and the modified PageRank algorithm in Model 2 to get
the results of the ranks of the web Pages, and then compare both of them to the ranks of the web Pages calculate
by the modified PageRank Algorithms in case that we have relatively more information about the web structure.
More specifically, we snapshot the 11 matrices during process of crawling the page restricted within the domain
cuhk.edu.hk, namelyd;, Ay, ..., Aj;. The numberd/num/|t] of pages visited successfully at time t and the
total numberg'num|[t] of pages only found at time t are shown in the table 3.1.

By applying both the predictive algorithm and the modified PageRank Algorithm in Model 2 to these 11 data
sets, we get different rank results

PreRank]t] t=1,2,...,12;

PageRank[t] t=1,2,...,12.
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In our experiment we set = 0.85 and set the personalized factfrto be a uniform distribution in both
algorithms. The iterative algorithm stops when the ndfi; between the current ranking and the previous

ranking is less than 0.000001. The numbers of iteration are shown in the table 3.2.

Time t 112[3/4|5|/6|7(8|9|10]|11
PreRank | 5 |3 (2|2 |2|2|2|2|2]| 2| 2
PageRank 12143 |2(2|2|2|2|2| 2| 2

Table 3.2. Numbers of Iterations

From this table, in 3 cases out of 11 cases, the PreRank needs less iterations than PageRank. In the other 8 case
they needs the same iterations. The computing complexities of both algorithit@sArevheren is the number
of all the nodes found.

We then calculate the ranking difference for nodes already found at tieteveenPre Rank|t] (Page Rank|t])
and Page Rank[11] by the formula:

Dif f1]t] = ||PreRank[t] — Cut(t, PageRank[11])/Sum]t]||1,
Dif f2[t] = ||PageRank[t] — Cut(t, PageRank[11])/Sum][t]||1,

wherecut(t, Page Rank[11]) means the vector cut from PageRank[11] such that it has the same dimension as
PreRank][t] and PageRank[tpum[t] means the sum of values in vectait(t, Page Rank[11]).

Cut(t, PageRank[11])/Sum]t] is a normalized vector. Since we have more link information at time 11 than
we have at time t{(< 11), we consideC'ut(t, Page Rank[11])/Sum|[t] as an "ideal” reference.

The value diff1[t] measure the difference between PreRank[t] and PageRank[11];

The value diff2[t] measure the difference between PageRank[t] and PageRank[11];

The results of diff1[t] and diff2[t] are shown in the following table and figure:

Timet| 1 | 2 | 3 | 4 | 5 | 6
Diff1[t] | 1.12| 1.42| 1.08| 0.72| 0.47 | 0.31
Diff2[t] | 1.07 | 1.51| 1.21| 0.81| 0.55| 0.39
Timet| 7 | 8 | 9 | 10 | 11
Diff1[t] | 0.19| 0.16| 0.13| 0.11 | 0.09
Diff2[t] | 0.24| 0.19| 0.12| 0.08| 0.0

Table 3.3. Results Within Domain CUHK Based on PageRank at time 11
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Difference

Figure 3.1. Results Within Domain CUHK Based on PageRank at time 11

From the figure, we can see that at time 1, PageRank[1] is closer than PreRank]i] to PageRank[11], this happen
because at time 1, the data set is so small that the statistic estimation is not accurate sometimes. But as the time
grows, from time 2 to time 8, PreRank([t] is closer than PageRank]t] to PageRank[11]. As we expected, as time t
is near to the end 11, PageRank]t] again is closer than PreRank]i] to PageRank[11], this happen because

1. Attime 11, the information contained in the data set is stillincomplete, so the results from both the algorithms
are not accurate.

2. We use the PageRank[11] as comparison reference, it is biased against PreRank[t], therefore it is natural that
PageRank(t] is near to PageRank([t].

3. If we use PreRank[11] as comparison reference, at all time t except 1, PreRank(t] is closer to PreRank[11]

than PageRank]t] does. The Results can be seen in the following figure:

Difference

Figure 3.2. Results Within Domain CUHK Based on PreRank at time 11
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3.3.2 Experiment Outside Domain cuhk.edu.hk

We also snhapshot the 9 matrices during process of crawling the page outside the domain cuhk.edu.hk, namely,
A1, Ag, ..., Ag. The denotation¥ num[t] andTnum[t] have the same meaning as the previous subsection.

The values of them are shown in the table 3.4.

Time t 1 2 3 4 5
Vnum[t] | 4611 6785 | 10310 | 16690 | 20318
Tnum[t] | 87930 | 121961 164701| 227682| 290731

Time t 6 7 8 9
Vnum[t] | 23453 | 25417 | 28847 | 39824
Tnum[t] | 322774 | 362440 413053| 882254

Table 3.4. Description of Data Sets Outside Domain cuhk.edu.hk

By applying both the predictive algorithm and the modified PageRank Algorithm to these 9 data sets, we get
different rank results
PreRank[t]t =1,2,...,9; PageRank[t|t =1,2,...,9;

Other experiment setting is same as the local experiments. The numbers of iteration are shown in the table 3.5

Timet [1/2|3]4(5/6|7|8|9
PreRank |2 |2|2|1]1|1|1|1|1
PageRank 3|3 (32222 |2]|1

Table 3.5. Numbers of Iterations at Time t

From this table, in most cases, the PreRank needs less iterations than PageRank.

We then calculate the ranking difference for nodes already found at time t between PreRank[t] (PageRank(t]
)and PageRank[12] by the same procedure as the previous subsection. But the value diff1[t] measure the differ-
ence between PreRank[t] and PageRank[9]; The value diff2[t] measure the difference between PageRank][t] and
PageRank[9];

The results of diff1[t] and diff2[t] are shown in figure 3.3:

From the figure, we can see that only attime 1, 2, and 3, PreRankK]t] is closer than PageRank]t] to PageRank][9].
Although we only win these 3 cases, it is a surprise because the reference PageRank[9] is biased against our model
and PageRank[9] is extremely inaccurate because of the extremely small dataset compared to the extremely large

whole web. As the time grows, from time 4 to time 8, PageRank([t] is closer than PreRank]t] to PageRank[9]. This
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2
Time

Figure 3.3. Results Outside Domain CUHK Based on PageRank at time 9

result seems that the accuracy in the case of crawling outside the doamin cuhk.edu.hk is worse than in the case of
crawling with the domain. But the truth is that the data set obtained at time 9 is too much small compared to the
whole web containing more than 4 billions of pages, and so the information at time 9 is extremely incomplete, and
therefore both PreRank[9] and PageRank[9] are not accurate. This happens within our expectation.

If we use PreRank[9] as comparison reference, at all time t, PreRank([t] is closer to PreRank[9] than PageRank([t]

does. The Results can be seen in the figure 3.4:

Difference

Figure 3.4. Results Outside Domain CUHK Based on PreRank at time 9

3.4 Discussion

In the previous model, we ignore dangling nodes of class 2. Dangling nodes of class 2 is different from dangling
nodes of class 3. dangling nodes of class 2 can not be visited successfully while dangling nodes of class 3 have
been successfully visited. So it is reasonable to handle them in different way. From the point of view that dangling

nodes of class 2 contain useless information (because we can not visit them), our model does not need further
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modification. However, dangling nodes of class 2 reflect bad structure about the web, and if a pages contains too
many links that point to these nodes, then this page should be penalized. For this reason, dangling nodes of class =
should not to be ignored simply and we suggest adopting the push-back algorithm in [6], in which dangling nodes
of class 2 is called as penalty pages. We believe that push-back algorithm can be combined with our PreRank
algorithm.

All the above experimental results except the number of iterations are within our expectation. Because our
model mines more information about the web structure, the results of Predictive Ranking is more accurate than
PageRank. In the local experiment, even in the case that we consider the results of PageRank as the reference, i.e
even in the case the reference is biased against our model, most early results calculated by PreRank are closer t
the reference (calulated by PageRank) than the results calculated by PageRank. In the outside experiment, if we
consider the results of PageRank as the reference, then we only win 3 cases; if we consider the results of PreRank
as the reference, then we will all the cases. This suggests that PreRank performs better than PageRank in accurac

However, that PreRank needs less iteration exceeds our expectation. We can not explain why PreRank can
perform better in speed. One possible reason is that the structure in the MatriRredictive Ranking Model
contains more accurate information (nearer to the global information) and thus each iteration adds more "correct”
value onto the ranking result, and finally less iteration can get the right answer. This suggests that PreRank

performs better than PageRank in speed.
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Chapter 4

Handle Missing Information for Decision Tree

4.1 Definition of the Generalized Dependency Degree

In this section, we first cite the formal language in complete information systems, which is used to describe
decision rule. Then we give the definition of the generalized dependency degree. Finally we connect the minimal

decision rules and the generalized dependency degree.
4.1.1 Formal Language to Describe Decision Rule

The decision language is defined by Pawlak [24, 25]. et (U, A,V, f) be an information system. With
every B C A we associate a formal language, i.e., a set of formBlas B). Formulae ofFor(B) are built up
from attribute-value pairgs = v wherea € B andv € V, by means of logical connectives(and)V (or), ~(not)
in the standard way. For anly € For(B), we denote the set of all object objeats U satisfying® by ||®||s
called the support ob.

A decision rule inS is an expressio® — V¥, where® € For(C), ¥V € For(D), C,D are condition and
decision attributes respectivelyy and ¥ are referred to as condition and decision of the rule respectively. A
decision ruled — U is called adeterministic rulen S'if ||®||s C ||V[|s, anindeterministic ruleotherwise. With
every decision rul® — ¥ we associate a conditional probability called teetainty factor(the confidencef the
rule ® — ), we denote it byC'on(® — W) which can be written as

card(]|® A ||s)
card(|[®||s)

We denote thstrengthof decision ruled — ¥ by Str(® — W) which is defined in [24] as:

Con(® — 1) =

card(||® A Vlls)

Str(® = ) = card(U)
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4.1.2 Generalized Dependency Degree

We give our first form of the generalized dependency degi@e D) in terms of equivalence relation as follows,

Definition 1:

LB
TS )

where D(z) andC(z) denote theD-class contamlng:andC—cIass containing: respectively (recall that in the

introduction section, we have definédclass for any attribute sét).

Note that, the dependency degrd€’, D) can be rewritten as

ﬂcin:|a > M%%@j@ﬁ7 (4.2)
2€UNC(z)CD(x)
andthatD(x) N C(z)|/|C(x)| is the confidence of the ruté(z) — D(zx) (the meaning of the rul€'(z) — D(x)
will be explained later). From this, one can tell the difference betwégn, D) and~(C, D) easily. Invy(C, D),
if |D(z)NC(x)|/|C(x)] < 1, thenz is not counted, while in/(C, D) every object is counted by a fraction
|D(z) N C(x)|/|C(z)| that may be or not equal to 1.
Next we will interprety’ (C, D) from another point of view, i.e., we will change our view from the equivalence

class to minimal decision rule.

Example 1:In Table 1,A = {a,b,c,d}, U = {el,e2,e3,e4,eb,e6,e7}. We use Equation (4.1) to calculate
v (C,D) whenC = {a,b,c}, D = {d}. SinceC(el) = {el}, C(e2) ={e2}, C(e3) ={e3}, C(ed) ={ed},
C(eb) ={eb}, C(e6) ={e6}, C(e7) ={eT}, D(el) =D(ed) = D(e5) ={el,ed,eb}, D(e2) = D(e3) =

(
D(e6) = D(e7) = {e2,e3, 6, e7}, we have
(@,

D(el)NC(el D(e2)NC(e2 D(e3)NC(e3)| | |D(e4)NC(e4)
(6, D) = (g + e+ e

(1+1414+1+1+1+1)/7=1.

/ (e5)C(e5)] | [DEONCLeO) | [DEDNCEn]) 7

| 1D |
Cenl T oE) T [0 IC(eT)]

Example 2: Also in Table 1, We calculate’(C, D) and~(C, D) whenC = {a},D = {d}. SinceC(el) =
C(e2) = C(e3) = C(e7) = {el,e2,e3,eT},C(ed) = C(eb) = C(e6) = {ed,eb,e6},D(el) = D(ed) =
D(eb) = {el,ed,e5},D(e2) = D(e3) = D(e6) = D(eT) = {e2,e3,e6,e7}, we havey (C, D) = 1/7(1/4 +
3/4+3/4+2/3+2/3+1/3+3/4) = 25/42, while we havey(C, D) = 0 according to Equation (4.2).

4.1.3 Connection between the Generalized Dependency Degree and Minimal Rule

We first give the definition of the minimal rule.

Definition 2: LetC' = {a1, a2, as, ...,an}, D = {b1, ba, b3, ..., by, }. Then we call the rule
ar=u1 N ag=us N...\Nap=u, — by =v1 N bg=v9A...A\by, =V
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aminimal rule, wherey, € V,,,ug € Vo, uz € Vg, -+ up € Vg, ,v1 € Vi, 02 € Vi oo yom € V3

If z € U, by C(x) — D(z) we denote the rule; = a1(z) A az = az(x) A ag = asz(z) A ... Na, =
an(x) — by =bi(xz) A by = ba(z) A ... A by, = by (x), whereC(z) is theC-Class containing:, D(z) is the
D-class containing;, a;(z) is the value of: at the attribute:; andb;(x) is the value of: at the attributé; .

Note that the rule”(z) — D(z) is a minimal rule, and that any minimal rule, whose confidence and strength
are not equal to zero, can be written@gr) — D(x).

Let MinR(C, D) be the set of all the minimal rules,be any rule inMinR(C, D), Con(r) be the confidence
of the ruler andStr(r) be the strength of the ruke Then

Z Str(r) - Con(r) (4.3)

reMinR(C,D)
the weighted average of the confideri¢en(r) of minimal ruler weighted by the strengthitr(r), is exactly the
generalized dependency degré@”, D). This is our second form of the generalized dependency degféeD)
which is defined in terms of minimal rule. We explain this by the following.
Let X be a(CUD)-class. Thenforaly, z € X,C(y) = C(z), D(y) = D(x), so forz € X we denote’(z) by
C(X), D(x) by D(X), and|D(z) 0 C(x)|/|C(x)| by [D(X) N C(X)|/|C(X)]. Since|X| = |D(X) N C(X)],

we have

zelU
- L [D(x) N C(z)]
Ul U%UDW;( !C( )|

Y 06 00
e & IGO0
1 |D(X )ﬂC( )|

R PR ToT5]

1 D(X) N C(X)P?
B rXeU/Z(CUD) )]
B 1 |D(X) N CX)P
= 2 T o)

X€eU/(CuD)

- [D(X) N CX)| [DX) N CX)|
U] |C ()|

XeU/(CuD)

= Y Sw(C(X) - D(X))-Con(C(X) — D(X))
X€eU/(CUD)

26



= Z Str(r) - Con(r)

reMinR(C,D)

The dependency degreéC, D) can be rewritten correspondingly as
v(C, D) = Z Str(r) - Con(r),
reMinR(C,D) A Con(r)=1
which means that in/(C, D), only those minimal rules whose confidences are equal to 1 are counted while in
+'(C, D), every minimal rule whose confidence is not equal to zero is counted. In other wa@tds)) only
counts deterministic minimal rules whitg(C, D) counts both deterministic minimal rules and indeterministic
minimal rules.
In fact, we can include (C, D) and+/(C, D) in a general form?(C, D), which is defined as
7*(C,D) = Z Str(r) - Con(r).
reMinR(C,D) A Con(r)>e
Whene = 0, 4v*(C,D) = +/(C,D); whene = 1, v°(C, D) = ~(C, D). In this paper, we only focus on
v (C, D).

4.2 Properties of the Generalized Dependency Degree

Recall that in the introduction section, we define fheindiscernibility relation for a subsd? of attributes,
denoted byl N D(P), which is an equivalence relation éh the universe of objects/(C, D) is actually defined
on two equivalence relations induced by subgétnd D of attributes. The definition of’(C, D) can be easily
generalized to the definition of (R;, Ry) for any two equivalence relation®; and R, on the universé/ as

follows:

|Ro(2) N Rl( )l
v (R1, Ry) = \U] xgj \R1 : (4.4)
v (Ry, Ry) = Z Str(r) - Con(r). (4.5)

reMinR(Ry,Rz)
Here the setMinR(R;, R2) is the set of all the minimal rules, is any rule inMinR(R1, R2), by Con(r) and
Str(r) we denote the confidence and strength of the rulespectively. The minimal rule in/inR(R1, Rz) is
defined as

re G — x€H,
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whereG and H are anyR; —class andz,—class respectively.

Note thaty'(C, D) = +/(IND(C),IND(D)). Infact, Lingras, et al (1998) extends the rough set model to any
binary relation. The Equation (4.4) is a general form, in which the equivalence relations can be understood as any
binary relations. This explains why we say that the first form of the generalized dependency degree is a flexible
form. In this paper, we only focus on the case of equivalence relation.

The definition ofy(C, D) can also be generalized td R, R2) for any equivalence relation8;, R> on the

universel/. We rewritey(R;, R2) as follows:

VRLR) =y R@NRE)
‘ | €U A Ry (z)C R (2) ‘Rl(x)’

(4.6)

Y(Ry, Ry) = % > Str(r) - Con(r). 4.7)

| ‘ z€U A R1(z)CRa(z)

Throughout the rest of this paper, all the relations we use are all on the finite univeBg the definition of

v(R1, R2) andv/ (R, R2) we have
Theorem 1:For any equivalence relatiori®; and R», the inequalityy(R1, R2) < 7/(R1, R2) < 1 holds.

Theorem 2:For any equivalence relatiorfs;, and R»,

’Y(Rl,Rg) =1 '7’(R1,R2) =1 ’)/(Rl,RQ) = ’y/(Rl,RQ).

Proof. Note that  >° Str(r) = 1. If v(R1, R2)=1, then by Theorem 1, we have
reMinR(R1,R2)

1=7(R1,R2) <+'(R1,Rs) <1,

and hence/ (R, R2) = 1.
If v(R1, R2) = 1, then by Equation (4.4), we have

3 |[Ra(x) N Ry ()]

1
1= — :
U] | Ri(2)]

zeU
and hence the equality= |R2(z) N R1(x)|/|R1(x)| holds for anyz € U. This yieldsR;(xz) C Ra(x) for any
x € Ul(recall thatU is a finite set). Therefore we hawvéR;, R2) = 7/(R1, Rs) by Equation (4.4) and (4.6).

If v(R1, R2) = 7/(R1, Re), also by Equation 4.4) and (4.6), we hallg(x) C Rq(x) for anyx € U, which
yieldsy(Ry, R2) = 1.

Based on above discussion, the conclusion is true.

Theorem 3:(Partial Order Preserving Property) For any equivalence relations;, R, andR. If Ry C R,

theny/(Ry, Rz) < +/(R1, R).
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Proof. According to Equation (4.4), the conclusion follows immediately.

This means that the finer the equivalence relafiynis, the less the equivalence relati® depends on the
equivalence relatio®,. From the viewpoint of classification, the more the decision attribute values group together,
i.e., the lager equivalence class induced by the decision attribute is, the easier we can classify the objects into
new D-class by employing attributé’. For example, in Table 1D = {d}, V; = {Y, N}, if we groupY
and N together such that botih and N become a new valug, thenD’ = {d}, V; = {Z}, and the Table
1.1 becomes Table 4.1D induces the equivalence relatidiV D (D), and the set of the equivalence classes
is calculated a®//D = {{el,e4,eb},{e2,e3,¢e6,e7}}; D' induces the equivalence relatiddv D(D’), and
U/D" = {{el,e2,€3,e4,eb,e6,e7}}. Then we classify object intt’/ D’ easier than intd//D.

alb|c|d
el/Y|Y|0]|Z
e2|Y |Y|1]|Z
e3|Y|Y|2]|Z
e4d/ N Y |0]|Z
e5|N|N|1|Z
e6|N|Y |2]|Z
e7|Y | N|1|Z

Table 4.1. Influenza Data

By Theorem 3, we have

Theorem 4:For any given equivalence relatidty .

Hj}éﬂ’Y,(RlaRﬂ =7/(Ry, Iy), rr;ng’(Rl,Rz) =7 (R, UxU) =1,
wherel; is the identity relation o/, andU x U is the universal relation ofi.
Proof. Sincéd;; C Ry C U x U, the conclusion is immediate by Theorem 3.
In order to obtain more properties about the generalized dependency d&dieeR-), we need the following

lemma.

Lemma 1: The inequality

3 a3 2 a2
ﬂ+@+...+ai2(al+a2+ an)
br b bn = bi+bat-+ by

holds for anya; € R,and0 < b; € R,i = 1,2,...,n.
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Proof. It is well known that for any functiofi(x) in which f”(x) > 0, the inequality

flpazy + poxe + -+ + pnan) < paf(xr) + paf(x2) + - + pnf(zy)

holds if i1, pi2, ..., e >0, 1 + po + - - + p, = 1. In this inequality, let

f(ﬂf) :x27$i = (b1+b2++bn)al/bu,ufz :bl/(bl+b2++bn)7

1=1,2,...,n. Then the desired inequality follows.

Theorem 5:For any given equivalence relatidiy,

H}lziH’Y/(Rth) =7 (U x U, R).

1

Proof. Suppose that there are R»-classes, and they at€;, X, X3, ..., X,,. We will calculatey’(R1, Rs)
whenR; = U x U. By Equation (4.4), whe®®; = U x U, we have

’)’/(Rl,Rg) — i Z Z ’X le )’

Ul X€eU/Ry veX [ (2

| |XﬂU|

=@zz

XeU/Ry z€X |
-5z =h
’ XGU/RQ:EEX
| X|?
0T

:]U1|Z

XeU/R

- pEy

Then we analyze’(R;, Rs) for any givenR;. In order to achieve this goal, we need to see into the&seWe
assume there arg different nonempty subsets &f; of the form R, (z) N X;, fori = 1,2, ..., m. Note that for
anyz,y € U, eitherR;(xz) = Ri(y) or Ri(x) N Ri(y) = ¢, and U Ry (z) = U.So we can assume that thdse

Te

different nonempty subsets &f; take the forms
Ri(zi1) N X5, Ri(zie) N Xy, ..., Ri(zg,) N X,
and they satisfy

(Ra(zip) N X5) N (Ra(wig) N Xi) = ¢,
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forp #qp,q=1,2,...,k;; and
(Rl(:clp)ﬁX) X;.

p_
Note that fory € Ry (xi;) N X,
Rl(y) NX; = Rl(l'ij) N X;.

By Equation (4.4), we have

/ |X le )‘
v (R, R2) =
(B, Rz) W@EX [l
_ | Xi N Ry (245)]
rU\;;xGRIZ o Raley)

. |X ﬁRl .7}1])‘
a !U|ZZ | R (wi;)]

7,1]1

\Xz' N Ra(xij) .

= ’U‘Q ZZ

i=1j= I‘Rl :CW

Because thal/ O Ri(xij1) U Ri(xi2) U -+ U Ryi(zi,) and thatRy (1), Ri(zi2), - - -, Ri(xi,) are disjoint
with each other, we have

\U| > [Ry(wi1)| + |R1(@iz)| + - + |Ri(zar,)]-

Note that
| Xi| = |R1(wi1) N X;| + [Ri(zi2) N Xi| + - + | Ry (zar,;) N Xl

so by Lemma 1, we have

X2 [Ru(ei) DX R (i) 0 X o i) n x|
ki T [Ra(wa)l |R1(wi2)] |R1 (it )|
R Tiq ‘
j§1| 1(zi5)]
and hence
k; 2 2 2
Rl(xil) N X1| |R1(l‘i2) N XZ| ’Rl(xzk) N Xz|
Xi)? < Ri(ij) | + 4+ :
G < Qe (R G IED) Raww) )
Ul|Ry(za) N Xi* | |Ul|R1(ma2) 0 XG> |U|‘R1($iki)mXi‘2)
- |R1(241)] |R1(42)] |R1(zix,)| '

Thereforey' (U x U, Ry) < v'(R1, Ra).
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This theorem means that the generalized dependency degree is minimal when there is only one equivalence clas:
induced byR;, therefore fromR; we can not learn more useful information ab@stin such case.

Similarly we have

Theorem 6:(Anti-Partial Order Preserving Property) For any equivalence relatiod;, Ro, R. If R; C R,
theny'(R1, Rg) > v'(R, Ra).
Proof. SinceR; C R, eachR-class is the union of somg, -classes, each s&1(y;) N X, is the union of some sets
of the formR(x;) N X;. We assume that iX;, there ard; different nonempty subsets of the fori{y;;) N X;.

We assume without loss of generality that

Ryn)NX; = (Ri(zin) NX;)U(Ri(zi2) N X5) U+ U (Ri(zip,) N X5),

R(ya) 2 Ri(za)URi(2i2) U---U Ry (2ip,),

Ryiz) N Xi = (Bi(@ip+1) N Xi) U (R (@ip42) N XG) U=+ U (Ry(@ip,) N X5),
R(yi2) 2 Ri(Tipy+1) U R (@ip,42) U+ U Ry (@ip,),

Ryi,) N Xi = (Ra(@ip, 1) 0 Xi) U (Ra(ipy,_y42) N Xi) U= U (Ba(2ip,) N Xa),
R(ya,) 2 Rai(@ip,_y+1) U R (@ipy,_y42) U - U Ri(2ip,, ).

By the proof of Theorem 5, we have

"(Ry,Rs) = X; N Ry ()%
7( 1, 2) ’UP;;’RI wzg | 1(x]>’

- |U]2 ZZ Z]

Zl]l

wherea;; = | X; N Ri(xi5)|, bij = |Ri(z45)|/|U},i=1,2,...,m; j =1,2,...,k;. And
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1 & U

Y(R,Ry) = —5>.> = | X; 0 R(yi;))?
UP 2 2 [R(yy)
1 b a§j2
SRR,
i=1j=1 ij
where
aél = | XisNR(ya)| = a1 + a2 + -+ Gipy
aj, = |XiNR(ye)| = Qipy+1 + Qipy+2 + -+ + Qip,,
a;li = |Xz N R(ylll)\ = Qip,_1+1 + ipy, 1+2 R Qipy,
w = |Rwa)l/|IUl = bi1 + big + -+ + bip,
o = |Re)l/IU > bipy+1 + bipy 12 + -+ + bip,,
;l,- = |R(yzlz)|/’U| > bipli71+1 + bipli71+2 + -+ bipli,

1=1,2,...,m. By Lemma 1, we have

ki g2, 2 2 2
G _ %, %2, Yip
— bij bir  bi2 bip,
]_
2 2 2
o dpt1 | Y2 Y
bipﬁ-l bi}h +2 bipz
+
2 2 2
a: a: a
ip,—1+1 ipr,—1+2 ipr;
+ o S

biplrl-i-l biPli71+2 bipli
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I,

(%laz’j)Q (> aiy)? (X ay)
i=

> J=pitl gy JTPumt]
= P1 P1 2
2 bij 2 by > b
Jj=1 J=p1+1 j=pi;—1+1
CL/ 2 CL/ 2 ;2
i1 02 il;
> ottty
(At 2 il;

m 5 a?, m
This means that the finer the equivalence relafigris, the moreR, depends orR;. From the viewpoint of

classification, the more the condition attribute values group together, i.e., the larger equivalence class induced by
the decision attribute is, the more difficult we can classify the objects into/n@hass by employing attributé'.

For example, in Table 1, let' = {c}, V. = {0, 1,2}, if we group 0, 1 and 2 together such that 0, 1, 2 become a
new value 3, thed@’ = {c},V. = {3}, and the Table 1 becomes Table 3. Thus it is harder for us to classify objects

into D-class by employing the attribute’.

albjc|d
el|Y|Y|3|N
e2|lY|Y |3|Y
e3|Y|Y|3]|Y
e4d|N|Y |3|N
e5|N|N|3|N
e6|N|Y |[3]Y
e7|Y|N|3|Y

Table 4.2. Influenza Data

Becausd ND(C') = Neec IND({c}), when we drop some attributes frathsuch that a new attribute set
is formed, we havd ND(C’) 2 IND(C). So by Theorem 6/(C’, D) < +/(C, D). This means that generally,
the less the condition attribute set contains attributes, the harder we classify the objebtsiags by employing

the condition attribute set.

Theorem 7:For any given equivalence relatidty, we have

maxy'(Ry, Ry) = 7' (Iy, Re) = 1, miny'(Ry, Ry) = 7(U x U, Ry).
1 1

Proof. It is immediate by Theorem 6.

34



Theorem 8:

min v'(R1, Rp) = max 7y '(R1, R) = 1.

Rty W
Proof. By Theorem 3 and Theorem 6, we only need to verlfy*yi‘(df xU,Iy) =1/|U|. LetRy =U x U, Ry =

Iy. According to Equation (4.4), we have

, [Raz) 1 Ry ()
Y UXU,IU =
( ) |U|§J B ()
1y lmoy
12 (0]
1 Z 1 1
0] 2 101~ 107

This means that for any two equivalence relatidhs Rz, R, depends orm?; to some degree at least|U|.

When the number of objects tends to infinity, the minimum tends to zero.
4.3 Probabilistic Form of Generalized Dependency Degree

The third form of the generalized dependency degfé€, D) can be rewritten as

7 (C,D) = ZZ (Pr[c] - Pr?[d|c]) (4.8)
= Z rc-ZPr [d|c])
d

[

Next we will explain why the generalized dependency degfé€, D) can be rewritten as the above form.

LetC = {ay, a9, ...,an},D = {b1,ba, ..., by, }. Then the minimal rule
ar=u1 N ag=us AN...\Nap=u, — by =v1 N bg=v9A...A\by, =vm
can be denoted by — d, wherec = (uj,ug, ..., uy), d = (v1.v2,...,vy). Then
Con(c — d) = Pr(d|c),
Str(c — d) = Pr(c,d).
According toPr(c, d) /Pr(c) = Pr(d|c) and Equation (4.3), we have
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7Y(C,D) = Z Str(r) - Con(r)
reMinR(C,D)

= Z Str(c — d) - Con(c — d)
c,d

= ZPr(c, d) - Pr(d|c)
c,d
— Z ZPr(c, d) - Pr(d|c)
c d
_ r(c) - Pr(c,d)
- zc:zd:P (c) Pr(c)
= Y (Pr(c) - Y Pr?(dle)).

c d

- Pr(d|c)

Before we move on to the next section, we give one more property of the generalized dependency degree basec

on the form of Equation (4.8), i.e., in term of probability.

Theorem 9:1f the decision attributes are independent of the conditional attributesytiénD) = +'(U x
U,IND(D)), i.e., the generalized dependency degy&€’, D) takes the minimal value of'(R,, IND(D))
among all possible equivalence relatiBn

Proof. If D is independent of’, thenPr(d|c) = Pr(d), and so we have

C

=Y (Prld Y PRld)
c d

= (Q_Prle))- (Q_Pr’d])
c d

= ZPr2[d].
d

Y(C.D) = ) (Prld- Y Pr*[d|d])
d

By the proof of Theorem 5, the above formula is exaetlyU x U, IND(D)), which means that under the
condition of independency, (C, D) = (U x U,IND(D)), and that under the same conditig(C, D) takes

the minimal value ofy (R, IN D(D)) among all possible equivalence relatign.
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4.4 Definition of the Generalized Dependency Degreg in Incomplete Information Systems

In this Section, we expand the definition of the generalized dependency degree to incomplete information sys-
tems by reinterpreting the meaning of the support of a formula and the cardinality of the support in incomplete

information systems and using minimal rule.
4.4.1 How to Handle Missing Values in Incomplete Information Systems

Here we introduce a new approach by replacing the missing value by its possible attribution shown in Table 4.3:

a c d
e1 | Y Y Normal(0) N
ea | Y | {P1/Y,P2/N} High(1) Y
es |'Y Y {51/0,5/1,53/2} | Y
es | N | {@Q1/Y,Q2/N} Normal(0) N
es | N N High(1) N
es | N Y Very High(2) Y
er | Y N High(1) Y

Table 4.3. Influenza Data

In theea-row, by { P, /Y, P/N} we mean that, takes the valu&” with a probability P;, and N with a prob-
ability P5. In thees-row, the expressiodQ:/Y, Q2/N} has a similar meaning. les-row, {S1/0,52/1,S3/2}
means that; takes the value 0, 1, and 2 with probabilBy, S2, andSs respectively.
In order to reduce the complexity of computing, we introduce an approximate method to determining the values
of all the unknown parametery, P, Q1, @2, S1, 52, S3. We letPy, P, (1, Q2 take the values of the distribution
of Y andN inthe colummb,i.e.,P, = Q1 = 3/5, P, = Q2 = 2/5; letSy, Sa, S take the values of the distribution
of 0,1 and 2 in columm, i.e.,S; = 2/6,S52 = 3/6,S53 = 1/6.

4.4.2 Definition ofy” in Incomplete Information Systems

Although we can also define some kinds of equivalence relations induced by the attributes in an incomplete in-
formation table, here we introduce a direct way to calculate the generalized dependency/tiegaaéncomplete

information table. That is, we choose the Equation 4.3
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Y (C, D) = Z Str(r) - Con(r),
reMinR(C,D)

as our definition of the generalized dependency degfée an incomplete information table. To carry out this
idea, we have to define the Confidence and the Strength of a rule in an incomplete information table. We show our
definition by example of the Influenza Data in Table 4.3.
Before going forward, we need to re-interpret the meaningddfs and the meaning of thewrd(||®||s) where
the set|®||s may be a “fractional” set in an incomplete information table.
If 2 € U satisfiesp with a probability ofp, then the object belongs to the sdt®||s with a probability ofp,
and we write the elementin ||®||s asp/z. For example, in the Table 4.3, kétbe the formula = Y. el satisfies
the formulab = Y with a probability of 1, the probability of" in e;-row, b-column;e, satisfies the formula=Y

with a probability of P, = 3/5, the probability ofY” in es-row, b-column. We have

HCI)HS = {1/61, 0.6/62, 1/63, 0.6/64, 0/65, 1/66, 0/67}.

We can delete all the elements whose probability are equal to zero, i.e., we ofter|®fiiteas||®||s =
{1/e1,0.6/e2,1/e3,0.6/e4,1/es}.

Then we definé|®||s inductively as follows: Ifz satisfiesP with a probability ofp, andx satisfies¥ with a
probability of ¢, thenz satisfiesd A U with a probability ofpq; = satisfies~ & with a probability of1 — p; x
satisfiesp vV ¥ with a probability ofl — (1 — p)(1 — ¢). Note that our suppoft®||s of ® has the same expression

as fuzzy set. So we can also defif||s inductively in term of fuzzy set as follows:

F1 : |[la=vlls = {p(z)/x|x € U, Pla(z) = v] = p(x)}
fora € Bandv € V,,

F2 oV Uls = [|D][s +[|¥]|s

F3 2 [0 AYls = [|®]ls - [¥]ls

Fa4 |~ @fls =~ [|®]s

where||®||s+||¥||s is the algebraic sum of the fuzzy sé||s and||¥||s, ||®||s-||¥||s is the algebraic product
of the fuzzy set$|®||s and||¥||s, and~ ||®||s is the complement of the fuzzy SéP||s [29].
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The cardinalitycard(||®||s) can be defined in term of fuzzy set, i.e.,
card(||®||s) = Z p(x). (4.9)
z€||2]|s
Then as an example we will calculate the generalized dependency degree b€twegn b, c} andD = {d} in

Table 4.3 by the Equation 4.3. We first need to calculate the confidence and strength of each minimal decision rule

using the following definitions in which we have already defined whatever we need.

Con(® — U) = card(||® A¥||s)/card(]|®||s) (4.10)

Str(® — ¥) = card(||® A ¥||s)/card(U) (4.12)

Example 3: We show in the following the process of calculation of confidence and strength of one minimal rule
while the results of all minimal rules is listed in Table 4.4. Sitiee= Y Ab =Y Ac=0Ad =Y||s =
{Si/eshl{S1/es}] = S1 =2/6)lla =Y Ab=Y ANe=0[s = {1/e1,51/es}[{1/e1, S1/es}| = 1+ 51 =
1+4+2/6 =4/3, we have the minimal rule =Y Ab=Y Ac =0 — d =Y with confidence=1/4, strength=1/21;

ENC
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o
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-
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=
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o
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Y|lY|2]|N 0 0 N|Y|2]N 0 0
Y [ N|O]|Y 0 0 N|NJ]O|Y 0 0
Y [ N|O|N 0 0 N|NJ]O|N 1 e
Y| N|1]Y 1 < N | NJ|1]|Y 0 0
Y| N|1]|N 0 0 N[ NJ|[1][N 1 %
Y [ N|2]|Y 0 0 N | N|[2]|Y 0 0
Y[ N|2]|N 0 0 N|N|[2]|N 0 0

Table 4.4. Results of All Minimal Rules

Sowehave/(C,D)= Y Str(r)-Con(r)=1/21-1/4+1/7-3/4+11/70-1+1/42-1+1/5 -
reMinR(C,D)
14+3/35-1+1/7-1+2/35-1+1/7-1=13/14.

By the next theorem, we show one more property of the generalized dependency.
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Theorem 10:In an incomplete information system, we have +/(C, D) < 1

Proof. Because every object contribute§U| to the sum of Y Str(r) and there are totallj/| objects,
reMinR(C,D)
we have > Str(r) = 1. Itis obvious thaCon(r) < 1 for all ruler, so we have
reMinR(C,D)
> Str(r) - Con(r) < > Str(r) =1
reMinR(C,D) reMinR(C,D)

Note that our method enables us to handle an information table whose values are probabilistic distribution, and

that information table without missing values can be understood as a special case of incomplete information table.

4.5 Experiments

In the above sections, we have given a deeper understanding of the generalized dependency degree by presentin
its various forms and developing its various properties. Next, we will replace the conditional entropy used in the
C4.5 algorithm with the generalized dependency degree such that a new C4.5 algorithm is formed. We discard in
the new C4.5 algorithm the MDL principal by which the original C4.5 can correct the split selection bias towards
the continuous attribute. Since the conditional entropy has the meaning of average code length, it is compatible
with the MDL principal in the original C4.5, however the generalized dependency degree means that to what
degree the decision attribute depend on the condition attribute, so the new C4.5 using the generalized dependenc
degree is not compatible with the MDL principal and we discard it. One more thing that we change the original
C4.5 is that we let the procedure of building tree stop earlier by a new criterion: in the current node, if for every
attribute, the number of the gain cases is less than a given valudy, then the splitting procedure stops. The
number of the gain cases is calculated by multiplying the number of cases in current node and the dependency
gain.

C4.5 algorithm uses a divide-and-conquer approach to grow decision trees [27]. Next, we describe the C4.5
algorithm roughly. The readers are recommended to read the book [27] for a better understanding.

If the algorithm is run under the option —g, then for every condition attribuiis information gain is computed
by the formula

G(D,{a}) = H(D) — H(DH{a}).

Then choose the attribute which has the maximum gain among all the condition attributes, then the training cases
T are partitioned into subseis, 75, . .., T,, according to the value of the chosen attribute. The same procedure

is applied recursively to each subset of the training cases. If the algorithm is run under the default option, then for
every condition attribute, its information gain ratio is computed by the formula

H(D) — H(D|{a})
H(C)

40



If the algorithm is run under the option —s, then the values of discrete attributes will be grouped for test, and again
the gain ration criterion will be used. If the algorithm is run under the option —g —s, then the values of discrete
attributes will be grouped for test, and the gain criterion will be used.

We replace the information gain in the original C4.5 algorithm with

G(D.{a}) =+'({a}, D) —+(D)

in our new C4.5 algorithm, wherg(D) = ~/(U x U,IND(D)). Note that by Theorem %37(D, {a}) > 0.

To make it easier for the readers to repeat the experiments, we describe in the Appendix how the new C program
is obtained and how our experiments are conducted in details.

Both the original C4.5 and the new C4.5 are applied to all the same eleven data sets with missing values as
used in [28]. These eleven data sets are from the UCI Repository. Note that the datasets we use may have slight
difference with what Quinlan [28] uses, as Quinlan points out in our private corresponding. For example, the
anneal dataset we use has a different order of the cases with what Quinlan uses. The Table 4.5 is a description of
the datasets we use. The first column refers to the names of the datasets, the second column refers to the numbel
of cases in each datasets, the third column refers to the number of continuous attributes, and the final column refers

to the number of discrete attribute.

dataset | Cases| Classes Cont| Discr
Anneal 898 6 6 32
Auto 205 6 15 10
Breast-w| 699 2 9 0
Colic 368 2 7 15
Credit-a | 690 2 6 9
Heart-c 303 2 6 7
Heart-h 294 2 8 5
Hepatitis| 155 2 6 13
Allhyper | 3772 5 7 22
Labor 57 2 8 8
Sick 3772 2 7 22

Table 4.5. Description of the Datasets

The experiments are conducted on the workstation whose hardware model is Nix Dual Intel Xeon 2.2GHz,
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whose RAM is 1GB, and whose OS is Linux Kernel 2.4.18-27smp (RedHat7.3).
Both algorithms use ten-fold cross-validations with each task. The figures shown in the Table 4.6 is the mean

error rate of ten-fold cross-validations.

dataset | O-g-s(%)| pruned(%) | N-g-4%) | pruned (%)
Anneal 3.9 4.6 6.1 7.9
Auto 20.5 22.0 22.0 22.5
Breast-w 57 4.3 4.2 4.5
Colic 19.8 16.0 16.3 154
Credit-a 19.7 171 15.2 15.6
Heart-c 224 21.4 23.4 23.1
Heart-h 24.2 22.8 20.7 21.1
Hepatitis 20.0 19.9 19.3 19.3
Allhyper 1.4 14 11 1.2
Labor 24.7 26.3 15.7 19.3
Sick 1.2 11 1.0 1.0

Table 4.6. Mean error rates of the original C4.5 and the new C4.5 on the data sets with missing values

The second column and third column in Table 4.6 are the results before pruning and after pruning respectively
obtained by running the command

xval.sh filestem 10 —g —s
in the original C4.5 system. Which means the gain criteria (not the gain ratio) is used, and the MDL principle
is used to correct the bias towards continuous attributes with numerous distinct values. Moreover the grouping
method is used. The fourth column and the fifth column are the results before pruning and after pruning respec-
tively obtained by running the same command in the new C4.5 system. Which means the new gain criteria based
on the generalized dependency degree is used, and the MDL principle is not used. The grouping method is also
used. The final row refers to the sum of results of the experiments on the twenty datasets.

The figures shown in the Table 4.7 is about the average run time of ten-fold cross-validations. The time unit in
Table 4.7 is 0.01 second. The second column in Table 4.7 refers to the average run time of the original procedure
C4.5 in the ten-fold cross-validations. The third column and the forth column refer to the average run time

and the reduced time rate based on the second column of the changed C4.5 procedure without and with the
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pruning procedure respectively. Note that the run time does not include the run time for data preparation for

cross-validation and the run time for final result report in both C4.5 systems.

dataset | O-g-s | N-g-s unpruned reduced rate(%) N-g-s pruned| reduced rate(%
Anneal | 6.800 4.600 324 5.100 25.0
Auto 9.700 2.600 73.2 2.600 73.2
Breast-w| 1.600 1.000 37.5 1.000 37.5
Colic 4.100 1.500 63.4 1.500 63.4
Credit-a | 8.300 2.400 71.1 2.500 69.9
Heart-c | 2.000 0.700 65.0 0.900 55.0
Heart-h | 1.900 0.700 63.2 0.600 68.4
Hepatitis| 0.900 0.600 33.3 0.700 22.2
Allhyper | 45.000 18.500 58.9 18.500 58.9
Labor 0.400 0.100 75.0 0.400 0.0
Sick 38.100 17.100 55.1 20.800 45.4

Table 4.7. Average run time of the original C4.5 and the new C4.5

The experiments show that the generalized dependency de{i@eD) is a useful measure in incomplete
information systems. We compare in three folds the new C4.5 algorithm using the generalized dependency degree
with the original C4.5 algorithm using the conditional entropy:

1. Theoretical complexity: The generalized dependency ded(ée D) itself is somewhat complete. In the
new C4.5 it does not need the MDL principal to correct the bias towards the continuous attribute, while the
conditional entropy needs the MDL principal to achieve the competitive prediction accuracy. Moreover, from the
experiment, we find that the pruning procedure in the original C4.5 algorithm can be omitted in the new C4.5
algorithm. Table 4.6 and Table 4.7 show that in the new C4.5 algorithm, omitting the pruning procedure can
achieve a better performance both in speed and prediction accuracy.

2. Speed: To computg(C, D), we only need to compute the square of the frequency, while the computation of
the often used conditional entropy needs to compute the time consuming logarithm of the frequency. Furthermore,
the building tree procedure in the new C4.5 algorithm stops earlier. Omitting the pruning procedure can also save
us an amount of time. This explained why the new C4.5 procedure with pruning procedure runs much faster than
the original C4.5 procedure. In fact, the new C4.5 procedure run at about half of the time run by the original C4.5

procedure, and the new C4.5 procedure without pruning procedure can run a little faster further. Note that the
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original C4.5 algorithm is the fastest algorithm in training time among the thirty-three old and new classification
algorithms [17].

3. Prediction accuracy: The original C4.5 algorithm performs best by using the option —g —s and using the
pruning procedure, while the new C4.5 algorithm also performs best by using the same option, but it does not
need the extra pruning procedure. So we only compare the third column with the fourth column in Table 4.6, i.e.,
the result after pruning of original C4.5 algorithm with option —g —s with the result before pruning of the new
C4.5 algorithm with the same option. In the third column and fourth column, the less one is written in bold. And
we find that the new C4.5 algorithm performs better than the original C4.5 algorithm in prediction accuracy in
these eleven data sets with missing values. Note that the prediction accuracy of the original C4.5 algorithm is not
statistically significantly different from POL whose prediction accuracy is best among the thirty-three old and new
classification algorithms [17]. The new C4.5 algorithm seems more successful in the dataset labor, on which the
algorithm achieve a 15.7% prediction error rate while the original has 26.3% error rate.

We believe that after further investigation on the new C4.5 algorithm, the overall performance of the new C4.5

algorithm will perform better.
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Chapter 5

Conclusions and Future Work

Using simple statistic method to handle missing values in the area of link analysis and in the area of decision tree
achieves better performance both in accuracy and in speed.

Using known information to predict the number of inlinks for each page that have already been found is an
efficient way to predict the unknown web structure in link analysis. Our experimental results suggest that PreRank
need less iteration and performs better than PageRank in accuracy. Continue this work, there is much work we can
do:

1. Speed up the Predictive ranking algorithm. Because the matrix A has special structure, itis possible to exploit
this special structure to speed up the algorithm without losing accuracy. Moreover, the special web structures, such
as block structure, hierarchy structure and directory structure, can also be used to speed up the algorithm.

2. Look both inside and outside a single matrix to get a more accurate model. In this work, we only predict a
kind of information contained in the single data. In fact, we also can predict more by exploiting the information
changed dynamically, for example, use the ARMA model to predict the future rank. Moreover, we can use the
history information to adjust the link densitly (v;)/n (or d; (v;)/n ).

3. Conduct experiment on large real data set to support the block predictive ranking model.

Using the estimated probabilistic distribution as a method to extend the generalized dependency degree to the
case of incomplete information system is a natural idea. This way work well in decision tree. Moreover, the
generalized dependency degree is a good measure, it has three different kind of form, and it has many properties.

Among our three different forms of the generalized dependency degree, the first form (in terms of equivalence
relation) of the measure is most important. Besides its simplicity, the first form is flexible, and therefore can
be extended not only to equivalence relation but also to arbitrary relation. Moreover, it bridges the gap between

the dependency degreedefined in terms of rough set and the probabilistic form of the generalized dependency
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degreey’. The first form (in terms of equivalence relation) and the second form (in terms of minimal rule) share the
advantage of being easily understood while the third form (in terms of probability) of the measure is computing-
efficient. So these three forms of the measure can be used in different situations. When we want to extend the
measure to more complicated data structure (such as partial order relation, totally order relation or others) than
equivalence relation, or when we want to find some properties about this measure, we can resort to the first two
forms of the measure. When we use it in the computing situation, the third form of the measure may be the best
choice.

The generalized dependency degrébas good properties, such as Partial Order Preserving Property and Anti-
Partial Order Preserving Property. Besides, its value is between zero and one. Therefore, it can be served as
an index to measure how well decision attributes depend on conditional attributes. Its ability of being used in
incomplete information systems is its another advantage. Furthermore, because it is more accurate than the de-
pendency degree, it can be a substitute of the dependency degree in Rough Set Theory, and because it is less
time-consuming and simpler than the conditional entropy, it can be a possible substitute as an information mea-
sure. Our experiments only show one possible such substitute in the field of decision tree. While the new C4.5
algorithm using the generalized dependency degree performs better in run time and in precision accuracy in these
11 data sets with missing values, we point out that we seem not to exploit fully in our experiments the properties of
the generalized dependency degréeFor example, the generalized dependency degree is defined as the relation
between two sets of attributes, which suggests that we can split the node on more than two attributes while in the
current version of C4.5 algorithm, we only split the node only on one attribute.

Further study on the new C4.5 algorithm and on the possible application of the generalized dependency degree
will be our future work.

The success of the Predictive Ranking Algorithm in Chapter 3 and the new C4.5 algorithm in Chapter 4 suggests
that it is possible to deepen and widen the current work. For example, we can estimate the web structure more
accurately (Block Predictive Ranking Model in Section 3.2 is just one possible), we can branch on more than one
attribute to improve the current new C4.5 algorithm, and we need to investigate other areas in which such simple

processing missing information method can work.

46



Bibliography

[1] G. Amati, I. Ounis, and V. Plachouras. The dynamic absorbing model for the web. Technical Report TR-2003-137,
University of Glasgow, Apr. 2003.
[2] L.Breiman, F. J. H., R. A. Olshen, and S. CClassification and regression treeBelmont: Wadsworth International
Group, 1984.
[3] J. Cho and R. E. Adams. Page quality: In search of an unbiased web ranking. Technical report, UCLA Computer
Science Department, Nov. 2003.
[4] J.Choand S. Roy. Impact of search engines on page popularRyoteeding of the 13th World Wide Web Conference
pages 20-29, 2004.
[5] M. Dalkilic and E. Robertson. Information dependenciePioceedings of the 19th ACM SIGMOD-SIGACT-SIGART
Symposium on Principals of Database Systgrages 245-253, Dallas, Texas, 2000.
[6] N. Eiron, K. S. McCurley, and J. A. Tomlin. Ranking the web frontier. Pimceeding of the 13th World Wide Web
Conferencepages 309-318, 2004.
[7] G. Gediga. Rough approximation quality revisitédtificial Intelligence 132:219-234, 2001.
[8] C. Giannella and E. Robertson. On approximation measures for functional dependehf@msnation Systems
29(6):483-507, 2004.
[9] L.A.Goodman and W. H. Kruskal. Measures of association for cross classificatmmaal of the American Statistical
Association49(268):732—764, 1954.
[10] S. Handschuh, S. Staab, and R. Volz. On deep annotatioRrokceeding of the 12th World Wide Web Conference
pages 431-438, 2003.
[11] A. Hassanien. Rough set approach for attribute reduction and rule generation: A case of patients with suspected breast
cancer.Journal of the American Society for Information Science and Techndi&g¥1):954-962, 2004.
[12] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub. Exploiting the block structure of the web for
computing pagerank. Technical report, Stanford University, 2003.
[13] M. Kryszkiewicz. Rough set approach to incomplete information systémf@mation Scienced12:39-49, 1998.
[14] M. Kryszkiewicz. Rules in incomplete information systerformation Scienced.13:271-292, 1999.
[15] T. Lee. An information-theoretic analysis of relational databasestpart i: data dependencies and information metric.
IEEE Transactions on Software Engineerii$(10):1049-1061, 1987.

47



[16] Y. Leung and D. Li. Maximal consistent block technique for rule acquisition in incomplete information systems.
Information Scienced453:85-106, 2003.

[17] T.-S.Lim, W.-Y. Loh, and Y.-S. Shih. A comparison of prediction accuracy, complexity, and training time of thirty-three
old and new classification algorithmilachine Learning40:203-228, 2000.

[18] P. Lingras and Y. Yao. Data mining using extensions of the rough set mddeknal of the American Society for
Information Science49(5):415-422, 1998.

[19] C. R. MacCluer. The many proofs and applications of perron’s theoB8AM Review42(3):487-498, 2000.

[20] F. Malvestuto. Statistical treatment of the information content of a datalagermation Systemsl1(3):211-223,
1986.

[21] K. Nambiar. Some analytic tools for the design of relational database systeRmeckedings of the Sixth International
Conference on Very Large Databaspage 417C428, Montreal, Quebec, Canada, 2000.

[22] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the web. Technical
Report Paper SIDL-WP-1999-0120 (version of 11/11/1999), Stanford Digital Library Technologies Project, 1999.

[23] z. Pawlak. Rough classificatiomternational Journal of Human-Computer Studig4:369-383, 1999.

[24] z. Pawlak. Rough sets and intelligent data analylsitormation Scienced47:1-12, 2002.

[25] Z. Pawlak. Rough sets, decision algorithms and bayes’ thedtempean Journal of Operational Reseaydl36:181—
189, 2002.

[26] G. Piatetsky-Shapiro. Probabilistic data dependencies. In J. M. Zytkow, delitmeeding of the ML-92 Workshop on
Machine Discoverypages 11-17, Aberdeen, UK, 1992.

[27] J. Quinlan.C4.5: Programs for machine learningan Mateo: Morgan Kaufmann, 1993.

[28] J.R. Quinlan. Improved use of continuous attributes in cb&irnal of Artificial Intelligence Research:77—-90, 1996.

[29] H. Zimmerman.Fuzzy Set Theory and its Applicatiakdluwer Academic Publishers, 2001.

48



