
Invariant Local Feature for
Image Matching

Wong Yuk-Man

Term Paper for the Degree of
Master of Philosophy

in
Computer Science and Engineering

Supervised by

Prof. Michael R. Lyu

c©The Chinese University of Hong Kong
December 2006

Abstract

Approaches based on invariant local feature descriptors have been widely em-
ployed in many computer vision applications, including image retrieval and
object recognition. Since the introduction of the invariant local features for
solving image matching problems, many research tasks have been performed
to further improve the detection, description and matching process of local
features in three interacting aspects: the distinctiveness, the invariance and
the speed.

In this paper we propose a new feature descriptor resembling a state-of-
the-art descriptor, Scale Invariant Feature Transform (SIFT), which is also
invariant to change in background and object color. It commonly happens
that images of objects under the same image class differ with background
and object color. Thus our feature descriptor is particularly useful for object
class recognition purpose. The performance evaluation shows that our de-
scriptor performs much better than others on datasets that capture changes
in background and object color.

Another contribution of this paper is in building a system for efficient
image retrieval using SIFT-based descriptors to describe image features and
Exact Euclidean Locality-Sensitive Hashing (E2LSH) to index the descrip-
tors. To further improve the performance of the system, we propose a new
matching strategy and a new verification process that are not adopted by
other image near-duplicate detection system. The accuracy is high and the
query times are short even for databases of millions of keypoints.

i

Contents

Abstract i

1 Introduction 1

2 Literature Review 3
2.1 Introduction . 3
2.2 Feature Detector . 4

2.2.1 Harris Corner Detector 4
2.2.2 DOG Extrema Detector 5
2.2.3 Harris-Laplacian Corner Detector 8
2.2.4 Harris-Affine Covariant Detector 9

2.3 Feature Descriptor . 9
2.3.1 Scale Invariant Feature Transform (SIFT) 10
2.3.2 Shape Context . 12
2.3.3 PCA-SIFT . 13
2.3.4 Gradient Location and Orientation Histogram (GLOH) 14
2.3.5 Geodesic-Intensity Histogram (GIH) 14
2.3.6 Experiment . 16
2.3.7 Descriptor Prototypes 22

2.4 Color Invariant Local Feature Descriptor 23
2.4.1 Introduction . 23
2.4.2 Color Constancy . 26
2.4.3 Color Invariant . 27
2.4.4 Conclusion . 30

2.5 Feature Matching . 30
2.5.1 Matching Criterions 30
2.5.2 Distance Measures . 31
2.5.3 Searching Techniques 32

2.6 Object Recognition by Image Matching 33
2.6.1 Introduction . 33
2.6.2 View-Based Object Recognition 34

ii

2.7 Conclusion . 36

3 Shape-SIFT 37
3.1 Introduction . 37
3.2 SHAPE-SIFT Descriptors . 38

3.2.1 Orientation Assignment 38
3.2.2 Canonical Orientation Determination 39
3.2.3 Separation and Reintegration of Shape and Color . . . 41

3.3 Performance Evaluation . 42
3.4 Conclusion . 44

4 Image Retrieval System for IND Detection 46
4.1 Introduction . 46

4.1.1 Motivation . 46
4.1.2 Related Work . 47
4.1.3 Objective . 48
4.1.4 Contribution . 48

4.2 Database Construction . 49
4.2.1 Image Representations 49
4.2.2 Index Construction . 50
4.2.3 Keypoint and Image Lookup Tables 52

4.3 Database Query . 53
4.3.1 Matching Strategies . 53
4.3.2 Verification Processes 56
4.3.3 Image Voting . 60

4.4 Performance Evaluation . 62
4.4.1 Evaluation Metrics . 62
4.4.2 Results . 63
4.4.3 Conclusion . 67

5 Future Work 68
5.1 Dataset for IND Detection . 68
5.2 Remove Duplicates in Retrieved Images 68
5.3 Incorporation of Global Features 68

6 Conclusion 70

Bibliography 71

iii

Chapter 1

Introduction

Invariant local feature descriptors have been widely employed in many com-
puter vision applications, including automatic panorama stitching, wide base-
line matching, image retrieval [29], object recognition [22], and object class
recognition [23]. They are distinctive, invariant to common image transfor-
mations and robust to occlusion in nature. The popularization of invariant
local feature descriptors has recognized its potential in tackling the image
matching problems.

Since Schmid and Mohr [31] introduce invariant local features for solving
image matching problems, many research tasks have been performed to fur-
ther improve the detection, description and matching process of local features
in three interacting aspects: the distinctiveness, the extent of invariance, and
the speed of the process. SIFT descriptor [22] is one of the state-of-the-art
descriptors that is shown to be very robust to many image transformations.
Other SIFT-based descriptors, such as PCA-SIFT [29] and GLOH [15], are
also shown to be superior to other types of local feature descriptors, such as
spin image [17] and shape context [3] on feature matching tasks. Recently, a
new detector-descriptor scheme, called Speeded Up Robust Features (SURF)
[2], is proposed. According to our performance evaluation, it has comparable
performance to SIFT but is about three times faster in computation than
SIFT.

In this paper we propose a new invariant local descriptor, Shape-SIFT
(SSIFT), which extends Scale Invariant Feature Transform (SIFT) descriptor
to background and object color invariance. Local invariant feature is heredi-
tarily robust to occlusion and clutter background. However, despite the local
nature of the described features, background still significantly distorts the
features near the contour of an object. his effect appears frequently among
corner-like features and tremendously reduces the recognition performance
of textureless objects. Since the contour of an object defines its shape and

1

CHAPTER 1. INTRODUCTION 2

many objects can even only be recognized using the shape only, contour is an
important visual cue for object recognition. Thus it is necessary to describe
local features in a way that is invariant to change in color of the background.
On the other hand, a local descriptor for object class recognition should be in-
variant to object color because objects in the same object class can share the
same shape with different colors. We observe the common causes that make
SIFT-based descriptor variant to these transformations and further propose
solutions to attack this problem. The performance evaluation shows that
our descriptor performs much better than other state-of-the-art descriptors
on data sets that capture changes in background and object color.

Another contribution of this paper is in building an image retrieval sys-
tem for image near-duplicate detection purpose. This system makes use of
the state-of-the-art feature detector, descriptor and indexing techniques in
building a local feature database for a set of images and in building an index
of the feature database. Thus, this system is both accurate and efficient. To
further improve the performance of the system, we propose a new matching
strategy and a new verification process that are not adopted by other image
near-duplicate detection system. The performance evaluation shows that our
proposed approaches improve the accuracy of the system significantly.

We will first give some literature reviews on image matching techniques
using invariant local features in chapter 2. In that chapter, we will describe
the three major components of the approaches using invariant local features,
namely feature detector, feature descriptor and feature matching. A number
of approaches have been proposed to improve the performance of these three
major components. To find out the superior approaches, we compare the
performance of different feature descriptors. The experimental result is also
presented in chapter 2. In chapter 3, we will present the newly proposed fea-
ture descriptor, SSIFT. Detailed explanation on this approach and detailed
experimental result will be given. In chapter 4, we will present our image
near-duplicate detection system. Again, detailed explanation on the system
and detailed experimental result will be given in that chapter. Lastly, we
will conclude this paper in chapter 6.

2 End of chapter.

Chapter 2

Literature Review

2.1 Introduction

Invariant local features for recognition refer to the representations of image
contents, at some particular interest regions on the images of scene or ob-
ject. These features are local as they are related to small regions on objects
instead of the whole object. This property makes feature-based recognition
inherently robust to occlusion and clutter. These are the two serious prob-
lems in recognition using global features and are usually solved by image
segmentation techniques. Since the performance of current image segmen-
tation techniques are still limited, performance of recognition using global
features is limited too. On the other hand, recognition using local features
solve these problems easily. During recognition, local features for an object
can be matched to a database of local features each representing a unique
object. By using some voting algorithms, the object in the query image can
be obtained and thus “recognized”. Since images of the same object can be
taken in different environmental and instrumental conditions, they are prob-
ably different but related. Differences between these images include image
noise level, change in illumination, scaling, rotation and change in viewing
angle. In order to match two different images of the same object, the local
features should be invariant to these differences. Invariance of a local feature
refers to its ability to tolerant these differences. The extend of invariance
depends on how its representation is designed. A good local feature should
be highly distinctive which means it should allow for correct object identi-
fication with high probability. However, the more invariance a feature has,
the less distinctive it has. Therefore, there are trade-off between invariance
and distinctiveness.

Three keys processes involved in feature-based recognition are feature
detection, description and matching. We will discuss the state-of-the-art

3

CHAPTER 2. LITERATURE REVIEW 4

techniques used in these three processes in the following sections.

2.2 Feature Detector

Since the resolution of an object’s image can be very high, it is not practical
in efficiency, storage and accuracy to take every pixel of the image as an
feature and describe by an vector. It is necessary to extract only a subset
of pixels from an image to be described. We call this subset of pixel as the
interest points. There are two main requirements on feature detector. First,
corresponding interest points on the object should be repeatedly detected by
the feature detector over different images of the same object. Second, inter-
est points detected should be distinctive local features. 2D image windows,
where there is some form of 2D texture likes corner, are the most distinctive
image patch comparing with other types of image windows. A number of
feature detectors have been proposed to use 2D window for recognition pur-
pose, they includes Harris corner detector [13], DOG extrema detector [22],
Harris-Laplacian detector [25] and affine covariant region detector [26].

2.2.1 Harris Corner Detector

Harris corner detector [13] is widely used in many image matching tasks to
select regions that have significant gradient change in all directions.

The Auto-Correlation Matrix

This detector analyzes the auto-correlation matrix M of every location in an
image that is computed from image derivatives:

M = g(σI) ∗
[

I2
x(x) IxIy(x)

IxIy(x) I2
y (x)

]
(2.1)

where x is the pixel location vector, Ix(x) is the x-gradient at location x,
Iy(x) is the y-gradient at location x and g(σI) is the gaussian kernel of scale
σI .

Eigenspace Analysis

A point is located at a corner if its corner response is large. The corner
response R can be computed from matrix M by the following equation:

R = Det(M)−K × Trace(M)2

= I2
xI2

y − (IxIy)
2 −K × (Ix + Iy)

2

CHAPTER 2. LITERATURE REVIEW 5

where K is an empirical constant ranged from 0.04 to 0.06.

Non-Maximal Suppression

To reduce the amount of corners detected, a corner should not be captured
by more than one interest point. This objective can be achieved by non-
maximal suppression which removes candidate points that are not the local
maxima of R within its local neighborhood:

R(x) > R(xw)∀xw ∈ W ∧R(x) > threshold

where W denotes the 8-neighborhood of the pint x.

2.2.2 DOG Extrema Detector

DOG Extrema Detector is proposed by Lowe [22, 21] to detect SIFT features.
It extracts interest points in a cascade filtering approach in which the more
expensive operations are applied only at locations that pass all prior tests.
The major steps of generating interest point from an image are discussed in
the following sections.

Scale-Space Extrema Detection

DOG Extrema detection identifies the locations and scales of the interest
point that can be repeatedly detected under different views of the same
object. As the interest point can be repeatedly detected, we will call it
stable features. Detecting stable features that are invariant to locations is
achieved by searching for most of the locations over the image. To extend
its invariance to scales, all possible scales of the image are searched instead
of one scale only.

The scale space of an image which is defined as a function, L(x, y, σ), can
be prepared by repeatedly convolving the initial image with a variable-scale
Gaussian function G(x, y, σ):

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

L(x, y, σ) = G(x, y, σ) ∗ I(x, y)

To efficiently detect stable interest point locations in scale space, Lowe
proposed [21] using scale-space extrema in the difference-of-Gaussian func-
tion, D(x, y, σ), which can be computed from the difference of two nearby
scales of smoothed images, L(x, y, σ), separated by a multiplicative factor k.

CHAPTER 2. LITERATURE REVIEW 6

Figure 2.1: A diagram illustrating how differences of gaussian images is pre-
pared from the initial image. The initial image is repeatedly smoothed by
Gaussian function, which is shown on the left. Adjacent Gaussian images
are subtracted to produce the difference-of-Gaussian images, which is shown
on the right.

CHAPTER 2. LITERATURE REVIEW 7

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ)

The scale space of the input image is prepared in the way illustrated by
Figure 2.1. The difference-of-Gaussian function has been proved to be a close
approximation to the scale-normalized Laplacian of Gaussian. Therefore,
finding extrema in difference-of-Gaussian space is approximately equivalent
to finding extrema in Laplacian space. After the scale space has been pre-
pared, each sample point is compared to its eight neighbors in the current
image and nine neighbors in the scale above and below in order to detect the
extrema of D(x, y, σ).

The advantage of searching interest point over a complete range of scales
is that both small interest points and large interest points are detected. Small
interest points help solving occlusion problem while large interest points con-
tribute to the robustness of the system toward noise and image blur.

Interest Point Localization

The second step is to reject the interest points that have low contrast or are
localized along an edge. Low contrast interest points are rejected because
they are sensitive to noise. Interest points localized along an edge are also re-
jected because they in general do not make significant difference with nearby
points.

To reject interest points with low contrast, the scale-space function value
at each extremum, D(x̂), is examined:

D(x̂) = D +
1

2

δD

δx

T

x̂

For the experiments done by Lowe in [22], all extrema with a value of
|D(x̂)| less than 0.03 were discarded.

To reject interest points on edges, Hessian edge detector is applied. The
difference-of-Gaussian function, D, will have a large principal curvature across
the edge but a small one in the perpendicular direction. Hessian matrix, H,
can be computed at the location and scale of the interest point by:

H =

[
Dxx Dxy

Dxy Dyy

]

The derivatives, Dxx, Dxy and Dyy, can be estimated by taking differences
of neighboring points around the sampling interest point.

The eigenvalues of H are proportional to the principal curvatures of D.
Thus, the ratio of the two eigenvalues reflects that the interest point is on

CHAPTER 2. LITERATURE REVIEW 8

the edge or not. The solution can be simplified by just checking the following
condition:

Tr(H)2

Det(H)
<

(r + 1)2

r

For the experiments done by Lowe in [22], all extrema having a ratio
between the principal curvatures greater than 10 are discarded.

2.2.3 Harris-Laplacian Corner Detector

Mikolajczyk et al. [25] proposed another detector for detecting scale invariant
interest points. It is the Harris-Laplacian corner detector. This detector
first computes a set of images represented at different levels of resolutions
(pyramid) for Harris corner detector. It then select points at which the
normalized Laplacian is maximal over scales. Mikolajczyk et al. observed
that the amplitude of spatial image derivatives decreases with scale. Thus the
derivative function must be normalized according to the scale of observation.
They modify the Harris corner detector such that it can be applied over
scale-space.

Auto-Correlation Matrix for Scale-Space

The detector analyzes the auto-correlation matrix M of every location in an
image that is computed from normalized image derivatives:

M = σ2
Dg(σI) ∗

[
I2
x(x, σD) IxIy(x, σD)

IxIy(x, σD) I2
y (x, σD)

]
(2.2)

Equation 2.2 differs from equation 2.1 by the differentiation scale σD. Ix(x, σD)
and Iy(x, σD) represents the image derivative computed over an image ob-
tained by convolving the full-size image with Gaussian kernels of scale σD.
The image derivatives are normalized by multiplying with σ2

D that is propor-
tional to the scale of the target image.

Scale Selection

After localizing points in 2D space using Harris corner detector, the candi-
date points are subjected to scale maxima detection. For each level of the
scale-space, the detector applies the non-maximal suppression to reduce the
amount of candidate points. Then for each of the candidate points found

CHAPTER 2. LITERATURE REVIEW 9

on different levels, it is verified if it is maximum in Laplacian in the scale
direction. The Laplacian F of a point x is defined by:

F(x, σD) = |σ2
D(Lxx(x, σD) + Lyy(x, σD))|

Candidate point x at scale σDn is maximum in Laplacian in the scale direction
if the following condition is satisfied:

F(x, σDn) > F(x, σDn−1) ∧ F(x, σDn) > F(x, σDn+1)

where σDn−1 is a sampled scale just smaller than σDn and σDn+1 is a sampled
scale just larger than σDn.

2.2.4 Harris-Affine Covariant Detector

Harris-affine covariant detector is an advance of the Harris-Laplacian detec-
tor. This detector can detect the same elliptical regions on images even if
the object in the images is taken with significant different viewpoints. this
makes feature description later in the recognition process invariant to change
of viewpoint. The detected regions are covariant to the affine transformation
of object and thus this detector is called affine covariant detector.

Harris-affine covariant detector is based on affine normalization around
Harris points. After a set of interest points are detected by Harris-Laplacian
detector, iterative estimation of elliptical affine regions around the interest
points are carried out. The estimation is done by determining the transfor-
mation that transforms the interest region to the one with equal eigenval-
ues. The transformation can be computed by the square root of the auto-
correlation matrix M1/2. Points x inside the interest region can then be
normalized by transformation:

x′ = M1/2x

After projecting every point inside the interest region to a new position,
the auto-correlation matrix is computed again and transformation of interest
region to the one with equal eigenvalues is carried out again. This process
proceeds until the auto-correlation matrix has equal eigenvalues. When all
interest regions are normalized, corresponding regions are differed only by a
simple rotation. Thus, regions detected from an image are now invariant to
the affine transformation.

2.3 Feature Descriptor

Given the interest points detected by the feature detector, the remaining task
is to describe them for matching and recognition later. Distribution-based

CHAPTER 2. LITERATURE REVIEW 10

Figure 2.2: This figure shows an example of the elliptical affine region and
the normalized region. The transformation matrix A = M1/2 projects x to
x′ such that the eigenvalues of the auto-correlation matrix are equal.

descriptors are shown [15] to be superior to other types of descriptors such
as differential descriptors in recognition task. Distribution-based descriptor
is a histogram representing in form of a feature vector that captures the
distribution of the image context such as pixel intensity, edge point, gradient
location and orientation. In this section, five state-of-the-art descriptors
are discussed. They are SIFT [21, 22], shape context [3], PCA-SIFT [29],
GLOH [24] and GIH descriptors [19]. SIFT descriptor is a 3D histogram of
gradient location and orientation direction. Shape context descriptor is a
2D histogram of edge points’ locations. Schmid et al. [24] improved shape
context to include also the distribution of orientations. PCA-SIFT descriptor
is a vector of coefficients of the base image gradient patches obtained by
PCA. GLOH descriptor is an extension of SIFT descriptor and is reduced in
dimension by PCA. GIH is a geodesic-intensity histogram that is invariant
to non-affine deformation.

2.3.1 Scale Invariant Feature Transform (SIFT)

The most important considerations of a feature descriptor are invariance
and distinctiveness. SIFT descriptor is a carefully designed representation
of image patch that is highly invariant to change in scale, orientation and
illumination, and is partially invariant to 3D viewpoint. SIFT descriptor is
originally designed to use DOG extrema detector to detect interest points
such that the descriptor is invariant to scale change. SIFT descriptor allows
feature positions to shift significantly without large changes in the descriptor
and thus it can achieve partial invariance to affine distortion and changes in
3D viewpoints. Schmid et al. [24] further enhances its invariance to change
in 3D viewpoints by replacing the DOG extrema detector by harris-affine
covariant detector. Although the average recall rate is lower, the descriptor
showed significant improvement in detecting affine features under large affine
distortion.

CHAPTER 2. LITERATURE REVIEW 11

Figure 2.3: Computation of a feature descriptor based on the gradient and
orientation of each image sample point in a region around the feature.

Orientation Assignment

For each interest points of each image sample, L(x, y), at a particular scale,
the gradient magnitude, m(x, y), and orientation, θ(x, y), are obtained using
pixel differences:

m(x, y) =
√

(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = tan−1 L(x, y + 1)− L(x, y − 1)

L(x + 1, y)− L(x− 1, y)

The gradient and orientation information of each interest point can then
be used to construct the feature descriptor.

Descriptor Representation

The computation of the feature descriptor is illustrated in Figure 2.3. The
approach is to create orientation histograms over 4×4 sample regions around
the interest locations. Each histogram contain 8 orientation bins that is the
Gaussian-weighted average of the gradient vectors over the corresponding
region. For the case illustrated in Figure 2.3, a 32 element feature vector can
be obtained for each interest point. Lowe has shown in experiment that a 4×4
array of histogram with 8 orientation bins in each yield the best result. Since
the orientation histograms are created over 4×4 regions instead of over every
pixel, the descriptor is robust against significant change in gradient position
and thus it is partially invariant to change in 3D viewpoint.

CHAPTER 2. LITERATURE REVIEW 12

Figure 2.4: Figure illustrating how the bins of shape context is distributed
around a given edge point. Belongie et al. [3] use five bins for quantizing
distance between the rest of the edge points from the given edge point and
12 bins for quantizing the angle between them.

To make the descriptor further invariant to illumination change, the de-
scriptor is normalized to unit length. This totally cancel the effect of affine
change in illumination.

I(x) = aI ′(x) + b (2.3)

Equation 2.3 shows how a original pixel’s intensity I ′(x) at position x is
changed by affine illumination. Assume the constants a and b are the same
within a small local region of an image, then the image derivative Ix will not
be affected by the inter-reflection light term b.

Î(x) =
aIx(x)

a
∑

x∈W Ix(x)
=

Ix(x)∑
x∈W Ix(x)

(2.4)

where W is the set of points within the concerned local region. Equation 2.4
showed that the image derivative does not depends on the constant a. Since
the SIFT descriptor is created solely using image derivative, it is invariant
to affine changes in illumination.

2.3.2 Shape Context

Shape context is a shape descriptor that describes the distribution of the
rest of the shape with respect to a given edge points on the shape. It is
a histogram of the relative positions of all other edge points in the image.
Edge points here refer to a set of points sampled from the shape contours
of the target object using edge detector. Shape context uses bins that are
uniform in log-polar space to emphasize close-by, local structure as shown in
figure 2.4 and 2.5. In the original design of shape context, a histogram hi

is computed by simply counting the number of edge points within a bin:

hi = #{q 6= pi : (q − pi ∈ bin(k)}

CHAPTER 2. LITERATURE REVIEW 13

Figure 2.5: Figure showing the shape context histograms of three edge points.
Darker bins indicate larger number of edge points are located inside the bins.
The first and second histograms are very similar because the edge point they
represent are correspondence while the third histogram is very different.

In the modified design by Schmid et al. [15], weight is assigned to the con-
tribution of each point based on its gradient magnitude and orientation of
edge points are also captured into the histogram. This makes shape context
descriptor very similar to SIFT and GLOH descriptor.

Since shape context is a histogram computed from edge points, it is in-
variant to change in illumination. To make shape context descriptor invariant
to orientation, the feature detector has to help aligning the dominant orien-
tation of the local patch to a canonical direction.

2.3.3 PCA-SIFT

PCA-SIFT descriptor is a vector of coefficients of the base image gradient
patches obtained by PCA. It can be created in the following steps:

For each interest point,

1. Locate the 41× 41 image patch around the point at the correct scale.

2. Rotate the patch to align its dominant orientation to a canonical di-
rection in the same manner as SIFT.

3. Compute the Image gradients of the patch.

4. Create a vector by concatenating both horizontal and vertical gradient
maps.

CHAPTER 2. LITERATURE REVIEW 14

5. Normalize the vector to unit magnitude to make it invariant to changes
in illumination.

6. Project the vector into a pre-computed eigenspace to derive a feature
vector. The eigenspace can be pre-computed by applying PCA to the
gradient patches in a set of training images.

Although creating PCA-SIFT descriptor is much simpler than SIFT,
PCA-SIFT has been shown to have similar accuracy with SIFT in recogni-
tion [15] and run a lot faster than SIFT because of its much lower dimension.
The success of PCA-SIFT lies in the fact that the patches surrounding the
interest points all share some characteristics such as centering at the local
extremum in scale-space and orientated to the canonical direction. However,
since the dimension of PCA-SIFT is very small (dim = 20), it is worthwhile to
evaluate its performance when the database of features increase significantly.

As implied by the steps of creating PCA-SIFT, PCA-SIFT descriptor is
invariant to orientation and changes in illumination in the same way as SIFT.

2.3.4 Gradient Location and Orientation Histogram
(GLOH)

GLOH is an extension of the SIFT descriptor and is an advance version
of PCA-SIFT and shape context. The same as SIFT, GLOH describes the
gradient orientations of the image patches. Instead of sampling gradient
orientations in a rectangular grid, GLOH samples them in a log-polor location
grid like the one used in shape context descriptor. The histogram of each
interest point consists of 17 location bins with 16 orientation bins in each.
This gives a 272 bin histogram. PCA is then applied to reduce the dimension
of GLOH descriptor to 128.

2.3.5 Geodesic-Intensity Histogram (GIH)

GIH is a novel local descriptor that is invariant to deformation based on the
fact that the pixel intensity and geodesic distance are invariant to deforma-
tion. Geodesic distance is the distance of the shortest path between two
points on the embedded surfaces. It is defined by:

d =

∫ b

a

√
(1− α)2x2

t + (1− α)2y2
t + α2I2

t dt

where a and b represent the coordinates of the two points on the embedded
surfaces and the subscripts denote partial derivatives, e.g., xt = dx/dt. Ling

CHAPTER 2. LITERATURE REVIEW 15

proved [19] that the geodesic distance of two points remains unchanged after
deformation when α −→ ∞. Geodesic distance for 1-D image is illustrated
in figure 2.6. GIH descriptor is created in the following steps:

Figure 2.6: Deformation invariance for 1-D images (Figure from [19]).

For each interest point p0 = (x0, y0),

1. Apply fast marching algorithm to compute the points with identical
geodesic distances from p0 at intervals of δ. The aggregate of these
points are called level curve.

2. Sample points from each level curve at intervals of δ.

3. Create a 2D intensity-geodesic distance space with intensity and geodesic
distance as the two dimensions.

4. Insert all sampled points into the histogram according to its intensity
and geodesic distance.

5. Normalize the geodesic distance dimension and then normalize the his-
togram as a whole.

CHAPTER 2. LITERATURE REVIEW 16

Ling has made a good attempt to enhance local descriptor to deformation
invariance. However, since images are defined on discrete grids, pixels in
between two points can merge together to be a few pixels only. In this case,
the discrete geodesic distance will vary a lot due to deformation. Refer to
figure 2.7.

Figure 2.7: Figure illustrating discrete geodesic distance can fail. Due to
discrete sampling of image pixels, the geodesic distance between points a
and b is large in the left image and small in the deformed image on the right.

2.3.6 Experiment

In this experiment, we aim to compare the performances of the top three
local descriptors: SIFT, PCA-SIFT and GLOH. In each experiment, each de-
scriptors will describe both the Harris-affine covariant region and the Harris-
Laplacian region. This allows us to compare the performance of Harris-affine
covariant detector and Harris-Laplacian detector in matching at the same
time. Our experiment evaluates only the accuracy but not the computa-
tional time of the local descriptors. At last, we will rank the descriptors
based on the experiment we carried out.

Data Set

The data set used in our experiment is obtained from Visual Geometry
Group1. We have used this data set to evaluate the performance of the
four descriptors. Shape context is quite similar to GLOH and thus we eval-
uated the performance of GLOH only. For each set of images of the same
scene, we selected 2 images as the image pair. The images we have used are
shown in figure 2.8

1http://www.robots.ox.ac.uk/ vgg/research/affine

CHAPTER 2. LITERATURE REVIEW 17

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2.8: (a) & (b) Bark image sequence. (c) & (d) Leuven image sequence.
(e) & (f) Wall image sequence. (g) & (h) Graf image sequence. (i) & (j) Bikes
image sequence (A small portion).

CHAPTER 2. LITERATURE REVIEW 18

Evaluation Criterion

We adopted the evaluation criterion used in [29, 15]. It counts the number of
correct matches and the number of false matches obtained for an image pair.
We want a local descriptor to have large number of correct positives and small
number of false positives. Two regions are matched if the Euclidean distance
between the two descriptors are below a threshold t. For the elliptical regions
detected by Harris-affine covariant detectors, two regions are matched if the
overlap error ε defined in [26, 15] is less than 0.4. If the match agrees with the
ground truth, the match is classified as correct match; otherwise, it is false
match. The transformation between each image pair can be described by a
homography which can be used as the ground truth. The results are plotted
in form of recall versus 1-precision curves. The value of ε and t is varied to
obtain the curves. Recall is defined as the number of correct matches over
the number of possible correct matches in the image pair:

recall =
#correctmatches

#correspondences

1-precision is defined as the number of false matches over the sum of the
number of matches:

1− precision =
#falsematches

#correctmatches + #falsematches

Experimental Results

Four common transformations in images are evaluated in this experiment.
They are scale change and rotation, illumination change, viewpoint change
and image blur. For each transformation, a recall versus 1-precision graph is
plotted.

1. Scale change and rotation. We used the image pair shown in figure
2.8(a),(b) to evaluate the performance for scale change and rotation.
Result is shown in figure 2.9. As observed from the figure, description
using Harris-affine covariant regions performs better than using non-
affine covariant regions, and SIFT descriptor performs the best.

2. Illumination change. We used the image pair shown in figure 2.8(c),(d)
to evaluate the performance for illumination change. Result is shown
in figure 2.10. These images are obtained by changing the camera set-
ting likes exposure. As observed from the figure, all the descriptors
under test are robust to illumination change. The reason is that all

CHAPTER 2. LITERATURE REVIEW 19

of them uses the same illumination normalization technique. Never-
theless, we observed that SIFT descriptor remains the best among the
three descriptors and Harris-Laplacian detector performs better than
Harris-affine covariant detector. PCA-SIFT descriptor performs very
good at high precision but the recall rate does not increase much when
precision is lessen.

3. Viewpoint change. We used two image pairs shown in figure 2.8(e),(f)
and figure 2.8(g),(h) to evaluate the performance for viewpoint change.
Result is shown in figure 2.11 and 2.12. Viewpoint change in the
wall image pair is less than that in the graf image pair. As observed
from the figures, for the wall image pair, SIFT descriptor based on
Harris-Laplacian detector performs the best; for the graf image pair,
SIFT descriptor based on Harris-affine covariant detector performs the
best. This illustrates Lowe’s SIFT descriptor itself is invariant to small
amount of viewpoint change and retains the highest distinctiveness.
For high amount of viewpoint change, performance of Lowe’s SIFT
descriptor drops significantly. However, when used with Harris-affine
covariant detector, its performance is improved a lot. We observed that
Harris-affine covariant detector really help improve the robustness of
descriptor. Yet this improvement may be limited only to cases with
large viewpoint changes.

4. Image blur. We used the image pair shown in figure 2.8(i),(j) to
evaluate the performance for image blur. Blur effect is introduced to
the image by adjusting the camera focus. Result of the experiment is
shown in figure 2.13. Both SIFT and PCA-SIFT descriptor perform
well in this image pair. PCA-SIFT, again, performs very good at high
precision but SIFT is better at lower precision.

Conclusion

From these experiment, we arrived this conclusion: SIFT > GLOH > PCA-
SIFT. SIFT descriptor is the best among the three descriptor in most of the
cases. SIFT always performs slightly better than GLOH, so GLOH descriptor
is only the second best. PCA-SIFT descriptor always performs very good at
high precision requirement but not at lower precision so I give it the third
rank. This fact does not depend on the types of interest regions.

CHAPTER 2. LITERATURE REVIEW 20

Figure 2.9: Experimental Result for scale change and rotation on bark image
sequence.

Figure 2.10: Experimental Result for illumination change on leuven image
sequence.

CHAPTER 2. LITERATURE REVIEW 21

Figure 2.11: Experimental Result for viewpoint change on wall image se-
quence.

Figure 2.12: Experimental Result for viewpoint change on graf image se-
quence.

CHAPTER 2. LITERATURE REVIEW 22

Figure 2.13: Experimental Result for image blur on bikes image sequence.

2.3.7 Descriptor Prototypes

In order to understand the difficulties and considerations of designing a fea-
ture descriptor, I have implemented three prototypes of feature descriptors:

Simple Grayscale Patches

I have first implemented a feature descriptor that samples pixels within small
5x5 square window around the detected feature points. This descriptor takes
the output of Harris corner detector as feature input.

Hybrid-type Grayscale Patches

This descriptor is designed to be invariant to orientation, illumination change.
It is similar to the feature descriptor proposed in [5].

1. Dominant orientation. First of all, dominant orientation of the re-
gion is found. There are a few different ways to find the dominant
orientation. One of the way is to find the average orientation angle
within the region, another way is to find the angle that is large in value
and at the same time commonly appear within a region. I adopted the
method used in SIFT.

2. Pixel sampling. Given an oriented interest point, we sample a 7x7
patch of pixels around it, using a spacing of 2 pixels between samples.

CHAPTER 2. LITERATURE REVIEW 23

3. Intensity normalization. After sampling, the descriptor vector is
normalized so that the mean is 0 and the standard deviation is 1.
This makes the features invariant to affine changes in intensity. The
speed of description is fast. The performance is good in bikes, leuven
sequences, but the performance is not good in sequences that capture
affine transformation.

Histogram-based Descriptor

We create 7 histograms with 10 bins covering the intensity value ranged from
0 to 1. Originated at the detected interest point, we sample pixels around
it in a circular manner with radius = 0, 1, ... , 6, in every 30 degree. The
sampled pixel may be located at a position that is not an integral value.
Then, bilinear interpolation is performed to obtain the target pixel value.
The value is added to the corresponding bin of the histogram for that ring
according to its intensity value. For each ring, 12 pixels’ intensities are added
into a histogram. The 7 histograms are then concatenated into a descriptor.
Since the directions of pixels around the interest point does not matter, this
descriptor is invariant to orientation. The descriptor vector is then convolved
with Guassian kernel such that difference between adjacent bins will not be
too large and performance can be more stable.

Experimental Results

We compared the performance of the three feature descriptors with SIFT
on the same data set from Visual Geometry Group. For each data set, we
matched the feature in image 1 to the features in image n (where n = 2, 3, ...,
6) and compute the recall rate. The maximum difference with ground truth
is set to be smaller than 3 pixels. The result is shown in figure 2.14. The
hybrid-type descriptor has better performance in general among the three
descriptors. Yet, its performance is still far below SIFT’s.

2.4 Color Invariant Local Feature Descriptor

2.4.1 Introduction

Many computer vision applications tend to ignore color information. From
low-level applications like corner detector to high-level applications like ob-
ject recognition, color information is usually discarded and only luminance
information is considered. Reasons of not considering color varies in differ-
ent applications. While incorporation of color information may not improve

CHAPTER 2. LITERATURE REVIEW 24

(a) (b)

(c) (d)

Figure 2.14: (a) Evaluation for illumination change on Leuven image se-
quence, (b) Evaluation for affine transformation on wall image sequence, (c)
Evaluation for affine transformation on graf image sequence, (d) Evaluation
for image blur on bikes image sequence.

CHAPTER 2. LITERATURE REVIEW 25

the performance of luminance-based techniques much when designed badly,
it usually significantly increases the computational complexity. The conse-
quence is that in most applications, color of an image only find its use in
obtaining the luminance.

While most of the computer vision tasks can well be accomplished by
solely using luminance, color is still a piece of useful information in describ-
ing objects. Borrowing the arguments from Swain et al. [33], there are many
examples from nature where color is used by animals and plants to entice or
warn the others. The manufacturing sector uses color extensively in pack-
aging to market goods. Apart from these examples, there are also a huge
support from the advocates of color-based object recognition in using color
in recognition.

In our research, we aim to incorporate color into feature-based object
recognition. Recently proposed invariant local grayvalue features approach
has been proved to be very successful. However, color information is always
neglected. There are two main usages of invariant local features: recognizing
generic classes of objects and recognizing particular objects. In both cases
color information is important. While objects can be classified by shape only,
objects can also be classified by colored textures. Colored textures such as
wood, marble and metal, are hard to recognize without color. Classes of
objects classified by colored textures thus require the incorporation of color
into the feature description process. As for recognizing particular objects,
color is even more important. Distinctiveness of a feature descriptor is one
of its top two requirements. Incorporation of color endues a descriptor the
ability to distinguish colored object. It is absolutely a direct upgrade of its
distinctiveness. To the extreme, incorporation of color allows the descriptor
to distinguish several differently colored objects with the same shape!

Color is always neglected as a recognition cue because many variations
can cause significant changes in measured color. Nevertheless, some tech-
niques [11, 35] were proposed to reduce the sensitivity of color information
to photometric changes and make color description more robust. Recently,
Weijer et al. [35, 34] extended the SIFT local feature descriptor with color
information by concatenating a color descriptor to it with a fixed weighting.
He has shown by a series of experiments that his combination of color and
shape outperforms a pure shape-based approach. It proved color informa-
tion can enhance the distinctiveness of the local features without losing its
robustness.

There are two types of techniques that reduce color’s sensitivity to vari-
ations: color constancy and color invariant. We will now discuss the details
of these techniques.

CHAPTER 2. LITERATURE REVIEW 26

2.4.2 Color Constancy

Color constancy refers to the perceptual ability in vision that estimates the
chromaticity of an image under canonical illumination based on its chro-
maticity under unknown illumination. Color correction step is accompanied
to maintain a constant perception of color over varying light conditions. Two
of the color constancy algorithms are greyworld and white-patch retinex.

Greyworld

Greyworld hypothesis assumes the average reflectance in the world to be grey.
The 50% ideal grey under canonical light is given by:

RGBgrey =
1

2
RGBcanonical

where RGBcanonical represents the R, G and B channel’s color of the canonical
illuminant. If the image is taken under canonical light, the average value of
R, G and B should be equal to Rgrey, Ggrey and Bgrey correspondingly. For
the image taken under unknown illumination, the average of all RGB in the
image may not be equal to RGBgrey. In this case, we can compare the average
with the 50% ideal grey under canonical light and correct the R, G and B
color’s value of each pixel to the corresponding values under canonical light
by:

R

G

B

 =

Rgrey

Raverage
0 0

0 Ggrey

Gaverage
0

0 0 Bgrey

Baverage

R′

G′

B′

where Raverage is the average of all red values in the image and so as the
Gaverage and Baverage.

White-Patch Retinex

Similar to greyworld hypothesis, white-patch retinex assumes the maximum
of RGB in an image equals the color of illuminant. Thus the R, G and B
color’s value of each pixel can be corrected by:

R

G

B

 =

Rcanonical

Rmax
0 0

0 Gcanonical

Gmax
0

0 0 Bcanonical

Bmax

R′

G′

B′

where Rmax is the maximum of all red values in the image and so as the Gmax

and Bmax.

CHAPTER 2. LITERATURE REVIEW 27

2.4.3 Color Invariant

Color invariant refers to the transformation of RGB that is independent of
some variations such as illuminant change, lighting geometry and viewpoint
change.

Based on different assumptions on illuminant and surface reflectance, dif-
ferent color invariants are proposed. Color on a surface measured by a camera
depends on the diffuse reflection, specular reflection and the ambient light
from the environment. We can model the color value at a camera pixel as
[10]:

C(x) = gd(x)d(x) + gs(x)s(x) + i(x) (2.5)

where C = [R G B]. d(x) is the image color of an equivalent flat frontal
surface viewed under the same light. gd(x) is a term that varies over space
and accounts for the change in brightness due to the orientation of the surface.
s(x) is the image color of the specular reflection from an equivalent flat frontal
surface. gs(x) is a term that varies over space and accounts for the change
in the amount of energy specularly reflected. Lastly, i(x) is a term that
accounts for colored inter-reflections, spatial changes in illumination, etc.

Assume we are looking at a single dielectric object but not conductive
materials. The inter-reflection term can be ignored. We further assume that
light falls evenly on the local feature area. Then color of the source can also
be separated from d(x) such that our model of camera pixel’s value becomes:

C(x) = gd(x)b(x)e + gs(x)e + i(x) (2.6)

The body reflection part is now represented by gd(x)b(x)e in which b(x) is
the surface albedo and gd(x) is the geometrical term that is independent of
illumination. The interface reflection is represented by gs(x)e in which e is
the image color. The bold face is used to indicate 3-tuple vectors in which
the three components in it correspond to R, G and B color channels.

We will introduce several color invariants in the following sections. The
title of each section gives the invariance that the color invariant possesses.
In the beginning of each section, we will give the assumptions on light source
and surface on which the color invariant is based.

Illumination invariant

Assumption:

1. Any surface.

2. No ambient light.

CHAPTER 2. LITERATURE REVIEW 28

The corresponding pixels, C1 and C2, in two image patches of the same scene
taken under different illuminants are related by a multiple:

C1(x) = aC2(x)

It is assumed that light falls evenly on the image patches. Thus, the average
of pixel values over the two images are also differed by the same multiple.
Illumination invariant can then be obtained easily by applying normalization
over each color channel:

C′(x) =
C(x)

C(x)

where C(x) is the mean of the color values of pixels within the image patch.
Funt et al. [12] proposed to use color ratio to achieve illumination in-

variance based on similar assumption in order to make the color histogram
proposed by [33] invariant to illumination. Consider two neighbor pixels un-
der the same illumination, the ratio of measured pixel values at x1 and x2,
yields the ratio of surface albedos:

C(x1)

C(x2)
=

b1

b2

Instead of using the ratio directly, he take logarithms of both sides to turns
the ratio into differences:

ln(C(x1))− ln(C(x2)) = ln(b1)− ln(b2)

Applying the Laplacian to the logarithm of the three channels yields a new
3-tuple for every pixel and it is these that are then histogrammed.

Illumination and Inter-reflection invariant

Assumption:

1. Any surface.

If ambient light does exist, the above color invariant can not be used. How-
ever, the corresponding derivatives, C1

x and C2
x, in two image patches of the

same scene taken under different illuminants are still related by a multiple:

C1
x(x) = aC2

x(x)

Illumination invariant can be obtained by applying normalization over each
color channel based on the average image derivative:

C′
x(x) =

Cx(x)

Cx(x)

CHAPTER 2. LITERATURE REVIEW 29

Lighting Geometry and Viewpoint Invariant

Assumption:

1. Matt surface.

2. No ambient light.

Normalized rgb is invariant to lighting geometry and viewpoint, gd. Normal-
ized r is computed by:

r =
R

R + G + B
=

gdb
ReR

gd(bReR + bGeG + bBeB)

Normalized g is computed by:

g =
G

R + G + B
=

gdb
GeG

gd(bReR + bGeG + bBeB)

Normalized b can be computed by b = 1 − r − g. If the illuminant must be
white illuminant, normalized rgb is invariant to illumination too.

Specularity Invariant

Assumption:

1. Any surface.

2. No ambient light.

3. White illuminant.

Opponent color proposed by Gevers is invariant to specularity:

O1 =
1√
2
(R−G)

O2 =
1√
6
(R + G− 2B)

Invariant to both lighting geometry, specularity and white illumination can
be obtained from the opponent color by:

hue = tan−1(
O1

O2
)

CHAPTER 2. LITERATURE REVIEW 30

2.4.4 Conclusion

Color is sensitive to many variations. Color constancy and color invariant
are two common approaches in reducing the sensitivity of color to these vari-
ations and to make color information a stable and distinctive recognition
cue. These techniques may be applied prior to incorporating color informa-
tion into the latest feature-based recognition approach, it is believed that the
performance of feature-based recognition can further be improved through
these techniques.

2.5 Feature Matching

Distribution-based descriptor represents local context in form of histogram.
Thus, in comparing two descriptors, we can consider the distance measures
commonly adopted in comparing two histograms. There are two main types
of distance measures: bin-by-bin dissimilarity measures and cross-bin mea-
sures. Bin-by-bin dissimilarity measures only compare the contents of cor-
responding bins of two histogram while cross-bin measures also compare
the non-corresponding bins. Recently, a cross-bin measure is proposed by
Haibin Ling [20] and it is claimed that it significantly improve the original
SIFT feature matching approach. In this sections, we will introduce some
of these distance measures, including those adopted in comparing the local
descriptors. Then we will introduce some common feature matching tech-
niques. We have assumed there are two histograms: X = (x1, x2, ..., xn) and
Y = (y1, y2, ..., yn). Histogram Y is one of the histogram stored in a database
that histogram X will match with.

2.5.1 Matching Criterions

There are three common criterions in determining whether a feature matches
with another feature:

1. Similarity Threshold. Two features are matched if the distance between
the two features are below a absolute threshold. Each feature may have
more than one match under this matching criterion.

2. Nearest Neighbor with threshold. Feature A matches with feature B
in a database if B is the nearest neighbor of A among other features in
the database and the distance between them is lower than a threshold.

3. Nearest Neighbor Distance Ratio. Feature A matches with feature B
in a database if B is the nearest neighbor of A among other features in

CHAPTER 2. LITERATURE REVIEW 31

the database and the distance between them is lower than the distance
between A and the second nearest neighbor in the database by a mul-
tiply constant. This criterion is shown to give higher precision to the
above two method in [15].

2.5.2 Distance Measures

Dissimilarity of two features is evaluated by measuring the distance between
them.

Minkowski Distance

The Minkowski distance of order p (p-norm distance) is defined as:

dp(X,Y) = (
∑

i

|xi − yi|p)
1
p

2-norm distance is the Euclidean distance. This is the most common distance
measures used in comparing local descriptors. SIFT, GLOH, PCA-SIFT and
GIH adopt this distance measure.

Histogram Intersection

Histogram intersection is defined as:

d(X, Y) = 1−
∑

i min(xi, yi)∑
i yi

For 2-D histogram, the distance is related to the area of intersection of two
input histograms. The distance is normalized by the area of histogram Y .
This distance measure is adopted by the color histogram proposed by Swain
et al. [33].

χ2 Statistic

χ2 Statistic is defined by:

d(X, Y) =
∑

i

(xi −mi)
2

mi

,mi =
xi + yi

2

This distance measure is adopted by Shape context descriptor.

CHAPTER 2. LITERATURE REVIEW 32

Quadratic-form Distance

Quadratic-form distance is a cross-bin distance. Assume X and Y are his-
tograms expressed in form of column vector. It is defined as follow:

d(X, Y) = (X − Y)T A(X − Y)

where A is a similarity matrix A = [aij] where aij is the similarity between
bins i and j which can be defined as:

aij = 1− dist(i, j)

distmax

This distance is commonly used in matching color histograms.

2.5.3 Searching Techniques

Exhaustive Search

Each feature in an image is matched with all features in another image or in
the database. This is the most simplest method but it involve a brute-force
computation of all distances and its complexity is very high.

k-D Tree

k-D tree is an binary space partition which recursively partitions the feature
space at the mean in the dimension with the highest variance. k-D tree is a
commonly used data structure for nearest neighbor query and range query.
However, the performance of this structure is poor if the dimension of the
data entries is high. A modified version called Best-Bin First tree is used by
Lowe to match SIFT features.

Locality-Sensitive Hashing

Locality-Sensitive Hashing (LSH) is first proposed by Indyk & Motwani [14]
and further improved in [6]. Locality-sensitive hashing is designed to pro-
vide a solution for high-dimensional near neighbor problem. It can answer
queries in sublinear time with each near neighbor being reported with a fixed
probability. This hashing scheme differs with other kinds of hashing in that
under this scheme, the probability that two points share the same hash value
decrease with the distance between them. This makes it suitable for feature
matching purpose in which features similar to the query feature should be
returned. Detailed description of this hashing scheme will be given in chapter
4.

CHAPTER 2. LITERATURE REVIEW 33

2.6 Object Recognition by Image Matching

2.6.1 Introduction

Object recognition is a task of finding 3-dimensional (3D) objects from two-
dimensional (2D) images and classifying them into one of the many known
object types. It is highly related to image retrieval and image classification.
It is an important part of computer vision because it is closely related to the
success of many computer vision applications such as robotics, surveillance,
registration and manipulation etc. A number of object recognition algorithms
and systems have been proposed for a long time toward this problem. Yet,
a general and comprehensive solution to this problem has not be made.

Model-Based Object Recognition

In model-based object recognition, a 3D model of the object being recognized
is available. The 3D model contains detailed information about the object,
including the shape of its structure, the spatial relationship between its parts
and its appearance. This 3D model provides prior knowledge to the problem
being solved. This knowledge, in principle, can be used to resolve the poten-
tial confusion caused by structural complexity and provide tolerance to noisy
or missing data. There are two common ways to approach this problem. The
first approach involves obtaining 3D information of an object from images
and then comparing it with the object models. To obtain 3D information,
specialized hardware, such as stereo vision camera, is required to provide the
3D information in some forms. The second approach requires less hardware
support but is more difficult. It first obtains the 2D representation of the
structure of the object and then compares it with the 2D projections of the
generative model.

Using 3D model has both the advantages and the disadvantages. On one
side, explicit 3D models provide a framework that allows powerful geomet-
ric constraints to be used to achieve good effect. Other model features can
be predicted from just a few detected features based on the geometric con-
straints. On the other side, using models sacrifice its generality. The model
schemas severely limit the sort of objects that they can represent and it is
quite difficult and time-consuming to obtain the models.

View-Based Object Recognition

In view-based object recognition, 3D model of the object is not available. The
only known information is a number of representations of the same object
viewed at different angles and distances. The representations of the object

CHAPTER 2. LITERATURE REVIEW 34

can be obtained by taking a series of images of the same object in a panorama
fashion. Most of these operate by comparing a 2D, image representation of
object appearance against many representations stored in a memory and
finding the closest match. Matching of this type of recognition is simpler but
the space requirements for representing all the views of the object is large.
Again, there are many ways to approach this problem. One of the common
way is to extract salient information, such as corner points, edges and region
etc, from the image and match to the information obtained from the image
database. Another common approach extracts translation, rotation and scale
invariant features, such as SIFT, GLOH and RIFT, from each image and
compares them to the features in the feature database [21, 22].

View-based object recognition systems have the advantage of greater gen-
erality and more easily trainable from visual data. View-based approach is
generally a useful technique. However, since matching is done by comparing
the entire objects, some methods are more sensitive to background clutter
and occlusion. Some methods solve this problem by applying image segmen-
tation on the entire objects so as to divide the image representations into
smaller pieces for matching separately. Some other methods avoid using seg-
mentation and solve the problem by employing voting techniques, like Hough
transform methods. This technique allows evidence from disconnected parts
to be effectively combined.

2.6.2 View-Based Object Recognition

This type of object recognition is also known as appearance-based recogni-
tion. There are many object recognition approaches of this type. Correlation-
based template matching [18] is one of the approaches that is very commonly
used in commercial object recognition system. It is simple to implement and
effective for certain engineered environments. However, this type of method
is not effective when the illumination of the environment, the object posture
and the scale of the object are allowed to change. The result of this method is
even more poor when occlusion may occur and image databases is large. An
alternative approach is to use color histogram [33] to locate and match image
with the model. While this approach is robust to changing of viewpoint and
occlusion, it requires good isolation and segmentation of objects from image.

Another approach is to extract features from the image that are salient
and match only to those features when searching all locations for matches.
Many possible feature types have been proposed, they includes region, shape
context [3], line segments and groupings of edges [28] etc. Some of these fea-
tures are view variant and resolution dependent. They have worked well for
certain classes of object, but they are often not detected frequently enough

CHAPTER 2. LITERATURE REVIEW 35

for reliable recognition. Therefore, approach that matches these kinds of fea-
tures generally has difficulty in dealing with partial visibility and extraneous
features. A highly restricted set, such as corners, don’t have these prob-
lems. They are view invariant, local and highly informative. These feature
types can be detected by SUSAN detector [32] and Harris corner detector
[13]. Based on these features, image descriptor can be created to increase
the matching performance. Schmid & Mohr [31] used the Harris corner de-
tector to automatically detect interest points and create a image descriptor
for each point that is invariant to affine transformation and scale. They
have also proposed a voting algorithm and semi-local constraints that make
retrieval of features from database efficient, and showed that Harris corner
detector is highly repeatable. Lowe [21, 22] pointed out that this approach
has a major failing at the corner detection part which examines an image at
only a single scale. Because of this failing, attempt has to make to match the
image descriptors at a large number of scales. Lowe further extended Schmid
& Mohr’s approach and created a more distinctive image descriptor which
is also more stable to changes in affine projection and illumination. Lowe
proposed an efficient method to identify stable invariant key points in scale
space such that image descriptor for each key point can be calculated only at
the same scale as that of the point. Yan Ke [29] improved SIFT descriptor by
PCA analysis so that the computation speed of feature is greatly improved.
Fergus et al.

Recognition Based on SIFT

SIFT stands for Scale Invariant Feature Transform. It is a novel method pro-
posed recently by Lowe [21, 22] for extracting distinctive invariant features
from images that can be used to perform reliable matching between different
views of an object. The extracted features are invariant to image scale and
rotation, which means that the same set of features can be detected after the
image is scaled and rotated. Image descriptor for each extracted features is
carefully designed to provide robust matching across a range of affine distor-
tion, change in 3D viewpoint, addition of noise and change in illumination to
the view of an object. The feature descriptors are highly distinctive, which
allows a single feature to find its correct match with high probability in a
large database of features.

Lowe described an approach to use SIFT features for object recogni-
tion. His approach first matches extracted features to a database of features
from known objects using a fast nearest-neighbor algorithm. Among all the
matches, some matches are mismatch to the wrong objects. Thus the second
step is to filter out the wrong matches, this is done by identifying clusters of

CHAPTER 2. LITERATURE REVIEW 36

features belonging to a single object using an efficient hash table implemen-
tation of the generalized Hough transform. This is because the probability
that several features will match to the same object is by chance much lower
than the probability that any individual feature mismatches. Finally each
cluster that agree on an object is subjected to a verification process in which
the pose of the object is determined. A least-squared estimate is made for
an affine approximation to the object pose. In this step, image features con-
sistent with the approximated pose are identified and outliers are discarded.
Probability that the cluster of features is belonging to certain object type is
then computed.

2.7 Conclusion

In this chapter, the state-of-the-art feature detectors, descriptors and match-
ing techniques are discussed. They are all carefully designed but all consider
the grayvalue of an image only. Performance evaluation on feature descriptors
in describing features are carried out. The results are presented in the “Ex-
perimental Results” section. Some simple feature descriptor prototypes are
implemented and their performance are also presented. In the next chapter,
techniques related to incorporating color into descriptors will be discussed.

2 End of chapter.

Chapter 3

Shape-SIFT

3.1 Introduction

Local invariant feature is widely adopted in object class recognition. R. Fer-
gus et al. [8] proposed to perform Principle Components Analysis (PCA)
on the image patch’s appearance. K. Mikolajczyk et al. [23] proposed to
describe an image patch by SIFT and then perform PCA on the descriptor.
Both approaches employ appearance-based descriptors to describe object cat-
egories. However, many objects belonging to the same object category are
not common in appearance but are common in shape. In other words, the
coloring of an object part may vary within the same class. The detachment of
coloring information is thus necessary, as it allows us to separate the concern
of shape and coloring.

In this paper we propose a new descriptor resembling SIFT that is also
invariant to background and object color changes. By object color changes,
we mean the colors of different parts of an object may change differently. We
observed that if the shape of object remains the same, significant changes
in background or object color can cause some SIFT features of an object to
change significantly because of the flipping of the image gradient orientations,
as illustrated in Fig.3.1. The flipping of gradient orientation affects not
only the description process but also the orientation assignment process of
SIFT. We propose some methods to handle these problems, and design a new
descriptor, Shape-SIFT, for a comprehensive solution. We also present how
experiments are carried out and results of the experimental evaluations.

37

CHAPTER 3. SHAPE-SIFT 38

3.2 SHAPE-SIFT Descriptors

SIFT has been the state-of-the-art descriptor with excellent performance
[22, 15]. The success of SIFT indicates that image gradient orientations and
gradient magnitudes are both distinctive and robust properties of a feature,
making them suitable for feature description purpose. SIFT is shown to be
very robust to many image transformations. However, it is not robust to
changing background and object color. Changing background and object
color are commonly encountered in object class recognition tasks. Both of
these two transformations occur along the contour of an object or an object’s
part where the color on either or both sides changes. These are the places
where commonly used feature detectors, such as Harris-Laplacian Detector
[25] and DOG Extrema Detector [22], frequently sample. According to our
preliminary test, SIFT is robust to a small degree of these transformations.
This indicates that both the gradient orientations and gradient magnitudes
are robust to a small change due to the thresholding and normalization pro-
cess of SIFT. However, as the change becomes larger, the gradient orienta-
tions of the sample points along the contour may flip. This causes significant
changes in the features’ orientation histograms, leading to a great drop in
the matching performance.

3.2.1 Orientation Assignment

Our algorithm takes the output of SIFT as the input. From the keypoint de-
tection and orientation assignment result of SIFT, we recalculate the gradient
orientation θ(x, y) of each image sample point of the following equation:

θ(x, y) = tan−1 |L(x, y + 1)− L(x, y − 1)

L(x + 1, y)− L(x− 1, y)
|

m2(x, y) =(L(x + 1, y)− L(x− 1, y))2+

(L(x, y + 1)− L(x, y − 1))2

(3.1)

Since we take the absolute value on the fraction of pixel intensity difference,
θ(x, y) covers only 180◦ range of orientations. As flipping of gradient orien-
tations does not affect the values of θ(x, y), it is insensitive to the change
in background and object color. On the other hand, gradient magnitude
m(x, y) is calculated in the same way as SIFT.

CHAPTER 3. SHAPE-SIFT 39

3.2.2 Canonical Orientation Determination

After each image sample point is assigned to a new gradient orientation, an
18-bin orientation histogram covering 180◦ is created at each keypoint. Sam-
ple points around the keypoint are added to the histogram according to their
θ(x, y). Similar to SIFT, peak orientation bin in the orientation histogram
is taken as the canonical orientation of the keypoint. However, due to our
new definition of the gradient orientation, the peak orientation covers 180◦

range of orientations. Thus, we cannot simply base on the peak orientation
when determining the canonical orientation of that keypoint. We propose
the following approaches to solve this problem.
Approach 1 - Duplication
The simplest method to tackle this problem is to create another keypoint hav-
ing the same position but with different canonical orientations. The canonical
orientations of the two keypoints will be θp and 180◦+ θp, respectively. Since
every keypoint is duplicated, the number of features stored in the database
is doubled. This approach solves the problem without lowering the matching
performance but it significantly increases the storage requirement, which is
not desirable.
Approach 2 - By the distribution of peak orientation
Canonical orientations can be determined using an orientation dependent sta-
tistical value over the feature region, as long as the statistical value responds
to the two candidate canonical orientations (θp and 180◦+θp) differently, and
the value is invariant to common image transformations. We propose to use
the distribution of peak orientations around the keypoint as the statistical
value. The calculation of this value is based on the concept behind the first
image moment. First, the coordinates of the descriptor and the gradient
orientations of the sample points are rotated by either θp or 180◦ + θp. Then
the feature region is divided into two halves, region A and B. The amount
of peak orientations in region A, MassA and that in region B, MassB, are
computed by the following equations:

MassS =
∑

x,y∈S

[w(x, y)×mp(x, y)] where S ∈ {A,B}

where mp(x, y) is the gradient magnitudes of the peak orientations and
w(x, y) is the weighting function for the gradient magnitudes. The canonical
orientation is then determined by the following rules: (1) If MassA > k ×
MassB, then the canonical orientation is θp, (2) else if MassB > k×MassA,
then it is 180◦ + θp. (3) Otherwise, duplicate the keypoint such that each
keypoint takes one of the two candidate canonical orientations. If MassA

and MassB are too close to each other, a significant transformation in fea-
ture may come up with a totally different canonical orientation, leading to

CHAPTER 3. SHAPE-SIFT 40

different feature representations and incorrect matching results. Thus, the
difference between MassA and MassB has to be large enough. This is en-
sured by an empirical threshold k. There are many different ways to divide
and weight the region, four of which show good performance in experiment:
(1) Right-Left Halving Scheme divides the feature region vertically around
the center. Each 16× 16 feature region is divided into 4 x 4 subregions. The
weight of each subregion is represented by the weighting function w(x, y) of
the magnitude mp(x, y) of the peak orientation. The weighting function of
this scheme and the two schemes below are shown in Fig.3.1. As pixels near
the dividing line may easily fall into the other side and add up to its mass,
these pixels get lower weights.
(2) Diagonal Halving Scheme divides the region diagonally.
(3) Up-Down Halving Scheme divides the region horizontally.
(4) We further suggest Hybrid Halving Scheme which combines the above
three schemes. The MassA and MassB of this scheme is defined as the
multiple of the masses of the above three schemes, MassA and MassB re-
spectively. The hybrid scheme can further boosts the filtering performance.

(a) A Coloring (b) B Coloring (c) Common contour

(d) R-L Halving (e) Diagonal Halving (f) U-D Halving

Figure 3.1: (a-c) A simple illustration of different coloring to image gradient
orientations. (d-e) Different halving and weighting schemes. The shaded
halve is region A while the unshaded halve is region B.

To evaluate the performance of these halving schemes and to find the best
threshold k for each of them, we conduct assessment by two ratios, filtering
ratio and matching ratio:

FilteringRatio = 1− # duplicated features

Original # features

MatchingRatio =
correctly matched features

Max. # correctly matched features

where the “max. # correctly matched features” is the maximum overall

CHAPTER 3. SHAPE-SIFT 41

halving schemes in many different choices of the threshold k. We prefer both
the filtering ratio and the matching ratio to be close to 1. That is, fewer
features are to be duplicated and most determined canonical orientations are
stable. Fig.3.2 shows the result used to examine the the effect of varying the
threshold k to filtering and matching ratios. The assessment is performed
on data sets from VGG 1 that capture common image transformations. As
indicated in Fig.3.2, diagonal halving scheme has a higher filtering ratio at
any threshold k which achieves nearly the best matching ratio at k = 1.3.
Thus, we adopt the diagonal halving and weighting scheme in creating SSIFT
descriptor.

Figure 3.2: Find the best halving scheme and threshold k.

3.2.3 Separation and Reintegration of Shape and Color

After canonical orientation is determined, the coordinates of the descriptor
and the gradient orientation of each sample point are rotated according to
the canonical orientation. Then, 4-bin orientation histograms [22] covering
180◦ are built. We call the descriptor built from these histograms SSIFT-64.
Since our descriptor is more invariant to change in background and object
color than SIFT, it is inevitably a bit less distinctive than SIFT in some
cases. To compensate the drop in distinctiveness, another 4-bin orientation
histogram that captures the coloring information are built in each subregion
and is appended to the descriptor. A matching mechanism is designed to
retain the performance of our descriptor on changing background and object
color while boosting the performance on other cases. These 4-bin orientation
histograms contain north, east, south and west orientation bins, covering 360◦

range of orientations. The gradient orientation θ(x, y)of each sample point
covers the 360◦ range of orientations and is calculated by Equation (3.1)

1http://www.robots.ox.ac.uk/ vgg/research/affine/index.html

CHAPTER 3. SHAPE-SIFT 42

without taking the absolute value before arctan. As the SSIFT descriptor
consists of 64 coloring insensitive elements and 64 coloring sensitive elements,
we call this descriptor SSIFT-128. Matching SSIFT-64 can be performed by
exhaustive searching in the database for the descriptor with the smallest
Euclidean distance ratio [22]. This is the feature matching technique we
adopted in performance evaluation. The matching mechanism for SSIFT-
128 descriptor is as follow: we find the best match match64 using the first 64
elements of SSIFT-128 and calculate the distance ratio dr64. Then we refine
the match using also the last 64 elements and calculate the distance ratio
dr128. We further compare the value of dr64 and dr128. If dr64 is smaller,
then we take the match64 as the best match of the descriptor. Otherwise,
we take match128. This matching mechanism makes the overall performance
of SSIFT-128 better than SSIFT-64, as shown in the experimental result
section.

3.3 Performance Evaluation

We evaluate the performance of our descriptor on synthetic images and real
images with background and object color changes and with different geomet-
ric and photometric transformations. Sample images of our data sets are
shown in Fig.3.3. We evaluate the performance of our local descriptor with
other descriptors on a keypoint matching problem using the same evaluation
criterion in [29, 15]. Our evaluation criterion differs from [15] in that: (1) we
measure Euclidean distance instead of overlap error when determining the
closeness of two descriptors because we do not use affine-convariant detector
in the experiments, (2) matching is determined by thresholding distance ra-
tio instead of thresholding distance with the nearest neighbors since distance
ratio criterion is shown to yield better results, (3) we do not allow a feature
to be repeatedly matched, (4) we also test the original SIFT executable pro-
vided by D. Lowe 2, (5) more than ten thousands of different features are
added as distracters. Due to the above differences, our experimental results
are different from those in [15].

Table 3.1 and Fig.3.4 show the performance of several descriptors on our
data sets. We compare the performance of different variants of our descriptor,
SIFT implemented by D. Lowe, and SIFT, GLOH and shape context imple-
mented by Mikolajczyk et al. [15]. The last three descriptors use Harris-
Laplacian detector while others use DOG extrema detector. This should
give advantages to the last three descriptors as Harris-Laplacian detector in-
dicated better repeatability in [25]. However, our results show that they do

2http://www.cs.ubc.ca/ lowe/keypoints/

CHAPTER 3. SHAPE-SIFT 43

(a) Polygons (b) PSP

(c) dragon (e) basmati

(f) bikes (g) boat (h) graf (i) leuven

Figure 3.3: Example images of the data sets that we use. (a) shows two
synthetic images that are created by changing the background color of three
colored polygons. They are used to evaluate the background color change.
(b) shows a sample pair of real images with coloring difference. (c) shows
two real sample images that capture background color change. (d) shows one
original basmati box [22] and a scene containing another box with coloring
difference produced by inverting the intensity of a real image. (f-i) shows
sample images with different image transformations from VGG used in [15].

not necessarily perform better than SIFT and our descriptor in many cases.
Fig.3.4(a-c) shows that SSIFT is much more invariant to changes in back-

ground color than other descriptors. Fig.3.4(a-d) shows that SSIFT has sim-
ilar performance with the state-of-the-art descriptor, SIFT, on images with
scale, rotation, viewpoint and illumination changes. The performance curves
of SSIFT-128 always lie in between that of SIFT and SSIFT. However, the
high recall rate of SSIFT-128 on images with background’s and part’s color
changes makes it a promising scheme for the object recognition task.

CHAPTER 3. SHAPE-SIFT 44

Table 3.1: Experimental Results

Data Set Primitives PSP Dragon

Descriptor recall 1-prec. recall 1-prec. recall 1-prec.

SSIFT-128 0.58 0.55 0.29 0.95 0.89 0.35

SIFT [22] 0.16 0.87 0.00 1.00 0.83 0.38

GLOH [15] 0.11 0.92 0.05 0.99 0.53 0.73

Shape Context [15] 0.10 0.93 0.05 0.99 0.52 0.74

Data Set Basmati Bikes

Descriptor recall 1-prec. recall 1-prec.

SSIFT-128 0.34 0.88 0.88 0.52

SIFT [22] 0.00 1.00 0.90 0.47

GLOH [15] 0.00 1.00 0.70 0.52

Shape Context [15] 0.00 1.00 0.66 0.55

3.4 Conclusion

This paper introduces an alternative to SIFT to build orientation histograms
for feature descriptor. Our descriptor, SSIFT, is shown to be much more in-
variant to background and object color changes than any other descriptors
we tested in the experiments. We propose a new canonical orientation deter-
mination process to ensure a consistent representation of each feature. The
process is shown to be effective in finding a canonical orientation while keep-
ing the adverse effect to feature matching small. Currently, we are trying
an alternative way to extend SSIFT-64 to SSIFT-128. Instead of extend-
ing SSIFT-64 with more orientation histograms, we employ color histograms
which would be a better complement to SSIFT-64.

2 End of chapter.

CHAPTER 3. SHAPE-SIFT 45

(a) viewpoint change (b) rotation and scale change

(c) illumination change

Figure 3.4: (a-c) Target images have undergone the labeled transformations.
They correspond to the images in Fig.3.3(g-i).

Chapter 4

Image Retrieval System for
IND Detection

4.1 Introduction

4.1.1 Motivation

We introduce a content-based image retrieval system that is useful in iden-
tifying near-duplicate images in a database. Image near-duplicate (IND)
detection has been an important application in recent years. Because of the
widespread of the Internet, more and more people publish images on the
Web for many purposes. People may publish their own images or publish the
images bought from photo agencies. However, some people illegally copy the
images from the others without acknowledging the owners of the images. This
undeniably affects the businesses of photo publishing agencies. Since people
always manipulate the pirate images before publishing, the pirate image and
the near-duplicate images cannot simply be detected by digital watermark-
ing method. On the contrary, image matching using invariant local feature
approaches can easily tackle this problem.

Other than detecting pirate images, our IND detection system can be
used to remove duplicated result images returned from a content-based im-
age retrieval system (CBIRS). For each user’s query, only a fixed number of
images are presented to the users. If many duplicated images exist in the
presented results, the user cannot get much information from this fixed num-
ber of images. Removing duplicated images using our IND detection system
is thus a useful process in improving the quality of CBIRS.

Another possible use of IND detection system is in finding similar web
pages on the Internet. Since similar web pages usually have similar images,
one can use our IND detection system to detect similar images from two web

46

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION47

pages and use it as a cue to evaluate the similarity between the two web
pages.

4.1.2 Related Work

Different definitions in near-duplicate image exist in the academia. Yan Ke
[16] and Berrani et al. [4] define near-duplicates as images altered with com-
mon manual image manipulation process such as changing contrast, satura-
tion, resizing, cropping, framing, jpeg-compression, etc. Images of a scene
taken under different environments or camera conditions are not regarded
as near-duplicate image at all. On the other hand, Zhang [36] defines near-
duplicates as images that are close to exact duplicate but with variations due
to content changes, camera parameter changes, and digitization conditions.
Both definitions are reasonable but they are suitable for different applica-
tions. The former definition is more suitable for copyright protection and
CBIR search refinement purposes while the latter definition more is suitable
for finding similar pages purpose, for example.

Most of the previous works adopt traditional CBIR approaches in build-
ing the IND detection system. Since these approaches generally adopt global
features of image as the key to search for near-duplicates, their performances
can suffer when significant cropping, resizing or framing is applied on the
near-duplicates. Moreover, systems using global features usually lack a self-
verification process, likes the geometric verification in [16]. Thus, they tend to
have many false positives. Instead of using global features, some IND detec-
tion systems build parts-based representation of images using invariant local
features were proposed. Berrani [4] proposed a IND detection system em-
ploying local differential descriptors and approximate similarity search. Yan
Ke [16] proposed to use PCA-SIFT invariant local feature descriptors and
Locality-Sensitive Hashing (LSH). The matched features are filtered using
geometric verification such that the precision rate is significantly improved.
According to the recent performance evaluation done by Mikolajczyk et al.
[15], SIFT-based descriptors [22] outperforms the differential descriptor in im-
age matching problem. There also exists some other SIFT-based descriptors,
such as SIFT and GLOH, that are better than PCA-SIFT in term of both the
recall and precision rate. Therefore, their IND detection systems can be fur-
ther improved by using more powerful feature descriptors. Locality-sensitive
hashing has been proved [16] to be effective in finding near neighbors both
in accuracy and speed. However, the LSH algorithm employed by Yan Ke
assumes L1 (Manhattan) distance in the analysis of near neighbors which is
not as effective as L2 distance, as shown in [16].

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION48

4.1.3 Objective

We aim our IND detection system at copyright protection and CBIR search
refinement purpose. Therefore, the former definition of near-duplicates is
more suitable. That is, images with variations due to camera parameter
changes and content changes are not counted as near-duplicates. Our system
is a variant of content-based image retrieval system in which the desired
images to be retrieved are originated from a source copy which is the same
as that of the query image. Although the desired images and the query image
share the same source, they are most likely different by some common image
transformations due to the manual image manipulation process.

To make our system more practical, we chase for high recall, high pre-
cision, and high speed. To achieve this, we employ SIFT feature descriptor
which perform the best in our performance evaluation presented in Section
2.3. We would also try the SURF feature descriptor since it is shown to
have comparable performance with SIFT but has smaller number of dimen-
sions and thus it is fast to compute and search. To improve the speed of
searching, we employ locality-sensitive hashing (LSH) [6] which is a special
kind of hashing algorithm first proposed by Indyk & Motwani. It is designed
for solving the approximate/exact near neighbor search in high dimensional
Euclidean space. The implementation of this algorithm is released to public
in [1].

4.1.4 Contribution

The first contribution of this paper to IND detection is the merging of the
state-of-the-art SIFT feature descriptor with fast LSH retrieval method that
make our IND detection system accurate and practical. The second contri-
bution of this paper is the introduction of a new verification process, called
orientation verification, on the matched feature such that the recall and pre-
cision can be further improved. The third contribution of this paper is the
introduction of a new distance metric, called K-NNRatio, that integrates
K Nearest Neighbor algorithm with distance ratio. It improves the average
recall and precision rate significantly.

Although our system is targeted at IND detection, it can easily be modi-
fied to suit for other CBIR applications. The major component to be modified
is the local feature descriptor. Other parts of the system likes the feature
searching part, the matched result verification part and the image voting
part can be kept unchanged. Thus our contribution is not limited to the
IND detection application but to any CBIR application.

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION49

4.2 Database Construction

Our system consists of two main phases: the database construction phase and
database query phase. In the database construction phase, we process each
image in the image collection and extract a set of invariant local features from
it. We build the index with all the extracted features using LSH algorithm
and prepare it for the database query. In the database query phase, user
can issue a query to find the near-duplicates of the submitted query image.
From the query image, we again extract a set of invariant local features and
issue queries to the pre-built LSH hash table for each extracted feature. The
index to the hash table is the extracted feature itself. The returned results of
all query features are verified and the most probably images are determined
and are returned to the user. Detail description of the database construction
phase will be given in this section and the database query phase in the next
section, Section 4.3.

4.2.1 Image Representations

Scale-invariant feature transform (SIFT) feature descriptors are very suitable
for tackling IND detection problem. The image manipulations commonly
applied on near-duplicate images include changing illumination, contrast,
coloring, saturation, resizing, cropping, framing, affine warping, and jpeg-
compression. SIFT descriptors are invariant to all of these transformations
but they can, at same time, maintain high distinctiveness. Firstly, the de-
scriptors are normalized such that it is invariant to illumination change and
contrast. Secondly, the descriptors are built using the grayvalues of color
images and thus it is invariant to coloring and saturation. Thirdly, the de-
scriptors are computed on many different scales of each image such that there
are always some features common to two images with different scales only.
Thus the descriptors are invariant to resizing. Fourthly, the descriptors are
local in nature which means some local changes to the image, like cropping
and framing, have little adverse effect to the IND system, as long as the num-
ber of features sampled in each image is large enough. Fifthly, the descriptors
are orientation histograms over 4 × 4 sample feature regions. They are less
sensitive to significant shift in gradient positions and thus they are invariant
to affine warping. Finally, Gaussian filters of different widths are applied on
the images before SIFT descriptors operate on them. Thus the effect of the
changes in the content of compressed images due to jpeg-compression are re-
duced. Because of the above reasons, we adopt the powerful SIFT descriptor
as the image representation of each image.

Despite of these advantages, there is one strong reason why invariant

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION50

local descriptor is not desirable to practical system. The reason is the size
of local feature database is huge. Since each image can generate hundreds
of SIFT features and each feature is a 128 bytes long vector, the size of a
feature database of just thousands of images is already huge. Searching for
desired features in such database using simple exhaustive search algorithm is
not so practical since it takes too long to run. However, a recently proposed
feature indexing method, LSH, solve this problem. By building an index of
the feature database, the searching process can be performed extremely fast
with acceptable accuracy. The detail of index building is to be discussed
next.

4.2.2 Index Construction

Among many previously proposed indexing algorithms, hashing is the fastest
algorithm to lookup a database. The time complexity of database lookup of
a hashing algorithm is O(1) on average, which means a database lookup usu-
ally takes constant amount of time independent of the size of the database.
Because of this attractive feature, hashing algorithm is commonly employed
in indexing large-scale database. However, simple hashing algorithms do not
satisfy our requirements. Different from the normal use of hashing, our query
key is a high-dimensional vector of real numbers that is usually not an iden-
tical copy of any entry in the hash table. Moreover, the desired keys are not
limited to an identical copy of itself but all the entries that are close to the
query vector in Euclidean space l2. The hashing algorithms that satisfy our
requirements are a recently proposed technique called locality-sensitive hash-
ing (LSH). It is first proposed by Indyk & Motwani [14] and further improved
in [6]. Locality-sensitive hashing scheme can answer queries in sublinear time
with each near neighbor being reported with a fixed probability. What is
special with this type of hashing scheme is that it is locality-sensitive. By
locality-sensitive, it means the probability that two points share the same
hash value decrease with the distance between them. As for the hashing
scheme we employed, the distance is Euclidean distance. Since points close
to each other in Euclidean space share the same hash value, we can find the
near neighbor of the query point by checking the collided hash buckets.

Advantages

Locality-sensitive hashing compromises speed with accuracy. It only ensure
reporting every near neighbor of the query point with a certain probability.
However, it is sufficient to our system. It is because an image usually contain
at least hundreds of local features. Even if a large proportion of the near

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION51

neighbors are missed, there are always enough near neighbors reported and
contributed to voting the correct image hypothesis.

We have employed the E2LSH(Exact Euclidean LSH) package [1] to build
the LSH index of our feature database. This makes our LSH index concep-
tually different from that employed by Yan Ke [16]. The LSH algorithm
employed by Yan Ke reports c-approximate R-near neighbors problem only
while that employed by us reports exact R-near neighbors problem. The
definitions of these two types of near neighbor problems are described below:

The c-approximate R-near neighbor problem formulates that if there
exist a point p in the set of points P in the database that is at distance
at most R from the query point q (i.e., satisfying ||p − q|| ≤ R), any
point within the distance of at most cR from the query point (i.e.,
satisfying ||p− q|| ≤ cR) has to be reported.

The exact R-near neighbor problem formulates that each point p sat-
isfying ||p− q|| ≤ R has to be reported with a certain probability.

By using the exact R-near neighbor solution, we can ensure that the K nearest
neighbors of any query point are found at a certain probability. Of course,
if we demand a higher probability, the speed of the LSH algorithm will be
slower. As for our system, we can obtain high recall and precision even when
a low probability is set.

Scalability Problem

The major problem of E2LSH is scalability. Although E2LSH can answer
the query in fast speed, it stores all the data points and the R-near neighbor
data structures in the main memory. Thus, the size of the database it can
index at a time is limited by the amount of free main memory space in the
computer. If the IND detection is to be applied on a database once only in
a batch mode fashion, the author of E2LSH - Alexandr Andoni - suggests
the following approach to solve the scalability problem:

1. Divide the dataset into several parts.

2. For each of the parts, run E2LSH to build the index and run all queries
on that part.

3. Collect the results from all the parts together to create the total results
for the queries.

The hash index of each part will be created once altogether and thus there
is no significant difference in speed between creating the index for one huge

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION52

database and creating the divided databases one by one. However, to achieve
this, one would have to obtain all the queries beforehand. This is not suit-
able for online applications in which users can submit query at any time.
Nevertheless, this method is suitable for our copyright detection application.
As for the CBIR refinement application, we have to adopt other method.
Currently, to tackle this problem, we manually set the parameter of E2LSH
such that less memory is required. Moreover, we increase the swap space
of the computer so that more memory is available. This is not a complete
solution. Therefore, we are going to try a method that make our system
scalable.

Solving K-NN

The K-nearest neighbor problem can be solved using E2LSH. To find the
K-nearest neighbor, an effective method is to create several R-near neighbor
data structures with R = {R1, R2, ..., Rt}, where Rt is the threshold distance
from the query point to its near neighbor. The query can be started with
the near neighbor data structure with the smallest radius, say R1, and con-
tinue with the data structure with larger radius until K-nearest neighbors
are found. However, this method costs too much memory space to store the
data structures and is thus not desirable. Instead, we create one near neigh-
bor data structure with moderate radius only. We identify the K-nearest
neighbor according to distance between the query point and the query result
points obtained from data structure.

4.2.3 Keypoint and Image Lookup Tables

For the sake of reducing the main memory usage, we do not store the details
of the keypoints and their corresponding images in the hash table. We store
the details of keypoints and images in separate files on disk. In the keypoint
lookup table, the details of each keypoint are stored in one line in plain text
according to the following format:

Image ID x-coordinate y-coordinate Scale Orientation 45 chars

The keypoints are stored such that the indexes of keypoints in the LSH
hash table are equal to the line numbers of the corresponding keypoints.
Thus, as we retrieve a keypoint represented by a keypoint index from the
LSH hash table, we can obtain the detail of that keypoint by looking up the
line in the keypoint description file with the line number equals the keypoint
index. Since each line is of equal width of 45 characters, the memory address

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION53

of a specific line can easily be calculated by this formula: 45 ∗ index.
In the keypoint lookup table, the image associated with each keypoint is

represented by “Image ID”. The ID is actually an index to the image lookup
table. The details of each image are stored in one line in plain text according
to the following format:

Image ID # keypoints Length of File Name File Name 86 chars

4.3 Database Query

As the index is built in memory, user can issue query to the database. From
the query image, we extract out the SIFT features and submit the features
to E2LSH one by one. The keypoints that are sufficiently close to the query
keypoint in Euclidean space will be returned. However, not all returned
keypoints are regarded as the matches. They are determined by the following
matching strategies.

4.3.1 Matching Strategies

Since a query image may have several near-duplicate images in the database,
a query keypoint of the query image can have several possible correct matches.
Therefore, we should take a group of keypoints instead of a taking a single
keypoint as the candidate matches of a query keypoint. There are two com-
monly used matching strategies that are suitable for our requirements. They
are threshold based matching and K-NN matching. We have also proposed a
new matching strategies, called K-NNRatio matching, which is a non-trivial
integrate of the K-NN matching the and distance ratio matching. E2LSH
supports retrieving keypoint within a threshold radius to the query keypoint.
Thus the keypoints returned from E2LSH are already the candidate matches
under the threshold matching strategy. To identify the K nearest neighbor
of each query keypoint, we can employ the method discussed in the pre-
vious section, Section 4.2.2. The candidate matches under the K-NNRatio
matching strategy are actually the same as those under the K-NN matching
strategy, but they are additionally assigned a weight specifying its impor-
tance in deciding the matching images of the query image. For example, a
weight of two assigned to a keypoint A mean there are effectively two key-
point A in the candidate match list. A weight close to zero mean that the
keypoint is hardly regarded as a candidate match and we may just remove
it from the list of candidate matches.

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION54

Threshold Based Matching

Under the threshold based matching strategy, a query keypoint matches with
a keypoint in the database if the distance between them is below a thresh-
old R. We have adopted Euclidean distance (L2) metric for SIFT feature
descriptors in our experiment.

It is actually very hard to design a fixed threshold for this strategy. It is
because the image transformations applied on different images are variant.
However, under different transformations, the average distances between the
query points and their matches are usually different. Therefore, a threshold
suitable for certain transformation may not be suitable for the others. If we
set the threshold too tight, too few matches will be obtained. We may not be
able to determine the matching images based on a small amount of candidate
matches and thus the recall rate will be low. On the contrary, if we set
the threshold too loose, too many matches will be obtained. The matching
images will be seem like being chosen by random and thus the precision
rate will be low. To overcome these problems, we can set the threshold to
a large value and rely on the orientation verification and RANSAC affine
transformation verification processes to filter out, hopefully, all of the false
matches. However, certainly, this will significantly reduce the speed of the
system and not all false matches can be removed by these two processes if
the original amount of false matches are numerous.

K-NN Matching

Under the K-NN matching strategy, a query keypoint Q matches with a
keypoint KA in the database if KA is among one of the K nearest neighbors
of Q and if the distance between them is below a threshold. With this
approach a query keypoint has up to K matches. The threshold should be
set large enough such that keypoints under serious image transformations are
still within the threshold radii from the query keypoints such that it is highly
probably that no correct matches are missed before choosing the nearest K.

The value K is, again, a fixed value. Since the content of database is vari-
ant, we actually cannot tell how many matches exist for each query keypoint.
Certainly, we can tell how many matches exist in performance evaluation, but
we cannot do so when our system is deployed to public use. As K is set much
lower than the actual number of correct matches, not all matches of a query
points may be included and this makes the recall rate low. On the contrary,
as K is set far higher than the actual number of correct matches, many false
matches are included and this makes the precision rate low.

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION55

K-NNRatio Matching

Under the above strategies, all keypoints within a threshold radius of a query
points or among the K nearest neighbors are counted as the matches regard-
less of the inter-distances between those keypoints. To the extreme, for
instance, there may exist a case in which ten keypoints are located within
the threshold radius of a query keypoint. One of them are very close to the
query keypoint and all the other are actually very far away from the query
keypoint. Even if all the ten keypoints are probably the matches but the
nearest one is certainly the probably a correct match while the others are
probably false matches.

To solve the above problem and to soften the adverse effect of a fixed
value of threshold and K in the above matching strategies, we introduce a
new matching strategy called K-NNRatio matching. Under the K-NNRatio
matching strategy, a query keypoint Q matches with a keypoint KA in the
database if the distance ratio between KA and the next nearest neighbor
KB is high enough, and if KA is among the nearest K and the distance
between KA and Q is below a threshold. Under this definition, we can say
the K-NNRatio matching strategy is an extension of the above strategy. We
further integrate it with the nearest neighbor distance ratio employed in
SIFT [22]. The requirement that the distance ratio between KA and KB

has to be high enough seems ambiguous. We say so because there is no
hard threshold on the distance ratio that the keypoint has to reach to be a
candidate match. Instead, a weight is assigned to each keypoint. A keypoint
with high weighting means that the keypoint is more important in the image
voting process because we have larger confidence that this keypoint is a
correct match. The weight assignment follow the following two principles:

1. If a keypoint is nearer to the query point, it is probably the correct
match and its weight should be higher. Otherwise, the weight should
be lower.

2. If a keypoint has large distance ratio to its next nearest neighbor, no
other match seems like the correct match and its weight should be
higher. Otherwise, the weight should be lower.

Our motivation to incorporate distance ratio into the weight for deter-
mining candidate matches is that, distance ratio matching strategy has been
shown [15] to perform better than threshold based and nearest neighbor
matching strategy in term of recall and precision. However, distance ratio is
designed to be used in determining a single match only. To extend it for de-
termining multiple matches, we process each of the K nearest neighbors and

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION56

compute the corresponding distance ratio as if there are no nearer neighbors
to the query keypoint.

To satisfy the above requirements, the weight of a keypoint is formulated
as follow:

Weight(KA) = (
a

k(KA)
)b × (

dist(KB, Q)

dist(KA, Q)
)c (4.1)

where a, b, and c are the real numbers to be empirically determined. dist(K,Q)
is the Euclidean distance between keypoint K and keypoint Q. k(KA) is the
rank number of KA among the K nearest neighbors. That is, if keypoint
KA is the nearest neighbor of Q, then k(KA) is 1. If keypoint KB is the
second nearest neighbor, then k(KB) is 2, and so on. The weight of a key-
point depends on the rank number of the keypoint in the K nearest neighbor
and also the distance ratio. Thus we cannot say how large should be the
distance ratio such that it has higher weight. It depends on its rank num-
ber in the K nearest neighbor. The term (a

k(KA)
)b is designed to satisfy the

first requirement while the term (dist(KB ,Q)
dist(KA,Q)

)c is designed to satisfy the second
requirement. To balance the influence of these two terms, we introduce the
parameters a, b, and c. We will discuss the choice of these values in the
performance evaluation section.

To implement this matching strategy, we first query E2LSH and obtain
the K nearest neighbors of the query point. For each of the nearest neighbors,
we calculate the weight taking the first nearest neighbor and the second one
into calculation. When calculating the weight of the second one, we take the
second nearest neighbor and the third one into calculation.

There are several immediate advantages under this matching strategy.
Firstly, the nearest neighbor do not always gain high weight. It will not
have high weight if it is far from the query point. Secondly, a keypoint with
higher rank number can still gain high weight if it is far away from all the
other neighbors with higher rank number. Thirdly, the K nearest neighbors
do not get the same weight and thus they have different voting power during
image voting. If there are only two possible matches for a query keypoint,
ideally only two keypoints will get high weights and all the others will get
lower weights. This softens the adverse effect of the fixed value of K and the
threshold.

4.3.2 Verification Processes

After the candidate matches for each query keypoint were selected, they are
first sorted by their image IDs. Recall that each keypoint owns a keypoint
index in the LSH hash table. Using this keypoint index as a key, we lookup

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION57

the keypoint lookup table for the line of the keypoint’s detail. From that line,
we can obtain an image ID that uniquely identifying the image from which
the keypoint is extracted. By sorting the candidate matches by their image
IDs, the keypoints extracted from the same images are brought together.
We then group the keypoints extracted from the same image together. The
keypoints in each group are then filtered based on their geometric relationship
between each other so as to reduce the number of probable false matches. We
filter each group through two verification processes: orientation verification
and affine geometric verification using RANSAC.

These two processes can only filter certain percentage of false matches.
Therefore, we should not flood the inputs of these two processes with a large
number of candidate matches of each image and totally rely on these two
processes to filter out the large number of false matches. In other words, we
should not set the threshold too large when using threshold based matching
or set the K too large when using other matching strategies. This is to say,
the matching strategy of our system is an important part of the system and
is not substitutable.

These two processes are applicable for many applications of our system
including the IND detection but not applications like generic object recog-
nition and image class retrieval. This is because in these two applications,
the scenes or objects inside a query image and a database image are not the
same but belong to the same image category only. The geometrical transfor-
mation of the matching keypoint pairs over the image pair is neither affine
transformation nor perspective transformation, but a transformation with se-
mantic meaning, for instance, a transformation of a rectangle changing from
thin and tall one to a fat and short one. It is possible to model this kind
of transformation, but it is not easy. For those applications in which the
geometrical transformation of the matching keypoint pairs can be modeled
by affine transformation, these two verification processes will work perfectly.

The affine geometric verification process was adopted by Yan Ke [16] in
building his IND detection system. However, we observed that the orienta-
tion of keypoints are not verified in his system. Thus, we propose a verifi-
cation process that can work together with the affine geometric verification
process to further remove probable false matches.

Orientation Verification

The orientation of a keypoint refers to the canonical orientation of the key-
point. It is determined by the image gradients of pixels in both x and y
directions within the feature region. For detail, please see Section 2.3.1. Un-
der most of the image manipulation processes, the orientation of a keypoint

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION58

will change in similar amplitude as those of any other keypoints in the same
image. Therefore, the difference of in orientation between each of the query
keypoint and database keypoint pair should be more or less the same.

The orientation verification process of our system makes use of the con-
sistency of this difference to remove the probable false matches and retain
only the largest set of candidate matches that have consistent differences for
each group.

Here are the steps of the orientation verification process for each group
of candidate keypoint matches:

1. Input a group of keypoint matches.

2. For each candidate keypoint match, obtain the orientations of the query
keypoint and the database keypoint through the keypoint lookup table
using their indexes in the hash table as the indexes to the lookup table.

3. For each candidate keypoint match, subtract the orientation of the
query keypoint from that of the database keypoint to obtain the differ-
ence in orientation. The range of the difference is [−360◦, 360◦].

4. Fit the difference of each match into the range of [0◦, 360◦] by adding
360◦ to it if it is negative.

5. Divide the range of difference into 36 bins, each with 10◦ width. Map
the difference of each keypoint to one of the 36 bins and add the key-
point match pair into that bin.

6. Slide a moving window of the width 3 bins over the 36 bins. Slide for
1 bin each time for 36 times and wrap the window around at the end.

7. Find the maximum window which is the moving window having the
maximum number of match pairs inside its 3 bins.

8. Replace the list of candidate keypoint matches of the current group
with the list of matches existing in the 3 bins of the maximum window.

With this verification process, the number of false matches are signifi-
cantly reduced. This can be reflected by the recall and precision rate of the
system.

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION59

Affine Geometric Verification using RANSAC

The affine transformation between two images can be modeled by the follow-
ing equation:

Ax = b

a00 a01 a02

a10 a11 a12

0 0 1

x0

y0

1

 =

u0

v0

1

where x are the homogenous coordinates of a keypoint in the query image,
b are the homogenous coordinates of the matched keypoint in the database
image, and A is the transformation matrix with six unknowns. To compute
the transformation matrix, we need 3 keypoint match pairs. With the 3
keypoint match pairs (x0,b0), (x1,b1) and (x2,b2), we can compute the
matrix A by solving the following linear equation:

x0 y0 1 0 0 0

x1 y1 1 0 0 0

x2 y2 1 0 0 0

0 0 0 x0 y0 1

0 0 0 x1 y1 1

0 0 0 x2 y2 1

a00

a01

a02

a10

a11

a12

=

u0

u1

u2

v0

v1

v2

Since the large matrix on the left is a square matrix, we can find the least
square solution of the above linear equation by multiplying the inverse of
that matrix with the vector on the other side:

a00

a01

a02

a10

a11

a12

=

x0 y0 1 0 0 0

x1 y1 1 0 0 0

x2 y2 1 0 0 0

0 0 0 x0 y0 1

0 0 0 x1 y1 1

0 0 0 x2 y2 1

−1

u0

u1

u2

v0

v1

v2

In our implementation, we have employed the LU decomposition function and
backward substitution function in the Numerical Recipes in C++ package
[30] to compute inverse of matrix.

With the matrix A, we can affine warp every query keypoint with ho-
mogenous coordinates x from the query image to the database image by
multiplying the the 3× 3 matrix A with vector x.

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION60

We adopt RANdom SAmple Consensus (RANSAC) [9] to eliminate prob-
able false matches in the group of candidate matches. Here are the steps of
affine geometric verification for each group of candidate keypoint matches:

1. Check if there are at least 3 pairs of keypoint matches, remove the
whole group from the list of candidate matches and finish the process
if it is false.

2. Randomly pick three keypoint match pairs.

3. Calculate the affine transformation matrix based on these three match
pairs only.

4. For all the other keypoint matches, map the query keypoint onto the
database image and calculate the Euclidean distance between the mapped
coordinates and the coordinates of the database keypoint. Compute
the support of the current transformation by counting the number of
matches with the distance smaller than a preset threshold, say 10.

5. Loop the above steps for a number of times, say ten times. Find the
transformation that receives the greatest support.

6. Replace the list of candidate keypoint matches of the current group
with the list of matches that support the transformation with greatest
support.

This verification process further improves the recall and precision rate of
our system.

4.3.3 Image Voting

After the verification processes, a large percentage of false matches should
have been removed. However, there usually still remain a number of groups
of candidate matches. Each group represents a different database image that
may be the match of the query image. To determine which is more likely the
correct match, we compare the support of that group which is defined as the
number of orientation and affine transformation verified candidate matches
inside that group. The larger the support, the greater the probability that
the corresponding image is a near-duplicate of the query image. Under the
threshold based and K-NN matching strategy, we sort the groups by their
supports in descending order and remove those that have supports fewer than
the minimum support which is 5. The top N(=10) groups are returned to the

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION61

user and counted as a match during performance evaluation. Under the K-
NNRatio matching strategy, not only the “quantity” of a group but also the
“quality” is used to rank the groups. We first calculate the weight of a group
which is defined by the summation of all the weights of the keypoint matches
in that group. We then sort the groups by their weights in descending order
instead of simply by their supports. This makes the more probable keypoint
matches contribute more to the image voting process than those less probable
matches. Similarly, those groups that have weights smaller than the 5 are
discarded and the top 10 groups are returned to the user.

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION62

4.4 Performance Evaluation

We have done a number of experiments to show that our proposed approaches
do improve the performance of the whole system and that our system is ef-
fective. We followed [16] to use 150 images as the query images and the
transformed versions of the query images as the database images in the image
database. The images we used are downloaded from [7]. They are photog-
raphy in many different themes. For each image, 8 different transformations
are applied to produce 8 different database images. The transformations
include the followings:

1. Three cropping transformations done by cropping the query image by
50%, 70%, and 90% respectively. All cropped images are resized back
to original size.

2. Three shearing transformations done by applying an affine warp along
the x axis by 5◦, 10◦, and 15◦ respectively.

3. Two contrast changing transformations done by increasing contrast by
3× and decreasing it by 3× respectively.

Since each query image produce 8 transformed versions, there are all to-
gether 1200 database images. Before building an index, we extract keypoints
from each image. Each image contains hundreds of keypoints. Thus, the
keypoint database contains 1 million of keypoints.

The k, m and L parameter in E2LSH is set to be 26, 28, and 50 respec-
tively. All of our experiments use a Intel P4 3.2GHz machine with 2GB of
memory running on Fedora Core 3 (Linux Kernel 2.6).

4.4.1 Evaluation Metrics

The performance of our system is evaluated using Receiver Operating Char-
acteristic (ROC). We define a correct match as a match between a query im-
age and one of its transformed versions in the database. Any other matches
are false matches. The recall and precision rate are defined as follows:

recall =
number of correct matches

total number of correct matches

precision =
number of correct matches

total number of matches

Intuitively, we want both recall and precision rate to be high.

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION63

4.4.2 Results

Preliminary Comparison on the Three Matching Strategies

In the this experiment, we compare the performance of our system with
different matching strategies by make one query using the query image shown
in 4.1. The eight transformed versions are also shown in 4.1.

The setting of each matching strategy is summarized in the table 4.1.
The performance comparison is shown in the table 4.2. From table 4.2,
we can see that query to system using threshold based matching give zero
correct match. It is because there are numerous candidate keypoint matches
lie within the threshold R. The image voting seems like a randomized result
and thus no correct match result. As for the proposed K-NNRatio matching
strategy, it gives one more correct match than K-NN matching strategy. That
correctly matched image is the 50%-cropped version of the query image which
is difficult to match correctly. There should have a few keypoints voting this
image. However, under the proposed K-NNRatio matching strategy, the
influence of a few keypoints can be large in image voting. This contributes
to the higher recall rate of the K-NNRatio matching.

(a) Query Image

(b) Crop 50%

(c) Crop 70%

(d) Crop 90%

(e) shear 5 pixels

(f) shear 10 pixels

(g) shear 15 pixels

(h) +3× contrast

(i) −3× contrast

Figure 4.1: The Query Image and its eight transformed versions

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION64

Matching strategies Settings

Threshold based R = 350

K-NN R = 350, K = 10

K-NNRatio R = 350, K = 10, a = b = c = 1

Table 4.1: Table summarizes the experiment’s settings.

Matching strategies b c d e f g h i

Threshold based 0 0 0 0 0 0 0 0

K-NN 0 0 0 67 57 75 17 68

K-NNRatio 10 0 0 41 7 164 10 65

Table 4.2: Table summarizes the results of query under each matching strat-
egy without using any verification process. If any of the images (b) - (i)
are among the top 10 during the image voting step, this table will show the
support / weight of that image in the column that represents that image and
in the row that represents the matching strategy in use.

Result of Orientation Verification

In the this experiment, we evaluate the performance of the orientation ver-
ification process. We query the database using the 150 query images (a)
with orientation verification only, (b) with affine geometric verification only,
and (c) with both verifications. The total number of possible matches is
150× 8 = 1200. The experiment setting is presented in table 4.3.

The results are summarized in the table 4.4. As seen from the table, the
orientation verification contributes to further improve the recall and precision
rate.

Parameter Name Value

Matching strategy K-NN matching strategy

R 350

K 10

Table 4.3: Experiment setting.

Determine a, b, and c parameter of K-NNRatio

To determine the a, b, and c parameter of K-NNRatio matching strategy, we
compare the performance of our system under different choice of a, b, c, and

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION65

Verification # correct matches # false matches recall precision

(a) 975 471 81% 67%

(b) 1001 430 83% 70%

(c) 1011 301 84% 77%

Table 4.4: Table summarizing the # correct matches, # false matches, recall,
and precision rate.

other system parameters listed in the table 4.5.

Parameter Name Value

Matching strategy K-NNRatio matching strategy

Verification Both

R 350

K 10 - 40

N 10 - 40

a 2 - 10

b 0.11 - 1.00

c 1.00 - 8.30

Table 4.5: Experiment setting. Note that the value N limits the maximum
number of images being voted and returned to the user.

Part of the experimental result is shown in table 4.6. This is the part
that shows the best setting of the system. The best a, b, and c parameter
as determined by our experiment are 4, 0.2, and 4 respectively. The best
recall and precision rate are 87% and 85% respectively. Comparing these
results with that performed using K-NN matching strategy, we can see that
the recall and precision rate is increased by 3% and 8% respectively. As seen
from table 4.6, by using K-NNRatio matching, our system can perform 99%
precision rate with just a bit lower recall rate, 84%, which is still higher than
that of K-NN matching.

Running Time

The speed of E2LSH is fast. To query 100 keypoints in a 1 millions keypoint
database, the query takes only 10 seconds to finish. The only problem is that
its memory requirement is large and thus it causes the scalability problem
discussed before.

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION66

N a b c #correct #false recall precision

10 4 1 8.3 933 570 0.78 0.62

10 4 1 4 1041 459 0.87 0.69

10 4 1 2.6 1037 456 0.86 0.69

10 4 1 2 1031 454 0.86 0.69

10 4 1 1.6 1029 449 0.86 0.7

10 4 1 1.3 1029 445 0.86 0.7

10 4 1 1.1 1029 440 0.86 0.7

10 4 1 1 1024 443 0.85 0.7

10 4 0.33 8.3 944 539 0.79 0.64

10 4 0.33 4 1041 205 0.87 0.84

10 4 0.33 2.6 1031 71 0.86 0.94

10 4 0.33 2 1024 33 0.85 0.97

10 4 0.33 1.6 1021 26 0.85 0.98

10 4 0.33 1.3 1017 15 0.85 0.99

10 4 0.33 1.1 1017 14 0.85 0.99

10 4 0.33 1 1015 10 0.85 0.99

10 4 0.2 8.3 950 528 0.79 0.64

10 4 0.2 4 1040 177 0.87 0.85

10 4 0.2 2.6 1027 66 0.86 0.94

10 4 0.2 2 1022 31 0.85 0.97

10 4 0.2 1.6 1017 28 0.85 0.97

10 4 0.2 1.3 1016 19 0.85 0.98

10 4 0.2 1.1 1018 16 0.85 0.98

10 4 0.2 1 1015 18 0.85 0.98

10 4 0.14 8.3 949 527 0.79 0.64

10 4 0.14 4 1039 176 0.87 0.86

10 4 0.14 2.6 1027 67 0.86 0.94

10 4 0.14 2 1022 40 0.85 0.96

10 4 0.14 1.6 1018 27 0.85 0.97

10 4 0.14 1.3 1016 21 0.85 0.98

10 4 0.14 1.1 1013 21 0.84 0.98

10 4 0.14 1 1015 13 0.85 0.99

10 4 0.11 8.3 949 528 0.79 0.64

10 4 0.11 4 1037 192 0.86 0.84

10 4 0.11 2.6 1027 76 0.86 0.93

Table 4.6: A portion of the performance evaluation result using different
setting of value.

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION67

4.4.3 Conclusion

We have demonstrated our IND detection system is effective in detecting
near-duplicate images in a large database with high recall and precision rate.
The proposed K-NNRatio matching strategy has been shown to be better
than K-NN matching strategy in terms of system’s recall rate and precision
rate. The proposed orientation verification scheme is also shown to be ef-
fective in removing probable false matches and this is also reflected in the
system’s recall rate and precision rate.

2 End of chapter.

Chapter 5

Future Work

5.1 Dataset for IND Detection

Currently we evaluate the performance of our IND detection system using
a dataset different from that adopted by Yan Ke [16]. To facilitate the
performance comparison between our systems, we intend to follow Yan Ke
to run our system on the MM270K dataset released in [27] in the near future.

Moreover, we have adopted only 8 out of the 50 transformations used
by Yan Ke. Although the eight transformations we are using are the most
challenging eight with respect to the degree of distortion applied on the trans-
formed images, it is still meaningful to apply the remaining transformations
to the query image so that we can make direct comparison with the others.

5.2 Remove Duplicates in Retrieved Images

IND detection is useful in removing duplicated images from the result of a
query to a content-based image retrieval system. Since repeated results are
meaningless to the user, IND detection can help increasing the amount of
information delivered to the user in a limited number of displayed images.
We will try making such application in the near future.

5.3 Incorporation of Global Features

With the proposed K-NNRatio matching strategy, our IND detection system
can perform very high precision rate. This means that our system can accu-
rately remove the false matches and return only the correct matches to user.
With this advantage, we can consider returning the result from matching

68

CHAPTER 5. FUTURE WORK 69

global features when there are fewer than 10 images being voted to be the
correct images. This help improving the recall rate of our system.

2 End of chapter.

Chapter 6

Conclusion

In this paper, we have discussed several recent research work on invariant
local grayvalue features. We have evaluated the performance of several pop-
ular feature descriptors and found that SIFT feature descriptor remains the
best comparing with other descriptors in the experiment. We have intro-
duced our newly proposed feature descriptor, SSIFT, which extends SIFT
feature descriptor to invariant to the change in background and object color.
We have evaluated the performance of our descriptor with SIFT and shown
that our descriptor does better in the cases that changes in background and
object color occur. We have introduced the implementation of our image re-
trieval system which is designed to remove near-duplicate images from a set
of images. The system is efficient due to the integration of powerful feature
detector, descriptor, matching scheme, the new matching strategy and the
new verification process. In the last chapter, we have discussed some ways
to further improve our system and extend it to other applications.

2 End of chapter.

70

Bibliography

[1] A. Andoni. http://web.mit.edu/andoni/www/LSH/index.html.

[2] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features.
In Proceedings of the ninth European Conference on Computer Vision,
May 2006.

[3] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recog-
nition using shape contexts. PAMI, page 509, 2002.

[4] S.-A. Berrani, L. Amsaleg, and P. Gros. Robust content-based image
searches for copyright protection. In MMDB ’03: Proceedings of the
1st ACM international workshop on Multimedia databases, pages 70–77,
New York, NY, USA, 2003. ACM Press.

[5] M. Brown, R. Szeliski, and S. Winder. Multi-image matching using
multi-scale oriented patches. pages I: 510–517, 2005.

[6] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In SCG ’04: Proceedings
of the twentieth annual symposium on Computational geometry, pages
253–262, New York, NY, USA, 2004. ACM Press.

[7] DPChallenge. http://www.dpchallenge.com/.

[8] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by
unsupervised scale-invariant learning. CVPR, 2003.

[9] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography. Commun. ACM, 24(6):381–395, 1981.

[10] D. A. Forsyth and J. Ponce. Computer Vision A Modern Approach.
Pearson Education International, 2003.

[11] B. Funt, K. Barnard, and L. Martin. Is machine colour constancy good
enough? page I:445, 1998.

71

BIBLIOGRAPHY 72

[12] B. Funt and G. Finlayson. Color constant color indexing. 17(5):522–529,
May 1995.

[13] C. Harris and M. Stephens. A combined corner and edge detector. In
Alvey88, pages 147–152, 1988.

[14] P. Indyk and R. Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In STOC ’98: Proceedings of the
thirtieth annual ACM symposium on Theory of computing, pages 604–
613, New York, NY, USA, 1998. ACM Press.

[15] C. S. K. Mikolajczyk. A performance evaluation of local descriptors.
PAMI, 27:1615–1630, 2005.

[16] Y. Ke, R. Sukthankar, and L. Huston. An efficient parts-based near-
duplicate and sub-image retrieval system. In MULTIMEDIA ’04: Pro-
ceedings of the 12th annual ACM international conference on Multime-
dia, pages 869–876, New York, NY, USA, 2004. ACM Press.

[17] S. Lazebnik, C. Schmid, and J. Ponce. A sparse texture representation
using affine-invariant regions. In CVPR, pages II:319–324, 2003.

[18] W. Li and E. Salari. Successive elimination algorithm for motion esti-
mation. ieee transactions on image processing, 4(1):105 – 107, january
1995.

[19] H. Ling and D. Jacobs. Deformation invariant image matching. In
ICCV, pages II: 1466–1473, 2005.

[20] H. Ling and K. Okada. Diffusion distance for histogram comparison. In
CVPR06, 2006.

[21] D. G. Lowe. Object recognition from local scale-invariant features. In
ICCV, pages 1150–1157, 1999.

[22] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 60(2):91–110, 2004.

[23] K. Mikolajczyk, B. Leibe, and B. Schiele. Multiple object class detection
with a generative model. In CVPR, pages I:26–36, 2006.

[24] K. Mikolajczyk and C. Schmid. A performance evaluation of local de-
scriptors. IEEE Trans. Pattern Anal. Mach. Intell., 27.

[25] K. Mikolajczyk and C. Schmid. Indexing based on scale invariant inter-
est points. In ICCV, pages 525–531, 2001.

BIBLIOGRAPHY 73

[26] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, and L. V. Gool. A comparison of affine
region detectors. IJCV, 65(1-2), 2005.

[27] MM270K. http://www.cs.cmu.edu/∼yke/retrieval/.

[28] R. Nelson, editor. 3-D Recognition Via 2-Stage Associative Memory.
Univ. of Rochester, 1995.

[29] Y. K. Rahul. Pca-sift: A more distinctive representation for local image
descriptors. In CVPR, pages 511–517, 2004.

[30] N. Recipes. http://www.numerical-recipes.com/.

[31] C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval.
PAMI, 19(5):530–535, May 1997.

[32] S. Smith and J. Brady. Susan: A new approach to low-level image-
processing. IJCV, 23(1):45–78, May 1997.

[33] M. Swain and D. Ballard. Indexing via color histograms. In DARPA90,
pages 623–630, 1990.

[34] J. van de Weijer, T. Gevers, and A. Bagdanov. Boosting color saliency
in image feature detection. 28(1):150–156, January 2006.

[35] J. van de Weijer and C. Schmid. Coloring local feature extraction. In
ECCV2006, 2006.

[36] D.-Q. Zhang and S.-F. Chang. Detecting image near-duplicate by
stochastic attributed relational graph matching with learning. In MUL-
TIMEDIA ’04: Proceedings of the 12th annual ACM international con-
ference on Multimedia, pages 877–884, New York, NY, USA, 2004. ACM
Press.

