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Abstract

Video over Internet is pervasive nowadays. Since downloading and
browsing through the whole video file is time consuming, video sum-
marization techniques, which aim at providing a way for the user to
grasp the major content of the video without viewing the whole video,
has received more and more attention. In this paper we propose a
novel method for moving video skimming generation that combines
video structure analysis and graph optimization. First, we segment
the video into video shots, build up the video structure, determine the
scene boundaries; Second, we figure out the target skimming length
for each video scene according to its length and complexity; Finally,
we model each video scene into a graph then select the final video
skimming shots by doing optimization in that graph. Experimental
results show that our approach preserves the scene level structure of
the original video and ensures balanced coverage of the original video
content.
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1 Introduction

With the rapid growth of network bandwidth and high-capacity storage de-
vices, videos have become pervasive nowadays. However, the abundance of
video data gives rise to a new challenge: since it is time-consuming to down-
load and browse most parts of a video before we know the video contents, it
is difficult to find out a video file that we want from the vast video reposi-
tories. Moreover, in some cases in which we do not have enough bandwidth
to stream all the original video, e.g, some wireless hand-hold devices using
MMS (Multimedia message services), a digest version of the video is needed
to meet the limited bandwidth. Therefore, in order to help the user to grasp
the essence of the video quickly, video summarization has received more and
more attention.

Video summarization is a short summary of the content of a longer video
document. Specifically, it is a condensed sequence of still or moving images
representing a video in such a way that the user is provided with concise
presentation of the video content. There are two different kinds of video
summarizations:

1. Still-image Storyboard– The still-image representation is composed
of a collection of salient images extracted or synthesized from the un-
derlying video source. For example, some MMS service provides video
summarization services to the users by delivering still-image storyboard
accompanied with audio track.

2. Moving-image Skimming– The moving-image representation, also
called video skimming, is made up of a set of video clips. Movie trailer
is a good example for moving-image skimming.

To generate a perfect video summary requires good understanding of the
video semantic content. However, understanding the semantic content of
the video is still far beyond the capability of today’s intelligent systems,
despite the significant advances in computer vision, image understanding,
and pattern recognition algorithms. So, we can only rely on some low-level
features to generate video summaries.

From the user’s point of view, a video summary with good quality should
have the following attributes:

1. Conciseness–For dynamic video skimming, the length of the final
skimming should not exceed the given target length Lvs; For static
story board, there should not be too many images else the user may
get distorted.
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2. Comprehensive coverage–To ensure the generated video summary
is informative, both the visual diversity and temporal distribution of
the original video should be covered;

3. Visual coherence–For moving video skimming, jumpy feel is mainly
caused by too frequent scene change. A coherent video skimming is for
sure more preferable to the user.

In this paper we describe a novel two-stage video summary generation method
that combines video structure analysis and graph optimization. Both the
moving and static video summaries will be generated. We first segment the
original video into video shots, analyze its structure and determine the scene
boundaries, calculate the distribution of the video skimming quota according
to the video scene importance, then we model the whole video shot set as
a directional graph then select several video shots from the original shot set
by doing optimization on that graph. Experiments show that our method is
able to meet the three objectives. Fig. shows the flowchart of our approach.

The paper is organized like follows: In section 2 we review some related
work done in video summarization field in recent years. In section 3 we
describe our method to analyze the video structure and determine the target
skim length of each video scene. In section 4 we will describe our two-stage
video summary generation problem, give our solution and algorithms to it.
In section 5 we show our experiment results and make some discussion. In
section 6 we make conclusion and discuss our future work.
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2 Literature Review

In these years many work was done on video summarization. For video
skimming generation, in the VAbstract system [1], key movie segments are
selected to form a movie trailer. The Informedia system at CMU first gener-
ates caption text from the audio stream of the video by speech recognition,
then selects the video segments according to the occurrence of important
keywords in the video sequence [2]. However, selecting video shots solely by
the occurrence of keywords cannot ensure that the video summary will cover
the main idea of the original video. The CueVideo system from IBM pro-
vides faster playback speed when playing long, static video scenes and slower
speed for short, dynamic video scenes [3]. Although the playback time has
been reduced but the temporal property of the original video is distorted,
which may mislead the users.

Later works employ some perceptional important feature to generate
video skimmings. In [4], a user attention curve is constructed to simulate
the user’s attention toward visual, audio, linguistic contents in the video,
and a moving video skimming and a static image presentation is created ac-
cording to the maximum points of the user attention curve. In our previous

VS paper, each considered feature(human face, caption text, gunshot, fire
color) is assigned a weight score and the video segments that maximize the
summation of the weight score is regarded as the final video skimming. To
increase the visual coherence of the video skimming, an refinement process is
conducted to merge the short segments. However, the method does not con-
sider the video structure, and temporal coverage. [5] proposed to generate a
video summary with least information redundancy. In [6] the authors defines
an utility function for each video shot, then propose a utility maximization
framework to generate video skims. In [7], the video shots are modelled into
a graph then the video structure was attained by graph partitioning. Then
a video skimming is generated based on the detected structure. In broad-
casted sports video, highlight detection and extraction have been achieved in
basketball videos [8] and baseball videos [9]. Highlight detection is highly de-
pendent on domain-specific knowledge, and it is not a general solution. The
methods listed above are either domain-specific or focus on only features,
but neglect the coverage of the whole content of the video.

For still-image-based static summary, many key frame extraction meth-
ods also have been proposed in these years. Most of the early work selects
key frame images by random or uniform sampling, like the MiniVideo sys-
tems [10]. Later work tends to extract key frame images by adapting to
the dynamic video content. According to the applied features, we can cat-
egorize the methods into color-based approach like [11, 12], motion-based
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approach like pixel-based image difference [13], optical flow [14], and mosaic-
based approach [15]. In [16] and [17], the authors made video segmentation
and analyzed the video structure to get a tree-structured Video-Table-Of-
Contents(V-TOC). In [18], the authors proposed an importance measure for
each selected frame, and a frame packing algorithm to adjust the shown im-
age size of each selected key frame according to its importance. Still image
story boards can be constructed faster but their descriptive ability is limited
for they cannot convey the temporal and in many cases the audio information
of the original video is not preserved.

Edited video has its intrinsic structures. In [16], the authors build a V-
TOC(Video Table Of Contents) to describe the structure of video, [19] build
a scene transition graph to describe the story line in the video. [7] uses a
graph partitioning approach to group the visually similar video shots then
determine the scene boundaries.

A still-image summarization does not convey any temporal properties of
the video, while the moving-image summarization, may make more senses
and more attractive to the user. In this paper we mainly focus on generating
moving image skimmings, although we also generates a static video summary.
In this paper we propose a two stage video skimming generation method that
combines the video structure analysis and graph based optimization. Given
the target video skimming length, we first determine the scene boundaries in
the original video, then we determine each scene’s skim length according to
their length and complexity. Our approach preserves the scene-level structure
of the video and can ensure the balanced content coverage.
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3 Video structure analysis

Edited video has its intrinsic structures. From bottom to up, the video can
be decomposed into video shots, each of them is a coherent image sequence
captured uninterruptedly by a single camera. Temporally adjacent similar
shots form a video shot group, while the video scene is composed by inter-
secting video shot groups or a series of continuously visually different video
shots.

A video narrates a story like a article does. A video contains several video
scenes, each of them depicts an event like a paragraph does in the article. A
video scene is composed by a series of semantically related video shots. A
video shot’s role is like the sentence in the articles.

In this section we will describe how we analyze the video structure then
use it to help us to determine each scene’s target skim length. We build up
the video structure in a bottom-up manner. First we decompose the video
into continuous video shots, then we group visually similar and temporal
adjacent video shots into video shot groups, then based on the video shot
groups we can construct video scenes, so that a three layered video structure
is constructed.

3.1 Terms and definitions

Here we give definition for some terms we use in this section. We followed
the terms in [16].

1. Video shot: A video shot shi is a video segment uninterruptedly
captured by a camera. It is the building block of edited videos. The
length lshi

of video shot shi is the number of image frames it contains.

2. Key frame: The visual content of a video shot can be represented by
its key frames. We use the first frame kfbegini

and last frame kfendi
of

the video shot shi as its key frames.

3. Video shot group A video shot group Sgi is composed by visually
similar and temporally adjacent video shots. The length of a video shot
group lsgi

is the summation of all video shots contained in the video
shot group. The length lsgi

of video shot group sgi is the summation
of the video shot length that it contains.

4. Video scene: A video scene is the intermediate entity between video
shot groups and the whole video. It is composed by several intersect-
ing video shot groups or a series of temporally successive but visually
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different video shots. A video scene describe an event, or depict the
transfer between events. The length lsci

of video scene shi is also the
summation of the video shot length that it contains.

5. Video: The video contains all elements above.

3.2 Video shot boundary detection

Since the video shot is composed of relatively coherent images, we can use
some metrics to measure the similarity between consequent image pairs then
by some threshold method we can detect the interrupt changes, thus we can
detect the cut occurrences.

To measure the similarity of two images, traditional methods use the
frame difference, and color histogram. Frame difference is easy and quick to
compute, but visually similar images may have a movement so that directly
computed frame difference is very sensitive to camera motion. To overcome
this we may search a proper offset to compensate the motion, which will
be quite time consuming. Another metric is the color histogram. Since the
color histogram is derived from the statistic of the original image, it can only
describe the composition of the image but does not contain any information
about how the image looks, this may lead to some mis-detections. Regional
color histogram is also sensitive to camera motion.

To find a efficient and accurate method to detect video shot boundaries,
we extract a video slice image [?] from the original video then detect cuts
by analyze the video slice image. A video slice image is a spacial sampling
of the video over the temporal axis, it can be generated by cutting through
the video from one position, e.g the center horizontal line of a frame, the
diagonal line of a frame, etc. An example of the video slice image by cutting
through the center horizontal line is shown in Fig 1:

We can choose whatever fixed line on the video image to generate a video
slice. But now we choose the center horizontal line of the image to generate
the video slice. This is because when a video is recorded, the camera normally
moves in the horizontal plane, and the horizontal panning happens more
frequently than the vertical panning. Another reason is that the camera
operator normally places the interesting object in the center of the camera
view. So a slice generated by the center horizontal line is good enough for
video segmentation.

With the slice image generated, we can measure the similarity of the con-
sequent video images by measuring the similarity of the columns in the slice
image. The measure we use to measure the similarity between consequent
pixel rows is minimum pixel difference.
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Figure 1: A video slice

Suppose pixel row ri and ri+1 contain n pixels, the minimum difference
between the ith row and the i + 1th row is computed like follows:

Dmin(i) =
m

min
x=−m

(
n∑

j=1

(|ri(j) − ri+1((j + x) mod n)|))

. We move the consequent image columns while computing the difference of
the two columns, and get the least value of the difference. The reason we use
an offset x up to m is for horizontal motion compensation. The computed
least difference is shown in Fig 1.

From the calculated difference function we can see that under normal
situation without intense motion, the minimum difference seems to be good
for shot cut detection, for with a global thresholding we can find those cut
points. There will be a sudden jump in the feature function, with the width
is exact equal to 1. But when there is a intense motion or luminance change
like the flash of cameras, the curve goes worse like shown in Fig. 2

In this cases, performing global thresholding on the calculated difference
function will get poor results with the presence of noises caused by motion
and luminance change.
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Figure 2: Flash effect

The shot cut point we want should have two properties: first, it is a
local sudden jump; second, since the two video shots are coherent, the width
of the jump should be only 1. Based on these properties we devise the
following window-based order ratio filtering to gain robustness under noisy
circumstance:

ifDi > threshold1

D′
i =

Di

maxw
j=−w,j 6=0(Di+j)

, w is the half width of the window, and threshold1 is a prior threshold for
possible video cuts.

By applying this filtering, the transformed function D′(i) in those parts
where the difference function is lower than threshold1 will be 0, in most
parts, if there is not a local maximum, the value will be less than 1; for those
local maximum, the transformed value will be more than 1. By dividing the
“second largest value” in the window, the flash effect, which often causes
a sudden jump with the width 2, will be mostly suppressed. Those noise
caused by intense motion will also get filtered by this method. After that,
by applying a global threshold greater than 1, say 1.5, we will find most of
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the video cuts, and filter out most of the noises. Example of the effects of
this filtering is shown in Fig. 3:

Figure 3: Refined least difference

After applying a global threshold on the transformed difference function,
we can easily find the video cuts.

We tried the above window-based order filtering on several movie video
segments and news video segment and get the following results shown in
Table 1:

Table 1: Video cut detection for Movie clip
Video type Ground truth Detected F. D. M. D. Right Per.

Movie 166 157 0 9 94.6
News 40 39 1 1 95
Movie 138 137 2 3 97.8

3.3 Constructing the video structure

The reason we use the shot-group-scene structure is that it is the sequence
with which the edited video are build. The editor of the video place different
video shots to form a video story, while we decompose the video then recover
this structures.
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With the video shots detected, we can continue building up the video shot
groups and video scenes from the video shots we detected from the source
video. A video shot group is composed by visually similar and temporal
adjacent video shots. A video scene is composed by several related video
shot groups, and then we can get the V-TOC (Video Table Of Contents)
of the video, which is a hierarchy tree structure. An example of V-TOC is
shown in Fig. 4.

Key Frames


Video Shots


Video Groups


Video Scenes


Video


Time


����� ��������� �� �
Group 1


Group 2


Group 3
 Group 4


Group 5


Group 6


�
Figure 4: V-TOC tree structure

For building the video groups, we use the H-S histogram correlation be-
tween video shot key frames to measure the visual similarity between video
shots, and we use the distance of center frames to measure the temporal
distance between video shots. There is two requirements that one shot can
be put into one shot group: First, the visual similarity between the video
shot and the video shot group should be big enough; Second, the temporal
distance between the video shot and the video shot group should be close
enough. We use the similarity between the most similar video shot in the
current video shot group and the current shot as the visual similarity be-
tween video shot and a video shot group, also, we use the distance between
the nearest video shot in the video shot group and the current video shot as
the distance between video shot groups and a video shot.

To build up video shot groups, we use the window sweeping algorithm
described in [16], shown as Algorithm 1.

After we have determined the boundaries of the video shot groups, by
finding the intersection between video shot groups, we can find the boundaries
of video scenes. The algorithm for finding scenes from the group boundaries
are omitted here.
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Algorithm 1 Video shot group formation algorithm
Input: A set of video shots S = {sh1...shn}, the visual similarity threshold tv,
the temporal distance threshold tt.
Output: Output: A series of video groups G = {Sg1...Sgm}.
BEGIN
Add a video shot sh1 to g1, add g1 to G;
for each shx in S do

for each gy in G do

Calculate similarity(gy, shx)
end for

Find Vmax(gm, shx) = miny similarity(gy, shx);
if Vmin(gm, shx) < tv then

if dT (gm, shx) < tt then

Add shx to gm

else

Add a new group gnew to G, assign shx to gnew.
end if

else

Add a new group gnew to G, assign shx to gnew.
end if

end for

END

3.4 Video scene styles

After the video groups are constructed, intersected video shot groups forms
the video scenes. Video scenes can be classified into two types: loop scenes,
which is composed by several intersected video shot groups; progressive
scenes, which is composed by a series of different video shots. The loop scenes
are mostly used to describe some events or situation, while the progressive
scenes are often used to describe the transition between events. Example of
this two kinds of scenes are shown in Fig 5. According to their different We
will treat them differently in our video skimming generation.

3.5 Video scene skimming length calculation

Since we want the video skimming to balanced cover the contents of the
source video, we should the distribute the video skimming according to the
detected video structure. On the other hand, since the target skim length
might be much shorter than the original video, we need to find the ”key
parts” of the video and discard some trivial parts. From a narrative point
of view, a longer and more complex video scene might be more important.
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Figure 5: Loop and progressive scenes

We now distribute the total skimming length into video scenes in a top-down
level, then we select the video shots by graph optimization in the video shot
level.

At the video scene level, intuitively, the more complex the video scene
is, the longer should its skimming be. Also, the longer a scene is, the longer
should its skimming be. We then distribute the total video skim length to
each video scene.

Since the progressive scene is just a linear structure, we simply use its
length to measure its importance.

For a loop video scene which is composed of several video groups, we use
the content entropy to describe the complexity of a video scene, defined as
follows:

Entropy(Sci) =
∑

Sgj∈Sci

−
lSgj

lSci

log2(
lSgj

lSci

)

The more complex the video scenes is, the higher will its entropy be. The
complexity of a video scene also conveys the video editor’s intention: he will
place more video shots on those more important parts. Thus the longer and
more complex video scenes should more skim length assigned to it.

Given the target video skimming length lvs and the length of the video
Lv, the skim ratio rs is thus Lvs

Lv
. We determine the skim length Sl of each

video scene in the video like follows:

1. For each progressive scene Scx, Slx = lScx
× rs. If Sx is less than preset

threshold t1, we discard this progressive scene for too short skim does
not make any sense to people.

2. Suppose after the first round, the left skim length is L′
vs, for the loop

scenes {Sc1...Scn}, Sli = L′
vs×

Entropy(Sci)×lSci∑
j Entropy(Scj)×lScj

. In a similar manner,

we discard Sci if Sli is less than preset threshold t2.
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3. For the remain loop scenes {Sc′1...Sc′m}, we set Sli = L′
vs×

Entropy(Sci)×lSci∑
j Entropy(Scj)×lScj

.

The above algorithm scatters the whole skim length to each scene, and,
those more important scenes are better preferred. We discard those scenes
whose skim length are too short to ensure the understandability of the key
parts of the video. This mechanism ensures that the final video skimming is
informative to the user.

After we have determined the target length of each of the video scenes,
we can continue selecting video shots from each scene then form a video
skimming.
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4 Graph based video summarization

Video skimming with good quality should be able to comprehensively cover
both the visual diversity and temporal distribution of the original video. At
the same time, the length of the video skimming must not be too long. To
generate a video skimming of the video that satisfies the above attributes,
we need to discard some video shots while those remains compose the video
skimming. Now that we have determined each scene’s skim length, according
to their duration and complexity. In this section, we will describe the way
we model the video shot set into a spatial-temporal graph and find the video
skimming shots by performing optimization on that graph.

4.1 Graph modelling

Given a set of video shots S = {shi...shn}, we use the first frame fibegin
and

the last frame fiend
of the shot shi as the key frames to represent the visual

content of the video shot. We use the correlation of H-S histogram between
key frames to measure the visual similarity just as we do the video shot
grouping, defined as follows:

Definition 4.1 The visual similarity between video shots can be other any

functions that can describe the similarity between video shots. Here we define

our visual similarity function as:

V isualSim(shi, shj) = max
x,y

HistCorr(fix , fjy
),

where x, y ∈ {begin, end}, and HistCorr(ii, ij) is the H-S histogram correla-

tion between image ii and ij.

Definition 4.2 The temporal distance between video shots is defined as the

temporal distance between their center frames, in terms of frame number:

dT (shi, shj) = |
fiend

− fibegin

2
−

fjend
− fjbegin

2
|

Then we can combine the visual(spatial) similarity and temporal distance
together into a spatial temporal dissimilarity function:

Definition 4.3 The spatial temporal dissimilarity function between two video

shots is defined as:

Dis(shi, shj) = 1 − V isualSim(shi, shj) × e−k×dT (shi,shj),

where k is the parameter controls the slope of the exponential function, in

terms of frame number.
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From the definition of our spatial-temporal dissimilarity function we can
see that it changes linearly with the video shot visual similarity, but expo-
nentially with the temporal distance between corresponding video shots so
that it has counted both the visual similarity and temporal distribution.

Based on the spatial-temporal dissimilarity function we can construct a
spatial-temporal relation graph for a set of video shots.

Definition 4.4 The spatial-temporal relation graph G(V,E) is a graph de-

fined on a video shot set Ssh = {sh1, ....shn} such that:

1. G(V,E) is a complete graph.

2. Each vertex vi in the vertex set V is corresponding to a video shot shi

in Ssh and vise versa. On each vi there is a weight wi which is equal to

the length of video shot shi.

3. On each edge eij, there is a edge weight ewij which is equal to the

spatial-temporal dissimilarity function between video shot shi and shj.

The direction of edge eij is from the earlier shot to the later video shot.

Thus G is acyclic.

The spatial-temporal relation graph can be viewed as a special case of
tournament graph. It can be viewed as a acyclic tournament, and there is a
vertex weight on each vertex.

An example of a spatial-temporal relation graph on 5 video shots is shown
in Fig. 6.

v2(52) v3(40) v4(20)

e12(3) e23(1) e34(3)

e13(2) e24(9)

e14(5)

v5(20)

e15(6)

e35(1)

e25(2)

v1(20)
e45(4)

Shot 2Shot 1 Shot 3 Shot 4 Shot 5

Figure 6: Spatial temporal dissimilarity graph on 5 shots

4.2 Graph optimization

Definition 4.5 For a path pi = {vi1 ...vin}, the vertex weight summation of

pi is defined as:

V WS(pi) =
∑

k

wik ,
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vik ∈ {vi1 ...vin} which is the summation of the lengths of all video shots on

the path pi.

Since we want the video skimming to cover both the visual contents and
the temporal distribution of the video scene, we can search for a longest path
in the spatial-temporal relation graph and use the video shots corresponding
to its vertexes as the video skimming, under the constraint that the summa-
tion of the vertex weights is equal to Lvsi

. Note that the length of a path
pi is the summation of the dissimilarity function between consecutive video
shot pairs.

Based on the graph definition, we now give the definition of our video
skimming problem as:

Problem 4.1 Given a set of video shots Ssh = {sh1...shn} the spatial-

temporal graph G(V,E) built on Ssh and the target video skimming length Lvs,

search the path ps = {vs1
...vsn

}such that it satisfies the constraint V WS(ps) =
Lvs and maximizes Length(ps).

We can use the video shots corresponding to the vertexes in ps as the video
skimming.

Note that now the problem is a kind of resource allocation problem. The
resource we have is Lvs, we can allocate them to several vertexes in the graph,
and what we gain is the length of the path. At the same time, we want the
resources wasted (not allocated) to be minimized.

However, due to that the summation of video shots are not continuous,
we may not be able to get the vertex summation exactly equal to the Lvs we
want. So here we need to consider two factors: First, we want to maximize
the length of the path; second, we want the vertex weight summation on that
path to be as close as possible to the target Lvs. To solve this problem, we
change the original problem to the following two problems that deals with
both the length of the path and the vertex weight summation:

In the first modification, we employ a tolerance threshold threshold then
modify the original vertex weight summation constraint to |V WS(ps)−Lvs| <

threshold, then we search the path ps that maximizes Length(ps) under this
new constraint. In case that no path whose vertex weight summation satisfies
the constraint, we loose the constraint by using a larger threshold value then
search again.

Problem 4.2 Given a set of video shots Ssh = {sh1...shn}, the spatial-

temporal graph G(V,E) built on Ssh and the target video skimming length

Lvs, search the path ps = {vs1
...vsn

} such that it satisfies the constraint

|V WS(ps)−Lvs| < threshold and maximizes the object function Length(ps).
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This modification finds the longest path in the given interval, however,
it has a defect that it cannot guarantee that it will find a solution in the
interval (if there is indeed no solution in the interval), and in this case we
may have to search again in a bigger interval. To overcome this potential
inefficiency, we make the second modification as shown below:

In the second modification, we modify the original objective function into
fobj(ps, Lvs) = Length(ps)−w×|V WS(ps)−Lvs|, by optimizing this function
with proper w value we can find a path satisfiable to both the path length
and the vertex summation constraint. The defect in the first modification is
overcame: this modification will definitely find a solution.

Problem 4.3 Given a set of video shots Ssh = {sh1...shn}, the spatial-

temporal graph G(V,E) built on Ssh, the target video skimming length Lvs

and the parameter w, search the path ps = {vs1
...vsn

} such that it maximizes

the object function fobj(ps, Lvs) = Length(ps) − w × (V WS(ps) − Lvs), and

V WS(ps) ≤ Lvs.

4.3 Solutions and algorithms

Problem 4.2 and 4.3 are resource allocation problems on graph. The resource
we have is the skimming length; we allocate the skim length to vertexes in the
spatial-temporal graph and we hope to magnify the object function gained
by selecting these vertexes. Brute force searching is feasible but inefficient;
however, both the problems have an optimal substructure [20] and can be
solved with dynamic programming, shown as follows.

Suppose the number of video shots in the spatial-temporal graph is Nsh.
A path pi

x = {vx, ...} is a path begins with vertex vx, index by i. Let Lremain

be the left vertex weight summation that we want to allocate to the vertexes
on path pi

x, and let po
x be such a optimal path begin with vertex vx, which

means fobj(p
o
x, Lremain) = maxi fobj(pix , Lremain). Then we have the following

recursive optimal substructure for the object function problem 4.2:

1. fobj(p
o
x, Lremain) = maxNsh

t=ix+1(fobj(p
o
t , Lremain−Length(vt))+Dis(vix , vt)×

τ(Lremain, j)), for 0 < x < n.

Here τ(Lremain, j) = 0 if Lremain − lshj
< 0,

otherwise τ(Lremain, j) = 1

2. fobj(p
o
n, Lremain) = 0 for all Lremain < threshold;

fobj(p
o
n, Lremain) = −penalty for Lremain ≥ threshold; This is for ensur-

ing that |V WS(po
0) − Lvs| < threshold.
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Algorithm 2 Dynamic programming algorithm for problem 4.2
Input: The candidate shot set Sin = {sh1....shn}, and the shot pairwise dissim-
ilarity function Dis(shi, shj);
Output: The maximum of the dissimilarity summation function value
LongestLength and all optimal sub-solutions Lopt[currentshot][RemainedSize].
BEGIN
Set Lopt[i][j] = 0 for all i,j;
for RemainedSize = threshold to Lvs do

Lopt[LastShot][RemainedSize] = −penalty;
end for

for ShotId = ShotNum to 0 do

for RemainedSize = 0 to Lvs do

opt = −infinity;
for NextId = ShotId + 1 to ShotNum do

if Length(NextId) < RemainedSize then

if opt < Lopt[NextId][RemainedSize − Length(NextId)] +
Dis(NextId, ShotId) then

opt = Lopt[NextId][RemainedSize − Length(NextId)] +
Dis(NextId, ShotId);

end if

end if

end for

Lopt[ShotId][RemainedSize] = opt;
end for

end for

LongestLength = Lopt[0][Lvs];
END

With this optimal substructure we can devise the following dynamic pro-
gramming algorithm to solve problem 4.2.

The algorithm generates the calculate the length of the optimal path
and all optimal sub-solutions. Then we can easily trace back and find the
global optimal path, which is corresponding to the skimming shots of the
scene. The trace back algorithm is omitted here. In case there are multiple
global optimal pathes, the trace back algorithm will also find all of them.
We concatenate the skimmings of each video scene then get the whole video
skimming.

For problem 4.3, we can see that there is also a optimal substructure lies
in this problem, although it is a bit different from the previous one.

1. fobj(p
o
n, Lremain) = lshn

− Lvs, for all Lremain ≤ Lvs;

2. fobj(p
o
i , Lremain) = maxn

j=i+1[Dis(shi, shj) +
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fobj(p
o
j , Lremain − lshj

) + lshi
] × τ(Lremain, j).

Here τ(Lremain, j) = 0 if Lremain − lshj
< 0,

otherwise τ(Lremain, j) = 1

The algorithm for 4.3 is similar to the algorithm for problem 4.2. We
only need to change the objective function in Algorithm 1. However, this
algorithm can ensure that it will find the optimal solution in one turn. The
trace back procedure for problem 4.3 is is also similar to that for problem
4.2.

In both algorithms, the skim shots generated by the dynamic program-
ming algorithm might be a little shorter than the target skim length. f after
the dynamic programming, we still select some image frames from the origi-
nal video scene to fill that length.

The time complexity of both dynamic programming algorithm is O(n2 ×
Lvs), while the space complexity is O(n × Lvs). For normal video scenes, n

and Lvs will not be too large so this algorithms are quite efficient.
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5 Experiments

To test the performance of our video summarization method, we implemented
the dynamic programming algorithm and applied them to several video clips.
We employed a PC platform with 2.0G hz P4 CPU on the Win2000 OS. In
our experiments, we choose all the video shots with one or more features
in its duration as candidate video shots. The threshold parameter t1, t2 we
set during scene skim length calculation are set to 3 seconds and 4 seconds
respectively. The exponent slope control parameter k is set to 400. We use
problem 4.3 to model the problem to select video shots from a scene. The
selected video clips are from movies, sitcom videos and cartoons described in
Table 2. An example for a scene’s key frames (shown as video shot groups)
and the summarized scene key frames are shown in Fig. 7.

Figure 7: Summarized scene key frames

As our approach is based on video shots, we can use the key frames of the
selected video shots to form a static video summary. An example is shown
in Fig. 8. From Fig 8 we can see that the content coverage of our video
skimming is quite good.

Since currently there is no objective way to evaluate the quality of the
generated video skimming, we devise the following subjective way to evaluate
our video summarization approach. We invited several people to view the
skimming for several test videos then answer several questions about the
contents of the videos. Ten people were invited as test users to watch the
video skimming generated with two compress rates. Suppose there are N
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Figure 8: Static video summary

key event scenes in the video, we use the question “What?” to ask the test
users to tell how many key events they can perceive by watching the video
skimming. Thus we can calculate the score for “What?” question by dividing
the event number that the users can find with N . Similarly, question “Who?”
deals with the key actors the test users can find in the video skim. All scores
are scaled to 10.

Table 2 shows the numerical results for the user test. From the table
we conclude that the video skimmings still make good sense to people with

Video Clip Length Key events Key actors Rate What? Who?

Movie1 503 sec. 4 7
0.15 8.05 7.78
0.30 9.50 9.07

Movie2 1230 sec. 7 8
0.15 7.50 8.33
0.30 9.82 9.63

Sitcom1 1200 sec. 6 8
0.15 7.23 7.67
0.30 8.68 8.62

Cartoon1 930 sec. 5 9
0.15 8.09 7.14
0.30 9.38 8.21

Table 2: User test results
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a compression rate at 0.15. The users agree that they can grasp the main
line of the story by watching the video skimming. Also, we can see that by
selecting coherent video shots, we can guarantee the coherence of the video.
The user also agree that the generated video skim doesn’t look quite jumpy.

6 Conclusion and future work

Video summarization is an important tool for efficient video browsing and
management. In this paper, we describe a new automatic approach to gener-
ate moving video skimmings. We analyze the video structure, define the com-
plexity for each video scene then determine each video scene’s skim length,
then we model each video scene into a spatial-temporal relation graph, and
summarize each scene by doing optimization in the spatial-temporal relation
graph with dynamic programming. The whole video skimming is obtained
by concatenating each scene’s sub-skimming. We implement the proposed
algorithm and obtain encouraging experimental results.

In the future, we will further investigate the structure of the video scenes
to help our skimming generation. Moreover, intra-shot compression will be
also studied to shorten the video shots’ length in order to further magnify
the content coverage.
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