On Setting up Energy-Efficient Paths in Wireless Sensor Networks

Y. Zhou

Term Presentation (3rd Term) 2005-05-07

Dept. of Computer Science & Engineering

The Chinese Univ. of Hong Kong

Outline

- Motivation of this work
- Modeling the transmitter power setting problem in WSNs
- Implementation issues
- Experimental results
- Future work and conclusions

Outline

Motivation of this work

- Modeling the transmitter power setting problem
- Implementation issues
- Experimental results
- Future work and conclusions

Differences between WSNs MANETs

- Features of the network traffic
 - WSN: usually many-to-one traffic
 - MANETs: usually unicasting traffic
- Nature of network dynamics
 - MANETs: nodes are mobile
 - WSN: the sink may be mobile
- Resource constraints
 - WSN: less energy resource

Transmitter Power Control

Current research in this area

- Providing energy-efficient unicasting, broadcasting and multicasting
- Network connectivity analysis
- Network lifetime analysis
- Our objective
 - Providing energy-efficient sensor-to-sink communications

The issues we address

- Modeling our objective
 - Formulate the transmitter power setting problem
- Finding the solution
 - Theoretical solution
 - Implementation: low overhead

Outline

- Motivation of this work
- Modeling the Transmitter
 Power Setting Problem
- Implementation Issues
- Experimental Results
- Future Work and Conclusion
- Signal Fading Model

Wireless Communication Model

Signal fading model

$$Pr(u) \ge c \cdot (D(u,v))^n$$

- u: source node
- v: destination node
- c: constant
- D(u, v): physical distance between these two nodes
- n: signal fading factor
 - Typically in interval (2, 5)

Network Model

- Model the network as a graph G(V, E)
 - V: sensor nodes
 - E: wireless links connected at maximal transmitter power settings
- X(u): u in V
 - The approximate position of each node u
 - How to obtain it?
 - GPS
 - Many Localization Algorithms

Network Model

- Model the resulting network as a subgraph G'(V, E') of G(V, E)
 - E': the wireless links connected with a transmitter power setting scheme.
 - Why it is a subgraph of G?
 - Each e' in E' is a member of E
 - G'(V, E') is a directed graph. Why?

Energy Consumption Model

• Energy consumptions along a traffic path $\vec{\ell}(u_1, s)$: a sensor-to-sink path along U1, U2, ..., Ui, S

$$\sum_{n=1}^{i} (\gamma Pr(u_n)) + \sum_{n=2}^{i} (\gamma Rr(u_n) + Ps(u_n)) + \gamma Rr(s) + Ps(s),$$

- Pr: transmitter power
- Rr: receiver power
- Ps: energy required to process a packet
- γ: constant

Energy Consumption Model

• Energy consumptions along a traffic path

$$\gamma \sum_{n=1}^{i} (Pr(u_n) + \beta)$$

• : constant

Energy Consumption Model

Path cost

$$\omega(\overrightarrow{\ell}) = \gamma \sum_{n=1}^{i} (Pr(u_n) + \beta)$$

Cost function of an edge e(u, v) in G and G'

$$\gamma(c \cdot (D(u,v))^n + \beta)$$

- Node cost: $\eta(u)$
 - The minimal value of the path cost of the known paths to the sink

Transmitter Power Setting Problem

Problem 1: Given the graph G(V, E) and a sink $s \ (s \in V)$, compute P(V) such that in the resulting G'(V, E'), there exists at least one path $\overrightarrow{\ell}(u, s)$ from each node u $(u \in V)$ to the sink s and the $\eta(u)$ is minimized.

P(V): The Transmitter Power level of each node in set V

Transmitter Power Setting Problem

- Why find energy-efficient paths from an arbitrary node to the sink?
 - No in-network data aggregation/fusion
 - Simply many-to-one traffic
 - Otherwise
 - Reverse-Multicasting
 - Minimum Steiner Tree
 - NP-Complete
 - Why we still find energy-efficient paths from an arbitrary node to the sink?

Illustration of Data Aggregation/Fusion

Source Placement Model 1

Theoretical Solution

- Find a spanning tree
 - The Tree is rooted at the sink
 - The path from each node to the sink is the shortest path
- Set the transmitter power level of each node so that it can just reach the adjacent downstream node along the path

Outline

- Motivation of this work
- Modeling the transmitter power setting problem

Implementation issues

- Experimental results
- Future work and conclusions

Implementation Considerations

- No global picture
 - The algorithm is distributed
 - The algorithm employs localized information
- Low overhead
 - The algorithm exchanges as small number of packets as possible

The Configuration Packet

- Location of the sender
- Node cost of the sender

BOU: the Basic Approach

- The sink initially send a configuration packet with node cost equal to zero
- Each in-network node firstly set its node cost as +
- Each node that receives a configuration packet calculates the path cost along the sender to the sink
 - If the path cost is greater than its current node cost, drop the packet
 - Otherwise,
 - The path along the sender to the sink is the known shortest path
 - Let its node cost equal to this path cost
 - Broadcast another configuration packet with the updated node cost

How to Avoid Meaningless Broadcasting

Wait before broadcasting, upon the update of the node cost

• How to determine the waiting time?

Determining the Waiting Time

- The waiting time should be proportional to the probability that a better path will be known in the future.
- BOU-W: An improvement of BOU
 - BOU-W: wait before broadcast, on update.
 - The waiting time is: ${}^{lpha} \cdot
 ho$
 - is a constant whose value is determined empirically

Obtain the Probability

Problem 2: Given

- A graph G(V, E), a sink s (s ∈ V), and the cost function of an edge of the graph described in Equation (6);
- The probability density function P_x(X) of the location of each node u (u ∈ V) where X is the possible physical location;
- The deterministic location x of a node m (m ∈ V, m ≠ s) and the deterministic location y of the sink s;
- The cost $\omega(\overrightarrow{\ell})$ of a path $\overrightarrow{\ell}$ from node *m* to the sink *s*;

Compute the probability ρ that there exists a path $\vec{\ell'}$ from the node m to the sink \underline{s} other than $\vec{\ell}$ such that the cost of $\vec{\ell'}, \omega(\vec{\ell'})$, satisfies $\omega(\vec{\ell'}) < \omega(\vec{\ell})$.

Obtain the Probability

- Mathematical Solution
 - Very hard
- Numerical Solution
 - Monte Carlo method

BOU-W: Comments

- What is needed?
 - The location of the sink
 - The statistical data
- The shortcomings
 - Huge volume of statistical data
 - Not practical due to the hardware constraint
 - If the node deployment scheme cannot be well modeled, emulations cannot be conducted

BOU-WA: An approximate solution

- Calculate the probability that node B exists
 - Very simple

BOU-WA: An approximate solution

- What's needed
 - The location of the sender
 - The network area and the total node number
- How it works
 - We will study in experimental work

Outline

- Motivation of this work
- Modeling the transmitter power setting problem
- Implementation issues
- Experimental results
- Future work and conclusions

The Simulation Network

Area of sensor field	100m*100m
MAC	IEEE 802.11 without
Protocol	CTS/RTS and ACK
Transmitter Power	0.660W
Receiver Power	0.395W
Wireless Communication Model	Free Space
Packet length	36 bytes

Evaluation of Overhead

- Experiment Design
 - Comparing BOU-WA with BOU
 - Energy consumption overhead
 - Converging time

Outline

- Motivation of this work
- Modeling the transmitter power setting problem
- Implementation issues
- Experimental results

• Future work and conclusions

Future work

- How does BOU-WA perform in real application scenarios?
- Is there any room to improve the modeling work of the transmitter power setting problem.

Conclusion Remarks

- We model the transmitter power setting problem for WSNs
- We investigate the implementation issues of the solution and provide a low overhead algorithm called BOU-WA
- Experimental results show the advantages of BOU-WA

