String Matching Techniques for Searching:
Algorithms and Applications
Term Paper - Spring 2000

KWOK Chi Leong
clkwok@cse.cuhk.edu.hk

Supervised by
Prof. Michael Lyu

Department of Computer Science and Engineering
The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

April 19, 2000

Abstract

Searching of Information is one of the important aspect in the computer
science and varies environment, including the fast growing Internet, requires
application with effective searching technique. We’ll look into several aspect
on searching and introduce some string matching techniques and algorithms
which will be useful in varies needs of searching.

1 Introduction

Searching is a common and popular problem in the computer science area. Control
Instruction and Data are two basic components is the modern computer architec-
ture. We usually need to have difference technique to search something from large
amount of data. A lot of different kinds of information in the world, they needs an ef-
fective way to be retrieved, searching techniques is playing a main role in technology
advancement. Internet is one of the typical and new example in 1990s, information
in the Internet is growing fast in exponential rate and a effective search engine for
the internet becomes one of the hottest topic.

In general, there are some key-points in doing searching:

1

-Efficiency, searching from large usually requires a lot of time, we usually want
reduce the time in obtaining the search result. Usually efficiency plays a key role in
searching.

-Accuracy, in difference searching context, the requirement for the searching
result is difference. We want to describe what we’re going to search as precise as
possible, but there is still limitation of the expression ability of the restricted search-
ing method. In this situation, relevant result and irrelevant result may also exist.
The accuracy of searching is to describe how precise the searching method can be
for a particular form of searching.

-Precision, in any kind of searching, the first we need to do is to describe what
we're going to search. On some occasion, it’s difficult to describe in precise way,
it’s particularly on multimedia information such that everyone may have difference
perception and to describe in non-uniform way. Some searching may want to allow
some flexibility for the results that may be almost meeting the searching critiria but
not exactly.

2 Goal of Searching

2.1 Efficiency

In search of useful information, we need to look from a pool of information (database),
which can be in presumed order of sequence or unordered at all.

Searching from ordered information, we may not need to seek and inspect every
pieces of information. Shortcut of skipping some irrelevant information due to its
ordered nature.

However, it’s unlikely to have a information pool with order. Sometimes it’s not
worth to keep in particular order, and sometimes the information itself does not
have concept of order at all. In order to search from unordered pool, we usually
need to seek for each elements inside at least (and preferably at most) once. This is
the unavoidable cost of searching in the raw database.

2.2 Accuracy

Accuracy of a searching is very depends on the expressive power of the searching
criteria. In well-fitted situation, search query can be in exact and the result will be
the exact matching information. However, there is not easy to achieve. Therefore,

2

the accuracy may not be high in some application and it is always an open problem
in the searching domain.

2.3 Precision

This would be a trade off in designing a search engine depends on particular require-
ment. We may want a efficient engine that can accurately report the information
in exact with our description; we may sometimes need a search engine to gather as
much related information as possible with certain amount of error/mismatch. On
some occasion, we may discard the consideration of efficiency as main factor, and
looking for a engine that can analysis our requirement from the non-precise search-
ing criteria, and to return some accuracy results suiting our need.

We can note that the accuracy and precision of searching is usually on two ex-
tremes. One will give you exact information, but it may be irrelevant when searching
criteria is not well defined; another will give you more possibilities in a gentle way,
but it may result in too much irrelevant information mixed in your required results
still.

3 String Matching

String Matching is a special type of one-dimensional data recognition, it is a useful
technique to search for information that is in one dimension.

In discussion of string matching, we will assume that the string is composed
of sequence of characters in which each character is from a finite set of alphabets.
Without loss of generality, we further assume that the alphabet set is A-7Z with 26
elements and the sequence of characters should be in random order. With particular
application is considered, the corresponding alphabet set can be difference and the
string may have a special kind of sequence which help useful for further improvement
in particular.

Four typical string matching problem will be reviewed and discussed. They are
namely "Exact matching’, "Substring matching’, ’Scattered string matching’ and
"Corrective length estimation’.

3.1 Exact matching

Exact matching is the typical example and the most obvious example in string
matching. With a given string(S) and the target string(7'), we are going to match
S with T and to determine if they are exactly the same. Formal speaking, S is
match with T if and only if |S| = |T'| and for each character in S is equal to the
corresponding character in T' of the same position.

3.1.1 Analysis

As discussed before, in random environment, we always need to inspect the whole
sequence as least once in order to determine for a match. This would be obvious for
me to know that computation time for a exact string matching would be O(|S]).

However, if there is any mismatch in between, we need not continue the compar-
ison anymore and can determine that S and T are not matched. In this case, the
computation time will be much less the worse case situation.

3.1.2 Algorithm

ExactMatching(S,T)

1. if |S] # |T'| then return(mismatch)
2. for each i from 1 to ||

3. if S; # T; then return(mismatch)
4. return(match)

3.2 Substring matching

Usually, searching of information will usually supply only a part of the requirement
string as a sample. The part of string is called substring, which is usually called key-
word. Using the substring(.9), we’re to determineif S is substring of target string(7').

In any other words, with given string(.S), we are going to determine whether
exist a substring of text, say T”, which is a part of consecutive sequences in T', such
that S and T" are exactly matching.

3.2.1 Analysis

Using the exact string matching comparison method, we can match S with every
substring of T" with length |S|. This method is directly derived from exact string
matching. The computation time of this approach is O(|S||T).

However, substring matching is rather common and it has a lot of method to
doing this with better computation time.

3.2.2 Algorithm

In [8], it has discussed quite a lot of algorithms. The Rabin-Karp algorithm [3] is a
generalized method come with computation time O((|T'|—|S|+1)|5]). This method
is to make use of a hash function to compute the digest of string S. Using the hash
function that is suitable for fast computation in windows sliding of text 7', each
comparison of substring digest will be in atomic time O(1). It will generally linear
to |T], and for each matched digest, it will perform a exact string matching with
time |S| until an exact match is found. Therefore, it is still in O((|T| + |[S| 4+ 1)|5])

but in good average running time in practical.

In [5], it also has a topic discussing the substring matching problem. A fast
algorithm, KMP algorithm [4] is provided and discussed there. It is to make use of
a self recurring reference memory to avoid duplication of comparison and get reach
to computation time of O(|T).

3.3 Scattered string matching

The substring matching problem can also have a scattered version. This may be
very useful in an environment that error may be injected on target string and so it
will have some noisy characters inside.

In this matching, with a string(.5), we are going to determine whether S contains
in the target string(7'). That is, we are going to see whether we can have a way to
inject new characters inside S to form new string(.S”) such that 5" and T are exactly
matched.

In another words, if S is in sequence of Sy, 5s,...5s and T is in sequence of
Ty, Ty, ... |, we can going to found a sequence T}, T}, , ..., Tt|5|f07“ti < tiyrsuchthatS; =
T..

7

3.3.1 Analysis

In scattered environment, we can construct a maximum of C||§|| difference string
from T with length |S| and then to perform an exact matching with each of them.
However, the computation time for this approach will be growing very fast |S| and

7.

For this problem, automata approach will be useful for small |S|. We can con-
struct an automata for the sequence of S and to process the sequence of T' in the
automata to determine for a match.

3.3.2 Algorithm

ScatteredMatching(S,T)

1. for each ¢ from 1 to |5

2 A[i] = FALSE

3. A[0] = TRUE

4. for each j from 1 to |7

3.

6 tmp = A

7 for each 7 from 1 to |5
8. if ((S; = T;) and (tmpl[i-1] = TRUE)) then
9. Ali] = TRUE
10. else

11, Ali] = FALSE
12.

13. return(A[]S]])

3.4 Corrective length estimation

There is a given string(.5) and a target string(7), S and T may look similar but we
need to have some measurement on how close are they look alike. To make it more
precise, we will estimation the minimum morphing operation of S to 7. And each
insertion, deletion and replacement of a single character will count as one single
operation.

Insertion:
With original String S, if a character ¢ is insert before position ¢. We will obtain a

new String S’ with corrective length 1 to String S.
S" = insert(S,¢,1) while |5 = |S| + 1

Deletion:

With original String 5, if a character is deleted at position i. We will obtain a new
String S’ with corrective length 1 to String 5.
S" = delete(S,1) while |5'] = |S] -1

Replacement:

With original String S, if a character at position ¢ is replace with character ¢. We
will obtain a new String S’ with corrective length 1 to String S.

S" = replace(S, ¢,1) while |S’| = |9

3.4.1 Analysis

In the error corrective problem, we are looking for the minimum number of changes
to transform given string(.5) to the expected target(7'). One of the obvious way is
to try all possible in S so as to produce a set of string S with all possible string
with corrective length k to original string S. Corrective length would be £ if there
exist a exact matching with S; and T" and no exact matching with S, and T' for all
v < k.

So — S

Sk+1 = {0 < |Sk|,ceZ,5 < |Sk|+ 1 | insert(Sy, j, ¢), delete(Sy, 1), replace(Sk, i, ¢)}

Algorithm
oS =295
length = 0
while T' ¢ oS do

nS = insert(09,1i,c), delete(0S, 1), replace(oS, i, ¢)
oS = nS
length = length + 1

S A o

return(length)

This is only a simple idea and it’s not difficult to observe that the set oS is
growth in a very fast way and thus it is impractical to hold all the generated strings.

In fact, even for a pair of total irrelevant strings, their error length is no more
than |S|+ |T, that is to first insert all characters in 7" in order and then remove all
characters in original S.

The replacement operation, in fact, is a kind of shortcut that can combine a
insert and delete pair in same position.

We may construct a walk map from 5 to 7" with insertion operation as horizontal
and deletion operation as vertical. Diagon7al path for insertion/deletion will be there

with length 1 if insert and delete character are difference and length 0 if insert and
delete characters are the same.

3.4.2 Algorithms

Details of a efficient approach in calculating corrective length is explained in [10] as
well as [1]. The general idea is using dynamic programming approach to constraint
a fixed number of possible correction paths, each of the path is heading to the path
with direction and we’re going to find a minimum path inside.

Possible Algorithm
1. Construct the walk path map(W PM), which is a graph with |S|* |T'| vertices
and about 3 * | S| * |T'| edges.
2. From WPM, we have S as source and T as destination and we can calculate
the shortest path from S to T'in W P M using Single Source Shortest Path Algorithm
[8].

3. The correction length of the string S and 7' is the length of the shortest path.

3.4.3 Application

Spelling checker of text processor can make use of this to compare the word with
spelling mistake and suggest some correct words with least error correct length.

In field of molecular biology, the mutated DNA sequences maybe similar but
with some difference, this technique may also be used there.

Besides, although it is a one-dimension problem, but multi-dimension environ-
ment may also be mapped into a one-dimension environment with similar kind of
properties.

4 Searching Application with string matching

String matching problems itself are discussed based on text searching on alphabets.

However, many complicated searching problems in difference areas may be sim-
plified into a string matching problems model. Under process of suitable refinement
and mapping, string matching may have significant contribution to them. Details of
some research applications example is in [7] for character recognition and in [9] give
an idea for text image detection. [2] illustract an example with sound and music

8

and [6] provides more ideas about string matching.

4.1 Music Recognition

Computer music are usually in MIDI format. MIDI music is file with /it .mid as
extension storing information of each single music note. For example, the pitch and
the duration of a note, and/or the loudness and addition special effect. Each channel
of the music will have a dedicated midi instrument will play the role of notes inside
that channel.

To recognize a music, we will usually hear its melody part(or harmony part
for some people), those are mainly pitch and duration information of music notes.
Therefore, music recognition is also a kind of text based searching of a particular
piece of music pattern over a music database.

4.2 Internet Search Engine

Information of the Internet is of varies format, but they are basically text file plus
some other multimedia files such as video, music, and pictures. The Internet itself is
a huge database and each hypertext file will usually consist of a couple of keywords.
The author of the homepage provide this keywords in help of searching. Therefore,
Internet searching, in this form, is sometimes a text base (one-dimensional) search-
ing. The techniques of one-dimensional searching will usually be able to apply to the
Internet searching directly on difference requirement of searching goal and accuracy.

4.3 Extract Features of Image Database

High dimensional data such as images or pictures are usually difficult to search
in raw structure. Abstract or features of images are extracted and to be used for
searching instead. With a good understanding of the requirement and extracting
key feature, searching for image can be done in a linear way with help of string
matching techniques. This topics includes the representation and structure of the
abstraction and a suitable matching criteria that mostly suitable for the realistic
requirement.

5

Conclusions

String matching problem is a fundamental problem in identifying the similarity of
two strings, usually word in text. With difference scenario and realistic situation,
the matching can have different requirements and the difficulty to achieve the goal
will be difference. But they almost being studied and discussed during the his-

tory of time. Many common searching and recognition problem are dealing with
high dimensional data and it may sometimes be flattened into a string-liked one-
dimensional abstract. With a good understanding of the problem, the flattened
abstract can almost represent the original data. Those problems will then be able
to be solved with effective and efficient string matching techniques.

6

Future Work

1. Continue the study of difference kinds of matching techniques

2. Investigate on some matching problems with better algorithms
3. Applying the techniques on realistic application such as multimedia database or
Internet information

References

1]

Mikhail J. Atallah. Algorithms and Theory of Computation Handbook. CRC,
1999.

Jia-Lien Hsu Chih-Chin Liu and Arbee L. P. Chen. An approximate string

matching algorithm for content-based music data retrieval. 1999.

Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching
algorithms. Technical Report TR-31-81, Aiken Computation Laboratory, Har-
vard University, 1981.

J. H. Morris Knuth D. E. and V. R. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6, 1977.

UDI Manber. Introduction to algorithms. Assison-Wesley, 1989.

Jin Hwan Park and K. M. George. Parallel string matching algorithms based
on dataflow. In Proceedings of the 32rd Hawaii International Conference on
System Sciences, 1999.

Sargur N. Srihari Sung-Hyuk Cha, Yong-Chul Shin. Approximate stroke se-
quence string matching algorithm for character recognition and analysis. 1999.

Charles E. Leiserson Thomas H. Cormen and Ronald L. Rivest. Introduction

to algorithms. McGraw Hill, 1989.
10

[9] Victor Wu and Edward M. Riseman. Textfinder: An automatic system to
detect and recognize text in images. [FEE Transactions on pattern analysis
and machine intelligence, 21(11), 1999.

[10] Wen-Yen Wu and Mao-Jiun J. Wang. Two-dimensional object recognition
through two-stage string matching. IEEFE Transactions on image processing,

8(7), 1999.

11

