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Abstract

To find similar web pages to a query page on the Web, this pa-
per introduces a novel link-based similarity measure, called PageSim.
Contrast to SimRank, a recursive refinement of cocitation, PageSim
can measure similarity between any two web pages, whereas SimRank
cannot in some cases. We give some intuitions to the PageSim model,
and outline the model with mathematical definitions. We also suggest
techniques for efficient computation of PageSim scores. Finally, we
give an example to illustrate its effectiveness.

Keywords: similarity measure, link analysis, search engine, PageRank,
SimRank

1 Introduction

Finding similar web pages to a query page is a crucial task for a search
engine. Recently, a variety of link-based similarity measures, which use only
the hyperlinks in the Web, have been proposed for this task. This includes
companion algorithm [DH99], cocitation algorithm [DH99], and SimRank
[JW02], etc.

In this paper, we propose a novel link-based similarity measure, called
PageSim. Contrast to SimRank, our method can measure similarity between
any two web pages, whereas SimRank cannot in some cases.

SimRank is a fixed point of the recursive definition: two pages are similar
if they are linked to by similar pages. Numerically, for any web page u and
v, this is specified by defining simrank(u, u) = 1 and

simrank(u, v) = γ ·
∑

a∈I(u)

∑
b∈I(v) simrank(a, b)

|I(u)||I(v)| (1)

for u 6= v and γ ∈ (0, 1), where I(x) denotes the set of inlink pages of x, |I(x)|
denotes the cardinality of the set. If I(u) or I(v) is empty, then simrank(u, v)
is zero by definition. The SimRank iteration starts with simrank0(u, v) = 1
for u = v and simrank0(u, v) = 0 for u 6= v. The SimRank score between u
and v is defined as limk→∞simrankk(u, v).

Unfortunately, the result of SimRank is not convincing in some cases. In
one case, if one of two web pages has no inlink, then the SimRank score of
them is zero by definition, which means they are not similar. However, this

1



is not always true. For example, in Figure 2 of section 5, v1 has no inlink,
but it is clear that both v2 and v3 have some similarity with it for they are
linked to by v1 . In another case (also in Figure 2), SimRank concludes that
v2 and v4 are not similar. In fact, obviously v2 and v4 indeed have some
similarity, for they link to each other. More detailed illustration is given in
the last part of this paper.

The content of this paper is organized as follows. In next section, we
related work in similarity measures. Section 3 gives some intuitions to the
PageSim model. The mathematical definitions of PageSim model and analy-
sis on PageSim algorithm is presented in section 4. Evaluation on PageSim
and experiments on propagation radius are given in section 5 and section 6
respectively. The conclusion and future work are given as the last part of
this paper.

2 Related Work

The problem of finding related or similar pages to a query page on the Web
arises in a variety of web applications, such as web search engines and web
document classification. On the other hand, it shows that users of the Web
usually examine only the first few pages of search results. Therefore, it is
natural for these web applications to require effective similarity measures to
rank similarity between web pages, on either the textual content of pages or
the hyperlink structure of the Web, in order to provide users the results most
fit their desire.

Measuring the “similarity” between objects is required in many applica-
tions, and numbers of domain-specific similarity measures have been devel-
oped. For example, measures that based on matching text may be used to
find similar documents to a given query in a document corpus. And for col-
laborative filtering in a recommender system [GNOT92, KMM+97, SM95],
similar users may be grouped by users’ preferences. In particular, several
link-based similarity search algorithms were suggested to exploit the simi-
larity information hidden in the link structure of graph, such as SimRank
[JW02], cocitation algorithm [DH99], and companion algorithm [DH99], etc
[LNK03]. Further methods arise from graph theory, such as similarity mea-
sure that based on network flows [LJMJ01].

Because link structure is more resistant to spamming than textual content
[AAR01], this paper focuses only on the link-based similarity measures which
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computing similarities solely from the hyperlink structure modeled by the
web graph, with vertices corresponding to web pages and directed arcs to
the hyperlinks between pages.

3 Intuitions Behind PageSim

3.1 Web Graph Model

We model the Web as a directed graph G = (V, E) with vertices V repre-
senting web pages vi(i = 1, 2, · · · , n = |E|) and directed edges E representing
hyperlinks between web pages.

Definition 1 Let I(v) denotes the set of inlink pages of v and O(v) denotes
the set of outlink pages of v, for v ∈ V .

Definition 2 Let path(u1, us) denotes a sequence of vertices u1, u2, . . . , us

such that (ui, ui+1) ∈ E (i = 1, · · · , s − 1) and ui are distinct, it is called a
path from u to v.

Definition 3 Let length(p) denotes the length of path p, define length(p) =
|p| − 1.

Definition 4 Let PATH(u, v) denotes the set of all possible paths from page
u to v.

3.2 PageRank

PageRank is a well known ranking algorithm which uses only link informa-
tion to assign global importance scores to all pages on the Web. Because
our proposed algorithm rely on PageRank, we offer a short overview in this
section.

PageRank was introduced by Page and Brin [PBMW98]. The intuition
behind the algorithm is

“a page has high rank if the sum of the ranks of its backlinks is high.”

It assumes that the number of incoming links to a page is related to that
page’s popularity among average web users (people would point to pages
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that they find important). Correspondingly, PageRank is based on a mu-
tual reinforcement between pages. From the viewpoint of random walk, the
PageRank score of a web page can be considered as the possibility that this
web page is being visited by a random web surfer at a certain time.

The PageRank score of web pages can be computed using the following
recursive algorithm:

X(t + 1) = dWX(t) + (1− d)In, (2)

where X ∈ Rn is an n-dimensional vector denoting the PageRank of web
pages. X(t) denotes the PageRank vector at the t-th iteration. W = (wij)n×n

is the transition matrix :

wij =





1
|O(vj)| (vj, vi) ∈ V,

0 otherwise.

In is an n-dimensional vector with all elements equal to 1. d is a damping
factor. The PageRank of total n web pages is given by the steady state
solution of (2).

PageRank appears to resist spamming because all reputation stems from
the initial votes. In [Cla04], the authors points out that the cost of acquiring
a PageRank r is rc(P ), where c(P ) is the total money spent by all web sites
on domain names and IP addresses. This means, although PageRank can
clearly be manipulated, the cost is expensive. This helps put top search
placements out of reach of spammers. By now, Google, which based on
PageRank algorithm, is the most popular search engine for its robust against
spamming.

3.3 PageSim

PageSim can be considered as an extension of cocitation algorithm, in which
the similarity score between two web pages is defined by the number of inlink
neighbors that they have in common. Actually, on the Web, not all links are
equally important. For example, if the only common neighbor of page a and
b is the Yahoo home page [yah], whereas page a and c have several common
neighbors from obscure places, then which page is more similar to page a,
page b or page c? As we know, hyperlink from web page u to v can be con-
sidered as a recommendation of page v by page u [AAR01], and the more
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important a web page is, the more important its recommendation is. Evi-
dently, the reasonable answer should be page b, since the Yahoo home page
is much more “important”. In another perspective, the action of recommen-
dation can be considered that page u propagates some kind of similarity to
page v, and the more pages it links to, the less similarity it should propagate
to each of these pages. Therefore, it is also reasonable to think that the
Yahoo home page has some kind of similarity with both page a and page b.

Since PageRank is one of the most prominent ranking algorithm which
assigns global ranking scores to all pages on the Web, we take the PageRank
score of a web page as the importance (weight or similarity score) of it in the
PageSim method. The intuitions to PageSim model is described as follows,
and the mathematical definitions will be given later.

At the beginning, each web page only contains its own similarity score,
and then each web page propagates its own similarity score to its outlink
neighbors, receiving and propagating the similarity scores of others at the
same time. After the propagation, each page contains its own similarity
score as well as the similarity scores of others. These scores are stored in a
vector called the similarity vector of this page. Then we can calculate the
PageSim score of each pair of pages by summing their common similarity
scores up.

4 The PageSim Algorithm

4.1 Definitions

Before giving the detailed description of PageSim algorithm, we introduce
some important definitions first.

Definition 5 Let PR(v) denotes the PageRank score of page v, for v ∈ V .

Definition 6 Let PG(u, v) denotes the PageRank score that page u propa-
gates to page v through PATH(u, v), that is,

PG(u, v) =
∑

p∈PATH(u,v)

PR(u)∏
w∈p,w 6=v |O(w)| , (3)

where u, v ∈ V .
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Definition 7 Let
−→
PS(v) denotes the similarity vector of page v, we have

−→
PS(v) = (PG(vi, v))T , i = 1, · · · , n,

where v, vi ∈ V .

Definition 8 Let PS(u, v) denotes the PageSim score of page u and page
v,

PS(u, v) =
n∑

i=1

min(PG(vi, u), PG(vi, v))

where u, v ∈ V .

4.2 PageSim Algorithm

The PageRank propagation process is very much like a depth-first traversal
(DFT ), but there is a slight difference between them: in PageSim, PageRank
score is propagated along “paths” rather than along “branches” in DFT
(see the definition of PG given in section 4.1). However, we can implement
this process using a DFT-like algorithm. For better understanding of the
propagation process, we give an simple illustration below.

V0

V1

V2

Figure 1: PageRank propagation process

In Figure 1, suppose PR(v0) = 1. The PageRank score propagation
process of page v0’s score (we refer ”score” to ”PageRank score” in this
illustration) is described as follows:

path1 v0 propagates 1/2 score to v1, then v1 propagates 1/2 score to v2. v2

does not propagate score to v0 because v0 is already in this path, there-
fore the propagation along this path ends;

6



path2 v0 propagates 1/2 score to v2, same reason as in “path1”, the propaga-
tion along this path ends at v2.

Therefore, PG(v0, v0) = PG(v0, v2) = 1 and PG(v0, v1) = 1/2. The
obtained result implies that v2 is more similar to v0 than v1, although the
whole propagation process is unfinished.

Let’s look deeper insight into PageSim. Let k be the average number of
one web page’s outlinks, i.e., k =

∑n
i=1 |O(vi)|. The computational complex-

ity of propagating one page’s similarity to all the others is O(kn), which is
too high. On the other hand, from the definition of PG, we have

EPG(u, v, score) =
score

kL
(4)

where EPG(u, v, score) denotes the expectation of PageRank score that
propagated from page u to v along one path path(u, v), and L = length(path(u, v)).
This means the PageRank score that propagated to distant pages drops very
quickly if k ≥ 2 holds (which is certainly true).

Since PageRank scores propagated to distant pages is very small and con-
tribute very little to the summation, it is reasonable to limit the radius of
propagation, which can be regarded as a tradeoff between efficiency and pre-
cision. This technique is called pruning, that is, we prune the tiny PageRank
score propagation processes to reduce the resource requirements. By this way,
the complexity drops to O(kr), where r ∈ R is the radius of propagation,
i.e., the maximum length of propagation path.

Now, we can conclude the complexity of PageSim. Because k is likely to
be much less than n, we can think of the approximate PageSim algorithm
as being linear with a possibly large constant factor, that is, the time com-
plexity of propagation procedure is O(Cn). However, the time complexity of
computing PageSim scores between all O(n2) pairs of pages is O(n3), there-
fore, the total time complexity of PageSim is O(n3). The space complexity is
O(n2) since each web page have to contain a n-dimensional similarity vector.

The detailed PageSim algorithm is given below.

PageSim Algorithm
Input
G : web graph G(V, E) with known PageRank scores,
r : propagation radius.
Output
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PSmatrix :PageSim matrix (PS(vi, vj))n×n, i, j = 1, · · · , n.

1: procedure PageSim(G,r)
2: for i ← 1, n do
3: call PR Prop(G,r,vi) . propagate PageRank of vi

4: end for
5: for i ← 1, n do
6: for j ← 1, n do
7: calculate PS(vi, vj)
8: end for
9: end for

10: end procedure

The PR Prop procedure for propagating PageRank score of web pages
is also given below, which is a “path-based DFT-like” algorithm.

PageRank Propagation Algorithm
Input
G : web graph G(V, E) with known PageRank scores,
r : propagation radius,
v : a web page whose PageRank is to be propagated.
Output
G : the graph G after the PageRank propagation of v.
Data Structure
path stack : a stack used to store pages on current path.
max path len : the size of path stack.
path len: the length of current path.

1: procedure PR Prop(G,r,v)
2: v∗ ← v
3: if v∗ has no outlinks then
4: return
5: end if
6: v∗.PR prop ← v∗.PR

v∗.outlink num

. compute the PageRank score that

. v∗ propagates to its outlink pages
7: path len ← 0
8: while v∗ 6= NULL do
9: set v∗ is visited
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10: visit next ← FALSE
11: if remains outlink pages of v∗ which unvisited then
12: if path len < max path len then
13: vo ← one unvisited outlink page of v∗

14: add v∗.PR prop to vo’s similarity vector
15: if vo has no outlinks then
16: vo.PR prop ← v∗.PR prop

v∗.outlink num

17: else
18: vo.PR prop ← 0
19: end if
20: PUSH(v∗, path stack)
21: path len ← path len + 1
22: v∗ ← vo

23: visit next ← TRUE
24: end if
25: end if
26: if visit next = FALSE then
27: set v∗ is unvisited
28: v∗ ← POP (path stack)
29: path len ← path len− 1
30: end if
31: end while
32: end procedure

4.3 Properties of PageSim

We list Some other properties of PageSim below, which can be easily deduced
from the definitions in section 4.1.

1. The PageSim scores are symmetric, i.e.,

PageSim(u, v) = PageSim(v, u);

2. Each page is the most similar page to itself, i.e.,

PageSim(u, u) = max
v∈V

PageSim(u, v)
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5 PageSim vs SimRank

A good evaluation of PageSim is difficult without performing extensive user
studies or having a reliable external measure of similarity to compare against.
In this section, we give a simple example in which PageSim is compared with
SimRank to illustrate the performance of PageSim.

For a given graph G(V, E), where V = {vi}(i = 1, · · · , 6) (see Figure 2).

Let
−→
PR(V ) = (PR(vi))

T , i = 1, · · · , 6. We have

−→
PR(V ) = (0.08, 0.23, 0.18, 0.14, 0.14, 0.23)T .

The PageSim score matrix is




0.08 0.04 0.05 0.01 0.01 0.05
0.04 0.41 0.16 0.23 0.14 0.16
0.05 0.16 0.35 0.14 0.14 0.35
0.01 0.23 0.14 0.23 0.14 0.14
0.01 0.14 0.14 0.14 0.28 0.14
0.05 0.16 0.35 0.14 0.14 0.58




.

Let top(v, t) denotes the top t similar pages to page v (excluding v). Let
t = 2, we have

top(v1, 2) = {v3, v6}, top(v2, 2) = {v4, v3,6},
top(v3, 2) = {v6, v2}, top(v4, 2) = {v2, v3,5,6},
top(v5, 2) = {v2,3,4,6, v1}, top(v6, 2) = {v3, v2}.

The SimRank score matrix of graph G is




1.00 0.00 0.00 0.00 0.00 0.00
0.00 1.00 0.25 0.00 0.00 0.25
0.00 0.25 1.00 0.50 0.50 0.13
0.00 0.00 0.50 1.00 1.00 0.25
0.00 0.00 0.50 1.00 1.00 0.25
0.00 0.25 0.13 0.25 0.25 1.00




.

Thus, we have

top(v1, 2) = {}, top(v2, 2) = {v3, v6},
top(v3, 2) = {v4,5, v2}, top(v4, 2) = {v5, v3},
top(v5, 2) = {v4, v3}, top(v6, 2) = {v2,4,5, v3}.
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Figure 2: graph G

We can see that the results of PageSim and SimRank are different. First,
SimRank shows that there’s no page similar to v1. While PageSim shows
that v3 is most similar to v1, which is more reasonable. Because the fact
that v1 links to v3 implies v1 “considers” v3 has some level of similarity with
it. Secondly, SimRank shows v4 is not similar to v2, while PageSim shows
that is not true. Obviously, v2 and v4 are similar, for they link to each other.
Moreover, PageSim considers that v4 is most similar to v2. SimRank shows
v3 is most similar to v2, for they have a common inlink page v1. We believe
PageSim is the winner in this situation because the “link to each other” rela-
tionship really implies stronger similarity than that of the “common inlink”
relationship.

6 Experiments on Propagation Radius

In section 4.2, we proposed the pruning technique which reduce the time
complexity of propagation to O(krn), where r is the propagation radius.
In this section, we want to get empirical results on the radius r through
experiments.

6.1 Data Sets

We ran experiments on two kind of data sets: real web graph and synthetic
graph.

real web graph Web graphs crawled from cuhk.edu.hk.

synthetic graph Randomly generated graphs according to the power law.
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The degree sequences of the Web are shown to be well approximated
by a power law distribution [KKR+99, KRRT99a, KRRT99b], that is, the
probability that a Web page has k outlinks (inlinks) follows a power:

Pout(k) ∼ k−γout(Pin(k) ∼ k−γin).

Therefore, we can generate synthetic Web-like random graphs to be the in-
puts of our algorithm. Several approaches to modeling power law graphs
[BAJ99, KKR+99, KRRT99b] have been proposed. In our experiments, we
use the (α, β) model [KRRT99b] to generate random graphs. By setting
α = 0.52 and β = 0.58, the model generates a random graph following power
law with γout = 2.1 and γin = 2.38, both of these values match the Web.

6.2 Methodology

Given a web graph G and propagation radius r, let PSr denotes the PageSim
matrix produced by PageSim(G, r), where r > 0. Define PS0 = 0.

In our experiments, we check the difference between PSr and PSr−1,
which denoted by Diff(r). Simply, we define

Diff(r) = ‖PSr − PSr−1‖2,

where ‖ · ‖2 is Euclidean norm. Apparently, we may think that Diff(r)
should approaches to zero as r approaches to n− 1, i.e.,

Diff(r) → 0, r → n− 1. (5)

Therefore, the goals of our experiments is:

1. to check the correctness of our hypothesis in (5).

2. if (5) is true, then can we get an empirical propagation radius r through
experiments?

6.3 Experimental Results

We run PageSim algorithm on two kinds of data set: real web graph and
synthetic graph, both of them consist of three graphs which contain approx-
imately 500, 5000, and 8000 vertices respectively. The curves are shown in
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Figure 3: real web graph
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Figure 4: synthetic graph
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Figure 3 and Figure 4, with horizon axes representing r, and vertical axes
representing Diff(r).

In both Figures , the curves drops quickly as the propagation radius r
increases, which shows that our hypothesis is correct. Generally, Diff(r) ≈ 0
when r ≈ 10. This means the PageRank scores that propagated to the web
pages more than 10 hops long is small enough to be omitted. Therefore,
empirically we can choose r = 10 to be the PageRank propagation radius in
practice to improve the efficiency of PageSim.

7 Conclusion and Future Work

This paper introduces PageSim, a novel link-based similarity measure. Based
on the strategy of PageRank score propagation, PageSim is capable of mea-
suring similarity between any two web pages.

There are numbers of avenues for future work. Foremost, we must address
efficiency and scalability issues. Although we reduced the time complexity
of PageRank propagation procedure to O(krn), and concluded the empirical
value of propagation radius through experiments, however, the time com-
plexity of computing PageSim scores of web pages is O(n3), which result in
the high time complexity of PageSim. Moreover, due to the small size of
the input graphs, our results may be inapplicable to huge web graphs which
include millions of thousands of web pages.

On the other hand, The storage required by PageSim is O(n2), which is
also unacceptable for web applications. Since averagely a web page has k
inlinks, and the propagation radius is limited, there will be lots of zeros in
similarity vectors. One possible direction is to use new data structure which
storing only received PageRank score instead storing all possible PageRank
score.

A second area of future work is to make PageSim more accurate. Notice
that if we modify the definition of PG to be

PG(u, v) =
∑

p∈PATH(u,v)

PR(u)∏
w∈p,w 6=v c(p, w)|O(w)| ,

where c(p, w) ∈ (0, 1] is a decay factor function, we may possibly obtain a
more precise result. We also leave it to our future research.
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