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Abstract

The problem of finding similar pages to a given web page arises in
many web applications such as search engine and web document classi-
fication. In this paper, we focus on the link-based similarity measures
which compute web page similarity solely from the hyperlinks of the
Web. We first propose a simple but important model called the Ex-
tended Neighborhood Structure (ENS), which defines a bi-directional
(in-link and out-link) and multi-hop neighborhood structure. Based
on the ENS model, several existing similarity measures are extended,
which include PageSim, SimRank, Co-citation, and Bibliographic cou-
pling. Moreover, theoretical analyses show that the extended PageSim
is an online, incremental, scalable and stable algorithm, which is espe-
cially suitable for the Web. We test the algorithms on two datasets: a
web graph crawled from the website of our department and a citation
graph crawled from Google Scholar. Experimental results show that
the performance of the extended algorithms is significantly improved
and the extended PageSim outperforms all the others in our tests.

Keywords: similarity measure, web mining, link analysis, PageRank

1 Introduction

The World Wide Web (WWW, or simply “the Web”) has grown into a gi-
ant warehouse with tremendous amount of information available online in
the past two decades. Along with this growth, a wide variety of tools and
applications have been or are being developed to extract valuable knowledge
from the Web. One of the most famous mining tools is the Search Engine,
which typically searches web pages related to the query keywords provided
by users.

Unlike the keyword searching above, instance searching searches by in-
stance rather than by keywords. That is, it takes a web page as the input
and returns a list of related (or similar) web pages to this page. For example,
for a query such as “www.cnn.com”, the searching result would be such web
pages related to news as “www.usnews.com” or “news.bbc.co.uk”. One ad-
vantage of instance searching is that users can find the related web pages to
the web page they are interested in, without having to worry about selecting
the right keywords.
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The problem of finding similar pages to a given web page arises in many
web applications. One example is the “similar pages” service of Google. Each
time users click on the ‘Similar Pages’ link for a search result (the URL of
a web page), Google automatically searches the Web for pages that are re-
lated to this result. Web document classification (such as Yahoo! Directory)
categorizes web pages into a hierarchical structure according to the degree of
similarity between web pages. Web community identification is another im-
portant web application. One approach to identifying web community, which
is a collection of web pages sharing a common topic [8, 26], is based on the
similarity between web pages.

In the fields of information retrieval (IR) and recommender systems, the
problem of finding similar objects has been studied extensively for many
years, and a variety of domain-specific similarity measures have been devel-
oped. In traditional IR, text-based similarity measures based on matching
text may be employed to find similar documents to a given query in a doc-
ument corpus. For collaborative filtering in a recommender system [9, 17],
similar users may be grouped by users’ preferences. In particular, several
link-based algorithms have been suggested to exploit the similarity informa-
tion hidden in the link structure of graph, such as Co-citation [31], Compan-
ion [7], SimRank [14], and PageSim [23]. Further methods arise from graph
theory, such as similarity measure that is based on network flows [24].

One major problem of the link-based algorithms is that they usually do
not make full use of the structural information of the graph. For example, Co-
citation only considers direct neighbors. SimRank is a multi-hop algorithm,
but it considers only one direction. We believe that a well-designed algorithm
should take into account as much link information as possible to produce high
quality results.

On the other hand, we have to develop more specific algorithms for the
Web, because traditional IR techniques are prevented from being applied to
the Web directly by the following special characteristics of the Web:

1. Huge: The Web is probably the largest database in history. Studies
have estimated that the volume of indexable web pages exceeded two
billion at the end of last century [3, 20]. Recently, the authors of [10]
estimated the size of the indexable Web to at least 11.5 billion pages
as of the end of January 2005.

2. High Dynamics: Unlike books in library, web pages continue to
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change even after they are initially created and indexed by search en-
gines [5]. In [29], the authors suggested basically there are two di-
mensions of web dynamics: growth dynamics which indicates that the
Web grows in size, and update dynamics which indicates that both the
content and the link structure of the Web are constantly changed.

3. Fast Growing: The rapid expansion of the Web is another issue.
Studies revealed that the Web grows at an exponential rate [20, 29].
The growth rate has been estimated to be roughly one million pages
per day [20].

4. Untrustworthy: The Web is an untrustworthy world due to the fact
that its contents, including textual content of web pages and hyperlinks
between web pages, are prone to be manipulated, or spammed. Spam-
mers on the Web use various techniques to “mislead search engines and
give some pages higher ranking than they deserve” [11]. This action is
called web spamming [11]. Some experts consider web spamming the
single most difficult challenge web searching is facing today [12].

Motivation and Contributions: To develop efficient and flexible simi-
larity measures which make full use of the structural information of the Web
to produce high quality results motivates our research work. In this paper, we
focus on the link-based similarity measures which compute similarity scores
between web pages solely from the hyperlink structure modeled by the web
graph, with vertices representing web pages and directed edges represent-
ing hyperlinks between pages. The main contributions of this paper are as
follows.

1. A simple but important model called the Extended Neighborhood Struc-
ture (ENS) is proposed. This model defines a bi-directional (in-link
and out-link) and multi-hop neighborhood structure. This model is
designed for helping link-based algorithms make full use of the link
information of a graph.

2. Several similarity measures are extended based on the ENS model. The
performance of the extended algorithms improves significantly, which
illustrates the effectiveness of the ENS.

3. The extended PageSim is an online, incremental, scalable, and stable
algorithm which is especially suitable for the Web.
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The rest of the paper is organized as follows. In Section 2, we present the
related work on similarity measures and link-based algorithms. In Section 3,
the ENS model is introduced and several link-based similarity measures are
extended based on this model. Section 4 gives more details on the analysis of
the extended PageSim algorithm. The experimental results on two datasets
as well as discussions are shown in Section 5. Finally, we conclude our work
and propose directions of future work in Section 6.

2 Related Work

A variety of text-based similarity measures have been proposed in the field
of information retrieval, such as the cosine similarity and the TFIDF (Term
Frequency-Inverse Document Frequency) model [30]. A problem of the text-
based methods is that generally they require large storage and long comput-
ing time due to the need of full-text comparison. Moreover, they are prone to
be manipulated by keyword spamming. These limitations prevent pure text-
based similarity measures from being applied to the huge and untrustworthy
Web directly.

The link-based similarity functions were first proposed in the field of bib-
liometrics, which studies the citation patterns of scientific articles, and infers
relationships between articles from their cross-citations [16, 32]. Two no-
table algorithms are Co-citation and bibliographic coupling. The Co-citation
algorithm measures similarity between two articles based on the number of
articles which cite both of them. In the bibliographic coupling algorithm,
similarity is based on the number of articles cited by both of the two articles.

A number of link-based similarity measures have been proposed in the
past few years. The Maximum Flow/Minimum Cut and Authority algorithms
were developed for measuring the similarity of scientific papers in a citation
graph [24]. The SimRank algorithm was proposed to measure similarity of
the structural context “in any domain with object-to-object relationships”
[14]. It is a recursive refinement of co-citation based on the assumption that
“two objects are similar if they are referenced by similar objects”. Jaccard
measure [13] and Adamic/Ada [2] were also applied to the link prediction
problem underlying social network evolution using only link information in
[22]. We refer to the article [22], which contains an exhaustive list of link-
based similarity measures.

Web structure mining has been largely influenced by research in the fields
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of social network and citation graph. In recent years, Web link structure has
been widely used to exploit important information inherent in the Web. One
successful link-based algorithm is PageRank [28], which is the “heart” of
Google search engine. PageRank assigns a global “importance” or “author-
ity” score to each web page solely based on the structural information of
the Web. The intuition behind PageRank is “a page has high rank if the
sum of the ranks of its backlinks (in-links) is high” [28]. As reported in [25],
web spamming seems to be the driving force behind the evolution of search
engines in their effort to provide quality results. The success of PageRank is
mainly based on the more sophisticated anti-spamming solution it provided
[25].

Unlike PageRank, HITS, another link-based algorithm, computes two
different scores for each web page: a hub score and an authority score. A
page with a high authority score is one linked to by many good hubs, and a
page with a high hub score is one that links to many good authorities. The
authority and hub scores are mutually reinforced, and they can be computed
recursively. Following the success of the PageRank and HITS, other link-
based algorithms have also been developed, such as SALSA [21], pSALSA
[4], and PHITS (Probabilistic HITS) [6], etc.

Recently, the link-based similarity measures have been suggested over the
web graph. However, as we mentioned before, a link-based similarity measure
has to be designed carefully to fit for the special characteristics of the Web.

3 Extending Similarity Measures

We believe that, to produce high quality results, a well-designed link-based
algorithm should make full use of the structural information of the web graph.
However, almost all existing similarity measures are either single-directional
or just 1-hop, which limits their performance.

In this section, we first propose the Extended Neighborhood Structure
(ENS) model which defines a generalized neighborhood structure on graph.
Based this model, several existing similarity measures are extended. Exper-
imental results in Section 5 show that the extended algorithms outperform
the original ones, which serve to illustrate the effectiveness of this model.
Moreover, the extended PageSim algorithm introduced later is designed ac-
cording to the intuition in Section 3.1, and it performs the best among all
the algorithms tested in this paper.
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3.1 The Extended Neighborhood Structure
Model

Recent research has suggested that there are large amounts of valuable in-
formation hidden in the vast link structure of the Web. For example, a web
page linking to another page usually implies some kind of relationship be-
tween them. This is because the fact that generally authors of web pages
would like to link their pages to those pages which they think are related to
theirs.

a b c

Figure 1: Interpretation of the ENS model

Consider the graph in Figure 1, why does page a link to page b? Maybe
the reason is “a is interested in b”, or “a is familiar with b”, or else. No
matter what the reason is, the basic fact is that at least a knows b. Of
course, b may not know a since there’s no hyperlink from b to a. It is very
much like the relationship between people. Therefore, a web page may have
two kinds of neighbors: in-link neighbors (those who know it) and out-link
neighbors (whom it knows). In Figure 1, a is b’s in-link neighbor and b is a’s
out-link neighbor. Now, we can come up with a simple and straightforward
intuition on web page similarity: similar web pages have similar neighbors.
Or in other words, to know a web page, know its neighbors!

On the other hand, page c is a 2-hop indirect out-link neighbor of a, which
implies page a may not be so familiar with c as with b. This assumption is
reasonable and can be thought as the familiarity decreases along links (both
in-links and out-links).

Therefore, the concept of neighborhood is now extended in two aspects:
bi-direction and multi-hop. Although the intuition of similarity is still “sim-
ilar web pages have similar neighbors”, its meaning is generalized, since the
“neighbors” here refer to the bi-directional and multi-hop neighbors instead
of single-direction or direct neighbors. This model is based on the natural
hypothesis that a link-based algorithm likely improves its accuracy by consid-
ering more structural information of the graph. In the following experiments,
we’ll show that the ENS model really works.

In the following of this paper, the notation Sim(a, b) represents the sim-
ilarity score of web pages a and b, which is produced by the similarity mea-
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sure in the context. Now we define the web graph model, which will be used
throughout this paper.

3.2 Web Graph Model

We model the Web as a directed graph G = (V, E) with vertices V rep-
resenting web pages vi(i = 1, 2, · · · , n) and directed edges E representing
hyperlinks among the web pages. I(v) denotes the set of in-link neighbors of
pages v and O(v) denotes the set of out-link neighbors of page v.

Definition 1 Let path(u1, us) denote a sequence of vertices u1, u2, . . . , us

such that (ui, ui+1) ∈ E (i = 1, · · · , s − 1) and ui are distinct. It is called a
path from u1 to us.

Definition 2 Let length(p) denote the length of path p, and define length(p) =
|p| − 1, where |p| is the number of vertices in path p.

Definition 3 Let PATH(u, v) denote the set of all possible paths from page
u to v.

3.3 Extended Co-citation and Bibliographic Coupling

Co-citation and bibliographic coupling are two 1-hop and single-directional
algorithms. Their intuitions and definitions are as follows.

1. Co-citation: the more common in-link neighbors two pages have, the
more similar they are. Therefore, Sim(a, b) = |I(a) ∩ I(b)|.

2. Bibliographic coupling: the more common out-link neighbors two
pages have, the more similar they are. Therefore, Sim(a, b) = |O(a) ∩
O(b)|.

We can easily construct a bi-directional algorithm called Extended Co-
citation and Bibliographic Coupling (ECBC) as follows.

1. ECBC: the more common neighbors two pages have, the more similar
they are. Therefore,

Sim(a, b) = α|I(a) ∩ I(b)|+ (1− α)|O(a) ∩O(b)|,
where α ∈ [0, 1] is a user-defined constant.
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3.4 Extended SimRank

SimRank is a fixed point of the recursive definition: two pages are similar if
they are referenced by similar pages. Numerically, for any web page u and v,
this is specified by defining Sim(u, u) = 1 and

Sim(u, v) = γ ·
∑

a∈I(u)

∑
b∈I(v) Sim(a, b)

|I(u)||I(v)|
for u 6= v and γ ∈ (0, 1). If I(u) or I(v) is empty, then Sim(u, v) is zero by
definition. The SimRank iteration starts with Sim0(u, v) = 1 for u = v and
Sim0(u, v) = 0 for u 6= v. The SimRank score between u and v is defined as
limk→∞Simk(u, v).

SimRank is a multi-hop algorithm, but it is not bi-directional. We extend
the intuition of SimRank to be “two pages are similar if they have similar
neighbors”. Accordingly, SimRank can be extended to

Sim(u, v) = γ · ( ∑

a∈I(u)

∑

b∈I(v)

Sim(a, b) +
∑

a∈O(u)

∑

b∈O(v)

Sim(a, b))

×(|I(u)||I(v)|+ |O(u)||O(v)|)−1.

The proof of the convergence of the extended SimRank is omitted here.

3.5 Extended PageSim

PageSim can be regarded as a “weighted multi-hop” version of Co-citation
algorithm. First, it takes the common in-link information of 1-hop as well
as multi-hop neighbors into account to improve the quality of the result.
Moreover, since not all pages are equally important on the Web, it is possible
that a citation of an authoritative web page may be more important than that
of several obscure pages. Therefore, PageSim also considers the importance
of web pages.

The PageSim algorithm can be simply described as: each web page prop-
agates its “feature information” to its (multi-hop) out-link neighbors along
hyperlinks. Once the propagation of all web pages finished, the similarity
between two pages is measured by the “feature information” that they have
in common.

In PageSim, a web page linking to others is considered as it introducing
itself to them. Its out-link neighbors then propagate its self-introduction
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to their own out-link neighbors. Naturally, the introduction information
decreases along with the propagation. As a result, two pages are similar if
they received common introductions (they also have their own introduction).
By this way, PageSim successfully avoid the situations such as two linking-
to-each-other pages are decided to be not similar if they are not introduced
by intermediate pages in SimRank.

For a web page, the volume of its “feature information” is measured by its
PageRank score or other score that represents the importance of this page.
Obviously, each web page has to preserve a space, which is called the feature
vector, to store the “feature information” of its own as well as all the others.
The mathematical definitions of PageSim is given as follows.

Definition 4 Let PR(v) denote the PR score of page v. Let PG(u, v) denote
the PR score of page u that propagates to v through PATH(u, v). We define

PG(u, v) =





∑
p∈PATH(u,v)

d·PR(u)∏
w∈p,w 6=v

|O(w)| v 6= u,

PR(u) v = u,

(1)

where d ∈ (0, 1] is a decay factor and u, v ∈ V .

Definition 5 Let
−−→
FV (v) denote the Feature Vector of page v.

−−→
FV (v) = (PG(vi, v))T = (PGi(v))T , i = 1, · · · , n,

where v, vi ∈ V .

Definition 6 Let PS(u, v) denote the PageSim score of pages u and page v.
We define

PS(u, v) =
n∑

i=1

min(PGi(u), PGi(v))2

max(PGi(u), PGi(v))
, (2)

where u, v ∈ V .

The detailed explanations of the above definitions are given in [23]. In
short, there are two stages in the PageSim algorithm: PR score propagation
stage and PS score computation stage. Equations (1) and (2) correspond to
the processes in these two stages respectively.

Extended PageSim (EPS): In PageSim, the “feature information” of
web pages propagate along only out-links, and the consequent PS scores are
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actually “out-link” PS scores. In EPS, we also propagate along in-links (with
decay factor 1 − d) and produce the “in-link” PS scores. This is because
we consider the in-links complement to out-links. Considering the in-link
propagation may help increase the quality of searching results. The EPS
score of two pages is hence defined by the sum of “in-link” and “out-link”
PS scores of them. We denote the EPS score of pages u and v by EPS(u, v).
Certainly, the storage requirement of EPS is doubled since we also need to
store the “feature information” propagated through in-links.

Moreover, we adopt the Jaccard measure [13], which is commonly used in
IR to measure the similarity between two vectors, to calculate the similarity
scores of the Extended PageSim (EPS). For example, to calculate the “out-
link” PS score of u and v, we use Equation (3) instead of Equation (2).

PS(u, v) =

∑n
i=1 min(PG(vi, u), PG(vi, v))∑n
i=1 max(PG(vi, u), PG(vi, v))

, (3)

where u, v ∈ V .
In EPS algorithms, the PR score propagation process of a web page is

encapsulated in the PR prop sub-function, and the calculation of EPS score
between two pages is in the PS calc sub-function. Since these sub-functions
are rather straightforward, we omit them to make the paper tidy.

Algorithm 1 Extended PageSim (EPS) Algorithm

1: Input: G: web graph G(V, E) with known PageRank scores.
2: Output: EPSn×n: EPS score matrix (EPS(vi, vj))n×n.
3: procedure EPS(G)
4: // Stage 1: PageRank score propagation
5: for i ← 1, n do
6: call PR prop(G,vi) . propagate PR score of vi

7: end for
8: // Stage 2: PageSim score calculation
9: for i ← 1, n do

10: for j ← 1, n do
11: call PS calc(vi,vj) . calculate EPS(vi,vj)
12: end for
13: end for
14: return EPS score matrix
15: end procedure
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3.6 Case Study and Summary

We have extended several link-based similarity measures based on the ENS
model. In this part, we give some simple cases to illustrate a major limitation
of the original algorithms. That is, they may produce incorrect result on web
page similarity in some common situations. We summarize these algorithms
as well as their extended versions at the end of this part.

a b a b

c

a b

a

c

b

(1) (2) (3) (4)

Figure 2: Case Study

In Figure 2, we list four kinds of common relationship between pages. In
each of them, we know that a and b are related pages, therefore Sim(a, b) 6= 0.
However, some algorithms incorrectly calculate that Sim(a, b) = 0 which
means a and b are unrelated. We list the results on the relationship between
a and b produced by the algorithms in Table 2, with “+” representing a is
related to b and “-” otherwise. The properties of each algorithm are listed
in Table 3, with “-” representing “NO” and “+” representing “YES”. The
algorithms include Co-citation (CC ), Bibliographic coupling (BC ), Extended
Co-citation and Bibliographic Coupling (ECBC ), SimRank (SR), Extended
SimRank (ESR), PageSim (PS ), and Extended PageSim (EPS ).

Table 2 shows that: (a) the extended algorithms can measure more cases
than the original ones; (b) only EPS can measure Sim(a, b) correctly in all
cases, since it takes both bi-direction and multi-hop structural information
into account, as shown in Table 3.

In Table 3, ESR is also a multi-hop and bi-directional algorithm. However,
it decide how similar two pages are by their “common similar neighbors” only.
That is, to be similar pages, two pages have to have similar neighbors, or
they have to be introduced to each other by intermediate pages. If they
don’t, they are not similar even they know each other (linking to each other
as shown in Figure 2(2)). While in EPS, the introducers are not necessary
since each page can introduce itself by propagating its “feature information”.
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Table 1: Sim(a, b)
Case CC BC SR PS

1 - - - +
2 - - - +
3 + - + +
4 - + - -
5 - - - +

Table 2: Simple Case Study
Case CC BC ECBC SR ESR PS EPS

1 - - - - - + +
2 - - - - - + +
3 + - + + + + +
4 - + + - + - +

Table 3: Properties of the Algorithms
Properties CC BC ECBC SR ESR PS EPS
bi-direction - - + - + - +
multi-hop - - - + + + +
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4 Analysis of Extended PageSim

Although, from the definitions in Section 3.5 we can see that the major
difference between Extended PageSim (EPS) and PageSim is that EPS is
bi-directional whereas PageSim is not, their performance is even more differ-
ent. Experimental results show that EPS outperforms PageSim significantly.
Actually, the performance results of extended algorithms are all better than
those of original ones in our experiments. All of these results serve to show
that the Extended Neighborhood Structure model really works.

In this section, we look more insight into the EPS. We first review the
pruning technique that we employed in [23]. After complexity analysis, we
show the properties of the EPS algorithm.

4.1 The Pruning Technique

The pruning technique is based on the observation that the volume of infor-
mation propagated in distance usually drops quickly. Therefore, by pruning
the radius of propagation, we may improve the efficiency of algorithm without
reducing its precision significantly. It is actually a tradeoff between efficiency
and precision. This technique can be applied in most multi-hop algorithms,
such as SimRank and PageSim.

4.2 Complexity Analysis

The EPS can certainly adopt pruning technique too. Suppose the average
number of one web page’s neighbors is k = (

∑n
i=1 |I(vi)|+ |O(vi)|)/n and the

radius of propagation is r ∈ N . The time complexity of PS prop is hence
O(C), where C = kr is constant with respect to n.

The space complexity also benefits from pruning technique. Although the
two feature vectors of a web page is designed to store PR scores of all web
pages, the size of them should be far less than n. Because on the huge Web,
it is unlikely that a web page receives PR scores of all the pages, especially
when the radius of propagation is “pruned”. It is easy to conclude that the
expectation of one feature vector’s size is also O(C). As a result, the time
complexity of PS calc function is O(C) too.

Therefore, by adopting the pruning technique, the space complexity of
EPS, the time complexity of propagating all of n web pages’s PR scores, and
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the time complexity of computing all of the EPS scores related to a query
page are all O(Cn).

Apparently, the key factor of the complexities of EPS is the propagation
radius r, since large r results in huge C which may dramatically increase the
running time of the algorithm. Therefore, finding a small r while preserving
the precision is an important task. The experiments conducted in Section 5
show that r = 3 is such an empirical propagation radius. On the other hand,
the average number of in-links per web page was measured at about 8 [19],
and the average number of out-links per web page was measured at about
7.2 [18]. Therefore, we have C = kr ≈ 163 = 4096. Considering the huge n,
C ≈ 4096 indeed indicates that EPS is efficient in both time and storage.

4.3 Characteristics of the EPS

Based on the complexity analysis, next we analyze the following special char-
acteristics of EPS. We show that EPS is an online, incremental, scalable, and
stable algorithm, which is especially suitable for the Web.

Online: We know that there are two stages in EPS: propagation stage
and calculation stage. When the PR score propagation finishes, the EPS
score of any two pages can be calculated by calling PS calc based on their
feature vectors only. However, no matter what the complexity of PS calc is,
calculating the EPS scores of all n2 page-pairs of the Web is really a tough
task.

Fortunately, based on the assumption of propagation radius pruning, pre-
computing all the n2 EPS scores can be avoided. As we know, a web page
only stores O(C) web pages’ PR scores. On the other hand, a web pages’s
PR score can only be propagated to at most O(C) pages. Therefore, the
number of pages which may contain common PR scores with a query page is
at most O(C) ·O(C) = O(C2),which is also the time complexity of finding all
of these pages. Obviously, we just need to calculate the EPS scores between
these O(C2) pages and the query page, since only them are possibly similar
to the query page. We have known that C ≈ 4096. Given a query page,
it is possible to compute the corresponding O(C2) EPS scores online with
a powerful computing environment. As a result, huge amounts of storage
space is saved.

Incremental: The Web is highly dynamic, which means there are large
numbers of perturbations (or changes) on the web graph. We refer “changes”
to web pages or hyperlinks added or removed from the Web. Due to the huge
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volume of the Web, incremental algorithms are surely preferred to update the
results of algorithm efficiently.

In EPS, since the PR score propagation of each page is independent, we
just need to re-propagate those pages which are “influenced” by perturba-
tions. Clearly the change of a hyperlink will influence the two pages it links.
For each of the two pages, its structural change will consequently influence
O(C) pages which propagate their feature information to it. So the change of
a hyperlink will actually influence 2+2 ·O(C) = O(C) pages. Consequently,
the change of a page a will influence about (I(a) + O(a))O(C) web pages.

We can see that, in EPS, the influenced pages by a perturbation are just
a small portion of the huge Web. Re-propagating only the influenced pages
will certainly improve the update efficiency.

Scalable: First, we know that the time complexity of online EPS is
linear with respect to n, given a fixed or bounded r. So the online EPS
is efficient. Second, EPS inherits parallelism property, because the feature
information of each page is propagated independently. This property is very
important since EPS can be implemented to utilize the computing power and
storage capacity of tens to thousands of computers interconnected with a fast
local network. These two properties are essential for EPS to be capable of
handling the huge and fast growing Web.

Stable: The stability of EPS is based on two aspects: the stability of
PageRank and the “localism” of EPS. First, in [27], the authors proved that
the perturbed PR scores will not be far from the original as long as the
perturbed web pages did not have high overall PR scores. This means that
PageRank scores are fairly stable since web pages which have high PR scores
are only a tiny part of the Web. Second, due to the pruning technique, web
pages only propagate PR scores to their nearby neighbors, which means a
small change of the Web only influences on the feature vectors of nearby web
pages. Based on these two facts, which can be concluded as “propagating
stable PR scores locally”, the EPS is a stable algorithm.

Spamming Resistance: During the past few years, web spamming has
became such a big problem that spamming-resistant algorithms are certainly
preferred. In [23], the ability of spamming resistance of PageSim has been
analyzed. The analysis is also applicable to the extended PageSim. However,
we would like to leave the complicated spamming issue for our future work.

We list some other properties of EPS below, which can be easily deduced
from the definitions in Section 4. For any web pages u and v,
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1. The EPS scores are symmetric, i.e.,
EPS(u, v) = EPS(v, u);

2. Each page is most similar to itself, i.e.,
EPS(u, u) = maxv∈V EPS(u, v);

3. EPS(u, v) ∈ [0, 1].

5 Experimental Results

We have proposed the Extended Neighborhood Structure (ENS) model and
extended several link-based similarity measures, including Co-citation, bib-
liographic coupling, SimRank, and PageSim, based on this model. In this
section, we report on some preliminary experimental results. The primary
purpose is to show that the ENS model indeed helps link-based similarity
measures improve their accuracy. Moreover, since the Extended PageSim
(EPS) is one of the focus in this paper, we conducted more tests on it. The
tests include estimating the empirical value of propagation radius r and test-
ing the effect of the decay factor d on the result of EPS.

5.1 Datasets

We tested the algorithms on two types of graphs: one is a web graph crawled
from our department, and the other is a citation graph crawled from Google
Scholar [1]. All text in our datasets are in English.

1. CSE Web (CW) dataset is a set of web pages crawled from the web
site of CSE department at CUHK (http://www.cse.cuhk.edu.hk), which
contains about 22,000 web pages and 180,000 hyperlinks. The average
numbers of in-links and out-links are 8.6 and 7.7 respectively.

2. Google Scholar (GS) dataset contains a citation graph of 20,000
articles which were crawled through public interface of Google Scholar
search engine [1], with vertices representing articles and directed edges
representing citations between articles (directed edge (u, v) exists if
and only if article u cites v). To obtain this dataset, we first submitted
keyword “web mining” to the Google Scholar which returned 50 related
articles as a result. Then we crawled the remaining articles by following
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the “Cited By” hyperlinks of the search results using Breadth-First
Search algorithm. (The“Cited By” hyperlink of an article goes to a list
of articles citing it.) What Google Scholar interests us is its “Related
Articles” function which provides users a list of related articles to the
original result. These “Related Articles” can be used as ground truth
in the following experiments.

5.2 Ground Truth and Evaluation Methods

For any vertex v in graph G, a similarity measure A would produce a list
of top N vertices most similar to v (excluding v itself), which is denoted by
topA,N(v). Let the number scoreA,N(v) denote the average score to v of the
topA,N(v). Thereby, we consider the average number of scoreA,N(v) for all
v ∈ V as the quality of the top N results produced by algorithm A, which is
denoted by ∆(A,N). That is, ∆(A,N) = (

∑
v∈V scoreA,N(v))/n.

A good evaluation of the similarity measures is difficult without perform-
ing extensive user studies or having a reliable ground truth. In this paper, we
would use two different evaluation methods. For the CW dataset, we use the
cosine TFIDF, a traditional text-based similarity function, as rough metrics
of similarity. For the GS dataset, we use the “Related Articles” provided by
Google Scholar as ground truth.

(1) Cosine TFIDF Similarity: The cosine TFIDF similarity score of
two web pages u and v is just the cosine of angle between TFIDF vectors of
the pages [15], which is defined by

TFIDF (u, v) =

∑
t∈u∩v Wtu ·Wtv

‖u‖ · ‖v‖ ,

where Wtu and Wtu are TFIDF weights of term t for web pages u and v
respectively. ‖v‖ denotes the length of page v, which is defined by ‖v‖ =√∑

t∈v W 2
tv.

Therefore, for the CW dataset, we define

scoreA,N(v) =
1

N

∑

u∈topA,N (v)

TFIDF (u, v),

and ∆T (A,N) = ∆(A,N) which measures the average cosine TFIDF score
of top N similar web pages returned by algorithm A.
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(2) Related Articles: For an article v in citation graph G, the list of
its “Related Articles” returned by Google Scholar is denoted by RA(v). We
define

relatedN(v) = {top N related articles vi|vi ∈ RA(v) ∩ V }.

The precision of similarity measure A at rank N is:

precisionA,N(v) =
|topA,N(v) ∩ relatedN(v)|

|relatedN(v)| .

Therefore, for the GS dataset, we simply define

scoreA,N(v) = precisionA,N(v),

and ∆P (A,N) = ∆(A,N) which measures the average precision of algorithm
A at top N .

5.3 Results on the Decay Factor of EPS
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Figure 3: Estimation of the optimal decay factor d on CW dataset
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Figure 4: Estimation of the optimal decay factor d on GS dataset

Without adopting pruning technique, we experimented with various val-
ues for the decay factor d of EPS. We found that d ≈ 0.6 to be the best
setting for our datasets. The results of CW and GS datasets are shown in
Figure 3 and Figure 4 respectively.

Figure 3(a) plots the curves of ∆T (A,N) for different d. Figure 3(b)
shows the “overall performance” of EPS for different d, in which the average
values of the curves in Figure 3(a) are on the y-axis, and their corresponding
decay factors are on the x-axis.

Figure 4(a) plots the curves of ∆P (A,N) for different d. In Figure 4(b),
the average values of the curves in Figure 4(a) are on the y-axis, and the
corresponding decay factors are on the x-axis.

From the figures we can see that: (a) both figures showed the optimal
value of d is around 0.6; (b) since d = 1.0 corresponds to the original PageSim,
the results of EPS outperform those of the original PageSim.

5.4 Results on the Propagation Radius of EPS

We also test the effects of the propagation radius r on the results of EPS
and get an empirical radius. The results of CW and GS datasets are shown
in Figure 5 and 6 respectively. In these Figures, “r = n” means no radius
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Figure 5: Empirical Radius r of CW dataset

pruning is applied to EPS.
Figure 5 plots the curves of ∆T (A,N) for different r. First, it shows that

the quality of the results increases with r. Second, the curve of r = 3 is very
close to the “r = n” curve of EPS. Therefore, we can choose r = 3 to be the
propagation radius in practice.

Figure 6 plots the curves of ∆P (A,N) for different r. What it agrees with
Figure 5 is that r = 3 is a good approximation. But what is more interesting
is that the quality of the results decreases with r. We think that the possible
reasons may be:

(1) The citation graph of GS dataset is incomplete. First, we crawled the
articles along “inverse” citation direction. This means, for any article, we
only know who cites it (its in-links), but we don’t know all of its references
(out-links). It is different from the Web, in which we usually only know the
out-links of web pages. Second, the downloaded articles are only 1/4 to 1/3
of the articles found by crawler, which is similar to the Web.

(2) The Google Scholar search engine probably takes direct citation as
more important. This is the most possible reason since the result of r = 1 is
much better than others. We do not think Google Scholar is perfect, never-
theless, it is a useful tool to measure the relative performance of similarity
functions.
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5.5 Performance Evaluation of Algorithms

In this part, we evaluate the algorithms mentioned in this paper on the CW
and GS datasets. These algorithms include Co-citation (CC ), Bibliographic
coupling (BC ), Extended Co-citation and Bibliographic Coupling (ECBC ),
SimRank (SR), Extended SimRank (ESR), PageSim (PS ), and Extended
PageSim (EPS ). The parameter settings of the algorithms are listed in Table
4.

Table 4: Parameter Settings
ECBC SR ESR PS EPS

r = 3, r = 3,
α = 0.5 C = 0.8 C = 0.8 d = 0.5 d = 0.6

Figure 7(a) plots the curves of ∆T (A,N) for different algorithms on the
CW datasets. Figure 7(b) shows the the average values of the curves in Figure
7(a). Figure 8(a) plots the curves of ∆P (A,N) for different algorithms on
the GS datasets. Figure 8(b) shows the the average values of the curves in
Figure 8(a). In Table 5, we list the performance improvement across all N
for each extended algorithm.

From the results, we can see that:

1. The performance of the extended algorithms are significantly improved
in almost all testing cases. This indicates that the ENS model really
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Figure 7: Performance of the algorithms on CW dataset

works.

2. The EPS algorithm outperforms all the others in all test cases. It is
because the EPS employs more structural information than others. It
also confirms the effectiveness of the ENS model.

Table 5: Improvement of Overall Performance
Dataset ECBC/CC ECBC/BC ESR/SR EPS/PS

CW 18.87% 14.39% 7.86% 4.73%
GS 20.61% 164.21% 36.94% 27.44%

6 Conclusion and Future Work

Efficiently measuring similar between web pages is required in many web
applications such as search engine and web document classification. In this
paper, we focused on the link-based similarity measures which compute web
page similarity solely form the hyperlinks of the Web. Our motivation is
to develop efficient and flexible similarity measures which makes full use of
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the structural information of the Web to produce high quality results. We
propose the Extended Neighborhood Structure (ENS) model which defines
a bi-directional (in-link and out-link) and multi-hop neighborhood structure.
This model is designed for helping link-based algorithms make full use of
the link information of a graph. Based on the ENS model, some existing
similarity measures, including Co-citation, Bibliographic coupling, SimRank,
and PageSim, are extended. In particular, the extended PageSim is an online,
incremental, scalable, and stable algorithm which is especially suitable for the
Web.

The algorithms and their extended versions were tested on two datasets:
the CW web graph and GS citation graph. Experimental results show that
the performance of the extended algorithms are significantly improved and
the extended PageSim outperforms all the others in our tests.

There are a number of avenues for future work. Foremost, we need to
extend more existing similarity measures based on the ENS model, and test
the performance of the extended algorithms. We believe that by taking more
link information into account, the performance of the link-based algorithms
will be improved. Second, more extensive experiments are needed to evaluate
the performance of the algorithms. This includes testing more datasets and
comparing with more existing approaches. Third, spamming-resistance is
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another direction for link-based algorithms, since web spamming is one of
the most difficult challenges web searching is facing today [12]. Finally, we
believe that a practical algorithm on the Web has to be hybrid, so integrating
link-based similarity measures with other (text-based) methods is another
direction of our future work.
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