A Point-Distribution Index and Its Application to Sensor Grouping Problem

(Based on the work submitted to IWCMC 2006)

Y. Zhou, H. Yang, M. R. Lyu, E. C.-H. Ngai Group Meeting 2006-02-07

Dept. of Computer Science & Engineering

The Chinese Univ. of Hong Kong

- Introduction
- Normalized Minimum Distance
- Sensor Grouping Problem
- Maximizing- Node-Pruning (MMNP)
- Conclusions

Introduction

- Normalized Minimum Distance
- Sensor Grouping Problem
- Maximizing- Node-Pruning (MMNP)
- Conclusions

Outlines of This Work

- Introduce a point-distribution index (normalized minimum distance)
- Demonstrate the resulting topology when is maximized
- Formulate a sensor-grouping problem
- Show the application of by employing it in a solution of the sensor-grouping problem
- Verify the effectiveness of this solution

Introduction of WSNs

- Features of Wireless Sensor Networks (WSNs)
 - Sensor nodes are low-cost devices
 - WSNs work in adverse environments
 - Fault Tolerance is very important
 - Sensor nodes are battery-powered
 - Prolonging network lifetime is a critical research issue

Introduction of WSNs

Fault Tolerance

- WSNs contain a large number of sensor nodes
- Only a small number of these nodes are enough to perform surveillance work
- Energy-Efficiency
 - Exploit the redundancy
 - Put those redundant nodes to sleep mode

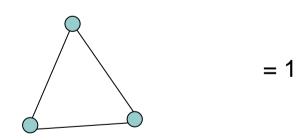
Introduction

Normalized Minimum Distance

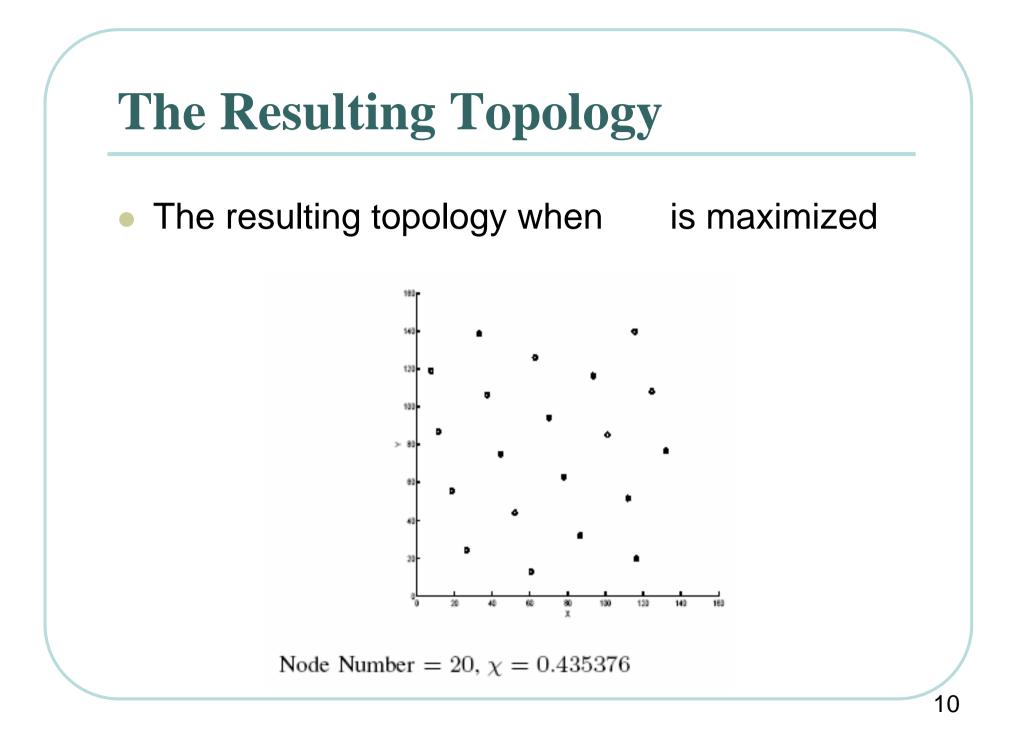
- Sensor Grouping Problem
- Maximizing- Node-Pruning (MMNP)
- Conclusions

Normalized Minimum Distance

- Definition
 - Formula


$$\begin{split} x_i & (i = 1, \dots, n) & \text{The coordinates of each point} \\ \mu &= \frac{(\sum_{i=1}^n \sum_{j=1, j \neq i}^n ||x_i - x_j||)}{n(n-1)} & \text{The average distance} \\ \text{between each point-pair} \\ \chi &= \frac{\min(||x_i - x_j||)}{n(n-1)} (\forall i, j = 1, 2, \dots, n; and i \neq j) \end{split}$$

- is the minimum distance between each pair of points normalized by the average distance between each pair of points
- In interval [0, 1]


The Resulting Topology

Maximizing

- What is the resulting topology of points if is maximized?
- If there are three points, when is maximized, these three points form an equilateral triangle.

What about other cases???

The Resulting Topology

- Vonoroi diagram formed by these points is a honeycomb-like structure
 - Wireless cellular network
 - Lowest redundancy
- Coverage-related problem
 - Maximizing is a promising approach to exploit redundancy
 - The effectiveness will be verified with a study of sensor-grouping problem

- Introduction
- Normalized Minimum Distance

Sensor Grouping Problem

- Maximizing- Node-Pruning (MMNP)
- Conclusions

Work/Sleep Scheduling

- Distributed Localized Algorithms
 - Each node finds out whether it can sleep (and how long it can sleep)
 - Much work is on this issue.
 - M. Cardei and J. Wu, "Coverage in wireless sensor networks," in *Handbook of Sensor Networks*, (eds. M. Ilyas and I. Magboub), CRC Press, 2004.
 - SSCP by Xinyu (in his PhD thesis)

Work/Sleep Scheduling

- Sensor-Grouping Problem
 - Divide the sensors into disjoint subsets
 - Each subset can provide surveillance work
 - Schedule subsets so that they work successively
- Centralized algorithms
- Distributed grouping algorithms
 - MMNP: Maximizing- node-pruning algorithm
 - Locally maximize of sub-networks
 - ICQA: Incremental coverage quality algorithm
 - A greedy algorithm
 - A benchmark we design to verify the performance of MMNP

Sensor Grouping Problem

Sensing Model

Event-detection probability by a sensor

$$\mathcal{P}(L,k_j) = \gamma \mathcal{E}(d) = \frac{\delta}{(\|\mathcal{L}(k_j) - L\|/\epsilon + 1)^{\beta}}$$

Cumulative event-detection probability

$$\mathcal{P}'(L) = 1 - \prod_{j=1}^{i} (1 - \mathcal{P}(L, k_j))$$

Coverage quality

 $\mathcal{C}(L)$

Covered

$$= \mathcal{P}'(L)$$

= $1 - \prod_{j=1}^{i} \left[1 - \frac{\delta}{(\|\mathcal{L}(k_j) - L\|/\epsilon + 1)^{\beta}}\right] > s.$

Sensor Grouping Problem

- Design a distributed algorithm to divide sensors into as many groups as possible, such that each group can ensure the coverage quality in the network area.
 - Requirement: the coverage quality of each location is larger than a threshold
 - Goal: the more groups, the better.
 - Because groups work successively, finding more groups means achieving higher network lifetime

- Introduction
- Normalized Minimum Distance
- Sensor Grouping Problem

(MMNP)

Maximizing- Node-Pruning

Conclusions

Maximizing- Node-Pruning

A node *i* locally maximizes of the sub-network

- Sub-network: node / and all its ungrouped sensing neighbors
- Node-Pruning Procedure

The candidate to be pruned satisfies that:

- It is an ungrouped node.
- The pruning of the node will not results in uncoveredpoints inside the sensing area of *i*.

A candidate is pruned if the pruning of the candidate results in largest χ of the sub-network compared to the pruning of other candidates.

The node-pruning procedure continues and ungrouped sensing neighbors are deleted one by one until no node can be pruned

Maximizing- Node-Pruning

- Randomly pick up an ungrouped node and let it start the above procedure.
- When it stops, the node informs all the un-pruned ungrouped sensing neighbor they are in this group.
- The node then hands over the procedure to a newly selected node which is farthest from it.
- This hand-over procedure stops when a node finds that there is no newly selected node.
- The a new group is found.
- Continue this process until a node finds that the coverage quality of its sensing area cannot be ensured even if all the ungrouped sensing neighbors are working cooperatively with it.

Incremental Coverage Quality Algorithm

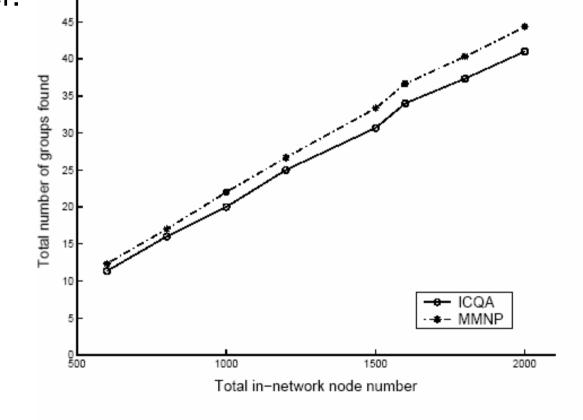
- Node selecting process: A node selects its ungrouped sensing neighbors into its group one by one
 - The selected neighbor is responsible to provide surveillance work for some *uncovered* parts of node *i*'s sensing area, *i.e.*, the coverage quality of the parts, if this neighbor is not selected, does not fulfill the coverage quality requirement.
 - The selected neighbor results in highest improvement of the coverage quality of the neighbor's sensing area.
- This process stops when the coverage quality of the node's sensing area is entirely higher than required

Incremental Coverage Quality Algorithm

---Similar to MMNP----

- Randomly pick up an ungrouped node and let it start the above procedure. It informs a newly selected neighbor that the neighbor is in this group.
- When the procedure stops, the node then hand over the procedure to a newly selected node which is farthest from it.
- This hand-over procedure stops when a node finds that there is no newly selected node.
- The a new group is found.
- Continue this process until a node finds that the coverage quality of its sensing area cannot be ensure even if all the ungrouped sensing neighbors are working cooperatively with it.

Simulations


TABLE I

THE SETTINGS OF THE SIMULATION NETWORKS

Area of sensor field	400m*400m		
ρ	20m		
R	80m		
α, β, γ and ϵ	1.0, 2.0, 1.0 and 100.0		
S	0.6		

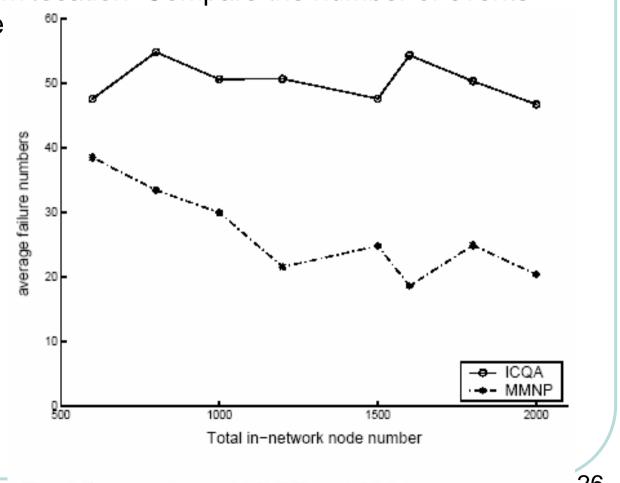
The Number of Groups Found

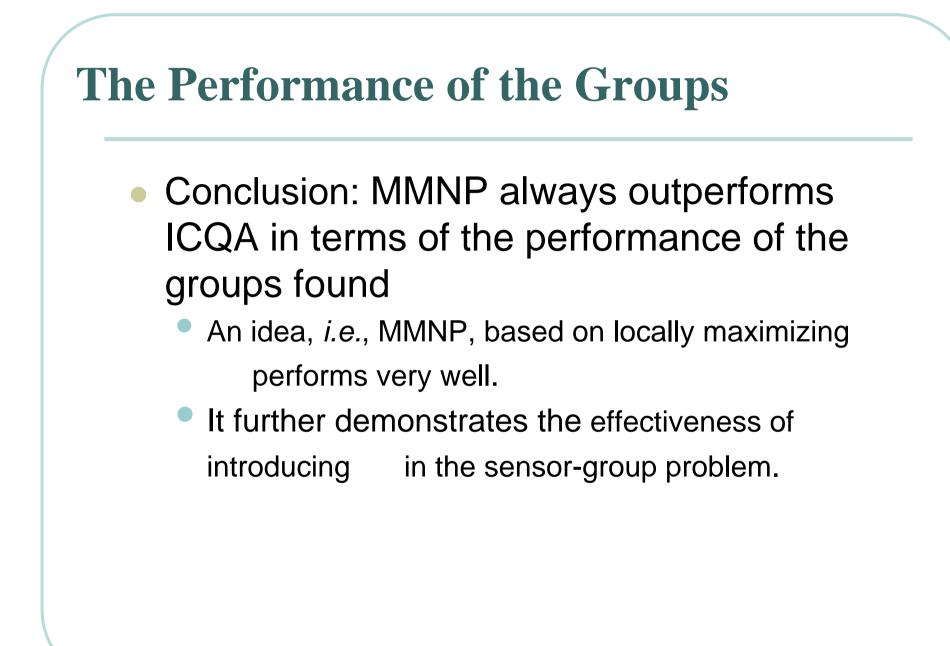
 Randomly place 600, 800, ..., 2000 nodes. Let the network performs MMNP and ICQA. Compare the resulting groupnumber.

The number of groups found by MMNP and ICQA

of the Resulting Groups

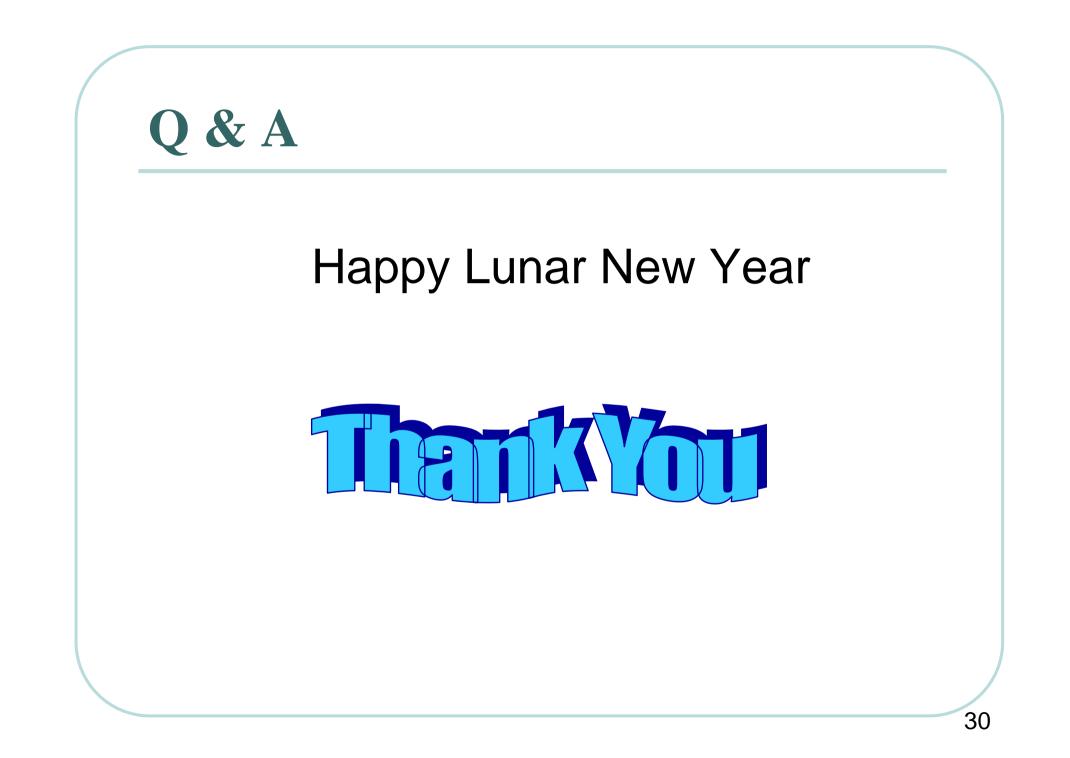
The grouping results of five networks with n = 1500


Net	MMNP	ICQA	MMNP	ICQA
	Group Number	Group Number	Average χ	Average χ
1	34	31	0.145514	0.031702
2	33	30	0.145036	0.036649
3	33	31	0.156483	0.033578
4	32	31	0.152671	0.029030
5	33	32	0.146560	0.033109


- Conclusion: MMNP always outperforms
 ICQA in terms of number of groups found
 - MMNP can achieve long network lifetime.
 - Locally maximizing is a good approach to exploit redundancy.

The Performance of the Groups

 For each group found by MMNP and ICQA, let 10000 event happen at a random location. Compare the number of events where the coverage quality is below the required value


The failure numbers of MMNP and ICQA

- Introduction
- Normalized Minimum Distance
- Sensor Grouping Problem
- Maximizing- Node-Pruning (MMNP)
- Conclusions

Conclusion

- We propose a novel point-distribution index (normalized minimum distance)
- We demonstrate the effectiveness of introducing in coverage-related problem with a solution called MMNP for the sensorgroup problem.

