Video Table-of-Contents:

Construction and Matching

Master of Philosophy

Third Term Research Report

- Supervisors -
Professor Michael Lyu

Professor Irwin King

- Submitted By -
Ng Chung Wing

00044240 – cwng@cse.cuhk.edu.hk

Department of Computer Science and Engineering

The Chinese University of Hong Kong

November 24, 2001
Abstract

Video over Internet is getting more popular now than ever before, due to the rapid growth of Internet bandwidth and the growing use of video in education, entertainment, and information sharing. Among the vast video sources, it is more convenient to find a piece of video that we want with visual video descriptions. This paper describes a framework for construction and matching of Video Table-of-Contents.

We propose a solution for automatic construction of descriptive video Table-of-Contents (TOC) with ADVISE, Advanced Digital Video Information Segmentation Engine. ADVISE enables the representation of the video TOC using web-based interface and also allows the customization of video presentation based on the TOC. There are three key components in the ADVISE system. The first component consists of a video segmentation engine to analyze and group the video contents using temporal orders and video frame similarities. This component segments the videos into multi-level tree structures, which are the video TOC. Second, we define an XML Document Type Definition (DTD) to represent the resulting video structure. XML provides a compact and extensible representation to various kinds of video structures, with the capability of visualizing those structures in common web browsers using eXtensible Stylesheet Language (XSL). In the third component, we provide a web-based interface for ADVISE that allows users to customize a SMIL presentation for retrieving their interested video segments, which are based on the XML video structures generated before. To evaluate our system, we process a set of videos with four different approaches. Our experimental results show that the segmentation approach employed in ADVISE using adaptive threshold and weighted regional color histograms is the most accurate one in generating the video structures. Besides, the generated XML video structure is illustrated on a web browser to provide a visual description of the corresponding video, while the customization of SMIL presentation is handled through the generated structure.
Based on the multi-level video tree structures generated in ADVISE, we propose two tree matching algorithm to measure the similarity between videos. The first one is the non-ordered tree matching and the second one is the ordered tree matching. The first algorithm is not constrained by the temporal ordering of the video, while the second algorithm takes the temporal ordering into account. The color histogram features extract in the video shot level is used for matching components in videos. Our experiments on a small set of various videos demonstrate that the proposed tree matching algorithms produce similar ranking results to what human will produce.
Contents

41.
Introduction

62.
Review

62.1
Digital Video Library

72.2
Structure of Video

92.3
SMIL Presentation

103.
Video Table-of-Contents

124.
ADVISE

124.1
Video Table-of-Contents Construction

134.1.1
Video Shot Boundaries Detection

154.1.2
Video Groups Formation

164.1.3
Video Scenes Construction

184.1.4
Evaluation of Video Table-of-Contents

204.2
Video Structure in XML

234.3
Video Presentation Using SMIL

265.
Tree Matching on Video Table-of-Contents

265.1
Non-ordered Tree Matching Algorithm

285.2
Ordered Tree Matching Algorithm

305.3
Evaluation of Tree Matching Algorithms

315.3.1
Applying Non-ordered Tree Matching

325.3.2
Applying Ordered Tree Matching

336.
Future Work

347.
Conclusion

1.
Introduction

Nowadays, since the rapid development of the Internet technologies, information sharing on the Internet is not limited in textual format. With the higher network bandwidth, people can retrieve information in the form of multimedia including image, audio, and particularly video. Video is getting more popular in education, entertainment and other multimedia applications. It is because video enriches the content delivery by combining visual, audio, and textual information in multiple data streams. Under the evident growth of the volume of video contents, users may become confused while looking for a piece of videos they want from the abundance sources. Consequently, there is an urgent demand for video descriptions to enhance efficient browsing and retrieval of video contents [6]. A visual description, which uses key images extracted from the video, is a desirable way to present the video contents [5]

 REF _Ref532203097 \r \h
[18]

 REF _Ref532203108 \r \h
[22]

 REF _Ref532203114 \r \h
[26]. With those extracted images well organized in the description, we can concretely know what have been shown in the video, and how are those key images synthesize the video contents.

In this paper, first we propose a system called ADVISE, Advanced Digital Video Information Segmentation Engine, to automate the generation of the visual descriptions for videos. The generated visual description is regarded as a Video Table-of-Contents (TOC). Secondly, we make use of the structure of the Video TOC to develop algorithms for matching videos.

ADVISE is beneficial in providing descriptive video structures to picture out the contents for videos on the Internet. Users are then able to determine efficiently whether they are interested in a video clip by browsing the corresponding video structure. ADVISE also enables the users to generate their customized videos. They can combine their interested segments from video structure into their customized video presentation. Moreover, they can further apply ADVISE on a Digital Video Library [7]

 REF _Ref532203141 \r \h
[13]

 REF _Ref532203155 \r \h
[28] to improve the video segmentation with the video structure formation [13]

 REF _Ref532203108 \r \h
[22], which acts as a web-based user interface for video management.

ADVISE system contains three major components. The first component we implemented is the video segmentation engine. It is responsible for analyzing the video content, retrieving key video frames, and building the video structure [8]

 REF _Ref532203141 \r \h
[13]

 REF _Ref532203108 \r \h
[22]

 REF _Ref532203248 \r \h
[34]. In the second component, we have defined an XML Document Type Definition (DTD) to provide grammars for the components of the video structure, and to maintain the consistency of XML. The resulting video structure from the first component is stored in the XML format [29] according to the DTD. By using the eXtensible Stylesheet Language (XSL) [30], we further transform the XML video structure into a well readable web interface, which is used as a visual description for a video on the Internet. In the third component, we implemented a SMIL generator, which resides on the web server to customize SMIL video presentation [31] based on the video structure. Through the web-based interface, users can select segments from the video structure, submit the request to the SMIL generator, and play the returned SMIL video.

Based on the video structure generated by ADVISE, we propose two tree matching algorithms [17]. The first one is the non-ordered tree-matching algorithm and the other is the ordered tree-matching algorithm. They are different because the ordered tree-matching algorithm is constrained by the temporal ordering but the non-ordered tree-matching algorithm is not. Therefore, the ordered tree-matching algorithm can be applied for matching video with similarities in both structure and video features, while the non-ordered tree-matching algorithm can be applied for matching video with similar video features only. The tree matching algorithms rate video similarity using the color histogram feature, which is already extract from the video structure generation in ADVISE. Using the proposed matching algorithms, we are able to determine the similarity between videos in color histogram feature.

This paper is organized as follows. Section 2 is a review on Digital Video Library, the structure of video, and the SMIL presentation. Section 3 introduces the video TOC. Section 4 describes the detail architecture of ADVISE, which constructs the video structure. Section 5 describes the matching of video structure. Section 6 describes the future work, while Section 7 concludes this paper.

2.
Review

We review three related areas of our research work in this section. They are the Digital Video Library, the structure of video, and the SMIL presentation.
2.1
Digital Video Library

Digital Video Library is a comprehensive system, which integrates a variety of video analyzing techniques, including speech recognition, face recognition, and video caption extraction, to provide content-based indexing and retrieval of video to users [9]

 REF _Ref532203433 \r \h
[14]. To enable these services, raw videos will undergo two key preprocessing steps. The first step is the video features extraction and the second step is the video segmentation. In the following paragraphs, we will discuss these steps in two well-defined digital video libraries, the VISION project proposed by Li et al. [14] and the Informedia Digital Video Library project at Carnegie Mellon University [6]

 REF _Ref532203430 \r \h
[9]

 REF _Ref532203477 \r \h
[27]

 REF _Ref532203155 \r \h
[28].

In the VISION project, three different video features are extracted. The first one is to construct the color distributions for video images through a histogram-based image analysis. Although it tries to match only an abstractive idea of the objects appearing on video, this approach provides a very good balance between an efficient extraction and acceptable image similarity metrics [14]. The second feature is the video captions. Captions are extracted from video frames and divided into tokens (words). These tokens are reduced to their word stems, and stop words in them are removed. So, they become the keywords to represent the video. The third feature extracted is the audio energy level from the audio track of the raw video.

By using those features extracted, VISION carries out segmentation of the videos. With the color histograms, VISION identifies shots by dividing the video at the sharp histogram changes. The resulting video shots are examined for possible merging of related shots into scenes using the extracted audio energy level and the keywords. If there are people talking at the shot transitions, it results in a high audio energy level. VISION expects shots with high audio energy level at the transition can be merged for presenting a series of related topics. With the caption keywords, VISION evaluates the contents relevancy for shots by counting the number of same keywords appearing on them. The shots relevant in textual contents are further merged to video scenes as the final segmentation result.

The Informedia project employs a more complex video features extraction model. The video features extraction can be classified into three categories, the audio analysis, the image analysis, and the natural-language processing [9]

 REF _Ref532203155 \r \h
[28]. For the audio analysis, in addition to extracting the audio energy level similar to VISION, Informedia generates the full transcript, which is more informative, by automatically using speech recognition techniques. In the image analysis, Informedia also extract color histograms and caption text from video frames. Besides, it detects human face presence and video motions. Human faces appearing on video are detected using the method of neural-net arbitration. For motions in videos, Informedia uses the camera motion approach, which tracks changes of individual regions in frames, and creates a vector representation of motions. In the natural-language processing, Informedia investigates the content relevancy based on the transcript results from the speech recognition and the caption text extraction. Similar to VISION, Informedia performs keywords stemming to produce a textual description for video. Probabilistic matching is also applied on those keywords to return an ordered ranking on video content relevancy.

Informedia proposes three video segmentation approaches using different video features extracted. The first approach is a simple color histogram difference measure, which is equivalent to the shots detection in VISION. It is efficient to give an initial segmentation for using this content-free method [28]. The second approach improves the first approach by considering both image features and audio features. In addition to the audio energy level used in the scene formation of VISION, the speech recognition result is used to determine the contents changes, and consequently, the approach becomes content-based and more reliable. The third approach is to consider the camera motions such as zooming, panning, and forward camera motions. This method can demonstrate the image flow, but it does not promise a content-based segmentation.

Both VISION and Informedia projects discover that using simple histogram-based video shots detection method is not sufficient for a content-based segmentation. Other video features are used to assist the segmentation. Therefore, in the following section, we introduce a hierarchical video structure, which provides a more organized image analysis mechanism for the video contents, such that the segmentation in Digital Video Library can be improved.

2.2
Structure of Video

A video can be decomposed into a well-defined structure consisting of five levels [22]: (1) Video shot is an unbroken sequence of frames recorded from a single camera. It is the building block of a video. (2) Key frame is the frame, which can represent the salient content of a shot. (3) Video scene is defined as a collection of shots related to the video content, and the temporally adjacent ones. It depicts and conveys the concept or story of a video. (4) Video group is an intermediate entity between the physical shots and the video scenes. The shots in a video group are visually similar and temporally close to each other. (5) Video is at the root level and it contains all the components defined above. The hierarchy of these video components is demonstrated in Figure 1. We can transform the hierarchy into a structured format as shown in Figure 2. This structure can be regarded as a specialized tree whose tree depth equals to four.

[image: image1.wmf]Key Frames

Key Frames

Video Shots

Video Shots

Video Groups

Video Groups

Video Scenes

Video Scenes

Video

Video

Time

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Figure 1: Hierarchy of Video Components

[image: image2.wmf]Video

Scene 1

Scene 2

Scene 3

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Shot 1,5,10

Shot 2,4,7,9

Shot 3,6,8

Shot 11,13

Shot 12

Shot 14

Figure 2: Video Tree Structure

The tree structure is constructed in a bottom-up manner starting from the shot level. Different methods on detecting the boundaries of video shots have been proposed [3]

 REF _Ref532203659 \r \h
[4]

 REF _Ref532202796 \r \h
[5]

 REF _Ref532203215 \r \h
[8]

 REF _Ref532203248 \r \h
[34][35]. Among different categories of algorithms, the histogram-based method is one of the most popular and efficient approaches [25]. By applying these boundary detection methods, a video is divided into shots, which consist of a sequence of similar frames. In order to provide an effective grouped analysis, some researchers suggested reducing the number of video fragments by grouping similar shots into a video group [12][13][16][19]. At the video scene level, it is composed of content related groups. Rui proposed that a video scene could be constructed by the temporal information defined therein [22]. These video scenes should be more understandable than those constructed in lower level video components.
2.3
SMIL Presentation

For the customization of videos, we propose to use Synchronized Multimedia Integration Language, SMIL. The standard of SMIL is designed for performing synchronized multimedia presentation on the Internet. We can use SMIL to specify the temporal behavior of the presentation, design the layout on the screen, and associate media objects with hyperlinks [31]. SMIL documents are in fact an XML with well-defined DTD such that SMIL browsers can interpret the tags and make proper layouts or operations, similar to the HTML for common web browsers. There are several SMIL browsers available on the Internet, e.g., GRiNS [20] and RealPlayer [21]. RealPlayer allows SMIL presentation to load streamed media clips through the Real Time Streaming Protocol (RTSP), so that the playback always keep synchronized according to the timeline [21].

SMIL is often applied to online video personalization systems [10]

 REF _Ref532202807 \r \h
[11]

 REF _Ref532203772 \r \h
[19]. Two main reasons made SMIL favorable. First, SMIL benefits from the XML plain-text property. Web server can receive selections of preferred video clips from users through a web interface, and instantly generate the corresponding SMIL presentation with server-side scripting languages such as PERL. The selected video clips are wrapped by SMIL and played according to users preference [10]. This model is demonstrated in Figure 3. The second reason is the network and client adaptability of SMIL [11]. It can dynamically configure the most appropriate media object for streaming, which depends on client display capabilities and connection speed. It would be convenient and safe for the SMIL browser on the client side to handle these limitations, instead of including additional considerations while generating the SMIL presentation.

[image: image3.wmf]Online user

terminal

Web-based

Interface

Web Server

Server-side Script

Submit

customization

request

Return customized

SMIL presentation

1. Interpret the

selection request

2. Generate

customized SMIL

presentation

RealPlayer

Figure 3: Model for Video Personalization using SMIL

3.
Video Table-of-Contents

The Video TOC is in fact a visual representation of a video tree similar to Figure 2 [22]. It is also particularly useful and convenient for video browsing in a digital video library. The following Figure 4 shows an example Video TOC.

There are 3 major functions for using this representation.

· Summarization
We can easily understand the structure of the video from the representation. Some simple description of scenes can be manually added so that we can get an abstract idea for the whole video.
· Indexing
We can browse a specific video segment by selecting it from the Video TOC.

· Providing Additional Information

For each component in the representation, we can show more details like the duration, the start time and the end time; thus, the Video TOC is more informative.
[image: image4.png]Decpta:lning Bk

Figure 4: A Video Table-of-Contents

4.
ADVISE

In this section, we describe the system architecture of ADVISE. Figure 5 shows the components in ADVISE and its relationship to a Digital Video Library.

[image: image5.wmf]Digital Video Library

Preprocessing

Preprocessing

Speech

Recognition

Caption Text

Extraction

Video

Segmentation

Video

Segmentation

Face

Detection

ADVISE

Video Structure

Construction

(Scenes, Groups and

Shots Detections)

Video Structure

Construction

(Scenes, Groups and

Shots Detections)

Raw Video

Video Motion

Detection

Web Server

Generation of

SMIL

presentation

Generation of

SMIL

presentation

Online User Terminal

1. Described the

video content to

online user

3. Return

Customized SMIL

Video to user

Indexed

Video

Database

Link Up With the

Indexed Video

2. Submit

Selection

Request

Online Video

Structure in XML

Online Video

Structure in XML

Figure 5: ADVISE and Digital Video Library

As shown in the Figure 5, ADVISE is integrated with the Digital Video Library by substituting the video segmentation process, as well as providing a web-based users interface for video description and video customization. The ADVISE system contains three major modules. They are the video segmentation engine, the generation of video tree structure in XML, and the video customization using SMIL. They are described in detail in the following subsections.

4.1
Video Table-of-Contents Construction

In this module, a 4-level video tree structure is constructed according to the definition in Section 2.2. To build up this video tree structure, the three major steps are video shot boundaries detection, video groups formation and video scenes construction.

4.1.1
Video Shot Boundaries Detection

In this step, we employ a color-histogram-based approach [3]

 REF _Ref532203659 \r \h
[4]

 REF _Ref532203719 \r \h
[25] to detect the video shot boundaries. Since the color histogram method can only detect the global color changes between video frames, we make improvement by using regional color histograms to catch a more local color distributions in video frames [24]. As a result, a video frame is divided into 5 regions as shown in Figure 6.

[image: image6.png]

Figure 6: Five Regions in a Video Frame
Therefore for each video frame, we collect six color histograms including five for regional and one for the overall frame. We calculate the color histogram differences between consecutive video frames along the video sequence using the following equations.

[image: image7.wmf]6

6

5

2

5

4

3

2

1

1

1

,

,

)

(

))

(

)

(

)

(

)

(

(

)

(

)

(

Difference

Color

Frames

es

color valu

all

for

,

)

(

(t))

(

Region

in

Difference

RD

to

RD

RD

t

t

i

t

i

i

W

t

RD

W

t

RD

t

RD

t

RD

t

RD

W

t

RD

FD

k

k

Hist

(k)

Hist

RD

i

´

+

´

+

+

+

+

´

=

-

=

å

-

(1)

Histi,t(k) denotes the k-th color value in the histogram for region i in frame t. RD1(t) is the difference in the center region, RD6(t) is the difference in the whole frame, and the other four are the differences at the four corner regions. WRD1, WRD6 and WRD2to5 are the weights to the RD1, RD6 and the four corner regional differences, respectively. We set WRD6 to the largest value among all weights since we concern most on the global color changes, and we want to avoid misdetections of video shot boundary due to objects movements across regions in video frames. WRD1 should also be larger than WRD2to5. It is because the most important objects are normally taken at the center of the screen, and relatively more background changes occur at the corner regions.

After calculating the frames color differences, we need to determine whether a video shot boundary occurs by using a threshold value:

[image: image8.wmf]boundary

shot

a

Not

Threshold

)

(

Difference

Color

Frame

occurs

boundary

Shot

Threshold

)

(

Difference

Color

Frame

Þ

<

Þ

³

t

t

FD

FD

(2)

Since the choice of threshold value can greatly affect the accuracy of video shot detection, we implement the approach on adaptive threshold using entropies suggested by Yu [34]. With the largest frame color difference equals to L, we divide the range of values from 0 to L into M intervals. We can then count the frequency of the color differences for each interval. For example, at interval j, we calculate fj as the following.

[image: image9.wmf]é

ù

(

)

î

í

ì

=

-

=

=

-

£

£

-

¸

=

å

=

therwise

,

0

)

(

 when

,

1

)

(

1

,

1

o

j

x

j

 x

j

x

M

j

j

ze

IntervalSi

FD

f

n

t

t

j

d

d

d

(3)

where n is the number of frames color differences. IntervalSize is calculated by L/M.

We select a value T in between 1 and M, so that T divides those M intervals into two classes, one for the video shot boundaries and the other for the non-boundaries. These two classes have their corresponding probability distributions of frame color differences. The probabilities for the non-boundaries (Pns) and the boundaries (Ps) are defined as follows:

[image: image10.wmf]M

j

 , T

f

f

j

P

T

j

 ,

f

f

j

P

M

T

h

h

j

s

T

h

h

j

ns

£

£

+

=

£

£

=

å

å

+

=

=

1

)

(

1

)

(

1

1

(4)

The entropies for the non-boundaries (Hns) and boundaries (Hs) are then calculated according to the following probabilities:

[image: image11.wmf]å

å

+

=

=

-

=

-

=

M

T

j

s

s

s

T

j

ns

ns

ns

j

P

j

P

T

H

j

P

j

P

T

H

1

1

)

(

log

)

(

)

(

)

(

log

)

(

)

(

(5)

We can find out an optimal Topt, at which the sum of the above entropies is the largest:

[image: image12.wmf]{

}

)

(

)

(

max

)

(

,...,

2

,

1

T

H

T

H

T

H

s

ns

M

T

opt

+

=

=

 (6)

As a result, we can then calculate an optimal threshold equals to Topt times the size of interval. The video shot boundaries are determined using the optimal threshold.

[image: image13.wmf]boundary

shot

 video

a

NOT

boundary

shot

A video

Þ

´

<

Þ

´

³

ze

IntervalSi

 T

FD

ze

IntervalSi

 T

FD

opt

t

opt

t

(7)

According to these video shot boundaries detected, we can divide the whole video sequence into a number of video shots. We take the first frame of each video shot to be the key frame of the shot. A key frame represents the video shot in the video groups and scenes formation described in the following step.
4.1.2
Video Groups Formation

After the detections of video shots, we collect similar shots into video groups. For each video shot, we take the key frame to compare with the key frame from the most recent shot in each group by the following equations.

[image: image14.wmf]6

6

5

2

5

4

3

2

1

1

,

,

,

)

(

))

(

)

(

)

(

)

(

(

)

(

es

color valu

all

for

,

)

(

RD

g

s

to

RD

g

s

g

s

g

s

g

s

RD

g

s

tg

ts

tg

i

ts

i

g

s

i

W

,t

t

RD

W

,t

t

RD

,t

t

RD

,t

t

RD

,t

t

RD

W

,t

t

RD

FD

k

k

Hist

(k)

Hist

)

,t

(t

RD

´

+

´

+

+

+

+

´

=

-

=

å

(8)
FDts,tg denotes the color difference between the key frame ts of the current shot s and the key frame tg from group g. It can also represent the color difference between the current shot s and the group g.

We consider the temporal factor such that we will not allow grouping of visually similar shots if they are far apart from each other in time [22]. Therefore, the color difference between the current shot s and the group g is defined as the following:

[image: image15.wmf]tg

ts

tg

ts

s

g

s

ts,tg

Temporal

FD

(g)

GS

g

s

gth

AvgShotLen

K

t

t

Temporal

,

,

)

(

Group

and

Shot

between

Difference

,

1

min

´

=

÷

÷

ø

ö

ç

ç

è

æ

´

-

=

(9)

Temporalts,tg denotes the temporal attraction factor. AvgShotLength is the average length of video shots. K is a predefined value which controls the increase in Temporalts,tg. When the current shot s is compared with all the existing groups, we can find out the group g’ which gives the least difference to s. Then we can assign shot s to group g’ if the difference is also smaller than the optimal threshold T​opt times the interval size calculated in the video shot detection. That is,

[image: image16.wmf]s

ze

IntervalSi

 T

(g')

GS

g'

ze

IntervalSi

 T

(g')

GS

opt

s

opt

s

shot

for the

group

new

a

Create

group

Assign to

Þ

´

>

Þ

´

£

(10)

After examining all video shots, we can construct groups of similar video shots. These video groups can give us information about the number of times that a video shot repeats and the number of different groups the shots appears in the video.

4.1.3
Video Scenes Construction

In this step, we construct the video scenes based on the video groups prepared. We construct a continuous video sequence, which is a video scene, by combining interacting video groups. As video shots of different video groups appear in turns, it is reasonable that their topics are closely related or even the same [18]

 REF _Ref532203108 \r \h
[22]. The most common example is, in an interview video, there are shots taken at the interviewer, the interviewee, and both of them. Then video groups containing those shots always intersect with each other throughout the interview. Therefore, we can expect that if we combine those interacting video groups to a video scene, the resulting segment of video will have its own substantive content.

There are two steps construct the video scenes. First we need to sort video groups according to the temporal order of their first member, which is the most preceding video shot in the group. Second, we compare the time slots for the first and the last member in the group with the time slot for each scene. After the groups are sorted, there are then only three cases we need to handle only three cases: (1) We assign a group to a scene if it is overlapped with the time interval of the scene. (2) If a group includes the first member within the scene time and the last member outside the scene time, we also assign the group to the scene. However, in this case, we need to expand the time interval of the scene to cover this group. (3) If a group is not overlapped with any scene, we create a new scene for the group. The examples for these three cases are shown in Figure 7. All video scenes are constructed after every video group is examined in turns. Figure 8 shows the interface of the implemented video segmentation engine.

[image: image17.wmf]Scene B

Scene A

Scene B

a

Time :

b

c

d

Case (i) :

c<m<n<d

m

Group G1

n

Scene A

a

b

c

d

Scene B

Assign G1 to B

Case (ii) :

c<m<d & d<n

m

Group G1

n

Scene A

a

b

c

Scene B

Assign G1 to B and extend B to n

n

Case (iii) :

d<m

m

Group G1

n

Scene A

a

b

c

d

m

n

Scene C

Create Scene C and assign G1 to

C

Figure 7: Video Scene Construction

[image: image18.png]

Figure 8: The Implementation of Video Segmentation Engine

4.1.4
Evaluation of Video Table-of-Contents

In the previous section, we have described the system architecture of ADVISE. We evaluate the system performance in this section. Since a more accurate video structure can better describe the video content to the users, an experiment is carried out to evaluate the accuracy of the video segmentation process in our system. We have taken four shot commercials as a simple test set for our system. The number of shots, groups and scenes in the set of videos are first examined by human judgments. We then use these results to compare different segmentation approaches. We performed video segmentation on the experimental video set with four segmentation approaches. The results are compared with the human judgments and shown in the Table 1.

In the first approach, video segmentation is based on single color histogram on each frame and a fixed threshold to determine the video shot boundaries. This is the most basic approach, which detects only the global color changes between video frames with one color histogram for each of them. Besides, it is convenient to set a common threshold value for video shots detection. However, through this approach, we find that the results are not quite accurate because there are always misdetections of video shots.

In the second approach, we try to improve the first approach by using an adaptive threshold for video shots detection. As we described in Section 3.1, the adaptive threshold is calculated using entropies. The results of this approach are more accurate then the first approach. It is because most of the misdetections are removed by using an appropriate threshold value for each video.

Both the first and the second approach use single color histogram for each video frame. In the third approach, weight regional color histograms are used stead. This approach attempts to catch the local color differences between video frames. The segmentation result of this approach is similar to that of the first approach. However, we find that this approach can refine the segmentation results by overcoming the deficiency of applying global color differences.

The fourth approach engages the implementation of our system. We employ the weighted regional color histograms and the adaptive threshold in our system. Comparing with the previous approaches, we find that the results of our system are the closest to the human judgments. In fact, the video segmentation process of our system is improved over the other approaches and it is the most accurate one among them.
Table 1: Comparing video segmentation results with the human judgments

	
	Video
	Frames
	Shots
	Group
	Scene

	
	
	
	
	
	

	Human Judgments
	Video 1
	874
	12
	4
	3

	
	Video 2
	1571
	15
	8
	2

	
	Video 3
	901
	14
	5
	2

	
	Video 4
	894
	14
	5
	2

	
	
	
	
	
	

	First Approach
	Video 1
	874
	19
	7
	5

	- using single color histogram
	Video 2
	1571
	29
	12
	3

	- with fixed threshold
	Video 3
	901
	21
	8
	4

	
	Video 4
	894
	25
	10
	5

	
	Accuracy
	
	0.594
	0.591
	0.542

	
	
	
	
	
	

	Second Approach
	Video 1
	874
	16
	6
	4

	- using single color histogram
	Video 2
	1571
	16
	9
	3

	- with adaptive threshold
	Video 3
	901
	21
	8
	3

	
	Video 4
	894
	13
	6
	3

	
	Accuracy
	
	0.858
	0.753
	0.688

	
	
	
	
	
	

	Third Approach
	Video 1
	874
	18
	6
	4

	- using weighted regional
	Video 2
	1571
	19
	11
	3

	 color histograms
	Video 3
	901
	25
	10
	3

	- with fixed threshold
	Video 4
	894
	27
	12
	5

	
	Accuracy
	
	0.634
	0.578
	0.621

	
	
	
	
	
	

	
	
	
	
	
	

	ADVISE
	Video 1
	874
	16
	5
	4

	- using weighted regional
	Video 2
	1571
	16
	8
	3

	 color histograms
	Video 3
	901
	19
	7
	2

	- with adaptive threshold
	Video 4
	894
	17
	7
	3

	
	Accuracy
	
	0.812
	0.807
	0.771

4.2
Video Structure in XML

Once the video structure is constructed, the next problem we need to solve is the storage of the structure. In this module, we store the resulting video structure using XML. There are four major benefits that XML can achieve. First, we can build up an organized and compact data structure for using the nested hierarchy of XML [29]. It will be efficient to identify each video component by the corresponding XML element defined. Second, with the plain-text property of XML, we are able to modify any items, reorganize the structure, or query the stored information comfortably. The third advantage is brought up by the extensibility of XML. We can be flexible to include additional information in the video structure. Defining a new set of elements can extend the video tree structure, and carry other video features, including caption text from video caption extraction, transcript from speech recognition, or the presence of face detection. The growing importance of XML on the Internet is the fourth benefit for our system. As XML becomes popular in various applications as a standard information protocol, the video tree structure can widely spread with its XML format.

To store the video structure in XML, we need to first design an XML DTD. The DTD defines all the video structure components and their relations in terms of XML elements and attributes. We can also use the DTD to maintain the consistency of the XML. The DTD we employed is defined in Figure 9.
	<?xml version="1.0"?>

<!ELEMENT advise (video+)>

<!ELEMENT video (scene+)>

 <!ATTLIST video src CDATA #REQUIRED>

<!ELEMENT scene (group+)>

 <!ATTLIST scene id CDATA #REQUIRED>

<!ELEMENT group (shot+)>

 <!ATTLIST group id CDATA #REQUIRED>

<!ELEMENT shot (time+, keyframe+)>

 <!ATTLIST shot id CDATA #REQUIRED>

<!ELEMENT time EMPTY>

 <!ATTLIST time value CDATA #REQUIRED>

<!ELEMENT keyframe EMPTY>

 <!ATTLIST keyframe img CDATA #REQUIRED>

Figure 9: DTD for XML Video Tree Structure

There are 7 elements this DTD:

· advise is used to encapsulate all outputs of the system.

· video is the root level component of the video tree structure. It contains multiple scenes. It has an attribute, src, which states the file location of the video source.

· scene represents a video scene component in the video structure. It contains video groups. An attribute, id, is associated with scene, and represents the scene number.

· group is a video group in the video structure. It consists of multiple video shots. Similar to scene, it contains an attribute, id, which is the group number.

· shot is a video shot. It also has an attribute, id, to represent the shot number. It can carry different video information, including the time and the key frame.

· time contains an attribute, value, which is used to record the beginning time of a shot in the video sequence.

· keyframe is an element to store the key frame for the corresponding video shot. The attribute, img, points to the location of the stored key frame image.

Then the output video structure in XML is stored using the above DTD elements. An example video structure in XML is shown in Figure 10.

	<?xml version="1.0"?>

<!DOCTYPE advise SYSTEM "./toc.dtd">

<advise>

<video src="rstp:// source video on server">

<scene id="1">

 <group id="1">

 <shot id="1">

 <time value="0"/>

 <keyframe img="./sh_1.jpg"/>

 </shot>

 <shot id="3">

 <time value="11"/>

 <keyframe img="./sh_3.jpg"/>

 </shot>

 </group>

 <group id="2">

 <shot id="2">

 <time value="7"/>

 <keyframe img="./sh_2.jpg"/>

 </shot>

 </group>

</scene>

<scene id="2">

 <group id="3">

 <shot id="4">

 <time value="20"/>

 <keyframe img="./sh_4.jpg"/>

 </shot>

 </group>

</scene>

</video>

</advise>

Figure 10: XML Video Tree Structure

To transform the XML into a web-based presentation, we use the XSL technique [7]

 REF _Ref532203303 \r \h
[30]. XSL provides sorting and filtering functions such that the output web presentation can be organized according to the values of XML elements. The major part of the XSL is quoted in Figure 11.

	<xsl:for-each select="advise/video/scene/group/shot" order-by="../@id">

<tr class="nfont">

 <th><xsl:value-of select="../../@id"/></th>

 <th><xsl:value-of select="../@id"/></th>

 <th><xsl:value-of select="@id"/></th>

 <th align="left">

<xsl:attribute name="src">

<xsl:value-of select="keyframe/@img"/>

</xsl:attribute>

 at <xsl:value-of select="time/@value"/> sec

</th>

</tr>

</xsl:for-each>

Figure 11: XSL Segment for Transforming XML Video Tree Structure

In this XSL segment, we order the video shot components according to the attribute id in each shot. Then, in an HTML table row, we print out the scene id, the group id, and the shot id. After that, we show the key frame image using an HTML image tag with the source location stored at the keyframe img attribute. Besides, we print the corresponding time instance recorded at the value attribute of the element time. A sample web-based presentation of the video structure is in, Figure 12.

[image: image19.png]2 ADVISE =1l x|
I |
| eock - 5 - @ A | @search Gigravorites »|

| dcress [&1 tetpsipesnorsividecttest vidzom v] @G |[unks >

ADVISE

ideo Structure in XML

Source Videa: test_vid2.mpg

Scene Group Shot
1 1 1
2 2 2
3 3 3
a 4 4

6
8

&7 pone. T

Figure 12: Video Structure in XML

4.3
Video Presentation Using SMIL

In this module, we generate a video presentation using SMIL based on the XML video structure from the previous section. Since the XML video structure can only provide a description of video using static images, we may wish to select some of the interested video segments and browse them. Therefore, we generate personalized SMIL video presentation, which combines the selected video segments, upon receiving any requests from the users. There are two major steps involved in this module: the web-based selection of video components, and the generation of SMIL video presentation on the web server.

The web-based user interface for selection of video components is built using on the online XML presentation of video structure. The XML page is changed such that we allow users to make selection for each video shot on the video structure using HTML checkboxes. Users can submit their selections back to our web server by invoking a form submission script on the page. The modified web-based interface is illustrated in Figure 13.

[image: image20.jpg]deos
test_vid1.mpg
test_vid2.mpg
test_vid3.mpg
test_vid4.mpg
test_vids.mpg
test_vide.mpg

=lolx|

iy | B &)

=] @ [Juns)

w Favortes Tooks Help
| ek« > - @ [2) 4| Qsearch [alFavories 3t
| adress [&] hitp:/jpcon07spuideotest visz.xm

e ADVISE - Video Structure in XML

e Source Vido; test_vid2.mpg - Blay 1t -
Ot
98| scene Group Shot
Ot
op(0 1 1
ot
2 2 2
3 3 &
4 4 4
6
8

To smI

€] javascriptisubmitrequest()

RN

Figure 13: Web-based Interface for Video Customization

Once a selection request is received on the web server, a PERL script is invoked to interpret the request and generate the corresponding SMIL presentation. Since the XML and SMIL are both in plain text format, we can apply the script to transform the XML video structure into a SMIL presentation according to the selection request. The PERL script consists of an XML parser, which identifies the elements in the XML video structure. Based on the received parameters on the request, the PERL script extracts those selected video shots from the XML video structure. The extracted shots are then used to generate the SMIL video presentation. The PERL script reads in a prepared SMIL template and fills in those selected video shots [10]

 REF _Ref532202807 \r \h
[11]. The template consists of three regions. In the first region, those selected video shots form a video sequence. The second region contains a text stream, which is aligned with the video sequence to show the scene, group and shot numbers of the playing shots. In the third region, the corresponding key frame for the video component is shown. A sample source for SMIL is shown in Figure 14. The users, who have submitted the request, are then able to play their customized SMIL video presentation through the Internet with the RealPlayer [21] as shown in Figure 15.

	<?xml version="1.0"?>

<smil>

<head>

 <layout type="text/smil-basic-layout">

 <root-layout width="550" height="300" background-color="black"/>

 <region id="video" left="5" top="5" height="288" width="352" fit="fill"/>

 <region id="description" left="360" top="5" height="80" width="150"/>

 <region id="keyframe" left="380" top="90" height="90" width="110"/>

 </layout>

</head>

<body>

 <seq>

 <par>

 <video src="rtsp:// source video on server" clip-begin="3s"
 clip-end="15s" region="video" fill="freeze"/>

 <textstream src="desc.rt" clip-begin="3s" clip-end="15s"

 region="description" fill="freeze"/>

 </par>

 <par>

 <video src="rtsp:// source video on server" clip-begin="35s"
 clip-end="50s" region="video" fill="freeze"/>
 <textstream src="desc.rt" clip-begin="35s" clip-end="50s"

 region="description" fill="freeze"/>

 </par>

 </seq>

</body>

</smil>

Figure 14: An Example Source for SMIL

[image: image21.png]

Figure 15: A Customized SMIL Video Presentation

5.
Tree Matching on Video Table-of-Contents

In this section, we propose tree-matching algorithm for matching the tree structure of video introduced in section 2.2 [17]. The tree-matching algorithm for video is different from a general tree-matching algorithm since the video tree we generated is well structured. The matching process starts from the top of the tree and proceeds to the next sub-level in an orderly manner, i.e., scene to scene, group to group, and shots to shots. Similarity measure is calculated at each corresponding level between the two video trees. We present two approaches to calculate the similarity of two video trees. One is the non-ordered tree-matching algorithm and the other is the ordered tree-matching algorithm. In the following sections, we detail these two heuristics based on the color histogram feature of video [24]

 REF _Ref532204511 \r \h
[33].
The color histogram video feature is useful for matching the global color content of frames in the video. We can make use of the histogram difference between two frames to determine their visual similarity. If the difference is small, the frames are similar; otherwise, these frames are different. In our algorithm, since a shot is a sequence of frames with similar content, a key frame which is the first frame in the sequence, is used to represent the whole shot. Then the color histogram of the key frame is used to compare with the color histogram from the key frame of another shot.

5.1
Non-ordered Tree Matching Algorithm

In the non-ordered tree matching, the shots are matched without any temporal sequence constraints. In other words, this method is able to match features in any order. The detail of the algorithm is described in the following paragraphs.
The algorithm examines the structural trees of two videos in a top-down manner, i.e., from the Video level to the Shot level. However the scoring of similarity of the video is propagated from bottom-up.
At Video, Scene and Group Levels
There are three steps to work out the feature similarities for the current level. First, the algorithm needs to retrieve the feature similarities of all children by traversing down the tree. For example, when we need to find the similarities between two videos, we need to know how similar their scenes are. When all the child feature similarities are tabulated, we calculate the feature similarities of the current level with a MaxSum() function, in the second step. In the third step, we propagate the feature similarities of the current level to the parent.
The MaxSum() function is used to sum up the similarities of the best match of the children and then return the normalized value of the sum. Figure 16 shows an example best match in the tabulated child similarities. Figure 17 demonstrates the matching in tree format. To calculate the sum, we can add up the maximum score at each row. However, the numbers of scenes, groups and shots in videos are not the same, the tabulated child feature similarities is not in square shape, and there is one to multiple mappings. For example, the fifth row in Figure 16, scene 5 from one video matches both scene 1 and 6 of another video. Then, the sum calculated is different if we take the summation of column maximum instead of row maximum. Therefore, in our algorithm, we set the feature similarity of the current level to be the mean value of the normalized column sum and row sum.

[image: image22.wmf]2

max

max

¸

÷

ø

ö

ç

è

æ

+

=

numrow

rowsum

numcol

colsum

ilarity

FeatureSim

 (11)

[image: image23.png]-6

numberaf sosnes

numberaf scenss - &

Time >
-]
Tme 7

I:

[—

Figure 15: MaxSum()
[image: image24.png]Matching CHikl
(high score)

Figure 16: Non-ordered Tree Matching

At Shot Level
The algorithm calculates the feature similarities based on the shot feature, which is the color histogram.
The color histogram similarity is calculated using the key frames of shots. A distance function is used to compare the color histograms of the key frames [19]. The result, which is the difference of the color histograms, is normalized. Then the color histogram similarity is defined as follow.
ColorSimilarity = 1 - Result of distance function

(12)

The algorithm then propagates the shot level feature similarity to the upper level.
5.2
Ordered Tree Matching Algorithm

The ordered tree-matching algorithm is different from the non-ordered tree because it considers the temporal ordering of the shot features. It allows only matching of feature similarities with temporal constraints. Then the score of similarities propagated up is the summation of feature similarities for the best-ordered match.
An ordered tree matching is significant because it can capture the difference in video similarity due to the changes of features ordering. The reordering of features can form a different tree structure. The non-ordered algorithm cannot detect these kinds of structural differences. An ordered matching algorithm is designed to tighten the similarity measurement by the temporal sequences constraints, so that the feature ordering is considered.
In this algorithm, we used a MaxOrderedSum() function instead of the MaxSum() function in non-ordered matching. The MaxOrderedSum() function considers the ordering while finding out the sum of feature similarities for the best match. We use the dynamic programming technique to calculate the best score [23]. An example best match on tabulated child similarities is shown in Figure 17. The selected set matches a sequence of scenes from both videos. Figure 18 demonstrates this matching function in the tree format. There are four steps for our algorithm to find out the feature similarity of the current level.

Step 1:
Initialize a matrix D with elements equal to zero.
Step 2:
Fill in D according to the following rule.
D(i+1,j+1) = max(D(i,j)+ChildSim(i,j),D(i,j+1))

(14)

Step 3:
When D is filled, the sum of child similarity for the optimal match is located at D(numrow+1,numcol+1).

sum = D(numrow+1,numcol+1)

(15)

Step 4:
Finally, we normalize the sum to be the feature similarity of the current level. The sum is divided by the number of rows and number of columns of the child similarities table respectively. Then, we take mean value to be the feature similarity of the current level.

[image: image25.wmf]2

¸

÷

ø

ö

ç

è

æ

+

=

numrow

sum

numcol

sum

ilarity

FeatureSim

 (16)

[image: image26.png]-6

number of scenes.

numberaf scenss - &

Tine ——p-

Bestscorss o ba summad up

Figure 17: MaxOrderedSum()
[image: image27.png]o) [1] (e

Time —— —Time —p

Matching
. Ghid (igh
score)

Figure 18: Ordered Tree Matching

5.3
Evaluation of Tree Matching Algorithms

In this section, the proposed tree matching algorithms will be evaluated by comparing the results of a small set of videos with the human's ranking results, one example is in Figure 19. Some information of the videos is shown in Table 2. The human's ranking results of the videos are shown in Table 3. There are 5 videos matching with each others using the proposed algorithms.
[image: image28.png]

Figure 19: Matching Video Features

Table 2: Video Tree Structure Information

[image: image29.png]Videos | Number of shots | Number of groups | Number of scenes

Video 1 12 4 3
Video 2 14 2
Video 3 16 6 3
Video 4 18 6 2
Video 5 27 9 6

Table 3: Human’s Ranking for Color Histogram Feature
[image: image30.png]Most Similar Least Similar

Ranking of Videos 1 2 3 4
Video 1 Video? | Viden3 | Videod | Viden5
Video 2 Video] | Videod | Video3| Viden5
Video 3 Video] | Viden 2| Videod | Viden 5
Video 4 Video2 | Viden1|Video3| Viden5
Video 5 Video? | Video1|Video3| Vidend

5.3.1
Applying Non-ordered Tree Matching
According to the feature similarity scores calculated by the non-ordered tree-matching algorithm, we rank the similarities between each video and the others. For example, when we match video 1 with the other 4 videos, if we find that video 2 have the highest similarity score, video 2 is the most similar one to video 1. The ranking results from non-ordered tree matching are shown on Table 4. We find that the results are quite similar to that of human. Hence, the algorithm can find out which videos are more similar.
Table 4: Ranking Results of Non-ordered Tree Matching for Color

Histogram Feature
[image: image31.png]Most Similar Least Similar

Ranking of Videos 1 2 3 4
Video 1 Video3 | Viden 2 | Videod | Viden
Video 2 Videod | Video1|Video3| Viden5
Video 3 Video] | Viden2 | Videod | Viden 5
Video 4 Video? | Viden1|Video3| Viden
Video 5 Video3 | Viden2 | Video1| Vidend

5.3.2
Applying Ordered Tree Matching
Similar to the ranking in non-ordered tree matching, we rank the videos according to the result of the ordered tree matching. The ranks are shown in Table 5. The ranking results are also quite similar to that of human. That means the proposed algorithm can rank the similarities of the videos similar to human.
Table 5: Ranking Results of Ordered Tree Matching for Color

Histogram Feature
[image: image32.png]Most Similar Least Similar

Ranking of Videos 1 2 3 4
Video 1 Video3 | Viden 2 | Videod | Viden
Video 2 Videod | Video5 | Video2| Viden3
Video 3 Video] | Videod | Video2| Viden5
Video 4 Video? | Viden3|Video1| Viden5
Video 5 Video? | Video1|Video3| Vidend

6.
Future Work

The future direction of our research work is to explore the capability of using the structure based video matching on video retrieval [1][2][15]

 REF _Ref532204511 \r \h
[33]. We can then further extend ADVISE to a web-based video retrieval system. The users can select a source video to retrieve other videos with similar video structures. We expect that the approach using similarity of video structures is efficient to retrieve similar videos for the users.
The first procedure for the retrieval process is the clustering of videos. We can apply the video matching techniques described in Section 5 on the video clustering. With the video matching, we measure the similarities between the abundant source videos to act as the criteria for the clustering. Those videos scored higher similarities for their video structures are then grouped together in a cluster. Upon any query with a source video from the users, we will answer them with other videos from the same cluster.
Since the video structures are now in XML format, we need to develop an XML database to store them for retrieval. XML provides two major advantages which can make the retrieval process more efficient. The first advantage is brought up by the hierarchical structure of XML. We can build up our database according to the XML hierarchy, which describes our video structures. The retrieval process can be speeded up using the hierarchical lookup of video components in the structures. The second advantage is achieved by the plain-text property of XML. That means the video is represented by the textual information rather the complex multimedia data types. We can carry out textual searching of information from the XML database, which is more convenient. In order to have a more precise grammar for XML to describe our video structures, we will also use XML Scheme [32] instead of DTD in the tags definition.
Besides, we need to extend our web-based interface to support the video retrieval on the Internet. The video retrieval results need to be well-presented through the Internet. Therefore, more video personalization skills for using SMIL will be applied on those results presentation. We can migrate to SMIL 2.0 [20] to employ more video presentation features.
7.
Conclusion

In Section 4, we have proposed ADVISE, the Advanced Digital Video Information Segmentation Engine. Through this system, we can efficiently understand the content of an online video with a visual description. We can select and play only those interested video segments from the visual description. The system consists of three major components. The first component is the video segmentation engine. It is used to construct a video tree structure, which describes an abstract idea of the video content. In the second component, we store the video tree structure in XML format according to a DTD defining elements for the video components. The XML video structure can also be presented in the Internet with XSL. The third component receives requests from online users regarding their selections of the video components. Then it generates the corresponding SMIL video presentation containing the selected video segments and sends it back to the users.
By using the generated video tree structure, we proposed two tree matching algorithms in Section 5. They are the non-ordered tree matching algorithm and the ordered tree-matching algorithm. They score the similarity of videos using two video features extracted at the shot level. These features are the color histogram feature and the shot style feature. Evaluations have been done on comparing the video rankings of our algorithms and human, we found that the results are quite similar. Therefore we can conclude that the proposed algorithm is effective for matching the feature similarities of videos.
Reference

[1] D.A. Adjeroh, M.C. Lee, I. King. A Distance Measure for Video Sequence Similarity Matching. In International Workshop on Multi-Media Database Management Systems, pages 72-79, 1998.
[2] M. Bertini, A.D. Bimbo, P. Pala. Content-based indexing and retrieval of TV news. In Elsevier Pattern Recognition Letters, volume 22, pages 503-516, 2001.

[3] J.S. Boreczky, L.A. Rowe. Comparison of video shot boundary detection techniques. In Proceedings of SPIE Conference: Storage and Retrieval for Image and Video Databases, volume 2670, pages 170-179, 1996.

[4] P. Browne, A.F. Smeaton, N. Murphy, N. O'Connor, S. Marlow, C. Berrut. Evaluating and Combining Digital Video Shot Boundary Detection Algorithms. In Proceedings of the Irish Machine Vision and Image Processing Conference (IMVIP 2000), August 2000.

[5] P. Chiu, A. Girgensohn, W. Polak, E. Rieffel, L. Wilcox. A genetic algorithm for video segmentation and summarization. In IEEE International Conference on Multimedia and Expo, volume 3, pages 1329-1332, 2000.

[6] M. Christel, D. Martin. Information Visualization Within a Digital Video Library. Journal of Intelligent Information Systems, volume 11, no. 3, pages 235-257, 1998.

[7] M.G. Christel, B. Maher, A. Begun. J.Y. Pan, C. XSLT for Tailored Access to Digital Video Library. In Proceedings of the First ACM/IEEE-CS Joint Conference on Digital Libraries, page 290-299, June 2001.

[8] A. Dailianas. Comparison of automatic video segmentation algorithms. In Proceedings of SPIE Photonics East’95: Integration Issues in Large Commercial Media Delivery Systems, October 1995.

[9] A.G. Hauptmann, M.J. Witbrock, M.G. Christel. Artificial Intelligence Techniques in the Interface to a Digital Video Library. In Proceedings of the CHI-97 Computer-Human Interface Conference New Orleans LA, March 1997.

[10] R. Hjelsvold, S. Vdaygiri, Yves Léauté. Web-based Personalization and Management of Interactive Video. In Proceedings of the Tenth International World Wide Web Conference, page 129-139, May 2001.

[11] J. Hunter, S. Little. Building and Indexing a Distributed Multimedia Presentation Archive using SMIL. In Proceedings of the 5th European Conference on Research and Advanced Technology for Digital Libraries, ECDL '01, pages 415-428, September 2001.

[12] V. Kobla, D.S. Doermann, C. Faloutsos. VideoTrails: Representing and Visualizing Structure in Video Sequences. In Proceedings of ACM Multimedia Conference, pages 335-346, November 1997.
[13] J.L. Koh, C.S. Lee, A.L.P. Chen. Semantic video model for content-based retrieval. In IEEE International Conference on Multimedia Computer and Systems, volume 2, pages 472-478, 1999.

[14] W. Li, S. Gauch, J. Gauch, K.M. Pua. VISION: A Digital Video Library. In ACM Digital Libraries, pages 19-27, 1996.
[15] R. Lienhart, W. Effelsberg, R. Jain. VisualGrep: A Systematic method to compare and retrieve video sequences. In Storage and Retrieval for Image and Video Databases VI, SPIE, volume 3312, page 271, Jan 1998.
[16] R. Mohan. Video Sequence Matching. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, volume 6, pages 3697-3700, 1998.

[17] C.W. Ng, I. King, M.R. Lyu. Video Comparison Using Tree Matching Algorithm. In Proceedings of The International Conference on Imaging Science, Systems, and Technology, volume 1, pages 184-190, Las Vegas, Nevada, USA, June 2001.
[18] J.Y. Pan, C. Faloutsos. VideoGraph: A New Tool for Video Mining and Classification. In Proceedings of the First ACM/IEEE-CS Joint Conference on Digital Libraries, page 116-117, June 2001.

[19] P. Pan, G. Davenport. I-Views: A Community-oriented System for Sharing Streaming Video on the Internet. In Computer Networks: The International Journal of Computer and Telecommunications Networking, volume 33, issue 1-6, page 567-581, June 2001.

[20] Oratrix Development, GRiNS Player for SMIL 2. http://www.oratrix.com/GRiNS/

[21] Real Networks, Inc, RealPlayer 8. http://www.real.com/playerplus/index.html

[22] Y. Rui, T.S. Hunag, and S. Mehrotra. Constructing Table-of-Content for Videos. In ACM Multimedia Systems Journal, Special Issue Multimedia Systems on Video Libraries, volume 7, no. 5, pages 359-368, Sept 1999.
[23] M.K. Shan and S.Y. Lee. Content-based video retrieval based on similarity of frame sequence. In International Workshop on Multi-Media Database Management Systems, pages 90-97, 1998.
[24] J.R. Smith, S.F. Chang. Querying by Color Regions using the VisualSEEk Content-Based Visual Query System. In Intelligent Multimedia Information Retrieval, IJCAI, 1997.
[25] M.J. Swain and D.H. Ballard. Color Indexing. International Journal of Computer Vision, volume 7, issue 1, pages 11-32, 1991.

[26] S. Uchihashi, J. Foote, A. Girgensohn, J. Boreczky. Video Manga: Generating Semantically Meaningful Video Summaries. In Proceedings of the ACM Multimedia 1999, pages 383-392, 1999.

[27] H.D. Wactlar. New Directions in Video Information Extraction and Summarization. In Proceedings of the 10th DELOS Workshop, Santorini, Greece, June 1999.

[28] H.D. Wactlar, T. Kanade, M.A. Smith, S.M. Stevens. Intelligent Access to Digital Video: Informedia Project. Computer, volume 29, issue 5, pages 46-52, May 1996.

[29] W3C Recommendation, Extensible Makeup Language (XML) 1.0 Specification (Second Edition). http://www.w3.org/TR/2000/REC-xml-20001006, 6 October 2000.

[30] W3C Recommendation, Extensible Stylesheet Language (XSL) 1.0 Specification. http://www.w3.org/TR/2001/REC-xsl-20011015, 15 October, 2001.

[31] W3C Recommendation, Synchronized Multimedia Integration Language (SMIL) 1.0 Specification. http://www.w3.org/TR/REC-smil, 15 June 1998.

[32] W3C Recommendation, XML Schema. http://www.w3.org/XML/Schema, 2 May 2001.

[33] H.H. Yu, W. Wolf. A Visual Search System for Video and Image Databases. In Proceedings of the 1997 International Conference on Multimedia Computing and Systems, pages 517-524, June 1997.

[34] J. Yu, M.D. Srinath. An efficient method for scene cut detection. In Elsevier Pattern Recognition Letters, volume 22, pages 1379-1391, 2001.

[35] J.Y. Zhou, E.P. Ong, C.C. Ko. Video object segmentation and tracking for content-based video coding. In IEEE International Conference on Multimedia and Expo, volume 3, pages 1555-1558, 2000.
PAGE
37

_1067489933.vsd

_1067512218.unknown

_1067516061.unknown

_1068858327.unknown

_1068859603.unknown

_1067514897.vsd

_1067511859.unknown

_1067512045.unknown

_1067497557.unknown

_1067103828.vsd

_1067428381.vsd

_1067481394.unknown

_1067071185.unknown

_1067071276.unknown

_1067071425.unknown

_1067071236.unknown

_1064600122.vsd

