A Multi-Model XML (MMX) Framework
for
Digital Video Library (DVL) Systems

Master of Philosophy

Research Project Third-Semester Report

Supervisor

Professor Michael Lyu

Prepared by

Ma Chak Kei (00315340)

Department of Computer Science and Engineering

The Chinese University of Hong Kong
Abstract

Tremendous growth of the Internet population creates a large demand on new applications, and advances in Internet technologies make it feasible to develop new exciting application base on video and broadband network. One of the hottest topics nowadays is the Digital Video Library (DVL) Systems.

To model the Digital Video Library System in a multi-tier architecture, XML takes an important role in data exchange. In particular, an XML Server may serve as the indexing module for a DVL System, and there are two issues that attract major concerns: one is to represent semantic information about information (metadata), and another is to represent structural information about information. For the first issue, the Resource Description Framework (RDF) is proposed as a solution on "machine-understandable information" based on the XML syntax, and it actually catches some attention. Here, we are trying to tackle the second issue in our research: to facilitate the need of DVL System, the XML Server should be able to handle XML data consisted of different data models. We will pick the XML platform to develop a framework that is capable to manipulate data on Vector Model, Relation Model, Object Model, Tree Model, and Document Model, and we call this a Multi-Model XML Framework.

In this paper, we will descript the Multi-Model XML (MMX) Framework's model and syntax. We will introduce the Behaviors in the MMX Framework which allowing us to handle structural data in a flexible way. Then we will show the examples of different data models, and particularly focused on the Tree Model in details. Then we will evaluate the MMX Framework, and finally we will describe how the MMX Framework fits into the DVL System to create value-added features.

Contents

1Abstract

2Contents

4Chapter 1
Introduction

41.1 Background

51.2 Contribution

61.3 Related Works

61.3.1
Informedia

61.3.2
VIEW

61.4 Paper Overview

8Chapter 2
Technologies

82.1 Digital Video Library (DVL) System

102.2 XML

13Chapter 3
MMX Framework

143.1 Knowledge on knowledge

153.2 MMX Model

173.3 MMX Syntax

183.3.1
Serialization Syntax

203.3.2
Schema Syntax

223.4 MMX Behavior

223.4.1
Behavior Model and Syntax

273.4.2
Default Behaviors

28Chapter 4
The Models

294.1 Generic

294.2 Object

304.3 Vector

334.4 Relational

354.5 Document

364.6 Tree

374.6.1
Case Studies

44Chapter 5
The Impact

445.1 Significance

455.2 Automated interaction between ADOs

455.3 Not just for searching

46Chapter 6
Application in DVL

466.1 Architecture

486.2 Indexing and Query

496.3 MMX Framework in DVL

50Chapter 7
Conclusion

51References

Chapter 1 Introduction

1.1 Background

Advances in media processing technology and growth of the Internet opens up a wide range of application areas including entertainment, infotainment, education, cultural services, shopping, professional services, etc. Currently, many applications exist as infrastructure for multimedia delivery and consumption. Access to information through network is convenient. However, there is no 'big picture' to describe how these elements, either in existence or under development, relate to each other. Digital Video Library (DVL) system is the technology aimed at providing a integrated solution to this media industry. In a DVL system, users may search among a huge collection of digital video files for almost any topics and categories. Movies, MTV, news records and conferences are just a few examples of those available video archives[15].

A DVL system includes automatic processes from video creation through video delivery, and provides other additional functionality that makes it a powerful information resource. In order to separate individual processes from each other, we can adopt a multi-tier model’s view of DVL, which includes Video Server, Indexing Server, Query Server, and Client Application as the major components. This multi-tier model favors the construction of a distributed Digital Video Library over the Internet, and may provide extra capacity and availability through clustering and redundancy. To facilitate distributed DVL system over various software and hardware platforms, we have to identify, describe and manage the multimedia content with a standard schema to ensure interoperability between different developers.

The Extensible Markup Language (XML), a standard for structured documents, has quickly become the universal format for representing and exchanging information in the Internet since its birth. Owning to its open-standard, plain text format and flexible structure, it is a convenient solution for multimedia content description and for messaging in the multimedia framework. Some multimedia related standards such as SMIL, SVG, and etc. have been implemented with XML; while some others, includes MPEG-7 and MPEG-21, are being proposed to be implemented with XML too. These standards define how the media data is represented and presented; however, we will need a search engine for XML to work in collaboration with presentation components and other system components.

On the other hand, although XML have a well-defined structure to represent semi-structure data, the corresponding query model is not very well established. Based on the XML tree structure, there exists query languages like XPath and XQuery, but they are mainly general query languages that rely on the Document Object Model (DOM) structure but do not make use of knowledge on any special XML document structure. It is also common to map XML documents into traditional database models: the relational model and the object model, and perform operations similar to those used in these databases. However, this kind of mapping is database-centric, some information in the XML structure will be lost in the conversion, and we will only able to query in the way of the chosen database. Moreover, XML is indeed a semi-structured markup language, and can provide more flexibility than the highly structured database schemas. This motivates us to construct a Multi-Model XML (MMX) Framework, which allows XML data of different "models" to work as an integrated complex structure, and releases the limitation in using XML DOM-based query or database schema mapping.

1.2 Contribution

In this research, we have figure out the Multi-Model XML (MMX) Framework. The MMX Framework allows segments of XML in different data model combines to form a complex structure. This brings the benefits of both Relational Model and Object Model, which are widely used in the database domain. We have also included the Vector Model, the Tree Model and the Document Model in the MMX Framework as well. With a combination of these five Models, the MMX Framework is able to serve a large variety of applications that needs complex data storage and query model.

On the other hand, Tree Modeling in XML is rather a new idea, which is different from the Document Object Model (DOM) Tree. It is aimed at constructing various search trees in XML, embedding the necessary operation logics with the tree to allow the MMX engines manipulating the tree. We define the "Behavior" for data models, which allows flexible customization on the way to manipulating the tree. We will take several examples to illustrate how this is done.

1.3 Related Works

1.3.1 Informedia

The Informedia Digital Video Library project is a research initiative at Carnegie Mellon University funded by the NSF, DARPA, NASA and others that studies how multimedia digital libraries can be established and used. The Informedia project has pioneered new approaches for automated video and audio indexing, navigaiton, visualization, search and retrieval and embedded them in a system for use in education, information and entertainment environments. Intelligent, automatic mechanisms are being developed to populate the library. Research in the areas of speech recognition, image understanding, and natural language processing supports the automatic preparation of diverse media for full-content and knowledge based search and retrieval.
1.3.2 VIEW

The VIEW Technologies is founded by the Department of Computer Science and Engineering, Department of Information Engineering and the Department of Systems Engineering and Engineering Management at CUHK based on a government-funded Innovation and Technology Fund (ITF) and industrial sponsorship. It is aimed at developing a multilingual digital video content hub for culture exchange and commercial deployment. The proposed work will include development of automated systems and tools that will enable multilingual and multimedia information capture, search, retrieval, summarization and reuse. It is expected to create significant impacts to both local and greater China communities, especially in supporting culture and information exchange in the region.

1.4 Paper Overview

In this paper, first we will have a short introduction in Chapter 1. In Chapter 2 we will introduce some technologies related to the topic, including Digital Video Library and XML. In Chapter 3, we will look into the Multi-Model XML Framework, the model, the syntax, the behavior logics and general document manipulation under the MMX Framework. In Chapter 4, we will investigate several examples and focus particularly on the Tree Model, which provides features different from most databases or document management system, is a powerful tool to facilitate the searching requirements in the Digital Video Library. We will go through the operations in the Tree Model. After we have a short evaluation on the MMX Framework in Chapter 5, we will see how the MMX Framework can be deployed in the Digital Video Library System. Finally, in Chapter 7, we will briefly conclude our research and describe the research plan.

Chapter 2 Technologies

2.1 Digital Video Library (DVL) System

The Internet has change our world for its capability of carrying vast amount of information and allowing people to search for whatever kind of information they needed. However, there are many cases that text or picture is not effective enough to deliver the message to the users, and the best solution is to use video. However, it is not enough to simply store and play back video as in the video-on-demand services; to be most effective, we need to search through these vast data collections and retrieve the most relevant selections.

The rise of Digital Video Library[1][12] is aimed at addressing these needs: developing technologies for data storage, search, and retrieval, and embedding them in a video library system for use in education, training, sports and entertainment. The digital video library technology will allow more independent, self-motivated access to information for self-teaching and exploration, which can bring about a revolutionary improvement in the way education and training are delivered.

To establish a digital video library, initially, there are raw materials of videotapes with audio and video part. By using speech recognition and natural language processing technologies, generates a corresponding text transcript of each of the video file automatically. In addition to the generated text scripts, there may be some other information given. Composing these sub-products, the part of text indexing is completed. With the combination use of audio and image analysis techniques, the segmentation and "paragraphing" of compressed video clips can be done. The whole indexed video database is then built. The creation part of the database is offline. On the other hand, exploration and retrieval of library resources is in real-time. User makes a textual query or spoken query. The speech recognition is used in the user interface. The natural language analysis technique is used for the searching part. User can either watch the returned video segment he/she wants or store it. Here is the overview of digital video library system:

[image: image1.wmf]

[image: image2.wmf]
Figure. 1 Overview of a Digital Library System

However, video is not like pure texts or images, it is large in size and contains audio and sequence of images. It will be much more complex to handle video in computer world. Video causes unique problems because of the difficulties in representing its contents. When a page of a book is electronically scanned into raster image, the image will use a significantly greater amount of memory space than an ASCII representation of the original text. While page description languages may be more efficient, if the page contains many images, a raster image may be the only choice for representation. Video is not only imagery, but consists about 30 images per second, and detailed descriptions of video images can be many thousands of words and even a short video clip description can be massive. However, the alternative of no description leaves even the shortest video clip a black box, giving the user no way to know what is within it. The issues on creating a digital video library and utilizing and exploring the library are also challenging parts in this topic.

2.2 XML

Extensible Markup Language (XML)[30][37][38][43] is a simple, very flexible text format derived from SGML (ISO 8879) for representing structured document. It was developed by an XML Working Group (originally known as the SGML Editorial Review Board) formed under the auspices of the World Wide Web Consortium (W3C) in 1996.

Structured data includes things like spreadsheets, address books, configuration parameters, financial transactions, and technical drawings. XML is a set of rules for designing text formats to structure the data. Originally, XML is designed to meet the challenges of large-scale electronic publishing, and now it is playing an important role in the exchange of a wide variety of data on the Internet.

An XML document instance is created and stored as a set of properly nested data storage entities, each of which is made up of a number of logical elements which contain data or define processes to be performed. The outermost storage entity is referred to as the document entity: it contains both the start and the end of the root or document element of the document instance. Elements can be nested to create hierarchies, and may contain references to embedded entities. Elements can be assigned attributes which indicate how the contents of the element should be interpreted.

Each XML element starts with a named start-tag and ends with an end-tag with a matching name. Outward pointing angle brackets are used to delimit these markup tags (e.g. <title>). An end-tag is distinguished from a start-tag by having a slash immediately preceding the name (e.g. </title>). Elements that have no contents are distinguished by having a slash immediately after the name in the start-tag to indicate that the end-tag has been omitted (e.g. <image/>). Because each element of an XML document has clearly marked limits, it is easy to determine when its contents have been received over a network.

Attributes of XML elements are defined as part of its start-tag (e.g. <image title="Front view" source="entity21"/>). Each XML attribute must be fully defined, with the attribute name followed by a value indicator (=) and a quote delimited string containing the attribute value. Attributes can be assigned a default value if an attribute list declaration is associated with the formal declaration for the element in the document type declaration.

The XML 1.0 specification defines what "tags" and "attributes" are. However, XML is much more than this: it is a large family of technologies. Beyond XML 1.0, there is a growing set of modules that offer useful services to accomplish important and frequently demanded tasks. XLink describes a standard way to add hyperlinks to an XML file. XPointer provides a mechanism for pointing to parts of an XML document. CSS, the style sheet language, is applicable to XML as it is to HTML. XSL is the advanced language for expressing style sheets. It is based on XSLT, a transformation language used for rearranging, adding and deleting tags and attributes. The DOM is a standard set of function calls for manipulating XML files from a programming language. XML Schemas help developers to precisely define the structures of their own XML-based formats. There are more modules and tools available or under development, some examples are XPath, XQuery, namespace and XInclude. On the other hand, as a low-level syntax for representing structured data, XML is often used to support a wide variety of applications. The diagram below shows how XML now underpins a number of Web markup languages and applications.

[image: image3.png]Gther ROF appications.

Lol
pttorn orprvacy | B ||
Preferences. 2
Ptorn for termet | 83
Cortert Selecton | &
Mutinedia | SMIL 2

*

Scalable Vector

Graphics. SVG
ovesaane | MethML

Oocunentmarup | XHTML

Figure. 2 Technologies builded on XML
With XML, development time for applications is significantly reduced. Now it is widely adopted in various areas like Database, E-Commerce, Multimedia Presentation, Messaging, Meta-data Description, Web-services, and exceptionally used in many multi-tier systems. Not only benefits from the functionalities in XML itself, indeed, there are three major factors for the prosperous of XML, they are:

· License-free,

· Platform-independent, and

· Well technical supported

Since it is license-free, people can build their own software around it without paying anybody anything. For Platform-independent, vendors can port their applications to different platforms easily, especially when XML is used in collaboration with Java programs. Moreover, there are abundant of XML development tools exist to free developers from the routine tasks and procedures, enable them to concentrate on the application logics and design issues; the rich choice in development tools also means that developers are not tied to a single vendor anymore.

As one of the original design goals, XML is targeted to support data exchange in distributed systems[2][3]. On multi-tier systems, XML provides a perfect solution to connection the backend database, the application logic, and the client-side application through the network[5]. In many cases, it is adopted as a standard for data interchange between different organization’s legacy systems, which is particularly important in the area of electronic commerce.

In the area of Digital Library (and Digital Video Library), in order to construct a knowledge-database, we have to take care of two important issues: one is the information about information (what we called metadata) for people to do searching, and another is the information about the data structure for computer to process. For the first issue, the Resource Description Framework (RDF) is trying to provide a solution on "machine-understandable information" based on the XML syntax. For the second issue, we are going to see what we can do in the following sections: we will pick the XML platform to develop a framework that is capable to manipulate data on Vector Model, Relation Model, Object Model, Tree Model, and Document Model, and we call this framework a Multi-Model XML (MMX) Framework.

Chapter 3 MMX Framework

Generally speaking, there are two categories of XML documents: data-centric and document-centric. Data-centric documents are those use XML as a data transport, focus on the machine readability. They usually consisted of repeating fields in regular structure, and their order of sibling elements is often not important. Typical examples include sales orders, patient records, and scientific data. Document-centric documents are those in which XML is used for its SGML-like capabilities, and is often human-readable. They are characterized by their irregular structure and mixed content. Typical examples include user's manuals and web pages. Contrast with data-centric document, the physical structure of document-centric document is important in understanding its semantics. There is actually no clear-cut in these two categories; in many cases we may find a XML document that is a mixture of both.

The flexibility of XML allows it to be applied in wide range of applications, but it also leads to difficulties in building a formal description of the data structure used. From the machines’ point of view, the data structure description is necessary for validating the data and providing a processing framework[8], while from the users’ point of view, the data structure description should be assisting their work instead of limiting their creativity and imagination.

When XML is taken as a storage solution, it does possess some properties of databases system, including storage (XML documents), schemas (DTDs, XML Schema), query languages (XQuery, XPath, XQL, etc.), programming interfaces (SAX, DOM), and so on. However, when considering a storage solution for production environments, which have many users, strict data integrity requirements, and the need for good performance, most existing DBMS is far more mature than XML in terms of efficient storage, indexes, security, concurrency control, triggers, and queries across multiple documents, etc. While some of these properties depends on the implementation technology, some other are depending on the processing model we have, and searching is one of these issues.

3.1 Knowledge on knowledge

Imagine that you need to search for a book in library by the index cards or a phone number in the Yellow Pages. In fact, you are actually work with the metadata, that is, information about information. In the cases, you want to know where is a book or what is the phone number, and you search it by using metadata. In this example, we are making use of the semantic information of information, how about the structural information about information?[2][3][4][27][29]

In fact, the structural information is critical in building a "data server". For databases, even we know that all the data are in tabular form, the statistical information on data is important in optimizing the queries. Obviously, searching on XML documents by sequential search is infeasible, and indeed, meaningless. In practice, there are several common approaches to perform searching on XML documents:

· Map XML documents into Relational Model and store in RDBMS

· Map XML documents into Object Model and store in ODBMS

· Use native XML query tools based on the DOM structure such as XPath and XQuery[21]

For the first two approaches, they have the benefit of re-using the database technologies such as concurrency control and security, etc. However, they are merely an "XML Interface" for the databases, and not tailor made for XML documents. Very often, XML documents are stored in a weird manner when they are converted to fit into the database models. It may results in a lot of sparse tables, and what’s worse is those tables are not understandable by human users, unless you reconstruct the XML document from those tables. The difficulty lies on the fact that there exist data model heterogeneity between a XML schema specification and a database schema.

Nonetheless, XML is a markup language which makes use of the tagged pairs to give meanings to the text between them (i.e. the tagged text). Inferred by the design, XML document exists as tree structure. The last approach is making use of the DOM structure, and this is very common in visualizing XML documents. However, XML is indeed more than this (the first two approaches is an evidence). These kinds of lightweight query tools are more suitable to be integrated in client-side scripting language (or API) rather than as the only query model of XML Data Server.

For us, we choose another approach. We specify the structural information explicitly in order to have best utilization of data[19]. Instead of choosing amount RDBMS, ODBMS, and the simple and abstract DOM, now the author of document can specify the metadata for data structure, choose the way that the document will be indexed and queried. Since this approach allows the XML documents to be manipulated with different data models, we call this a "Multi-Model XML (MMX) Framework". With the help of appropriate authoring tools, this should not cause difficulties in document creation. In fact, it is aimed at facilitating an all-round solution for XML-based information retrieval, and the five objectives for the MMX Framework are:

· Descript the structural information of XML Document

· Adopt various operations of different data model

· Combine various data models to form hierarchical complex

· Made queries under the complex data model

· Allow exchanging of structural information in XML applications

3.2 MMX Model

DTDs or XML Schema exist to validate the structure of XML Documents. How is the MMX Framework different from them?

Although all of them are working with the "XML structure" issue[33][34], the MMX Framework is indeed doing something totally different. While DTDs or XML Schema provide the grammar for XML Documents, the MMX Framework is working on the interpretation for the structure. DTDs or XML Schema is aiming at validating the XML Documents such that applications can work on XML Documents with same DTD or XML Schema without worrying the data format is incorrect. Output of DTDs or XML Schema is only "valid" or "invalid". On the other hand, the MMX Framework defines the structural information metadata and allows applications to "understand" the structure of the XML Document based on the pre-knowledge of the data structures type. For each data structure type, we will have a set of defined operations, for example, there may be insert, update, or selection statement for the Relational Model, or there may be various kind of trees which have it’s own constraints on branching and searching.

	Applications

	MMX Framework

	DTDs / XML Schema

	XML Specification

	Text Stream

Figure. 3 Relation of MMX Framework with other XML technologies

Comparing the MMX Framework with DTDs or XML Schema, it is more abstract and higher level, presenting a functional and semantic aspect to the users instead of the document validation in DTDs or XML Schema. The above figure shows the relationship of MMX Framework and other XML technologies.

The foundation of MMX Framework is based on abstracted data structure and the encapsulation. It is consisted of various "blocks" of encapsulated data in a hierarchical relation. We call these "blocks" Abstract Data Object.

As an overview, the basic MMX Framework is consisted of:

· Abstract Data Object,

· Rules for binding Abstract Data Objects, and

· Query Model

The Abstract Data Object is an abstracted view of XML segment, which encapsulates the necessary information to manipulate the XML data. The information (i.e. the property of an Abstract Data Object) includes data model, branching factor and branching criteria, and the logic for manipulating the tree structure. However, since different data models require different parameters, the only generic parameter is the "model name". The basic ADO model consists of three entities:

· Model Name. This is a unique identifier of any specific data model.

· Properties. This includes various parameter-value pairs to describe the characteristic, attribute, or relation in the "changeable" part in different data models. Each property has a specific meaning and permitted values. And the set of parameters varies in each data model.

· Data. This is the set of data. It is represent in general XML format, and constrained by the type of data model it is associated with.

Following is a simple diagram of an Abstract Data Object(ADO):

[image: image4.emf]Abstract Data Object

Head Node

Leave Nodes

In References

Out References

Parent Node

Chile

Node

Chile

Node

Chile

Node

Out References

Figure. 4 The Abstract Data Object (ADO)

From the diagram, we can see the external relations that an Abstract Data Object may have. For the Head Node (or the root of the subtree), there will be a Parent Node, or, when the Head Node is the document root, then it is not necessary to have a Parent Node. For External References to this ADO, the pointer(XLink, XPath) is always pointing to the Head Node because the internal nodes should be hidden from outside the ADO. For outward references, it is possible to happen both on the internal nodes and at the leave nodes. For the Leave Nodes, they may contain data value, or still another subtree, representing arbitrary XML segment or another ADO. Subsequently, we can use ADO to form a hierarchical structure in order to represent more complicate relations in different models.

However, as each data model may have different fundamental logics, it is not easy to figure out a "general" model for all of them. To illustrate the framework, we are going to introduce five types of data models, including:

· Vector Model,

· Relational Model,

· Object Model,

· Tree Model, and

· Document Model

3.3 MMX Syntax

The MMX model provides an abstract, conceptual view on defining and using metadata for structural information. A concrete syntax is also needed for the purposes of creating and exchanging this metadata. This specification of MMX Framework uses the XML encoding as its interchange syntax, which is essential for integrating MMX into generic XML Document. All XML wellform-ness requirement is applied to the MMX Syntax. Text data is XML-escaped. MMX also requires the XML namespace facility to precisely associate each property with the schema that defines the property.

The syntax descriptions in this paper use the Extended Backus-Naur Form notation of XML to describe the essential MMX syntax elements. The EBNF here is condensed for human readability; in particular, the italicized "mmx" is used to represent a variable namespace prefix rather than the more precise BNF notation "'<' NSprefix ':...'". The requirement that the property and type names in end-tags exactly match the names in the corresponding start-tags is implied by the XML rules. All syntactic flexibilities of XML are also implicitly included; e.g. whitespace rules, quoting using either single quote (') or double quote ("), character escaping, case sensitivity, and language tagging.

The specification defines two XML syntaxes for encoding MMX Framework. The serialization syntax is used directly in XML documents to describe the structure. The schema syntax is used with XML Schema which separate the document data with the structural metadata. MMX interpreters are expected to implement both schema syntax and embedded syntax. Consequently, metadata authors are free to mix the two.

3.3.1 Serialization Syntax

The serialization syntax takes the form:

[1] MMX
::=
['<mmx:MMX>']ADO*['</mmx:MMX>']

[2] ADO
::=
'<mmx:ado' modelName id? '>' propertyGrp? behaviorGrp? dataGrp? '</mmx:ado>'

[3] modelName
::=
'model="' (any defined MMX Model Name) '"'

[4] id
::=
'ID="' IDSymbol '"'

[5] IDSymbol
::=
(any legal XML name symbol)

[6] propertyGrp
::=
'<mmx:property>' propertyElt* '</mmx:property>'

[7] propertyElt
::=
'<' propName '>' value '</' propName '>'

[8] propName
::=
(any defined Property Name under current model)

[9] value
::=
(any XML text, with "<", ">", and "&" escaped)

[10] behaviorGrp
::=
'<mmx:behavior>' behaviorElt* '</mmx:behavior>'

[11] behaviorElt
::=
'<' behaviorName '>' (behavior program code) '</' behaviorName '>'

[12] behaviorName
::=
(any defined Property Name under current model)

[13] dataGrp
::=
'<mmx:data>' dataElt* '</mmx:data>'

[14] dataElt
::=
(any legal XML segment)

The MMX element is a simple wrapper that marks the boundaries in an XML document between which the content is explicitly intended to be mappable into an MMX instance. The MMX element is optional if the content can be known to be MMX from the application context.

ADO contains the remaining elements that cause the creation of statements in the model instance. The ADO element is mapped to the ADO in the MMX Model to hold an instant of encapsulated data object.

ID is an optional attribute, which is a unique identifier throughout the document. This is used as a reference to the current ADO in other places of the document. This is particularly used extensively in the object data model.

The modelName is a set of name defined under the MMX Framework. Currently, valid modelName values are: generic, vector, relational, object, tree, and document. The set of valid modelName will continue to growth in include other data models.

The propertyGrp is a wrapper to group the property elements propertyElt. PropertyElt is a generic class for the properties. The properties are defined under individual data models, and for each property name propName, it has to define its own valid range of value.

The behaviorGrp is a wrapper to group the behavior elements behaviorElt, and similar to propertyElt, behaviorElt is a generic class to encapsulate the programs. Behavior is an optional component. More details will be covered in later sections.

The dataGrp is the wrapper of user data, and dataElt is the class name to represent any valid XML data under the current data model.

When used in XML Documents, we add the namespace for compatibility and extensibility. The namespace declaration would typically be included as an XML attribute on the mmx:MMX element. The namespace name URI in the namespace declaration is a globally unique identifier for the particular schema this metadata author is using to define the use of the Creator property. Other schemas may also define a property named Creator and the two properties will be distinguished via their schema identifiers.

A typical XML document using the MMX Framework would look like this:

<?xml version="1.0"?>

<mmx:MMX

xmlns:mmx="http://www.viewtech.org/ns/serial-mmx">

<mmx:ADO

model="(any defined modelName)"

id="(any valid idValue)">

<mmx:property>

(any number of propertyElt)

</mmx:property>

<mmx:behavior>

(any number of procedures in behaviorElt)

</mmx:behavior>

<mmx:data>

(user data in valid XML segment)

</mmx:data>

</mmx:ADO>

</mmx:MMX>

From the above description, we assuming that the whole document is under the MMX Framework, i.e. the Document Root is <mmx:MMX></mmx:MMX>. But certain limitation can be relaxed to allow MMX to be applied on p art of an existing XML Document. This can be done by putting the namespace decoration in any XML document’s root element, with the original XML contents mixed with the MMX parts. In other words, we tagged the parts where the MMX features is used in <mmx:ADO></mmx:ADO> and treat the remaining parts as "generic" XML data. The tagged part of document is exactly the same as those defined in the original serialization syntax.

3.3.2 Schema Syntax

While the serialization syntax is intuitive and easy to use, there are occasions that people do not want to alter the original structure of the XML document. The schema syntax accomplishes this by putting the structural information in the XML schema[13][40] instead of inline embedded in XML document. The schema syntax is a mapping from the serialization syntax into the form of XML Schema. In general, the schema is the same as any ordinary XML Schema, what’s different is the additional mmx namespace and additional elements to define the MMX components.

To begin, we add the namespace of mmx in the <xs:schema> element:

<xs:schema

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:mmx="http://www.viewtech.org/ns/schema-mmx">

 .../...

</xs:schema>

The schema element holds the definition of the target namespace, followed by the definition of document elements.

As in the relaxed serialization syntax, it is not necessary to map the <mmx:MMX> element. The schema will follow the flow of the document, define the tags existing in the XML document. When the features of MMX is need, we will define it with the following syntax.

The outermost functional unit of MMX component is the ADO, when an XML element carries the function of ADO, it is defined by:

<mmx:ADO name="elementName" model="modelName">

<mmx:propertyGrp>

<mmx:propertyElt name="propertyName">

...

</mmx:propertElt>

...

</mmx:propertyGrp>

<mmx:behaviorGrp>

<mmx:behaviorElt name="behaviorName">

...

</mmx:behaviorElt>

...

</mmx:behaviorGrp>

<mmx:data>

...

</mmx:data>

</mmx:ADO>

The ADO element carries an elementName, which will be the tag name representing the ADO instance in XML document. The modelName is the same as that in the previous section, i.e. contains the name of defined models under MMX Framework.

In order not to alter the structure in the XML document, the ADO properties are put in the Schema directly. The propertyGrp section groups the propElement together. One minor changes occurs in the propElement is that it is declared by <mmx:propElement> instead of using the property's name directly as the tag. This avoids the ambiguity in the Schema declaration. The <mmx:data> section is the same as that in the serialization syntax, except that now under the <mmx:data> is the Schema declaration of elements instead of the elements themselves.

In some occasions, it is useful to declare certain kind of data structure without creating a "root element" for them. We introduce the <mmx:iADO> schema element to accomplish this. iADO is the abbreviation for "inline ADO", and it is very similar to ordinary ADO except that an iADO tag do not have the name attribute, i.e., it does not possess an element name in the XML document. Moreover, it does not have the <mmx:data> section, and the schema for the inside nodes are put inside the <mmx:iADO> section directly. In a sense, it is similar to the use of <xs:sequence> in the XML Schema.

<mmx:iADO model="modelName">

<mmx:propertyGrp>

<mmx:propertyElt name="propertyName">

...

</mmx:propertElt>

...

</mmx:propertyGrp>

<mmx:behaviorGrp>

<mmx:behaviorElt name="behaviorName">

...

</mmx:behaviorElt>

...

</mmx:behaviorGrp>

...

</mmx:ADO>

Such kind of "data object" may be though as a "table" in HTML, put omitting the <table> tag, only use the <tr> and <td> to define the table contents.

3.4 MMX Behavior

To achieve a "multi-model" framework, we have to know what kind of operation is associated with each "model". The model and syntax for data representation is described in the previous section, and we will introduce the Behavior component which defines the behaviors of ADOs.

To define the behaviors, we adopt a procedural model, which explicitly specify all the possible operations and how the operations are carried out. The procedural model is more intuitive, easier to understand and to implement.

3.4.1 Behavior Model and Syntax

If we consider the ADO as an object, then we may say that the properties are the constants, the data are the user data structures, and then the behaviors will be the exported methods for people to use.

There can be an arbitrary number of behaviors for each ADOs, which is depending on the user requirements. However, some common methods must exist to allow different ADOs to interchange the data and allow cross-queries. Basically, there are five behaviors that will be implemented in all ADOs:

· init

· insert

· delete

· update

· query

They are involved automatically during ADO initialization, data insertion and deletion, and the query process correspondingly. It is also possible to write other user-defined behaviors that will be triggered manually or programmatically.

Behaviors are defined within <mmx:behavior></mmx:behavior> for serialization syntax and within <mmx:behaviorElt></mmx:behaviorElt> for schema syntax. In the previous case, the behavior element is named with the name of behavior directly such as <init> and <insert>. In the later case, the behavior name is put in the attribute name, for example:

<mmx:behaviorElt name="init">...</mmx:behaviorElt>

To avoid creating another new syntax and new programming language, we adopt Javascript as the programming language for Behavior[32][35]. The basic syntax can be found in the Javascript Specification[16].

Not just an easy-to-learn language, Javascript is indeed advantageous on its DOM support and XML awareness. Within the "behaviors", we are able to manipulate program variables, properties, and also the user data. The user data will appear as a DOM tree to the Behavior, with Javascript, we are able to insert, delete, or clone various nodes and subtrees. When the execution of Behavior is finished, the DOM tree will be put back into the data segment as XML data.

In the Behaviors, the scope of data that can be "touched" is limited to the current ADO. It can allocate memory for temporary variables. It can read and write the data in the current ADO, including the properties and user data. For user data, not only the data values are subjected to change, the structure itself is also part of the data and can be modified as long as it conformed to the data model. On the other hand, the "Behaviors" itself is always considered to be public to the current XML Document. It is possible (and useful) to call on other ADO's behavior in the program code.

	Scope
	Access Rights

	Variables defined in Behavior
	Read/Write

	Properties in current ADO
	Read/Write

	Data segment in current ADO
	Read/Write/Modify

	Behaviors in all ADOs of current XML Document
	Invoke

	Otherwise not specified
	No Rights

Table. 1 Access Scope of Behaviors

The following figure shows the Behavior model: a Javascript runtime virtual machine is created when a Behavior is being invoked. It takes the code segment and the property values in the ADO. It also reads the data segment as a DOM tree, and, after processing the code segment, writing the new DOM tree to the data segment.

Besides the basic syntax of Javascript, there are a number of issues to be addressed when Javascript is used with the MMX Framework.

[image: image5.wmf] XML Document

ADO

Behaviors

Javascript Runtime Virtual

Machine

Behavior Code

Segment

Properties

Data

Figure. 5 Components in ADO

The first issue is concerning about mutually embedding the Behavior with XML. This can be accomplished by trans-coding the Javascript syntax into XML format. However, instead of this tedious and non-necessary approach, placing the Behavior's Javascript code in a CDATA XML segment is perfectly alright, and indeed, a much more simple approach without losing any functionality.

When a Behavior is invoked, the associated user data segment (i.e. <data>) is first converted into a DOM object data by the standard DOM API. The associated properties are linked to variables of the same name. In fact, the properties can be though as kind of persistent variables global to the Behaviors of the current ADO. As a note, the Javascript program can use this as a reference to the ADO itself.

Since the fundamental structure of MMX Framework is still DOM-like, we are able to locate XML resources with Document Object Model Level 3 XPath, which provides simple functionalities to access a DOM tree using XPath 1.0 and builds on top of the Document Object Model Level 3 Core. In order to call up Behaviors in other ADO, the current Behavior must able to get a reference to the target ADO. This can be done by using XPath, ADO id, or by the provided query methods. When the target ADO is referenced, say, by variable target, its Behaviors can be called as an object method, e.g. target.insert(newNode) can be called to add a new node to the target ADO.

Considering calling ADO Behaviors from external applications[41], the situation is rather different and a unified XML interface is needed. To accomplish this, we introduce the XML wrappers for invoking Behaviors and returning results.

For invoking a Behavior, the syntax is:

<mmx:IN

xmlns:mmx="http://www.viewtech.org/ns/mmx-interface">

<mmx:meta>

<mmx:document>documentLocation</mmx:document>

<mmx:xpath>XPath</mmx:xpath>

<mmx:id>ADOid</mmx:id>

<mmx:behavior>BehaviorName</mmx:behavior>

<mmx:callerID>CallerID</mmx:callerID>

</mmx:meta>

<mmx:parameter>

(Behavior specific parameters)

</mmx:parameter>

</mmx:IN>

The <mmx:IN> element is the wrapper for the caller object. <mmx:meta> specify the Behavior to be invoked by giving the document location, the XPath[39][42] or ADO id, and the Behavior name. The document location is given by stating its URL, and the XPath or ADO id is used to locate. As either one of the XPath or the ADO id is give enough information for locating the ADO, it is not necessary to have both elements at the same time. For <callerID>, it is optional and used to match the result object with the caller object, and the value can be any number or XML text, which can be chosen by the programmer. In the <mmx:parameter> element, ordinary parameters will be specify similar to that of the properties in the serialization syntax. Moreover, it is possible to pass structured parameters to the Behavior (e.g. a sub-tree or a table of data), the main idea is to tag to whole structure in a pair of tag with the tag label same as the parameter name.

For the result returned by Behavior, the format will be:

<mmx:OUT

xmlns:mmx="http://www.viewtech.org/ns/mmx-interface">

<mmx:meta>

<mmx:callerID>CallerID</mmx:callerID>

</mmx:meta>

<mmx:result>

(Behavior specific parameters)

</mmx:result>

</mmx:OUT>

The <mmx:OUT> element is the wrapper for the result object. The <mmx:meta> element exist only when the caller object specifies the calledID. It carries exactly the same information as it is in the caller. This is used to identify the caller of the results returned. For <mmx:result>, again, it shares the same format as in <mmx:parameter>, but this time the data is produced by the program.

One major use of the CallerID is to issue multiple callers in a single <mmx:IN> wrapper for parallel processing. Without callerID, or when operations are assigned the same callerID, the MMX engine should process in operations in sequence. By specifying different callerID, we instruct the MMX engine to ignore data dependency and process the operations in parallel. For example, I can have a <mmx:IN> object with three callers:

<mmx:IN

xmlns:mmx="http://www.viewtech.org/ns/mmx-interface">

<mmx:meta>

...

<mmx:callerID>1</mmx:callerID>

</mmx:meta>

<mmx:parameter>...</mmx:parameter>

<mmx:meta>

...

<mmx:callerID>1</mmx:callerID>

</mmx:meta>

<mmx:parameter>...</mmx:parameter>

<mmx:meta>

...

<mmx:callerID>2</mmx:callerID>

</mmx:meta>

<mmx:parameter>...</mmx:parameter>

</mmx:IN>

The first two calls are processed in sequence and the last one is process separately. Since the result of last process may be available faster then the previous two. The MMX engine can reply a <mmx:OUT> package of last process, and later another package for another two processes.

As a remark, although user can write the Behaviors by themselves, it is more feasible (and more common) to use default Behaviors for different data models, which should able to carry out most common tasks. These default Behaviors need not be coded in the "Behavior" segment with Javascript, indeed, it is better to implement them with native code in the MMX Engines.

3.4.2 Default Behaviors

Default Behaviors may or may not be specified in the XML Documents. For concerns of efficiency, it is more suitable to be process in native code. In a sense, the Javascript is indeed just a method to override the original defaults.

The five default Behaviors are:

· Init

· Insert

· Delete

· Update

· Query

They are declared implicitly for any Data Models. Unless user wants to re-define them, they will not exist in the Behavior section. Init is invoked when the XML document is loaded in into the MMX server, or MMX engine. It should validate if the user data is conformed to the assigned data model. If necessary, it should build external index files for fast retrieval too.

For Insert, Delete, Update and Query, the functions it performs will vary in different data models. For example, an insertion of data under relational model (e.g. insertion of a tuple) will be very different from that under a tree model (e.g. insertion of a node), the later one may even trigger structural change if it is a balanced tree model.

More details will be illustrated through the examples in next section.

Chapter 4 The Models

[image: image6.emf]Dinner

< $80 >= $80

>= $40 < $160 >= $160 < $40

>= $20 < $20

School

Canteen:

(address,

telephone.)

Menu

Rice $12

Noodel $10

Congee $8

Fastfood:

(address,

telephone.)

Resturant:

(address,

telephone.)

Buffet:

(address,

telephone.)

Japanese

Food:

(address,

telephone.)

Description:

(This resturant offers

french food......)

Figure. 6 A tree view of multi-model document

In the above diagram, we may see an example of multi-model document, which gives data on some choices of dinner. From the top, we have the dinner element, which is the root of a binary search tree on the price of dinner. When we follow the tree to the leave nodes, we may find that there are five different choices of dinner place: School Canteen, Fast-food, Japanese Food, Restaurant, and Buffet. These are Object entities, each with its own attributes on address, telephone and sub-elements for menu or descriptions. For the menus, it is in a Relational form, listing the choice of food with the price; while for the description, it’s a paragraph of text describing the place. This is a typical example of documents with mixed models.

In the following, we will go through several data models, descript what will each they features, and illustrate some examples.

4.1 Generic

What we mean by "Generic" is actually not really a "Data Model", but just for general treatment on XML data that is not inside any ADO or in an ADO that we intended to treat it as general XML.

Under the "Generic Model", we will locate nodes with XPath and manipulate the data with the DOM.

For generic model, when an ADO instance is desired, it can be declared as following:

<mmx:ADO model="generic">

<mmx:data>

(user data in valid XML segment)

</mmx:data>

</mmx:ADO>

In Generic Model, the initialization is an empty one as there is no restriction on the data values to be validated. Insert is done by first specifying an element node as insertion point with XPath; and then passing the sub-tree to be inserted at that point. For deletion, again, an element node is selected with XPath; and then the complete sub-tree is trimmed off. Similarly, in updating, the selected element is replace with another sub-tree; this is actually same as a deletion followed by an insertion process.

4.2 Object

Object is a rather board concept. It seems that everything in XML can be called an object. However, we narrow the concept as: node X is an object if it has N element nodes with distinct names, which we may call those as attributes of object X (instead of the XML-attributes). Besides the N element nodes, we do not allow CDATA or PCDATA section under X.

In a sense, object do not make much difference with Generic Model, but we are able to add constraints to the values by using the init Behavior. Moreover, for object query, we will use the element label to retrieve the values instead of using XPath.

Object is assigned with an object-id, which is unique throughout the XML document. This makes the access of object not affected by rearranging of branch structure, and allows inter-object relationship to be created more easily. However, since the linking between various object may cross some branches in the XML. Missing links may exist when some objects are removed. Therefore, "trigger" operation may be needed to update the links when an object is removed; or, instead of updating the links immediately, a mechanism to handle missing links will serve the same purpose as well.

4.3 Vector

Vector is characterized by its flat structure of homogeneous tags. Despite that Generic Model supersets the Vector Model, Vector Model constraints the data, and provide simpler access methods. An example of Vector Model ADO is shown below:

<mmx:ADO model="vector">

<mmx:property>

<maxsize></maxsize>

</mmx:property>

<mmx:data>

<item id="1"/>

<item id="2">

<subtree>some content</subtree>

</item>

<item/>

<item>some text</item>

<item>some more text</item>

</mmx:data>

</mmx:ADO>

Property maxsize is optional, which specify the maximum length of this Vector ADO. The following table explains the five default behaviors.

	Behavior
	Parameters
	Explanation

	init
	-
	Usually not to be invoked explicitly. It checks if the immediate child nodes of mmx:data contains homogenous tags only, and the number of child nodes do not exceed maxsize.

	insert
	position, node
	Insert the node at into mmx:data at specified position. Reject if resulting data have number of child nodes over maxsize

	delete
	position
	Delete the node (or sub-tree) at the specified position of mmx:data.

	update
	position, node
	Replace the node at specified position with the given node.

	query
	position
	Return the node at the specified position.

Table. 2 Behaviors of Vector Model

In the following, we will show how are the Behaviors being invoke:

<mmx:IN

xmlns:mmx="http://www.viewtech.org/ns/mmx-interface">

<mmx:meta>

...

<mmx:behavior>insert</mmx:behavior>

</mmx:meta>

<mmx:parameter>

<position>3</position>

<node>

<item>inserted node</item>

</node>

</mmx:parameter>

<mmx:meta>

...

<mmx:behavior>delete</mmx:behavior>

</mmx:meta>

<mmx:parameter>

<position>2</position>

</mmx:parameter>

<mmx:meta>

...

<mmx:behavior>update</mmx:behavior>

</mmx:meta>

<mmx:parameter>

<position>2</position>

<node>

<item msg="updated"/>

</node>

</mmx:parameter>

<mmx:meta>

...

<mmx:behavior>query</mmx:behavior>

</mmx:meta>

<mmx:parameter>

<position>2</position>

</mmx:parameter>

</mmx:IN>

When insert is called, the data section becomes:

<mmx:data>

<item id="1"/>

<item id="2">

<subtree>some content</subtree>

</item>

<item>inserted node</item>

<item/>

<item>some text</item>

<item>some more text</item>

</mmx:data>

After delete is called, the data section becomes:

<mmx:data>

<item id="1"/>

<item>inserted node</item>

<item/>

<item>some text</item>

<item>some more text</item>

</mmx:data>

After update is called, the data section becomes:

<mmx:data>

<item id="1"/>

<item msg="updated"/>

<item/>

<item>some text</item>

<item>some more text</item>

</mmx:data>

And finally, for the query call, the result is:

<mmx:result>

<item msg="updated"/>

</mmx:result>

4.4 Relational

Relation Model is in a tabular form, which is defined as a MxN array where M is the number of tuples and N is the number of fields in the table. In XML, for any node X, if there is M children (Yi, i=1 to M), and for each child Yi, there is N children (Zj, j=1 to N), and the same set of tag names of Zj exist in all Yi, then we may say node X is a Table. Following example declare a Relational Model ADO:

<mmx:ADO model="relational">

<mmx:property>

<headerElt>

<name/>

<id/>

<email/>

</headerElt>

<tupleElt><record/></tupleElt>

<keyElt><id/></keyElt>

<indexedElt><name/></indexedElt>

<maxsize></maxsize>

</mmx:property>

<mmx:data>

<record>

<name>John</name>

<id>1</id>

<email>john@abc.com</email>

</record>

<record>

<name>Peter</name>

<id>2</id>

<email>peter@abc.com</email>

</record>

<record>

<name>Ann</name>

<id>3</id>

<email>ann@abc.com</email>

</record>

</mmx:data>

</mmx:ADO>

The following table explains the properties:

	Property
	Explanation

	headerElt
	Use a sequence of empty elements to declare the elements in of the "table header" (or column names). For example, to declare a table that have a people name, an ID value, and an address field, we use:

<headerElt>

<name/>

<id/>

<addr/>
</headerElt>

	tupleElt
	Sepcify the element label for adding tuples, e.g.

<tupleElt>

<record/>
</tupleElt>

	keyElt
	Specify the key for the relational table, e.g.

<keyElt>

<id/>
</keyElt>

	indexedElt
	Specify the fields to be indexed. Usage is similar to keyElt

	maxsize
	Optional. The maximum number of tuples.

Table. 3 Properties of Relational Model

For these Relational Tables, the field values are retrieved in tuples by selecting the field values. Operations defined under the Relational Model are subset of those provided in ANSI SQL with some modification:

	Behavior
	Parameters
	Explanation

	init
	-
	checks if the XML data in <mmx:data> is conformed to the Relational Model and the settings in properties.

	insert
	tuple
	insert the tuple into the table

	delete
	where
	delete tuples that matches the where clause

	update
	set, where
	update the tuples that matches the where clause with fields and values in the set clause. The set clause is composed by listing the new field-value pairs, e.g.

<set>

<name>John</name>
</set>

will update the selected tuples' <name> with value "John".

	query
	where
	query the data, using SQL-like syntax in the WHERE clause.

Table. 4 Behaviors of Relational Model

The where clauses is used in selecting tuples for delete, update, and query. The syntax of where clauses is

In fact, many research are being conducted on merging SQL and XML. Many technologies are proposed to make SQL-like queries on XML documents, and in a XML compatible manner[7][24]. For the above example, it is a naïve modeling for a few SQL statements just to illustrate the principle.

4.5 Document

Document Model is quite different. Origin from the document-centric XML documents, its structure is basically irregular and the ratio of text to tags is much higher that the other types.

The tags in Document Model are mainly used to mark-up the contents for presentation styling or for semantic documentations instead of creating high dimension structures. The tagged text is not separated from the text before and after: they are continued in the context. The tags exist to emphasize the part of text and give them extra meanings. Inter-tag relationship is usually not important, while the tag name and the tagged contents can be search in a manner similar to traditional information retrieval. Following is an example of Document Model ADO:

<mmx:ADO modelname="document">

<mmx:data>

A construction crew working in southwest <country>England</country> unearthed a fourth century red, white and blue mosaic, one of the most significant <culture>Roman</culture> finds of recent years, archaeologists said <date>Nov. 7</date>. Discovery of the <figure>1,640-year-old<figure> mosaic, which at <figure>32-by-6-feet<figure> is the <figure>10th-largest<figure> discovered in <country>Britain</country>, was a surprise, given that there were no other indications of <culture>Roman</culture> remains in the area, located near <place>Ilminster</place> in <place>Somerset</place> county, preservationists said.

</mmx:data>

</mmx:ADO>

For Document Model, Behaviors insert, delete, and update are empty. On the other hand, init Behavior is responsible to build indexing structure for full-text searching. The query accepts regular expressions queries, returning either near-by texts, index number of the found text, or the minimum node that containing the query text.

4.6 Tree

A tree is a hierarchical data structure made up of nodes. Strictly speaking, in a tree, there is no distinction between the various children of a node: none is the "first child" or "last child". A tree in which such distinctions are made is called an ordered tree. Binary trees are one kind of ordered tree, and there is a one-to-one mapping between binary trees and general ordered trees. Here, we take the Tree Model as ordered tree, which most useful search trees are using.

Despite XML is arranged in a tree view[44], the Tree in data structure often represent various types of search trees such as Binary Search Tree, AVL-Tree, Red-Black Tree, B-Tree, M-Tree, SP-Tree and etc. Basically, all the trees have very similar structures, and the different between them lies on the constraints in building the tree and in performing various operations on the tree nodes.

In the "Tree" category, there are numerous kinds of search trees. Most of them are based on the idea of balanced tree, but each of them will use different approach to achieve "balance-ness". The major difference is made during data insertion and deletion, which may trigger different actions, e.g. tree rotation, node splitting, etc. Strictly speaking, the difference among different trees is so significant that they actually create a group of different "Models". Therefore, we have to leave the Behaviors in Tree Model to be implemented separately for individual tree types. This is similar to that of Properties too.

4.6.1 Case Studies

We choose a few types of trees (Binary Search Tree, Quad Tree, and R-Tree) among the large varieties of trees as example here in order to illustrate the benefits of tree model[6]. For detailed descriptions of the trees, please read their own references. Our main concerns is to show the flexibility of MMX Framework.

Binary Search Tree

A binary tree[22] is an ordered tree data structure in which each node has at most two children. Typically the child nodes are called left and right. One use of binary trees is as binary search trees.

To illustrate the concept, we will show a Binary Tree example:

<mmx:ADO model="binary_tree">

<mmx:property>

<branchNode>

<left/>

<right/>

</branchNode>

<dataNode>

<data key=""/>

</dataNode>

</mmx:property>

<mmx:data>

<left>

<left>

<data key="25">item A</data>

</left>

<data key="50">item B</data>

<right>

<left>

<data key="58">item C</data>

</left>

<data key="75">item D</data>

<right>

<data key="80">item E</data>

</right>

</right>

</left>

<data key="100">item F</data>

<right>

<left>

<data key="180">item G</data>

</left>

<data key="200">item H</data>

<right>

<data key="300">item I</data>

</right>

</right>

</mmx:data>

</mmx:ADO>

For the binary search tree, it is a decision tree of buying present for any given budget. Three Behaviors are defined here:

	Behavior
	Parameters
	Explanation

	insert
	data, key
	insert the data node into the tree at the appropriate position

	delete
	data, key
	delete the corresponding node, and do necessary tree structure change.

	query
	key
	return the data item associated with the key.

Table. 5 Behaviors of Binary Search Tree

For a call to query:

<mmx:meta>

...

<mmx:behavior>query</mmx:behavior>

</mmx:meta>

<mmx:parameter>

<key>200</key>

</mmx:parameter>

The result will be:

<mmx:result>

<data key="200">item H</data>

</mmx:result>

A call to insert:

<mmx:meta>

...

<mmx:behavior>insert</mmx:behavior>

</mmx:meta>

<mmx:parameter>

<data>newitem</data>

<key>27</key>

</mmx:parameter>

Will results in the change in XML document:

<left>

<left>

<data key="25">item A</data>

<right>

<data key="27">newitem</data>

</right>

</left>

<data key="50">item B</data>

<right>

...

</right>

</left>

<data key="100">item F</data>

<right>

...

</right>

And for example, subsequently, "item F" is deleted:

<mmx:meta>

...

<mmx:behavior>delete</mmx:behavior>

</mmx:meta>

<mmx:parameter>

<data>item F</data>

<key>100</key>

</mmx:parameter>

The XML is subjected to some structural changes, now "item E" is moved to the root:

<left>

<left>

<data key="25">item A</data>

<right>

<data key="27">newitem</data>

</right>

</left>

<data key="50">item B</data>

<right>

<left>

<data key="58">item C</data>

</left>

<data key="75">item D</data>

</right>

</left>

<data key="80">item E</data>

<right>

...

</right>

Quad Tree

A quad tree[23][31][36] is a data structure that can be used to store a collection of two-dimensional points. Its main idea is to partition the space in both dimensions simultaneously. Starting from a bounding square, at each internal node the tree is further partitioned into four smaller squares of same size. The process is continue recursively until a node is empty or contains one point. It is often widely applied in computer image manipulation, geographic information system and etc.

Following show an example of Quad Tree:

[image: image7.wmf]CityA

CityB

CityC

CityD

(100,100)

(-100,100)

(-100,-100)

(100,-100)

Figure. 7 A visualized Quad Tree

<mmx:ADO model="quad_tree">

<mmx:property>

<boundary>

<N>100</N>

<E>100</E>

<S>-100</S>

<W>-100</W>

</boundary>

<branchNode>

<NE/>

<NW/>

<SW/>

<SE/>

</branchNode>

<dataNode>

<data x="" y=""/>

</dataNode>

</mmx:property>

<mmx:data>

<NE>

<NE><data x="55" y="55">CityA</data></NE>

<NW></NW>

<SW><data x="35" y="25">CityB</data></SW>

<SE></SE>

</NE>

<NW></NW>

<SW>

<NE><data x="-25" y="-5">CityC</data></NE>

<NW></NW>

<SW><data x="-55" y="-55">CityD</data></SW>

<SE></SE>

</SW>

<SE></SE>

</mmx:data>

</mmx:ADO>

And the Behaviors are given below:

	Behavior
	Parameters
	Explanation

	insert
	data, x, y
	insert the data node into the tree at the appropriate position

	delete
	data, x, y
	delete the corresponding node, and do necessary tree structure change.

	query
	x, y
	return the data item associated with the coordinate.

Table. 6 Behaviors in Quad Tree

There are some other query types that can be implemented including location lookup, regional query (to get the points within a given region), nearest neighborhood (to get the nearest point by given a coordinate), etc.

R-Tree

The R-tree[11][14][31] is one of the most cited spatial data structures. It is the modification of B-tree for spatial data. This tree is balanced and splits the space into the rectangles which can overlap. Each node except root contains from m to M children, where 2 <= m <= M/2. The root contains at least 2 children unless it is a leaf.

The node is represented by the minimum bounding rectangle containing all the objects of its subtree. Each of children of the node is split recursively. Because of the overlapping of bounding rectangles, it may need to search more than one branch of the tree during queries. Therefore, it is important to separate the rectangles as much as possible. This is partly solved by the operation insert which uses some kind of heuristic by finding a leaf node that insertion will cause as small changes in the tree as possible.

In R-Tree, the keys are n-dimensional minimal bounding rectangles. In internal nodes, the key is the smallest rectangle that bounds all of the rectangles in the child node. Following shows an example of R-Tree of M=3:

<mmx:ADO model="R-tree">

<mmx:property>

<keyNode>

<key N="" S="" E="" W="">

</keyNode>

<branchNode>

<node id=""/>

</branchNode>

<maxBranch>3</maxBranch>

<dataNode>

<data x="" y=""/>

</dataNode>

</mmx:property>

<mmx:data>

<key N="7" S="3" E="16" W="1"/>

<node id="1">

<key N="7" S="3" E="6" W="1"/>

<node id="1">

<key N="7" S="5" E="2" W="1"/>

<data x="1" y="5">itemA</data>

<data x="2" y="7">itemB</data>

</node>

<node id="2">

<key N="4" S="3" E="6" W="4"/>

<data x="4" y="3">itemA</data>

<data x="6" y="4">itemC</data>

</node>

</node>

<node id="2">

<key N="6" S="4" E="16" W="8"/>

<node id="1">

<key N="6" S="5" E="16" W="9"/>

<data x="9" y="5">itemD</data>

<data x="16" y="6">itemE</data>

</node>

<node id="2">

<key N="5" S="4" E="8" W="11"/>

<data x="11" y="5">itemF</data>

<data x="8" y="4">itemG</data>

</node>

</node>

</mmx:data>

</mmx:ADO>

Like Quad Tree, R-Tree is also a spatial data structure, and without lost of generality, the explanation of few Behaviors in the previous section for Quad Tree is applicable to R-Tree too.

Chapter 5 The Impact

As a whole, the MMX Framework provides a mechanism to combine different data structures into a complex structure, and allowing queries or operations on various structures can be carried out in a unified way.

And even among people who are sharing the use of metadata vocabularies, there's no need to share the same software. MMX Framework makes it possible to use multiple pieces of software to process the same metadata, and to use a single piece of software to process many different metadata.

When this framework is fully developed, it is likely to have impact on how we organize our information, such as changing the structure of a website to use a single XML document instead of a hundred of HTML documents.

5.1 Significance

In MMX Framework, we are working on various data structures models. This is different from that of Relational Database[4], or other ordinary XML-based Queries. What makes the different is the knowledge of data structures, or structural metadata. Although it is not possible to build a generic mechanism to process all kinds of data structures, we have adopted a procedural model that allows us to change the data structure programmatically. Therefore, we can implement different data structures and creating various kinds of operations for them.
From the previous examples, especially those of various Tree models, we can see that the MMX Framework is able to open up a new area of structural data use. It supersets the Relational Model and the Generic XML Model, provides structures that is not possible in these two models[10][17][18].
On the other hand, it is comparable to the RDF specification[28]. Both of them are XML-based, and aiming to represent certain kinds of meta-knowledge. The difference is that RDF provides knowledge on semantics knowledge, and MMX Framework provides knowledge on structural knowledge.
5.2 Automated interaction between ADOs

A particularly important topic that is not yet covered much is the interaction between ADOs. This feature is mutually supported by the programmatic approach in the model.

When the interaction between ADOs is automated, it is possible to build complicated "network of information", which means that when I change a record, it will trigger series of actions on other data.

5.3 Not just for searching

In fact, the objective of MMX Framework is much more than searching XML files. It provides a Framework that people can interchange their information on structures, and thus promoting the interoperability of XML Data[9].

The Framework also "shapes" how people could manage their data: when R-Tree is not easily applied, it is possible that people would just use the Relational Database to store the information, which may be a degraded solution. Currently, when people need some advance data structure, they have to write proprietary code and store the data in proprietary formats, which is poor in reusability. Now, with MMX Framework, once people build a module to process a particular data structure, it can be reused and distributed easily. As a final word, the MMX Framework will change the "habit" of how people using structural data.

Chapter 6 Application in DVL

A DVL[12][25][26] system includes automatic processes from video creation through video delivery, and provides other additional functionality that makes it a powerful information resource. To achieve high usability, extensibility and reliability, we adopt a multi-tier model that consists of Video Server, Indexing Server, Query Server, and Client Application. We also employ XML as the enabling technology for data management as it provides a standardized framework that could promote interoperability. This encourages development of a hybrid system on different software and hardware platforms, and provides abundant heterogeneous features.

6.1 Architecture

Our multi-tier XDVL system consists of four primary components: Video Server, Indexing Server, Query Server and Client Applications. Based on this setting, the system may be modeled as a single DVL-Workstation or as a distributed system over the Internet. The general workflow of a DVL system is shown in Figure 1. The process is started by the capture the raw video, digitize and store them in the Video Server. The videos are then processed by Indexing Server to extract features and information, indexing structure are created for later searching. The above processes are offline processes since they are invisible to the end-users. On the other hand, query and video playback are online processes and their response time determines the perceived quality by users.

 [image: image8.wmf]Online Process

Offline Process

Video Server

Indexing Server

Indexing the Video Contents

Query Server

Client Application

Raw Video

User Query

Result Set

Formal Query

Result Set

Request Video

Deliver Video

Figure. 8 Overview of a DVL System

It should be understand that the four components are functionally decomposed in concept, but in implementation they may be further divided or combined. In the simplest form, all of the system components appear as a single application. Video files and indexes are prepared before the system is deployed: videos stored as MPEG files, indexing structure kept in a desktop database engine. User query and video playback functions may be featured in a single GUI program. Despite the simplicity, this scenario demonstrates useful applications like encyclopedia on CD-ROM and info-kiosk in museums.

By distributing tasks to different servers, we can construct a Digital Video Library Network as shown in figure 2, where each server may gather information from multiple sources and serve multiple clients. Resources are shared among a maximum number of users. Moreover, through the use middleware, XDVL may even work with legacy systems such as search engines, meta-search engines and web browsers, appear as part of an integrated system in the Internet.

 [image: image9.wmf]Video

Server

Video

Server

Video

Server

Indexing

Server

Indexing

Server

Indexing

Server

Query

Server

Query

Server

Query

Server

Figure. 9 Digital Video Library Network

6.2 Indexing and Query

Indexing Server stores the indexing structure of video for query and retrieval. There are three main types of information: raw textual information, physical information and semantic information. The extracted information will later be queried on a text-basis or content-basis[20].

Raw textual information includes all kind of textual data associated with a video that is not extracted from the video including annotations, summaries and viewers’ feedback. It is the simplest form among three and do not involve processing of the video, and obviously they will only be queried on text-basis. Physical information requires analysis of the video, and may be queried on text-basis and content-basis. Features like color, texture, shape, motion, and spatiotemporal structures of video scenes are typical examples. These features will be stored as color histogram, frequency histogram, shape and motion descriptors that can be use in content-based query process.

Semantic information is most difficult to extract. This is because semantic analysis requires modeling of real world knowledge. Cost is too high in terms of complexity as well as capacity. However, achievement in speech recognition with the use of sound wave dictionary, vocabulary dictionary, and language’s grammar illustrate the basic model. For visual features, the underlying principle is the same: visual features of video objects are extracted, being “looked up” for possible semantic objects (i.e. dictionary look up). Then we can calculate the co-occurrence probability of all video objects in a shot and pick the combination of semantic objects of highest score(i.e. grammar checking). The major difficulty is that there is no existing video object dictionary and video object grammar. We can create one by using labeled multimedia training data with hidden Markov Model (HMM) and calculate the co-occurrence probability of various determining features of video objects. However, the training data should be constrained within a limited scope to generate reasonable results; practical usage of video object understanding is still a long way to go.

Query Server accepts user queries from Client Applications, constructs queries, collects and ranks the results, and finally returns them to the Client Application. More than a simple search engine, the Query Server is equipped with knowledge about the Indexing Servers that registered on it, therefore queries can be send to a selected group of Indexing Servers that contains relevant information. Duplicated entries will be merged and results will be clustered by categories to give a concise and easy-navigating report.

There are various information retrieval models including Boolean Model, Vector Model and Probabilistic Model that are well defined in textual domain, but now they are extended to handle content-based in Query Server. With content-based query, user can choose a color from the color panel and draw a shape, than apply an AND query; or he may select frames from several videos, and query for videos that have similar video objects. The flexible query method will enhance the DVL exploration experience.

6.3 MMX Framework in DVL

One of the application that MMX Framework targeted is the Digital Video Library System. There are several contributions that MMX Framework may accomplish, include:

· Query Processor for SMIL[45]

· Distributed Library

· Tree-Matching Face Recognition[44]

· Content-Based Image Search

They are benefited by the interoperability and expressive power of MMX. In fact, many content-based search, or spatial query can be modeled in MMX in a natural way. Moreover, searching can be tailor made for different properties by overriding the Behaviors.

As MMX Framework provides an open standard, it will be easy to transfer a database from one machine to another. It might even connect several machines to form a clustered server, which models the Distributed DVL System mentioned in last section.

Chapter 7 Conclusion

As a conclusion for the work in these three semesters, I have studied the framework of Digital Video Library systems and XML as a data management tools.

In the first semester, I surveyed and learned the technologies associated with a Digital Video Library. This includes general indexing, searching and retrieval methods in an information system. More effort is spent on the content-based indexing of video contents and a modular architecture of DVL is proposed and studied.

In the second semester, I focused on the data representation and messaging method in a multi-tier DVL architecture. XML is studied in various aspects for its feasibility to solve the problem. Research is focused on enhancing the extensibility and expressive power.

In last semester, I focused on the problem of representing structural information for XML data, which in turns developed into the Multi-Model XML Framework. The MMX Framework is basically a framework that allows people to plug-in their logics for processing any arbitrary data structures that could be represented in XML. It is aimed at enabling data structures to support features not possible in RDBMS and XQuery.

In this research, the major difficulty is to achieve completeness. This is because we are unable to "list" all the data structures; and we are unable to prove that the MMX Framework allows "any" data structures to be represented. Moreover, as the XML technology family grows larger and larger, it is not possible to be compatible to all of them.

References

[1] A. Hampapur, "Semantic Video Indexing : Approach and Issues," ACM Sigmod Record. 1996

[2] A. Levy. More on data management for XML. Available at http://www.cs.washington.edu/homes/alon/widom-response.html

[3] A.M. Pejtersen, "Semantic information retrieval," Communications of the ACM, 41(4):90--92. Petrie, C. J. (1998). The XML files. IEEE Internet Computing, pages 4--5

[4] A.P. de Vries and H.M. Blanken, "Database technology and the management of multimedia data in Mirror," in Multimedia Storage and Archiving Systems III, volume 3527 of Proceedings of SPIE, Boston MA, November 1998

[5] A.R. Schmidt, M. L. Kersten, M. A. Windhouwer, "Querying XML Documents Made Easy: Nearest Concept Queries," in Proceedings of the IEEE International Conference on Data Engineering (ICDE), pp 321-329, Heidelberg, Germany, April 2001.

[6] Ada Wai-Chee Fu, Polly Mei-shuen Chan, Yin-Ling Cheung, Yiu Sang Moon, "Dynamic vp-Tree Indexing for n-Nearest Neighbor Search Given Pair-Wise Distances," VLDB Journal 9(2): 154-173 (2000)

[7] B. Surjanto, N. Ritter and H. Loeser, "XML Content Management based on Object-Relational Database Technology," in Proceedings of the 1st Int. Conf. On Web Information Systems Engineering (WISE), Hong Kong, June 2000.

[8] David Beech, Ashok Malhotra and Michael Rys. A Formal Data Model and Algebra for XML. Available at http://elib.cs.berkeley.edu/seminar/2000/20000207.pdf

[9] G. Szentivanyi, "The role of XML in generic and distributed multimedia management," Enabling Technologies: Infrastructure for Collaborative Enterprises, 1999. (WET ICE '99) Proceedings. IEEE 8th International Workshops on , 1999. Page(s): 317 –318.

[10] Gerti Kappel, Elisabeth Kapsammer, Werner Retschitzegger, "XML and Relational Database Systems - A Comparison of Concepts," International Conference on Internet Computing (1) 2001: 199-205

[11] Guttman, " R-Trees: A Dynamic Index Structure for Spatial Searching," Available at http://icg.fas.harvard.edu/~cs265/lectures/readings/sullivan-guttman-1984.html

[12] H.D. Wactlar, T. Kanade, M. A. Smith and S. M. Stevens, "Intelligent Access to Digital Video: Informedia Project," IEEE Computer, Vol.29, No.3, pp.46-52, May 1996

[13] Henry S. Thompson, Introduction to XML Schema, in Proceedings of WWW10. Hong Kong, May, 2001

[14] IBM. Informix Portfolio: R-tree. http://www-4.ibm.com/software/data/informix/blades/spatial/rtree.html

[15] Jacky C. K. Ma, Michael R. Lyu, "Design and Implementation of XML-Based Digital Video Library System," International Conference on Internet Computing (1) 2001: 371-374

[16] JavaScript Language Specification. Available at http://www.planetpdf.com/codecuts/pdfs/tutorial/JSSpec.pdf

[17] Jennifer Widom, "Data management for XML: Research directions," IEEE Data Engineering Bulletin, 22(3):44--52, Sept. 1999.

[18] Kazumasa Yokota, Takeo Kunishima, and Bojiang Liu, "Semantic Extensions of XML for Advanced Applications," Australian Computer Science Communications, Volume 23, Number 6 (Proc. Workshop on Information Technology for Vietual Enterprises (ITVE 2001)), pp.49-57, Jan., 2001.

[19] Luigi Palopoli, Giorgio Terracina, Domenico Ursion, "A graph-based approach for extracting terminological properties of elements of XML documents," ICDE 2001: 330-337

[20] M.A. Smith and M. Christel, "Automating the creation of a digital video library," in Proceedings of Third ACM International Conference on Multimedia, pages 357-358, Anaheim, CA, November 1995.

[21] Mary Fernandez, Jerome Simeon, Philip Wadler, "XML Query Languages: Experiences and Exemplars," Available at http://www-db.research.bell-labs.com/user/simeon/xquery.html

[22] McGill University: School of Computer Science, Winter 1997 Class notes for 308-251, Data Structures and Algorithms, Topic #9: Binary Search Trees. Available at http://www.cs.mcgill.ca/~cs251/OldCourses/1997/topic9/

[23] McGill University: School of Computer Science, Winter 1999 Projects for 308-251B, Data Structures and Algorithms, Project #32: Picture Representation Using Quad Trees -- Winter 1999. Available at http://www.cs.mcgill.ca/~pcarbo/cs251/

[24] Men Hin Yan and A. Fu, "From XML to relational databases," in Proceedings of the 8th International Workshop on Knowledge Representation meets Databases (KRDB-2001) with focus on Modeling, Querying, and Managing Semistructured Data. Rome, Italy, Sept, 2001

[25] Michael Christel and David Martin, "Information Visualization Within a Digital Video Library," JIIS 11(3): 235-257 (1998).

[26] Michael G. Christel, Takeo Kanade, M. Mauldin, Raj Reddy, Marvin Sirbu, Scott M. Stevens, Howard D. Wactlar, "Informedia Digital Video Library," CACM 38(4): 57-58

[27] Nigel Collier, "Machine Learning for Information Extraction from XML mark-up text on the Semantic Web", COLING-ACL '98.

[28] Tim Berners-Lee. Why RDF model is different from the XML model. Available at http://www.w3.org/DesignIssues/RDF-XML.html

[29] Tuong Dao, "An Indexing Model for Structured Documents to Support Queries on Content, Structure, and Attributes," ADL 1998: 88-97

[30] O'Reilly XML.com. http://www.xml.com/

[31] Petr Kuba, "Data Structures for Spatial Data Mining," Available at http://www.fi.muni.cz/informatics/reports/pdf/FIMU-RS-2001-05.pdf

[32] Rhino: JavaScript for Java. http://www.mozilla.org/rhino/

[33] Sergio Flesca, Sergio Greco, Ester Zumpano, "Modeling and Querying XML-Data," IDEAS 2000: 275-286

[34] Shuichi Nishioka, Makoto Onizuka, "Mapping XML to Object Relational Model," International Conference on Internet Computing (1) 2001: 171-177

[35] SpiderMonkey Engine. http://www.mozilla.org/js/spidermonkey/

[36] The University of Sydney Australia, Basser Department of Computer Science, COMP2002 – Design and Data Structures. Quad Tree Structure. Available at http://www.ug.cs.usyd.edu.au/~cs2/dds/quadtree.html

[37] The World Wide Web Consortium (W3C). http://www.w3c.org/

[38] The XML industry portal. http://www.xml.org/

[39] W3C. Document Object Model (DOM) Level 3 XPath Specification. Available at http://www.w3.org/TR/DOM-Level-3-XPath

[40] W3C. XML Schema Specification. Available at http://www.w3c.org/XML/Schema

[41] W3C. XML Query Requirements. Available at http://www.w3.org/TR/xmlquery-req

[42] W3C. XQuery 1.0 and XPath 2.0 Data Model. Available at http://www.w3.org/TR/query-datamodel/

[43] W3C. Extensible Markup Language (XML) 1.0 (Second Edition). Available at http://www.w3.org/TR/REC-xml

[44] W3C. The Tree Structure of XML Queries. http://www.w3.org/1999/10/xquery-tree.html

[45] W3C. Synchronized Multimedia Integration Language (SMIL) 1.0 Specification. http://www.w3.org/TR/REC-smil/

PAGE
54

_1017257149.doc
[image: image1.jpg]Library Exploration

Online
Stoy Cloices
-
Largusge Query Tndexed Datshase

Infeced Sgmented
Toamseript Compressed
iudiofVideo

Somantic-exparsion
Tosselaion W Trarslation.

Toalit

Raquasted Segment

_1068431031.vsd

_1068911733.vsd

_1069038239.vsd

_1067680503.vsd

_1017257018.doc
[image: image1.jpg]Library Creation
Offline

Bl s@

Video

Speschs [T T p—

Recopuifon Eutsction Itsrpretation

Segnenthtion

Indexed Datahase

Infexed Segmartad
Traseript Compressed
indiofiten

DISTRIBUTION .TO USERS

