
Quality Prediction for Component-Based
Software Development: Techniques and

A Generic Environment

CAI Xia

A Thesis Submitted in Partial Fulfillment
Of the Requirements for the Degree of

Master of Philosophy
In

Computer Science and Engineering

Supervised by:
Prof. Michael R. Lyu

© The Chinese University of Hong Kong
December 2001

 The Chinese University of Hong Kong holds the copyright of this
thesis. Any person(s) intending to use a part or the whole of the materials
in this thesis in a proposed publication must seek copyright release from
the Dean of the Graduate School.

 i

Abstract

In this thesis, we address quality assurance issues in component-based software

development. First, we propose a quality assurance (QA) model for component-based

software development (CBSD), which covers eight main processes in CBSD:

component requirement analysis, component development, component certification,

component customization, and system architecture design, integration, testing, and

maintenance. We propose the Component-based Program Analysis and Reliability

Evaluation (ComPARE) environment for evaluation of quality of component-based

software systems. ComPARE automates the collection of different metrics, the

selection of different prediction models, the formulation of user-defined models, and

the validation of the established models according to fault data collected in the

development process. Different from other existing tools, ComPARE takes dynamic

metrics into account (such as code coverage and performance metrics), integrates

them with process metrics and static code metrics for object-oriented programs (such

as complexity metrics, coupling and cohesion metrics, inheritance metrics), and

provides different models for integrating these metrics to an overall estimation with

higher accuracy.

Also, we apply different quality prediction techniques to some real world

component-based programs in real world. Based on the analysis, we conclude that the

quality prediction models are suitable for component-based software systems.

 ii

Acknowledgements

 I would like to take this opportunity to express my gratitude to my supervisor,

Prof. Michael R. Lyu, for his generous guidance and patience given to me in the past

two years. His numerous support and encouragement, as well as his inspiring advice

are extremely essential and valuable in my research work. Also, I am grateful for his

support and advice for my further study.

Many thanks go to Prof. Kam-Fai Wong, without whose support and valuable

advice I would not step into the component-based software development field. Thanks

also go to the colleagues of Open Component Foundation, for their helpful sharing and

discussions.

I am so grateful to Prof. Ada Fu and Prof. Mei Hwa Chen for their precious time to

serve as my thesis examiners.

I would like to thank all the friends I made here. It is their friendship and

encouragement that made my study and life happier and easier. I am also grateful for

all the staff in the department, whose smiles and hard work provide a pleasant

environment for study and research.

Last but not least, I would like to thank my husband Xuetai Zhang, for his

unending love, patience and support. Also thanks to our child to be born, who as a gift

from God, gives me courage and strength to finish this thesis.

 iii

Content

1 Introduction ..1

1.1 Component-Based Software Development and Quality Assurance Issues1

1.2 Our Main Contributions ...5

1.3 Outline of This Thesis ..6

2 Technical Background and Related Work ..8

2.1 Development Framework for Component-based Software................................8

2.1.1 Common Object Request Broker Architecture (CORBA)9

2.1.2 Component Object Model (COM) and Distributed COM (DCOM).........12

2.1.3 Sun Microsystems’s JavaBeans and Enterprise JavaBeans......................14

2.1.4 Comparison among Different Frameworks ...17

2.2 Quality Assurance for Component-Based Systems199

2.2.1 Traditional Quality Assurance Issues ..199

2.2.2 The Life Cycle of Component-based Software Systems........................255

2.2.3 Differences between components and objects266

2.2.4 Quality Characteristics of Components...27

2.3 Quality Prediction Techniques..32

2.3.1 ARMOR: A Software Risk Analysis Tool ...333

3 A Quality Assurance Model for CBSD ..35

3.1 Component Requirement Analysis ...38

3.2 Component Development...39

3.3 Component Certification..40

3.4 Component Customization ...42

3.5 System Architecture Design ...43

3.6 System Integration ...44

3.7 System Testing...45

 iv

3.8 System Maintenance ..46

4 A Generic Quality Assessment Environment: ComPARE48

4.1 Objective ...50

4.2 Metrics Used in ComPARE..53

4.2.1 Metamata Metrics...55

4.2.2 JProbe Metrics ...57

4.2.3 Application of Metamata and Jprobe Metrics..58

4.3 Models Definition ..61

4.3.1 Summation Model..61

4.3.2 Product Model..62

4.3.3 Classification Tree Model...62

4.3.4 Case-Based Reasoning Model ..64

4.3.5 Bayesian Network Model ...65

4.4 Operations in ComPARE..66

4.5 ComPARE Prototype ...68

5 Experiments and Discussions..70

5.1 Data Description ..71

5.2 Experiment Procedures ..73

5.3 Modeling Methodology..75

5.3.1 Classification Tree Modeling..75

5.3.2 Bayesian Belief Network Modeling..80

5.4 Experiment Results ..83

5.3.1 Classification Tree Results Using CART ..83

5.3.2 BBN Results Using Hugin..86

5.5 Comparison and Discussion ...90

6 Conclusion..92

A Classification Tree Report of CART ...95

B Publication List ..104

Bibliography...105

 v

List of Figures

Figure 1.1 Component-based software development ..2

Figure 1.2 System architecture of component-based software systems3

Figure 2.1 The life cycle of a component ..29

Figure 2.2 High-level architecture for ARMOR ..34

Figure 3.1 Quality assurance model for both components and systems....................37

Figure 3.2 Component requirement analysis process overview...............................39

Figure 3.3 Component development process overview..40

Figure 3.4 Component certification process overview ...41

Figure 3.5 Component customization process overview ..43

Figure 3.6 System architecture design process overview ..44

Figure 3.7 System integration process overview..45

Figure 3.8 System testing process overview..46

Figure 3.9 System maintenance process overview...47

Figure 4.2 Example of a JProbe coverage browser window.....................................58

Figure 4.3 Flashline QA analysis report on structure and code design59

Figure 4.4 An example of classification tree model ...64

Figure 4.4 GUI of ComPARE for metrics, criteria and tree model69

Figure 4.5 GUI of ComPARE for prediction display, risky source code...................69

and result statistics ..69

Figure 5.1 The quality prediction BBN model and execution demonstration.83

Figure 5.2 Classification tree structure..85

Figure 5.3 The Influence Diagram of the BBN model ...87

Figure 5.4 The probability description of nodes in BBN model...............................87

 vi

Figure 5.5 The different probability distribution of metrics88

according to the quality indicator (sum propagation)88

Figure 5.6 The different probability distribution of metrics89

according to the quality indicator (max propagation)89

 vii

List of Tables

Table 2.1 Comparison of development frameworks for component-based systems ..18

Table 2.2 Examples of Metamata Metrics ...31

Table 4.1 Process Metrics ...53

Table 4.2 Static Code Metrics ..54

Table 4.3 Dynamic Metrics ..55

Table 4.4 Flashline QA report on dynamic metrics ..59

Table 4.5 Flashline QA report on code metrics ..60

Table 5.1 General Metrics of Different Teams...72

Table 5.2 Option Setting when constructing the classification tree84

Table 5.3 Variable importance in classification tree...84

Table 5.4 Terminal node information in classification tree.......................................85

Table 5.5 Relationship between classification results and 3 main metrics86

Table 5.6 Relationship between test result and metrics in BBN90

 1

Chapter 1

Introduction

1.1 Component-Based Software Development and Quality

Assurance Issues

Modern software systems become more and more large-scale, complex and

uneasily controlled, resulting in high development cost, low productivity,

unmanageable software quality and high risk to move to new technology [15].

Consequently, there is a growing demand of searching for a new, efficient, and

cost-effective software development paradigm.

One of the most promising solutions today is the component-based software

development approach. This approach is based on the idea that software systems can

be developed by selecting appropriate off-the-shelf components and then assembling

them with a well-defined software architecture [12]. This new software development

approach is very different from the traditional approach in which software systems can

only be implemented from scratch. These commercial off-the-shelf (COTS)

components can be developed by different developers using different languages and

different platforms. This can be shown in Figure 1.1, where COTS components can be

Chapter 1 Introduction

 2

checked out from a component repository, and assembled into a target software

system.

Figure 1.1 Component-based software development

Component-based software development (CBSD) can significantly reduce

development cost and time-to-market, and improve maintainability, reliability and

overall quality of software systems [13,14]. This approach has raised a tremendous

amount of interests both in the research community and in the software industry. The

life cycle and software engineering model of CBSD is much different from that of the

traditional ones. This is what the Component-Based Software Engineering (CBSE) is

focused.

To ensure that a component-based software system can run properly and

effectively, the system architecture is the most important factor. According to both

research community [2] and industry practice [5], the system architecture of

component-based software systems should be layered and modular. This architecture

can be seen in Figure 1.2. The top application layer is the application systems

...
Component n

Component
repository

Component 1

Component 2

 select

Software
system

assemble

Commercial Off-the-shelf (COTS)
components

Chapter 1 Introduction

 3

supporting a business. The second layer consists of components engaged in only a

specific business or application domain, including components usable in more than a

single application. The third layer is cross-business middleware components

consisting of common software and interfaces to other established entities. Finally, the

lowest layer of system software components includes basic components that interface

with the underlying operating systems and hardware.

Figure 1.2 System architecture of component-based software systems

Current component technologies have been used to implement different software

systems, such as object-oriented distributed component software [23], Web-based

enterprise application [13] and embedded software systems [40]. There are also some

commercial players involved in the software component revolution, such as BEA,

Microsoft, IBM and Sun [7]. A noticeable example is the IBM SanFrancisco project. It

provides a reusable distributed object infrastructure and an abundant set of application

components to application developers [5].

Up to now, software component technologies are an emerging technology, which

Special business components

Common components

Basic components

App2
App1

App3
Application Layer

Components Layer

Chapter 1 Introduction

 4

is far from being matured. There is no existing standards or guidelines in this new area,

and we do not even have a unified definition of the key item “component”. In general,

however, a component has three main features: 1) a component is an independent and

replaceable part of a system that fulfills a clear function; 2) a component works in the

context of a well-defined architecture; and 3) a component communicates with other

components by its interfaces [1].

As CBSD is to build software systems using a combination of components

including off-the-shelf components, components developed in-house and components

developed contractually, the over quality of the final system greatly depends on the

quality of the selected components. We need to first measure the quality of a

component before we can certify it. Software metrics are designed to measure different

attributes of a software system and development process, indicating different levels of

quality in the final product [24]. Many metrics such as process metrics, static code

metrics and dynamic metrics can be used to predict the quality rating of software

components at different development phases [24,26]. For example, code complexity

metrics, reliability estimates, or metrics for the degree of code coverage achieved have

been suggested. Test thoroughness metric is also introduced to predict a component’s

ability to hide faults during tests [25].

In order to make use of the results of software metrics, several different techniques

have been developed to describe the predictive relationship between software metrics

and the classification of the software components into fault-prone and non fault-prone

categories [27]. These techniques include discriminant analysis [30], classification

Chapter 1 Introduction

 5

trees [31], pattern recognition [32], Bayesian network [33], case-based reasoning

(CBR) [34], and regression tree models [27]. There are also some prototype or tools

[36, 37] that use such techniques to automate the procedure of software quality

prediction. However, these tools address only one kind of metrics, e.g., process

metrics or static code metrics. Besides, they rely on only one prediction technique for

the overall software quality assessment.

1.2 Our Main Contributions

From the above, we observe that conventional Software Quality Assurance (SQA)

techniques are not applicable to CBSD. In this thesis, we propose an efficient and

effective SQA approach for CBSD.

Our research have the following main contributions:

• We propose a QA model for component-based software development. It covers

eight main processes in CBSD: component requirement analysis, component

development, component certification, component customization, and system

architecture design, integration, testing, and maintenance.

• We propose the Component-based Program Analysis and Reliability

Evaluation (ComPARE) environment for evaluation of quality of

component-based software systems. ComPARE automates the collection of

different metrics, the selection of different prediction models, the formulation

Chapter 1 Introduction

 6

of user-defined models, and the validation of the established models according

to fault data collected in the development process. Different from other

existing tools, ComPARE takes dynamic metrics into account (such as code

coverage and performance metrics), integrates them with process metrics and

static code metrics for object-oriented programs (such as complexity metrics,

coupling and cohesion metrics, inheritance metrics), and provides different

models for integrating these metrics to an overall estimation with higher

accuracy.

• Also, we apply different quality predicted techniques to some real world

component-based programs. From the results, we give some guidelines on

current component-based software development.

1.3 Outline of This Thesis

First, we present the technical background and related works of CBSD and SQA in

Chapter 2, including the current development frameworks for component based

software: e.g., CORBA, COM/DCOM and JavaBeans, and quality assurance issues of

CBSD, such as quality prediction techniques based on classification tree, case-based

reasoning and Bayesian Network.

Chapter 3 covers the QA model we proposed, which addresses quality management

issues in component-based software development process. In Chapter 4, we introduce

a generic quality assessment environment called ComPARE to automate the

Chapter 1 Introduction

 7

systematic procedure of quality assessment for CBSD. ComPARE simulates the

process of selecting qualified components from a component repository as well as

predicting and evaluating the final system based on these components.

Different predicting models have been applied to on some real world CORBA

programs. Chapter 5 outlines the results and analyses. Based on the analysis, the

advantages and disadvantages of these models are described. Finally we conclude our

research work in Chapter 6.

 8

Chapter 2

Technical Background and Related Work

Because our research topic is to investigate whether the conventional Software

Quality Assurance (SQA) techniques are applicable to component-based software

development (CBSD), we address our survey on current component technologies and

QA issues in CBSD. As there are so many un-explored issues about QA of CBSD, we

narrow our topic to quality prediction to evaluate and assess the quality of components

in the component library.

In this chapter, we survey current development frameworks for CBSD and the

features they have as well as some related QA issues. After that, we will introduce

some quality prediction techniques that we would address in our research, and existing

quality prediction tools that we should learn from.

2.1 Development Framework for Component-based Software

To employ component-based software development, we should know the current

development frameworks for this approach. A framework can be defined as a set of

constraints on components and their interaction, and a set of benefits that derive from

Chapter 2 Technical Background and Related Work

 9

those constraints [42]. To identify the development framework for component-based

software systems, the framework or infrastructure for components should be identified

first, as components are the basic units in component-based software systems.

Some approaches, such as Visual Basic Controls (VBX), ActiveX controls, class

libraries, and JavaBeans, make it possible for their related languages, such as Visual

Basic, C++, Java, and the supporting tools to share and distribute application pieces.

But all of these approaches rely on certain underlying services to provide the

communication and coordination necessary for the application. The infrastructure of

components (sometimes called a component model) acts as the "plumbing" that allows

communication among components [1]. Among the component infrastructure

technologies that have been developed, three have become somewhat standardized:

OMG's CORBA, Microsoft's Component Object Model (COM) and Distributed COM

(DCOM), and Sun's JavaBeans and Enterprise JavaBeans [7].

2.1.1 Common Object Request Broker Architecture (CORBA)

CORBA is an open standard for application interoperability that is defined and

supported by the Object Management Group (OMG), an organization of over 400

software vendors and object technology user companies [11]. Simply stated, CORBA

is a vendor-independent architecture and infrastructure that computer applications use

to work together over networks. It manages details of component interoperability, and

allows applications to communicate with one another despite of different locations and

Chapter 2 Technical Background and Related Work

 10

designers. The interface is the only way that applications or components communicate

with each other. Using the standard protocol IIOP, a CORBA-based program from any

vendor, on almost any computer, operating system, programming language, and

network, can interoperate with a CORBA-based program from the same or another

vendor, on almost any other computer, operating system, programming language, and

network.

The most important part of a CORBA system is the Object Request Broker (ORB).

The ORB is the middleware that establishes the client-server relationships between

components. Using an ORB, a client can invoke a method on a server object, whose

location is completely transparent. The ORB is responsible for intercepting a call and

finding an object that can implement the request, pass its parameters, invoke its

method, and return the results. The client does not need to know where the object is

located, its programming language, its operating system, or any other system aspects

that are not related to the interface. In this way, the ORB provides interoperability

among applications on different machines in heterogeneous distributed environments

and seamlessly interconnects multiple object systems.

CORBA applications are composed of objects, individual units of running software

that combine functionality and data, and that frequently (but not always) represent

something in the real world. Typically, there are many instances of an object of a single

type - for example, an e-commerce website would have many shopping cart object

instances, all identical in functionality but differing in that each is assigned to a

different customer, and contains data representing the merchandise that its particular

Chapter 2 Technical Background and Related Work

 11

customer has selected. For other types, there may be only one instance. When a legacy

application, such as an accounting system, is wrapped in code with CORBA interfaces

and opened up to clients on the network, there is usually only one instance.

The IDL interface definition is independent of programming language, but maps to

all of the popular programming languages via OMG standards: OMG has standardized

mappings from IDL to C, C++, Java, COBOL, Smalltalk, Ada, Lisp, Python, and

IDLscript. This separation of interface from implementation, enabled by OMG IDL, is

the essence of CORBA - how it enables interoperability, with all of the transparencies

we've claimed. The interface to each object is defined very strictly. In contrast, the

implementation of an object - its running code, and its data - is hidden from the rest of

the system (that is, encapsulated) behind a boundary that the client may not cross.

Clients access objects only through their advertised interface, invoking only those

operations that that the object exposes through its IDL interface, with only those

parameters (input and output) that are included in the invocation.

In CORBA, every object instance has its own unique object reference, an

identifying electronic token. Clients use the object references to direct their

invocations, identifying to the ORB the exact instance they want to invoke (e.g.,

ensuring that the books you select go into your own shopping cart, and not into your

neighbor's). The client acts as if it is invoking an operation on the object instance, but it

is actually invoking on the IDL stub which acts as a proxy. Passing through the stub on

the client side, the invocation continues through the ORB (Object Request Broker),

and the skeleton on the implementation side, to get to the object where it is executed.

Chapter 2 Technical Background and Related Work

 12

CORBA is widely used in Object-Oriented distributed systems [23] including

component-based software systems because it offers a consistent distributed

programming and run-time environment over common programming languages,

operating systems, and distributed networks.

The OMG has also defined two standards for embedded applications: Minimum

CORBA and Real-Time CORBA. Minimum CORBA defines a standard, fully

interoperable subset (profile) of CORBA functionality that is appropriate for

resource-constraint applications, while Real-Time CORBA extends CORBA so that it

can be used to build deterministic applications [28].

2.1.2 Component Object Model (COM) and Distributed COM
(DCOM)

Introduced in 1993, The Component Object Model (COM) is a software

architecture that allows applications to be built from binary software components [9].

COM provides platform-dependent, based on Windows and Windows NT, and

language-independent component-based applications.

 COM defines how components and their clients interact. This interaction is defined

such that the client and the component can connect without the need of any

intermediate system component. Specially, COM provides a binary standard that

components and their clients must follow to ensure dynamic interoperability. This

enables on-line software update and cross-language software reuse [20].

COM is the underlying architecture that forms the foundation for higher-level

Chapter 2 Technical Background and Related Work

 13

software services, like those provided by OLE. OLE services span various aspects of

commonly needed system functionality, including compound documents, custom

controls, interapplication scripting, data transfer, and other software interactions.

It is important to note that COM is a general architecture for component software.

While Microsoft is applying COM to address specific areas such as controls,

compound documents, automation, data transfer, storage and naming, and others, any

developer can take advantage of the structure and foundation that COM provides.

Microsoft® Distributed COM (DCOM) extends the Component Object Model

(COM) to support communication among objects on different computers—on a LAN,

a WAN, or even the Internet. With DCOM, your application can be distributed at

locations that make the most sense to your customer and to the application.

Because DCOM is a seamless evolution of COM, the world's leading component

technology, you can take advantage of your existing investment in COM-based

applications, components, tools, and knowledge to move into the world of

standards-based distributed computing. As you do so, DCOM handles low-level

details of network protocols so you can focus on your real business: providing great

solutions to your customers.

DCOM is an extension of the Component Object Model (COM). COM defines

how components and their clients interact. This interaction is defined such that the

client and the component can connect without the need of any intermediary system

Chapter 2 Technical Background and Related Work

 14

component. The client calls methods in the component without any overhead

whatsoever.

Since DCOM is an inherently secure protocol, it can be used without being

encapsulated in a virtual private network: DCOM applications can simply use the

cheap, global TCP/IP network. Most companies do not provide direct Internet access

to their desktop computers. All but some dedicated server machines are hidden behind

a firewall that typically consists of protocol-level (port-based) and application-level

(proxy servers) filters.

 To summarize, as an extension of the Component Object Model (COM),

Distributed COM (DCOM), is a protocol that enables software components to

communicate directly over a network in a reliable, secure, and efficient manner.

DCOM is designed for use across multiple network transports, including Internet

protocols such as HTTP. When a client and its component reside on different machines,

DCOM simply replaces the local interprocess communication with a network protocol.

Neither the client nor the component is aware the changes of the physical connections.

2.1.3 Sun Microsystems’s JavaBeans and Enterprise
JavaBeans

Sun’s Java-based component model consists of two parts: the JavaBeans for

client-side component development and the Enterprise JavaBeans (EJB) for the

server-side component development. The JavaBeans component architecture supports

applications of multiple platforms, as well as reusable, client-side and server-side

Chapter 2 Technical Background and Related Work

 15

components [19].

 Java platform offers an efficient solution to the portability and security problems

through the use of portable Java bytecodes and the concept of trusted and untrusted

Java applets. Java provides a universal integration and enabling technology for

enterprise application development, including 1) interoperating across multivendor

servers; 2) propagating transaction and security contexts; 3) servicing multilingual

clients; and 4) supporting ActiveX via DCOM/CORBA bridges.

JavaBeans and EJB extend all native strengths of Java including portability and

security into the area of component-based development. The portability, security, and

reliability of Java are well suited for developing robust server objects independent of

operating systems, Web servers and database management servers.

The JavaBeans API makes it possible to write component software in the Java

programming language. Components are self-contained, reusable software units that

can be visually composed into composite components, applets, applications, and

servlets using visual application builder tools. JavaBean components are known as

Beans.

Components expose their features (for example, public methods and events) to

builder tools for visual manipulation. A Bean's features are exposed because feature

names adhere to specific design patterns. A "JavaBeans-enabled" builder tool can then

examine the Bean's patterns, discern its features, and expose those features for visual

manipulation. A builder tool maintains Beans in a palette or toolbox. You can select a

Chapter 2 Technical Background and Related Work

 16

Bean from the toolbox, drop it into a form, modify it's appearance and behavior, define

its interaction with other Beans, and compose it and other Beans into an applet,

application, or new Bean. All this can be done without writing a line of code.

Millions of developers around the world have already embraced the JavaTM

platform. The Java platform has opened up an entirely new world of opportunities for

building fully portable network-aware applications. Yet many developers are not yet

sure how best to take advantage of the capabilities and benefits the Java platform

delivers without sacrificing their existing investment in legacy applications.

The JavaBeans component architecture is a platform-neutral architecture for the

Java application environment. It's the ideal choice for developing or assembling

network-aware solutions for heterogeneous hardware and operating system

environments--within the enterprise or across the Internet.

The JavaBeans component architecture extends "Write Once, Run AnywhereTM"

capability to reusable component development. In fact, the JavaBeans architecture

takes interoperability a major step forward. Based on it, code can theoretically run on

every OS and also within any application environment. A beans developer secures a

future in the emerging network software market without losing customers that use

proprietary platforms, because JavaBeans components interoperate with ActiveX.

JavaBeans architecture connects via bridges into other component models such as

ActiveX. Software components that use JavaBeans APIs are thus portable to

containers including Internet Explorer, Visual Basic, Microsoft Word, Lotus Notes,

and others.

Chapter 2 Technical Background and Related Work

 17

The JavaBeans specification defines a set of standard component software APIs

for the Java platform. The specification was developed by Sun with a number of

leading industry partners and was then refined based on broad general input from

developers, customers, and end-users during a public review period.

2.1.4 Comparison among Different Frameworks

Comparison among the development frameworks for component-based software

systems above can be found in [1], [13] and [18]. Here we simply summarize these

different features in Table 2.1.

Chapter 2 Technical Background and Related Work

 18

 CORBA EJB COM/DCOM

Development
environment

Underdeveloped

Emerging

Supported by a
wide range of strong
development
environments

Binary
interfacing
standard

Not binary standards Based on COM;
Java specific

 A binary standard
for component
interaction is the
heart of COM

Compatibility &
portability

Particularly strong in
standardizing language
bindings; but not so
portable

Portable by Java
language specification;
but not very
compatible.

Not having any
concept of
source-level
standard of standard
language binding.

Modification &
maintenance

CORBA IDL for
defining component
interfaces, need extra
modification &
maintenance

Not involving IDL
files, defining
interfaces between
component and
container. Easier
modification &
maintenance.

Microsoft IDL for
defining component
interfaces, need
extra modification
& maintenance

Services
provided

A full set of
standardized services;
lack of
implementations

Neither standardized
nor implemented

Recently
supplemented by a
number of key
services

Platform
dependency

Platform independent Platform independent Platform dependent

Language
dependency

Language independent Language dependent Language
independent

Implementation

Strongest for
traditional enterprise
computing

Strongest on general
Web clients.

Strongest on the
traditional desktop
applications

Table 2.1 Comparison of development frameworks for component-based systems

Chapter 2 Technical Background and Related Work

 19

2.2 Quality Assurance for Component-Based Systems

2.2.1 Traditional Quality Assurance Issues

Traditionally quality is defined as conformance to specification or requirements,

and failures arise when the software is not met the requirements. The International

Standard Quality Vocabulary (ISO 8402) defines quality as: “The totality of features

and characteristics of a product or service that bear on its ability to meet stated or

implied needs.” According to ISO9126, the definition of quality characteristics

includes: functionality, reliability, usability, efficiency, maintainability and portability.

According to Sanders and Curran [43], Software Quality Assurance is a planned

and systematic pattern of actions to provide adequate confidence that the item or

product conforms to established technical requirements. In a more specific project

context, it is about ensuring that project standards and procedures are adequate to

provide the required degree of quality, and that they are adhered to throughout the

project..

Quality Assurance focused on both the product and the process. The

product-oriented part of SQA (often called Software Quality Control) should strive to

ensure that the software delivered has a minimum number of faults and satisfies the

users' needs. The process-oriented part (often called Software Quality Engineering)

should institute and implement procedures, techniques and tools that promote the

fault-free and efficient development of software products.

Chapter 2 Technical Background and Related Work

 20

Quality assurance activities include:

• Management

Analysis of the managerial structure that influences and controls the quality of the

software is an SQA activity. It is essential for an appropriate structure to be in place

and for individuals within the structure to have clearly defined tasks and

responsibilities.

• Documentation

It is essential to analyze the documentation plan for the project, to identify

deviations from standards relating to such plans, and to discuss these with project

management.

• Standards and Practices

 It is essential to monitor adherence to all standards and practices throughout the

project.

o Documentation standards.

o Design standards.

o Coding standards.

o Code commenting standards.

o Testing standards and practices.

o Software quality assurance metrics.

o Compliance monitoring.

• Reviews and Audits

Chapter 2 Technical Background and Related Work

 21

It is essential to examine project review and audit arrangements, to ensure that they

are adequate and to verify that they are appropriate for the type of project.

• Testing

Unit, integration, system and acceptance testing of executable software are an

integral part of the development of quality software.

• Problem Reporting and Corrective Action

It is essential to review and monitor project error-handling procedures to ensure

that problems are reported and tracked from identification right through to resolution,

and that problem caused are eliminated where possible. It is also important to monitor

the execution of these procedures and examine trends in problem occurrence.

• Tools, Techniques and Methods

Tools, techniques and methods for software production should be defined at the

project level.

• Code and Media Control

It is essential to check that the procedures, methods and facilities used to maintain,

store, secure and document controlled versions of software are adequate and are used

properly.

Software Quality Assurance aims at cost-effective, flexibility, rich functionality,

certain reliability and safety of software systems. To achieve software quality, the life

cycle of software design is promoted, it mainly includes [42]:

Chapter 2 Technical Background and Related Work

 22

• requirements specification;

• system and module design;

• coding and implementation;

• test.

 Also, there are formal methods in software requirements specification, formal

methods permit each stage of design to be checked against the previous stage(s) from

consistency and correctness. Three main types of Formal Method are: 1) data-oriented

Formal Method, including model-based notation (VDM, Z) and algebraic notation

(OBJ); 2) process-oriented Formal Method, including communications sequential

processes (CSP) and calculus of concurrent systems (CCS); 3) state-oriented formal

methods, such as Petri-net.

 Moreover, different metrics can be applied to project control, predicting coding

and test times, productivity and machine usage; and quality assurance related to

reliability and safety. There are two main types of metrics: process-related metrics and

product-related metrics [Jaco92]. Process-related metrics measure things like cost,

effort, schedule time and number of faults found during testing. While product-related

metrics predict coding and test times, productivity and machine usage. Some

traditional metrics are as follows: 1) lines of code; 2) percentage comment; 3) module

complexity; 4) subjective complexity; 5) control path cross; 6) design complexity; 7)

design to code expansion rate; 8) fan-in, fan-out; 9) fault detection rate; 10) number of

Chapter 2 Technical Background and Related Work

 23

changes by type; 11) staff quality and etc. [42].

 Testing is the last procedure to detect the existing faults in software. There are

some test tools, such as test drivers, test beds, emulators, and some packages like

ADATEST, Cantana, FX, Mans, Orion ICE designed by different companies to test

software developed by different languages.

Standards and guidelines are used to control the quality activities. The two most

famous and widely-used software quality standards are ISO 9000-3 and CMM model.

ISO 9000 is an international series of standards, developed by the International

Organization for Standardization, that specifies a basic set of requirements for a

quality system to provide consistent, acceptable quality products [24]. Its emphasis is

on the development process and the management responsibilities associated with the

process. ISO9000-3 provides guidance on how to apply ISO 9000 standards to

software development. The guidance is excellent and has been adopted widely by

software community for designing quality software systems.

The Capability Maturity Model (CMM), developed by the Software engineering

Institute (SEI) , is a framework that describes the elements of an effective software

process and an evolutionary path that increases an organization's software process

maturity [43]. A fundamental principle underlying the CMM is that the quality of a

software product can be improved by improving the process which produces it. The

CMM characterizes five levels of increasing process maturity, they are the Initial,

Repeatable, Defined, Managed and Optimizing maturity levels, by the extent to which

the organization's processes comply with specified key practices. The CMM is

Chapter 2 Technical Background and Related Work

 24

something like a type of metric, in that it involves scoring criteria which enable a

project or organization to assess its maturity level in terms of software engineering

practice.

 Besides ISO9003 and CMM, there are many localized and customized

guidelines or models of software quality assurance in different countries or areas.

Particularly in Hong Kong, Hong Kong Productivity Council has developed Hong

Kong Software Quality Assurance Model, a framework of standard practices that a

software organization in Hong Kong should have to produce quality software [4]. The

HK Software Quality Assurance Model provides the standard for local software

organizations (independent or internal; large or small) to:

• Meet basic software quality requirements;

• Improve on software quality practices;

• Use as a bridge to achieve other international standards;

• Assess and certify them to a specific level of software quality

conformance.

 The seven practices that form the basis of the HK Software Quality Assurance

Model are: 1) Software Project Management; 2) Software Testing; 3) Software

Outsourcing; 4) Software Quality Assurance; 5) User Requirements Management; 6)

Post Implementation Support; and 7) Change Control.

Chapter 2 Technical Background and Related Work

 25

2.2.2 The Life Cycle of Component-based Software Systems

Component-based software systems are developed by selecting various components

and assembling them together rather than programming an overall system from scratch,

thus the life cycle of component-based software systems is different from that of the

traditional software systems. The life cycle of component-based software systems can

be summarized as follows [12]: 1) Requirements analysis; 2) Software architecture

selection, construction, analysis, and evaluation; 3) Component identification and

customization; 4) System integration; 4) System testing; 5) Software maintenance.

The architecture of software defines a system in terms of computational

components and interactions among the components. The focus is on composing and

assembling components that are likely to have been developed separately, and even

independently. Component identification, customization and integration is a crucial

activity in the life cycle of component-based systems. It includes two main parts: 1)

evaluation of each candidate commercial off-the-shelf (COTS) component based on

the functional and quality requirements that will be used to assess that component; and

2) customization of those candidate COTS components that should be modified before

being integrated into new component-based software systems. Integration is to make

key decisions on how to provide communication and coordination among various

components of a target software system.

Quality assurance for component-based software systems should address the life

Chapter 2 Technical Background and Related Work

 26

cycle and its key activities to analyze the components and achieve high quality

component-based software systems. QA technologies for component-based software

systems are currently premature, as the specific characteristics of component systems

differ from those of traditional systems. Although some QA techniques such as

reliability analysis model for distributed software systems [21,22] and

component-based approach to Software Engineering [10] have been studied, there is

still no clear and well-defined standards or guidelines for component-based software

systems. The identification of the QA characteristics, along with the models, tools and

metrics, are all under urgent needs.

2.2.3 Differences between components and objects

Software components represent a new concept in how to build software

applications, but the foundations on which they are based have been around for quite

some time as objects. That is, component-base technology is based on OO technology,

but there still are some differences between component and objects.

Objects are generally (though not always) defined at too low a level to be easily

related to a business process, and components are a higher-level, coarser-grained

software entity. A crucial difference between objects and components revolves around

inheritance. Objects support inheritance from parent objects, when an inherited

attribute is changed in the parent object, the change ripples through all the child

objects that contain the inherited attribute. While inheritance is a powerful feature, it

Chapter 2 Technical Background and Related Work

 27

can also cause serious complications that result from the inherent dependencies it

creates. In contrast to the multiple inheritance model of objects, components are

characterized by multiple interfaces. Thus, components effectively eliminate the

problem of dependencies related to object inheritance, instead, component interfaces

act as the "contract" between the component and the application, the application has no

view inside the component beyond the exposed interface. This provides users with the

flexibility to update components while maintaining only the interface and behavior of

the components [3].

But as the component development is based on object-oriented programming,

there are still objects, methods and classes in a component. So inheritance is also

existed between objects inside a component.

2.2.4 Quality Characteristics of Components

As much work is yet to be done for component-based software development, QA

technologies for component-based software development has to address the two

inseparable parts: 1) How to assess quality of a component? 2) How to assess quality

of the whole system based on components? To answer the questions, models should be

promoted to define the overall quality control of components and systems; metrics

should be found to measure the size, complexity, reusability and reliability of

components and systems; and tools should be decided to test the existing components

and systems.

Chapter 2 Technical Background and Related Work

 28

To evaluate a component, we must determine how to assess the quality of the

component. The quality characteristics of components are the foundation to guarantee

the quality of the components, and thus the foundation to guarantee the quality of the

whole component-based software systems. Here we suggest a list of recommended

characteristics for the quality of components:

• Functionality

- The degree to which the component implements all required

capabilities.

- Contains all references and required items.

- The degree to which a component is free from faults in its

specification, design, and implementation;

- The degree to which a component is free from faults in its

specification, design, and implementation;

• Interface

- The completeness of the input/output of a component

- The flexibility of the interface to add/decrease some parameters

• Userability

- The number of users of a component.

- The sum of the lengths of time when used.

• Testability

- Equipped with test cases, test plans and test report.

- The ability of exception handling.

Chapter 2 Technical Background and Related Work

 29

• Modifiability (Maintainability)

- The ease with which a component can be modified to correct faults,

improve performance or other attributes, or adapt to a changed

environment.

- The ease with which software can be maintained, for example,

enhanced, adapted, or corrected to satisfy specified requirements.

- Modifiable with minimal impact.

• Documentation

- Contains all documents necessary.

• Fault Tolerance (Reliability)

- The ability of a component tolerates wrong inputs.

 reject
 affirmed for affirmed for
 new construction delivery

 new release of
 change proposal component library

 delete mark for deletion

Figure 2.1 The life cycle of a component

Proposal Under
Construction

Ready for
Distribution

To be deleted
(do not use)

Under use

Chapter 2 Technical Background and Related Work

 30

A component has a life cycle as illustrated in Figure 2.1. Software metrics have

been proposed to measure software complexity and to assure software quality [16,17].

Such metrics are often used to classify components [6]:

1) Size. This affects both reuse cost and quality. If it is too small, the benefits will not

exceed the cost of managing it. If it is too large, it is hard to have high quality.

2) Complexity. This also affects reuse cost and quality. A over trivial component is

not profitable to reuse while a over complex component is hard to inherit high

quality.

3) Reuse frequency. The number of incidences where a component is used is a solid

indicator of its usefulness.

4) Reliability. The probability of failure-free operations of a component under

certain operational scenarios [8].

Based on the characteristics of Java and some widely used commercial

off-the-shelf components, common metric suites have been defined, e.g., Metamata

Metrics [28] and JProbe Metrics [29] .

Metamata Metrics calculates global complexity and quality metrics statically from

Java source code. It helps organize code in a more structured manner, facilitates the

QA process [28] and supports the following:

• Most standard object oriented metrics such as object coupling and object

cohesion

• Traditional software metrics such as cyclomatic complexity and lines of code

• Applicable to incomplete Java programs or programs with errors, then it

Chapter 2 Technical Background and Related Work

 31

could be used from day one of the development cycle

• Metrics acquisition at any level of granularity (methods, classes...)

• Statistical aggregations (mean, median...)

• JDK 1.1 and JDK 1.2 compatibility.

 Table 2.2 is the examples of Metamata Metric98s:

Metric Measures Description

Cyclomatic
Complexity

Complexity The amount of decision logic in the
code

Lines of Code Understandability,
maintainability

The length of the code; related
metrics measure lines of comments,
effective lines of code, etc.

Weighted
Methods per
Class

Complexity,
understandability,
reusability

The number of methods in a class

Response for a
Class

Design, usability,
testability

The number of methods that can be
invoked from a class through
messages

Coupling
Between
Objects

Design, reusability,
maintainability

The number of other classes to which
a class is coupled

Depth of
Inheritance Tree

Reusability, testability The depth of a class within the
inheritance hierarchy

Number of
Attributes

Complexity,
maintainability

The amount of state a class maintains
as represented by the number of
fields declared in the class

Table 2.2. Examples of Metamata Metrics

Chapter 2 Technical Background and Related Work

 32

JProbe from KL Group has different suites of metrics/tools for different purpose of

use [29]. They are designed to help developers build robust, reliable, high-speed

business applications in Java. Here is what the JProbe Developer Suite includes:

• JProbe Profiler and Memory Debugger - eliminates performance bottlenecks

and memory leaks in Java code

• JProbe Threadalyzer - detects deadlocks, stalls and race conditions

• JProbe Coverage - locates and measures untested Java code.

JProbe Developer Suite paints an intuitive, graphical picture of everything from

memory usage to calling relationships, helping the programmer navigate to the root

of the problem quickly and easily.

Metamata metrics and Jprobe suites are both used in the QA Lab of Flashline, an

industry leader in providing software component products, services and resources

that facilitate rapid development of software systems for business applications. We

use the result of such metrics in our risk analysis and evaluation tool, which is based

on the idea of ARMOR (see section 2.3.2).

2.3 Quality Prediction Techniques

In order to predict the quality of different software components, several techniques

have been developed to classify software components according to their reliability

[27]. These techniques include discriminant analysis [30], classification trees [31],

pattern recognition [32], Bayesian network [33], case-based reasoning (CBR) [34] and

regression tree model [37]. Details of some of the prediction techniques are mentioned

in section 4.3.

Chapter 2 Technical Background and Related Work

 33

2.3.1 ARMOR: A Software Risk Analysis Tool

As we have mentioned before, there are a lot of metrics and tools to measure and

test the quality of a software system. But little of them can integrate the various

metrics together and compare the different results of these metrics, so that they can

predict the quality as well as the risk of the software.

ARMOR(Analyzer of Reducing Module Operational Risk) is such a tool that is

developed by Bell Lab in 1995 [36]. ARMOR can automatically identify the

operational risks of software program modules. It takes data directly from project

database, failure database, and program development database, establishes risk

models according to several risk analysis schemes, determines the risks of software

programs, and display various statistical quantities for project management and

engineering decisions. The tool can perform the following tasks during project

development, testing, and operation: 1) to establish promising risk models for the

project under evaluation; 2) to measure the risks of software programs within the

project; 3) to identify the source of risks and indicates how to improve software

programs to reduce their risk levels; and 4) to determine the validity of risk models

from field data.

ARMOR is designed for automating the procedure for the collection of software

metrics, the selection of risk models, and the validation of established models. It

provided the missing link of both performing sophisticated risk modeling and

validate risk models against software failure data by various statistical techniques.

 Figure 2.2 shows the high-level architecture for ARMOR.

Chapter 2 Technical Background and Related Work

 34

Figure 2.2 High-level architecture for ARMOR

ARMOR can be used:

• To access and compute software data deemed pertinent to software

characteristics.

• To compute product metrics automatically whenever possible.

• To evaluate software metrics systematically.

• To perform risk modeling in a user-friendly and user-flexible fashion.

• To display risks of software modules.

• To validate risk models against actual failure data and compare model

performance.

• To identify risky modules and to indicate ways for reducing software risks.

 35

Chapter 3
A Quality Assurance Model for CBSD

Many standards and guidelines are used to control the quality activities of software

development process, such as ISO9001 and CMM model. In particular, Hong Kong

productivity Council has developed the HKSQA model to localize the general SQA

models [4]. HKSQA model is a framework of standard practices that a software

organization in Hong Kong should follow to produce quality software. The HK

Software Quality Assurance Model provides the standard for local software

organisations (independent or internal; large or small) to:

• Meet basic software quality requirements;

• Improve on software quality practices;

• Use as a bridge to achieve other international standards. Assess and certify

them to a specific level of software quality conformance.

 HKSQA model provides the details of procedures that are required to be followed

for each of the seven model practices. These seven practices are:

• Software Project Management: the process of planning, organizing, staffing,

monitoring, controlling and leading a software project.

Chapter 3 A Quality Assurance Model for CBSD

 36

• Software Testing: the process of evaluating a system where the software

resides to:

o confirm that the system satisfies specified requirements;

o identify and correct defects in the system before implementation.

• Software Outsourcing: the process that involves:

o Establishing a software outsourcing contract (SOC);

o Selecting contractor(s) to fulfill the terms of the SOC;

o Managing contractor(s) in accordance to the terms of the SOC;

o Reviewing and auditing contractor performance based on results

achieved;

o Accepting the software product and/or service into production

when it has been fully tested.

• Software Quality Assurance: a planned and systematic pattern of all actions

necessary to provide adequate confidence that the item, product or service

conforms to established customer and technical requirements.

• User Requirements Management: the process of discovering, understanding,

negotiating, documenting, validating and managing a set of requirements for a

computer-based system.

• Post Implementation Support: the process of providing operations and

maintenance activities needed to use the software effectively after it has been

Chapter 3 A Quality Assurance Model for CBSD

 37

delivered.

• Software Change Control: the process of evaluating proposed changes to

software configuration items and coordinating the implementation of approved

changes to ensure that the integrity of the software remains intact and

uncompromised.

In this section, we propose a framework of quality assurance model for the

component-based software development paradigm.

Because component-based software systems are developed on an underlying

process different from that of the traditional software, their quality assurance model

should address both the process of components and the process of the overall system.

Figure 3.1 illustrates this view.

Figure 3.1 Quality assurance model for both components and systems

System Component

Quality
Assurance
Model

Chapter 3 A Quality Assurance Model for CBSD

 38

The main practices relating to components and systems in this model contain the

following phases: 1) Component requirement analysis; 2) Component development; 3)

Component certification; 4) Component customization; 5) System architecture design;

6) System integration; 7) System testing; and 8) System maintenance.

Details of these phases and their activities are described as follows.

3.1 Component Requirement Analysis

Component requirement analysis is the process of discovering, understanding,

documenting, validating and managing the requirements for a component. The

objectives of component requirement analysis are to produce complete, consistent and

relevant requirements that a component should realize, as well as the programming

language, the platform and the interfaces related to the component.

The component requirement process overview diagram is as shown in Figure 3.2.

Initiated by the request of users or customers for new development or changes on old

system, component requirement analysis consists of four main steps: requirements

gathering and definition, requirement analysis, component modeling, and requirement

validation. The output of this phase is the current user requirement documentation,

which should be transferred to the next component development phase, and the user

requirement changes for the system maintenance phase.

Chapter 3 A Quality Assurance Model for CBSD

 39

Figure 3.2 Component requirement analysis process overview

3.2 Component Development

Component development is the process of implementing the requirements for a

well-functional, high quality component with multiple interfaces. The objectives of

component development are the final component products, the interfaces, and

development documents. Component development should lead to the final

components satisfying the requirements with correct and expected results,

well-defined behaviors, and flexible interfaces.

Requirements
Gathering and
Definition

Requirement
Analysis

Component
Modeling

Requirement
Validation

Component
Development

System
Maintenance

Draft User Requirement
 Documentation (URD)

Format &
Structure

Component Requirement
 Document (CRD)

Updated CRD with
 model included

Current URD
 User Requirement
 Changes

Data
Dictionary

 Structure for
naming &
Describing

Current
URD

Requirement
Document
Template

Request for new development
 or change

Initiators (Users, Customers,
Manager etc.)

Chapter 3 A Quality Assurance Model for CBSD

 40

The component development process overview diagram is as shown in Figure 3.3.

Component development consists of four procedures: implementation, function

testing, reliability testing, and development document. The input to this phase is the

component requirement document. The output should be the developed component

and its documents, ready for the following phases of component certification and

system maintenance, respectively.

Figure 3.3 Component development process overview

3.3 Component Certification

Developers

Implementation

Self-Testing
(Function)

Self-Testing
(Reliability)

Development
Document

Component
Certification

System
Maintenance

Techniques required

Draft Component

Requirements

Well-Functional Component

Reliable Component

Submit
 For Reference

Existing
Fault

Component
Requirement

Document

Chapter 3 A Quality Assurance Model for CBSD

 41

Component certification is the process that involves: 1) component outsourcing:

managing a component outsourcing contract and auditing the contractor performance;

2) component selection: selecting the right components in accordance to the

requirement for both functionality and reliability; and 3) component testing: confirm

the component satisfies the requirement with acceptable quality and reliability.

Figure 3.4 Component certification process overview

The objectives of component certification are to outsource, select and test the

candidate components and check whether they satisfy the system requirement with

high quality and reliability. The governing policies are: 1) Component outsourcing

should be charged by a software contract manager; 2) All candidate components

should be tested to be free from all known defects; and 3) Testing should be in the

target environment or a simulated environment. The component certification process

System Requirements

Component
Outsourcing

Component
Testing

Component
Selecting

Acceptance System
Maintenance

Specific Component
Requirements

 Component Released

Component
Functions

Well-Functional Component

 Component fit for the special
 requirements

Contract Signoffs,
Payments

Reject

Component
Development

Document

Chapter 3 A Quality Assurance Model for CBSD

 42

overview diagram is as shown in Figure 3.4. The input to this phase should be

component development document, and the output should be testing documentation

for system maintenance.

3.4 Component Customization

Component customization is the process that involves 1) modifying the component

for the specific requirement; 2) doing necessary changes to run the component on

special platform; 3) upgrading the specific component to get a better performance or a

higher quality.

The objectives of component customization are to make necessary changes for a

developed component so that it can be used in a specific environment or cooperate

with other components well.

All components must be customized according to the operational system

requirements or the interface requirements with other components in which the

components should work. The component customization process overview diagram is

as shown in Figure 3.5. The input to component customization is the system

requirement, the component requirement, and component development document.

The output should be the customized component and document for system integration

and system maintenance.

Chapter 3 A Quality Assurance Model for CBSD

 43

Figure 3.5 Component customization process overview

3.5 System Architecture Design

System architecture design is the process of evaluating, selecting and creating

software architecture of a component-based system.

The objectives of system architecture design are to collect the users requirement,

identify the system specification, select appropriate system architecture, and

determine the implementation details such as platform, programming languages, etc.

System architecture design should address the advantage for selecting a particular

architecture from other architectures. The process overview diagram is as shown in

System Requirements & Other
Component Requirements

Component
Customization

Component
Document

Component
Testing

Acceptance System
Maintenance

on

Specific System & Other
Component Requirements

 Component Changed

Component
Document

New Component Document

 Component fit for the special
 requirements

Component
Document

Reject

Component
Development

Document

System
Integration Assemble

Chapter 3 A Quality Assurance Model for CBSD

 44

Figure 3.6. This phase consists of system requirement gathering, analysis, system

architecture design, and system specification. The output of this phase should be the

system specification document for integration, and system requirement for the system

testing phase and system maintenance phase.

Figure 3.6 System architecture design process overview

3.6 System Integration

 System integration is the process of assembling components selected into a whole

system under the designed system architecture.

The objective of system integration is the final system composed by the selected

components. The process overview diagram is as shown in Figure 3.7. The input is the

system requirement documentation and the specific architecture. There are four steps

Initiators

System Requirement
Gathering

System Requirement
Analysis

System Architecture
Design

System
Specification

System
Integration

Requests for New Systems

 Draft System Requirements
 Document

Format &
Structure

System Requirement Document

System Architecure

System Specification
Document

Current
Document

Requirement
Document
Template

System
Testing System

Requirement

System
Maintenance

Chapter 3 A Quality Assurance Model for CBSD

 45

in this phase: integration, testing, changing component and re-integration (if

necessary). After exiting this phase, we will get the final system ready for the system

testing phase, and the document for the system maintenance phase.

Figure 3.7 System integration process overview

3.7 System Testing

System testing is the process of evaluating a system to: 1) confirm that the system

satisfies the specified requirements; 2) identify and correct defects in the system

implementation.

The objective of system testing is the final system integrated by components

System
Requirement

System
Integration

Self-Testing

Component
Changing

Final
System

System
Maintenance

Requirements for New
Systems

 Draft System

Architecture

Fault Component

Selecting New Component

System Integration
Document

Current
Component

System
Architecture

System
Testing Final System

Component
Certification

Component
Requirement

Chapter 3 A Quality Assurance Model for CBSD

 46

selected in accordance to the system requirements. System testing should contain

function testing and reliability testing. The process overview diagram is as shown in

Figure 3.8. This phase consists of selecting testing strategy, system testing, user

acceptance testing, and completion activities. The input should be the documents from

component development and system integration phases. And the output should be the

testing documentation for system maintenance.

Figure 3.8 System testing process overview

3.8 System Maintenance

System maintenance is the process of providing service and maintenance activities

needed to use the software effectively after it has been delivered.

System Design
Document

Testing
Strategy

System
Testing

User Acceptance
Testing

Test Completion
Activities

System
Maintenance

 Testing Requirements

 System Testing Plan

Test
Dependencies

System Tested

User Accepted System

System Integration
Document

System
Maintenance

(Previous
Software Life

Cycle)

Component
Development

Component
Document

System
Integration

Component
Document

System Test
Spec.

User Acceptance
Test Spec.

Chapter 3 A Quality Assurance Model for CBSD

 47

The objectives of system maintenance are to provide an effective product or service

to the end-users while correcting faults, improving software performance or other

attributes, and adapting the system to a changed environment.

There shall be a maintenance organization for every software product in the

operational use. All changes for the delivered system should be reflected in the related

documents. The process overview diagram is as shown in Figure 3.9. According to the

outputs from all previous phases as well as request and problem reports from users,

system maintenance should be held for determining support strategy and problem

management (e.g., identification and approval). As the output of this phase, a new

version can be produced for system testing phase for a new life cycle.

Figure 3.9 System maintenance process overview

Users

Support
Strategy

Problem
Management

System
Maintenance

 Request and Problem Reports

User Support Agreement

 Documents,
 Strategies

Change Requests

All Previous
Phases

System
Testing

New Version

 48

Chapter 4
A Generic Quality Assessment
Environment: ComPARE

Component-based software development has become a popular methodology in

developing modern software systems. It is generally considered that this approach can

reduce development cost and time-to-market, and at the same time are built to improve

maintainability and reliability. As this approach is to build software systems using a

combination of components including off-the-shelf components, components

developed in-house and components developed contractually, the over quality of the

final system greatly depends on the quality of the selected components.

We need to first measure the quality of a component before we can certify it.

Software metrics are designed to measure different attributes of a software system and

development process, indicating different levels of quality in the final product [24].

Many metrics such as process metrics, static code metrics and dynamic metrics can be

used to predict the quality rating of software components at different development

phases [24,27]. For example, code complexity metrics, reliability estimates, or metrics

for the degree of code coverage achieved have been suggested. Test thoroughness

metric is also introduced to predict a component’s ability to hide faults during tests

[25].

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 49

In order to make use of the results of software metrics, several different techniques

have been developed to describe the predictive relationship between software metrics

and the classification of the software components into fault-prone and non fault-prone

categories [28]. These techniques include discriminant analysis [30], classification

trees [31], pattern recognition [32], Bayesian network [33], case-based reasoning

(CBR) [34], and regression tree models [27]. There are also some prototype or tools

[36, 37] that use such techniques to automate the procedure of software quality

prediction. However, these tools address only one kind of metrics, e.g., process

metrics or static code metrics. Besides, they rely on only one prediction technique for

the overall software quality assessment.

We propose Component-based Program Analysis and Reliability Evaluation

(ComPARE) to evaluate the quality of software systems in component-based software

development. ComPARE automates the collection of different metrics, the selection of

different prediction models, the formulation of user-defined models, and the validation

of the established models according to fault data collected in the development process.

Different from other existing tools, ComPARE takes dynamic metrics into account

(such as code coverage and performance metrics), integrates them with process

metrics and more static code metrics for object-oriented programs (such as complexity

metrics, coupling and cohesion metrics, inheritance metrics), and provides different

models for integrating these metrics to an overall estimation with higher accuracy.

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 50

4.1 Objective

A number of commercial tools are available for the measurement of software

metrics for object-oriented programs. Also there are off-the-shelf tools for testing or

debugging software components. However, few tools can measure the static and

dynamic metrics of software systems, perform various quality modeling, and validate

such models against actual quality data.

ComPARE aims to provide an environment for quality prediction of software

components and assess their reliability in the overall system developed using

component-based software development. The overall architecture of ComPARE is

shown in Figure 4.1. First of all, various metrics are computed for the candidate

components. The users can then weigh the metrics and select the ones deemed

important for the quality assessment exercise. After the models have been constructed

 Figure 4.1 Architecture of ComPARE

Metrics
Computation

Criteria
Selection

Model
Definition

Model
Validation

Result
Display

Case Base

Failure
Data

Candidate
Components

System
Architecture

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 51

and executed (e.g., Case Base with CBR), the users can validate the selected models

with failure data in real life. If users are not satisfied with the prediction, they can go

back to the previous step, re-define the criteria and construct a revised model. Finally,

the overall quality prediction can be displayed under the architecture of the candidate

system. Results for individual components can also be displayed after all the

procedures.

The objectives of ComPARE can be summarized as follows:

1. To predict overall quality system by using process metrics, static code metrics

as well as dynamic metrics. In addition to complexity metrics, we use process

metrics, cohesion metrics, inheritance metrics as well as dynamic metrics

(such as code coverage and call graph metrics) as the input to the quality

prediction models. Thus the prediction is more accurate as it is based on data

from every aspect of the candidate software components.

2. To integrate several quality prediction models into one environment and

compare the prediction result of different models. ComPARE integrates several

existing quality models into one environment. In addition to selecting or

defining these different models, user can also compare the prediction results of

the models on the candidate component and see how good the predictions are if

the failure data of the particular component is available.

3. To define the quality prediction models interactively. In ComPARE, there are

several quality prediction models that users can select to perform their own

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 52

predictions. Moreover, the users can also define their own model and validate

their own models through the evaluation procedure.

4. To display quality of components in different categories. Once the metrics are

computed and the models are selected, the overall quality of the component can

be displayed according to the category it belongs to. Program modules with

problems can also be identified.

5. To validate reliability models defined by the user against real failure data (e.g.,

data obtained from change report). Using the validation criteria, the result of

the selected quality prediction model can be compared with failure data in real

life. The user can redefine their models according to the comparison.

6. To show the source code with potential problems at line-level granularity.

ComPARE can identify the source code with high risk (i.e., the code that is not

covered by test cases) at line-level granularity. This can help the users to locate

high risk program modules or portions promptly and conveniently.

7. To adopt commercial tools in assessing software data related to quality

attributes. We adopt Metamata [28] and Jprobe [29] suites to measure different

metrics of the candidate components. These two tools, including metrics,

audits, debugging, as well as code coverage, memory and deadlock detected,

are commercially available in the component-based program testing market.

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 53

4.2 Metrics Used in ComPARE

 Three different categories of metrics, namely process, static, and dynamic metrics,

are computed and collected in CompARE to give overall quality prediction. We have

chosen the most useful metrics, which are widely adopted by previous software quality

prediction tools from the software engineering research community. The process

metrics we select are listed in Table 4.1 [37].

 As we perceive Object-Oriented (OO) techniques are essential in the

component-based software development approach, we select static code metrics

according to the most important features in OO programs: complexity, coupling,

inheritance and cohesion. They are listed in Table 4.2 [28,39]. The dynamic metrics

encapsulate measurement of the features of components when they are executed. Table

4.3 shows the details description of the dynamic metrics.

 This set of process, static, and dynamic metrics can be collected from some

commercial tools, e.g., Metamata Suite [28] and Jprobe Testing Suite [29]. We

measure and apply these metrics in ComPARE.

 Metric Description
Time Time spent from the design to the delivery

(months)
Effort The total human resources used (man*month)
Change Report Number of faults found in the development

Table 4.1 Process Metrics

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 54

Abbreviation Description
Lines of Code (LOC) Number of lines in the components including the statements,

the blank lines of code, the lines of commentary, and the
lines consisting only of syntax such as block delimiters.

Cyclomatic
Complexity (CC)

A measure of the control flow complexity of a method or
constructor. It counts the number of branches in the body of
the method, defined by the number of WHILE statements, IF
statements, FOR statements, and CASE statements.

Number of Attributes
(NA)

 Number of fields declared in the class or interface.

Number Of Classes
(NOC)

Number of classes or interfaces that are declared. This is
usually 1, but nested class declarations will increase this
number.

Depth of Inheritance
Tree (DIT)

 Length of inheritance path between the current class and the
base class.

Depth of Interface
Extension Tree
(DIET)

The path between the current interface and the base
interface.

Data Abstraction
Coupling (DAC)

Number of reference types that are used in the field
declarations of the class or interface.

Fan Out (FANOUT) Number of reference types that are used in field declarations,
formal parameters, return types, throws declarations, and
local variables.

Coupling between
Objects (CO)

Number of reference types that are used in field declarations,
formal parameters, return types, throws declarations, local
variables and also types from which field and method
selections are made.

Method Calls
Input/Output
(MCI/MCO)

Number of calls to/from a method. It helps to analyze the
coupling between methods.

Lack of Cohesion Of
Methods (LCOM)

For each pair of methods in the class, the set of fields each of
them accesses is determined. If they have disjoint sets of
field accesses then increase the count P by one. If they share
at least one field access then increase Q by one. After
considering each pair of methods,
 LCOM = (P > Q) ? (P - Q) : 0

Table 4.2 Static Code Metrics

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 55

Metric Description
 Test Case Coverage The coverage of the source code when executing the given

test cases. It may help to design effective test cases.
Call Graph metrics The relationships between the methods, including method

time (the amount of time the method spent in execution),
method object count (the number of objects created during the
method execution) and number of calls (how many times each
method is called in you application).

Heap metrics Number of live instances of a particular class/package, and
the memory used by each live instance.

Table 4.3 Dynamic Metrics

4.2.1 Metamata Metrics

Metamata Metrics [28] evaluates the quality of software by analyzing the program

source and quantifying various kinds of complexity. Complexity is a common source

of problems and defects in software. High complexity makes it more difficult and

costly to develop, understand, maintain, extend, test and debug a program. Some of the

benefits of using metrics for complexity analysis are:

• It provides feedback into the design and implementation phases of the project

to help engineers identify and remove unnecessary complexity.

• It improves the allocation of testing effort by leveraging the connection

between complexity and errors, and focusing testing on the more error-prone

parts of the code.

• Optimizing testing resources leads to lower testing costs, as well as a reduced

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 56

release cycle.

• Over time, metrics information collected over several projects can lead to

quality control guidelines for measuring good software, and can thus improve

the overall software development process.

Metamata has a catalog of 13 metrics which are based on standard literature from

the quality assurance community and have been accepted as a necessary base of

metrics by this same community. Metamata Metrics calculates global complexity and

quality metrics statically from Java source code, helps organize code in a more

structured manner and facilitates the QA process It has the following features:

• Most standard object oriented metrics such as object coupling and object

cohesion

• Traditional software metrics such as cyclomatic complexity and lines of code

• Can be used on incomplete Java programs or programs with errors - and

consequently, can be used from day one of the development cycle

• Obtain metrics at any level of granularity (methods, classes...)

• Performs statistical aggregations (mean, median...)

• Works with both JDK 1.1 and JDK 1.2

 One consequence of this is that Metamata Metrics will calculate a value for a

metric when given the source for a class that is different from the value that it

calculates when given the corresponding class file generated for it by a Java compiler.

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 57

The current list of metrics that have equivalent definitions for both Java source and

class files: Depth of inheritance tree, Number of attributes, Number of local methods,

Weighted methods per class, Data abstraction coupling and Number of classes.

The current list of metrics that are either not available for class files, or can

produce different values for source and class files is: Cyclomatic complexity, Lines of

code, Number of remote methods, Response for class, Fan out, Coupling between

objects and Lack of cohesion of methods.

4.2.2 JProbe Metrics

The JProbe from KL Group has different suites of metrics/tools for different

purpose of use [29]. They are designed to help developers build robust, reliable,

high-speed business applications in Java. Here is what the JProbe Developer Suite

includes:

• JProbe Profiler and Memory Debugger - eliminates performance bottlenecks

and memory leaks in your Java code

• JProbe Threadalyzer - detects deadlocks, stalls and race conditions

• JProbe Coverage - locates and measures untested Java code.

JProbe Developer Suite paints an intuitive, graphical picture of everything from

memory usage to calling relationships, helping the programmer navigate to the root

of the problem quickly and easily. Figure 5.2 is an example of Jprobe coverage

window, stating the untested Java code including untested lines of code and methods.

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 58

Figure 4.2 Example of a JProbe coverage browser window

4.2.3 Application of Metamata and Jprobe Metrics

Metamata metrics and Jprobe suites are both used in the QA Lab of Flashline, an

industry leader in providing software component products, services and resources

that facilitate rapid development of software systems for business. We use the result

of such metrics applications in our risk analysis and evaluation tool: ComPARE.

Figure 4.3, Table 4.4 and 4.5 are sample reports in the QA Lab of Flashline [44]

when testing the EJB components using the commercial tools mentioned above.

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 59

Figure 4.3 Flashline QA analysis report on structure and code design

Tests Applicability Actions to be taken Value
P2.1
Performance
Metrics (Method
time, Object
Count, Number
of calls)

Identifies excessive memory usage by certain
parts (methods, classes) of the application.
Checks coding efficiency.

Avoid excessive object
creation and excessive method
calling

1. Performance
2. Reusability

P2.2 Method
detail

Identifies which lines of codes are responsible for
excessive memory usage or object creation

Indentify and correct the
methods that are responsible
for excessive memory usage

1. Performance
2. Maintainability
3. Reusability

P2.3 Method
memory
utilization

Maps the memory utilization of all methods.
Visually portrays the methods that are using
memory most heavily as having a relatively darker
color than those which are more lean.

Audit those methods
identified as using excessive
memory for correct logic and
structure

1. Performance
2. Maintainability

P2.4 Heap Usage Dynamically portrays, through a series of
“snapshots” the amount of memory available to
the JVM. This identifies at what point in the
program execution cycle there is a memory leak.

Audit those classes and
methods that are creating the
memory leaks.

1. Performance
2. Maintainability
3. Reliability

P2.5 Identify
untested and
unused lines of
code

Scans code for those lines that have not been
tested due to unfulfilled testing conditions and for
code that is packaged in classes that are rarely
called.

Design testing methodologies
that exercise 100% of the
code.

1. Reliability
2. Maintainability

P2.6 Thread
interaction
monitor:
deadlock
prediction and
avoidance

If the program is taking too much time and
memory for no apparent reason, thread conflict
might be the root cause. This test looks for
possible thread interaction sequences that present
a danger of deadlock, racing situation, or
starvation.

Walk through the logic
carefully looking out for
potential thread conflict.

1. Performance
2. Maintainability

Table 4.4 Flashline QA report on dynamic metrics

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 60

Features Applicabiliy Actions to be taken Value

P1.1 Depth of
inheritance
hierarchy

When code hierarchy is too deep, it’s difficult to
understand, predict behavior and (potentially)
debug

Determine, if it’s possible to
reduce the depth of
inheritance hierarchy

1. Maintainability
2. Reusability

P1.2. Data
abstraction
coupling

Counts the number of types that are used in the
field declarations. Too many reference types make
reuse/coupling/decoupling more difficult

Determine the necessity of
coupling

1. Reusability
2. Maintainability

P1.3. Number of
attributes

A high number of attributes may lead to inefficient
memory utilization and may reflect poor product
design. A low number of attributes per class can
also indicate poor design, for example,
unnecessary levels of inheritance

Perform attribute usage
walkthrough to determine
necessity of attributes

1. Maintainability
2. Reusability

P1.4. Number of
methods (simple,
by categories,
weighted)

A high number of methods per class indicate that
the class design has been partitioned incorrectly. A
low number of attributes per class can also
indicate poor design, for example, unnecessary
levels of inheritance

Perform attribute usage
walkthrough to determine
necessity of methods. Check
the class cohesion (M12)

1. Maintainability
2. Reusability

P1.5. Number of
classes

A system with high number of classes has
potentially more interactions between objects.
This reduces comprehensibility of the system that
in turn makes it harder to test, debug and maintain.
A low number of classes may indicate that that the
class design has been partitioned incorrectly

If number of classes is too
high, check for high P1.1. If
number of classes is too low,
check for high P1.12, P1.2,
and P1.11.

1. Maintainability

P1.6. Cyclomatic
complexity

Methods with a high cyclomatic complexity tend
to be more difficult to understand and maintain

If cyclomatic complexity is
too high, try to split complex
methods into several simpler
ones.

1. Maintainability

P1.7. Lines of
code

A high number of lines of code per class or per
method can reduce maintainability

If a method has a high number
of lines of code, check for
high P1.6 and act accordingly.
If a class has a high number of
lines of code, check for high
P1.12.

1. Maintainability

P1.8. Number of
remote methods

Counts the number of invocations of methods that
doesn’t belong to class, its superclass, its
subclasses or interfaces the class implements.
High number of remote methods can be an
indication of high coupling between classes.

If the number of remote
methods is high, check for
high P1.2, P1.10, and P1.12.

1. Maintainability
2. Reusability

P1.9. Response
for class

Counts the sum of number methods, defined in the
class and number of remote methods

If the number is high, check
separately for high P1.4 and
P1.8

1. Maintainability
2. Reusability

P1.10. Fan out Counts the number of reference types used in:
• field declarations
• formal parameters and return types
• throws declarations
• local variables

If the number is high, check
for high P1.2 and P1.11

1. Maintainability
2. Reusability

P1.11. Coupling
between objects.

A high coupling reduces modularity of the class
and makes reuse more difficult.

If coupling is high, check for
high P1.2, P1.5 and P1.12.

1. Maintainability
2. Reusability

P1.12. Lack of
class cohesion

The cohesion of a class is the degree to which its
methods are related to each other. If a class
exhibits low method cohesion, it indicates that the
design of the class has probably been partitioned
incorrectly, and could benefit by being split into
more classes with individually higher cohesion

Split class if necessary 1. Reusability
2. Maintenability

Table 4.5 Flashline QA report on code metrics

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 61

4.3 Models Definition

In order to predict the quality of different software components, several techniques

have been developed to classify software components according to their reliability

[27]. These techniques include discriminant analysis [30], classification trees [31],

pattern recognition [32], Bayesian network [33], case-based reasoning (CBR) [34] and

regression tree model [37]. In ComPARE, we integrate five types of models to

evaluate the quality of the software components for an overall component-based

system evaluation. Users can customize these models and compare the prediction

results from different tailor-made models.

4.3.1 Summation Model

This model gives a prediction by simply adding all the metrics selected and

weighted by a user. The user can validate the result by real failure data, and then

benchmark the result. Later when new components are included, the user can predict

their quality according to their differences from the benchmarks. The concept of

summation model can be summarized as the following:

1

n
i i

i
Q mα

=
= ∑ (1)

where mi is the value of one particular metric, iα is its corresponding weighting factor,

n is the number of metrics, and Q is the overall quality mark.

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 62

4.3.2 Product Model

 Similar to the summation model, the product model multiplies all the metrics

selected and weighted by the user and the resulting value indicates the level of quality

of a given component. Similarly, the user can validate the result by real failure data,

and then determine the benchmark for later usage. The concept of product model is

shown as the following:

1

n

i

miQ
=

= ∏ (2)

where mi is the value of one particular metric, n is the number of metrics, and Q is

the overall quality mark. Note that mis are normalized as a value which is close to 1, so

that none of them will dominate the result.

4.3.3 Classification Tree Model

Classification tree model [31] is to classify the candidate components into different

quality categories by constructing a tree structure. All the candidate components are

leaves in the tree. Each node of the tree represents a metric (or a composed metric

calculated by other metrics) of a certain value. All the children of the left sub tree of

the node represent those components whose value of the same metric is smaller than

the value of the node, while all the children of the right sub tree of the node are those

components whose value of the same metric is equal to or larger than the value of the

node.

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 63

The tree modeling approach [27] is a goal oriented statistical technique which

consists of recursive partitioning of the variable space using binary splits. The

dependent variable or the response variable (usually denoted by y) in this context

consists of the number of faults in a software module and the set of classication,

predictor or independent variables (usually denoted by x) consists of the various

software complexity metrics for the module. The algorithm attempts to partition the

predictor variable space into homogeneous regions such that within each region the

distribution of the response variable conditional to the predictor variables f(yjx), is

independent of the predictor variables (x).

At each step, the tree-construction algorithm searches through all possible binary

splits of all the predictor variables until the overall deviance, i.e., the sum of the

deviances for each subset is minimized. The algorithm then begins the search again for

the next binary split, reconsidering all the variables until the next binary split is made,

and so on. Thus the tree-construction method uses a one-step look ahead, i.e., it

chooses the next split by minimizing the deviance for that split, without making an

effort to optimize the performance of the entire tree which is an NP-complete problem.

Intuitively, the algorithm uses a set of learning data to construct a regression tree

which is used as a predicting device. Each terminal node in the tree represents a

partition or a subset of the data that is homogeneous with respect to the dependent

variable. The predicted value of the dependent variable is the average of all the

observations in the node. In the present context, the tree-modeling procedure attempts

to identify the modules with the same number of errors, and thus have the same degree

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 64

of fault-proneness.

In ComPARE, a user can define the metrics and their value at each node from the

root to the leaves. Once the tree is constructed, a candidate component can be directly

classified by following the threshold of each node in the tree until it reaches a leaf node.

The user can validate and evaluate the final tree model after its definition. Below is an

example of the outcome of a tree model. At each node of the tree there are metrics and

values, and the leaves represent the components with certain number of predicted

faults in the classification result.

Figure 4.4 An example of classification tree model

4.3.4 Case-Based Reasoning Model

Case-based reasoning (CBR) has been proposed for predicting the quality of

software components [34]. A CBR classifier uses previous “similar” cases as the basis

for predicting the quality of a software component.. Previous cases are stored in a case

base. Similarity is defined in terms of a set of metrics. The major conjecture behind

this model is that the candidate component that has a similar structure to the

components in the case base will inherit a similar quality level.

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 65

CBR method has a number of advantages. Most notable one is that the detailed

characterization of the similar cases can help to interpret the automatic classification

results. In principle, as well, a CBR classifier would provide a straight forward

approach for dealing with missing values. However, in the context of quality

prediction using product metrics, there are rarely missing values.

When evaluating the predictive performance of a CBR classifier, one first

constructs a case base of previous components where the source code/dynamic metrics

and the quality are known. A different data set is then used as the test set. This can be

achieved in a number of different ways, such as a holdout sample, cross-validation,

bootstrapping, multiple releases, or random subsets.

A CBR classifier can be instantiated in different ways by varying its parameters.

But according to the previous research, there is no significant difference in prediction

validity when using any combination of parameters in CBR. So we adopt the simplest

CBR classifier modeling with Euclidean distance, z-score standardization [34], but no

weighting scheme. Finally, we select the single, nearest neighbor for the prediction

purpose.

4.3.5 Bayesian Network Model

Bayesian networks (also known as Bayesian Belief Networks, BBN) is a graphical

network that represents probabilistic relationships among variables [33]. BBNs enable

reasoning under uncertainty. The framework of Bayesian networks offers a compact,

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 66

intuitive, and efficient graphical representation of dependence relations between

entities of a problem domain. The graphical structure reflects properties of the problem

domain directly, which provides a tangible visual representation as well as a sound

mathematical basis in Bayesian probability [35]. The foundation of Bayesian networks

is the following theorem known as Bayes’ Theorem:

 P(H|c)P(E|H,c)P(H|E,c) =
P(E|c) (3)

where H, E, c are independent events and P the probability of such event under certain

circumstances.

With BBNs, it is possible to integrate expert beliefs about the dependencies

between different variables and to propagate consistently the impact of evidence on

the probabilities of uncertain outcomes, such as “unknown component quality”.

Details of the BBN model for quality prediction can be found in [33]. Users can also

define their own BBN models in ComPARE and compare the results with other

models.

4.4 Operations in ComPARE

As a generic quality assessment environment for component-based software

system, ComPARE suggests eight major functional areas: File Operations, Selecting

Metrics, Selecting Criteria, Model Selection and Definition, Model Validation,

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 67

Display Result, Windows Switch, and Help System. The details of some key functions

are described in the following sections.

4.4.1 Selecting Metrics

 User can select the metrics they want to collect for the opened component-based

system. There are three categories of metrics available: process metrics, static metrics

and dynamic metrics. The details of these metrics have shown in section 4.2.

4.4.2 Selecting and Weighing Criteria

After computing the different metrics, users need to select and weigh the criteria

on these metrics before using them in the reliability modeling. Each metric can be

selected or omitted, and if selected, be marked with the weight between 0 and 100%.

Such information will be used as input parameter later in the quality prediction

models.

4.4.3 Model Selection and Definition

The Model operations allow users to select or define the model they would like to

perform in the evaluation. The users should give the probability of each item related to

the overall quality of the candidate component.

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 68

4.4.4 Model Validation

Model validation allows comparison between different models and with respect to

actual software failure data. It facilitates the users to compare the different results

based on chosen subset of the software failure data under certain validation criteria.

The comparisons between different models in their predictive capability are

summarized in a summary table. Model Validation operations are activated only when

the software failure data are available.

4.5 ComPARE Prototype

Under the framework that we have described, we prototyped a specific version of

ComPARE which targets software components developed by the Java language. Java

is one of the most popular languages used in off-the-shelf components development

today, and can run three standard architectures for component-based software

development: i.e., CORBA, COM/DCOM and JavaBeans/EJB.

Figure 4.4 and Figure 4.5 show screen dumps of the described ComPARE

prototype tool. Using ComPARE, computation of various metrics for software

components and application of quality prediction models are straightforward. Users

also have flexible choices in selecting and defining different models. The combination

of simple operations and a variety of quality models makes it easy for users to identify

an appropriate prediction model for a given component-based system.

Chapter 4 A Generic Quality Assessment Environment: ComPARE

 69

Figure 4.4 GUI of ComPARE for metrics, criteria and tree model

Figure 4.5 GUI of ComPARE for prediction display, risky source code

and result statistics

Statistics Display Source code

Metrics Tree Model Criteria

 70

Chapter 5

Experiments and Discussions

In ComPARE, we propose to provide a systematic procedure for predicting the

quality of software components and assess their reliability in the overall system

developed using component-based software development. ComPARE integrates

several quality prediction models into one environment and compare the prediction

result of different models in case that the failure data of the particular component is

available.

Also, ComPARE adopts commercial tools in accessing software data related to

quality attributes. We adopt Metamata and Jprobe suites (see section 4.2) to measure

the different metrics for the candidate components, as well as CART and Hugin sytems

(see section 5.3) as the classification tree and Bayesian Network model to predict the

quality of the given components. These tools are widely adopted in the

component-based program certification and quality prediction markets.

In this chapter, we use these classification tree and BBN models to predict and

evaluate the relationship between the number of faults and software metrics of some

CORBA programs. All the programs are designed according to the same specification,

Chapter 5 Experiments and Discussions

 71

the programming teams can choose their own programming languages. The test cases

are designed to access the functionalities of the final programs according to the

specification. The details of the test can be found in [45]. Here we apply the programs

to our prediction models.

5.1 Data Description

In the fall of 1998 we engaged 19 programming teams to design, implement, test

and demonstrate a Soccer Team Management System using CORBA, which is a

project of a class for the students majored in computer science. The duration of the

project was 4 weeks. The programming teams (2-3 students for each team)

participating in this project were required to independently design and develop a

distributed system, which allows multiple clients to access a Soccer Team

Management Server for 10 different operations. The teams were free to choose

different CORBA vendors (Visibroker or Iona Orbix), using different programming

languages (Java or C++) for the client or server programs. These programs have to

pass an acceptance test, in which programs were subjected to two types of test cases

for each of the 10 operations: one for normal operation and the other for operations

which would raise exceptions. The total number of test cases used in this experiment

are 57.

Among these 19 programs 12 chose to use Visibroker, while 7 chose to use Iona

Orbix. For the 12 Visibroker programs, 9 used Java for both client and server

Chapter 5 Experiments and Discussions

 72

implementation, 2 used C++ for both client and server implementation, and 1 used

Java as its client and C++ as its server.

The metrics collected and the test results for the different program versions are

shown in Table 5.1.

Team TLOC CLOC SLOC CClass CMethod SClass SMethod Fail Maybe R R1
P2 1129 613 516 3 15 5 26 7 6 0.77 0.88
P3 1874 1023 851 3 23 5 62 3 6 0.84 095
P4 1309 409 900 3 12 1 23 3 12 0.74 0.95
P5 2843 1344 1499 4 26 1 25 2 1 0.95 0.96
P6 1315 420 895 3 3 1 39 13 10 0.60 0.77
P7 2674 1827 847 3 17 5 35 3 14 0.70 0.95
P8 1520 734 786 3 24 4 30 1 6 0.88 0.98
P9 2121 1181 940 4 22 3 43 4 2 0.89 0.93
P10 1352 498 854 3 12 5 41 2 2 0.93 0.96
P11 563 190 373 3 12 3 20 6 3 0.84 0.89
P12 5695 4641 1054 14 166 5 32 1 4 0.91 0.98
P13 2602 1587 1015 3 27 3 32 17 19 0.37 0.70
P14 1994 873 1121 4 12 5 39 4 6 0.82 0.93
P15 714 348 366 4 11 4 33 2 5 0.88 0.96
P16 1676 925 751 3 3 23 44 30 0 0.47 0.47
P17 1288 933 355 6 25 5 35 3 3 0.89 0.95
P18 1731 814 917 3 12 3 20 4 9 0.77 0.93
P19 1900 930 970 3 3 2 20 35 1 0.37 0.39

Table 5.1 General Metrics of Different Teams

The meaning of the metrics and testing results are listed below:

• Total Lines of Code (TLOC): the total length of whole program, including

lines of codes in client program and server program;

• Client LOC (CLOC): lines of codes in client program;

• Server LOC (SLOC): lines of codes in server program;

Chapter 5 Experiments and Discussions

 73

• Client Class (CClass): number of classes in client program;

• Client Method (CMethod): number of methods in client program;

• Server Class (SClass): number of classes in server program;

• Server Method (SMethod): number of methods in server program;

• Fail: the number of test cases that the program failed on

• Maybe: the number of test cases, which were designed to raise exceptions,

and failed to work as the client side of the program forbid it. In this

situation, we were not sure whether the server was designed properly to

raise the expected exceptions. Thus we put down “maybe” as the result.

• R: pass rate, defined by j
j

PR
C

= , where C is the total number of test cases

applied to the programs (i.e., 57); Pj is the number of “Pass” cases for

program j, Pj = C – Fail – Maybe.

• R1: pass rate 2, defined by 1 j j
j

P MR
C
+

= , where C is the total number of

test cases applied to the programs (i.e., 57); Pj is the number of “Pass”

cases for program j, Pj = C – Fail – Maybe; Mj is the number of “Maybe”

cases for program j.

5.2 Experiment Procedures

Chapter 5 Experiments and Discussions

 74

In order to evaluate the quality of these CORBA programs, we applied the test

cases to the programs and assessed their quality and reliability based on the test results.

We describe our experiment procedures below.

First of all, we collected the different metrics of all the programs. Metamata and

JProbe Suite were used for this purpose.

We designed test cases for these CORBA programs according to the specification.

We used black box testing method, i.e., testing was on system functions only. Each

operation defined in the system specification was tested one by one. We defined some

test cases for each operation. The test cases were selected in 2 categories: normal cases

and cases that caused exceptions in the system. For each operation in the system, at

least 1 normal test case was conducted in the testing. In the other cases, all the

exceptions were covered. But in order to reduce the work load, we tried to use as few

test cases as possible so long as all the exceptions have been catered for.

We used the test results as indicator of quality. We applied different quality

prediction models: i.e., classification tree model and Bayesian Network model to the

metrics and test results. We then validate the prediction results of these models against

the test results.

We divided the programs into two groups: training data and test set, and adopted

cross evaluation. This was done after or during the prediction process according to the

prediction models.

After applying the metrics to the different models, we analyzed the accuracy of

Chapter 5 Experiments and Discussions

 75

their predicting results and identified their advantages and disadvantages. Also, based

on the results, we adjusted the coefficients and weights of different metrics in the final

models.

5.3 Modeling Methodology

We adopted two quality prediction models in our experiment: classification tree

model and Bayesian Belief Network. Respectively, two commercial tools CART and

Hugin Explorer tool were used.

5.3.1 Classification Tree Modeling

CART is an acronym for Classification and Regression Trees, a decision-tree

procedure introduced in 1984. Salford Systems' CART [41] is the only decision tree

system based on the original CART code and included enhancements. The CART

methodology solves a number of performance, accuracy, and operational problems

that still plague many current decision-tree methods. CART’s innovations include:

• solving the “how big to grow the tree” problem;

• using strictly two-way (binary) splitting;

• incorporating automatic testing and tree validation, and;

• providing a completely new method for handling missing values.

Chapter 5 Experiments and Discussions

 76

The CART methodology is technically known as binary recursive partitioning. The

process is binary because parent nodes are always split into exactly two child nodes

and recursive because the process can be repeated by treating each child node as a

parent. The key elements of a CART analysis are a set of rules for:

• splitting each node in a tree;

• deciding when a tree is complete; and

• assigning each terminal node to a class outcome (or predicted value for

regression)

Splitting Rules

To split a node into two child nodes, CART always asks questions that have a

"yes" or "no" answer. For example, the questions might be: is age <= 55? Or is credit

score <= 600?

How do we come up with candidate splitting rules? CART's method is to look at

all possible splits for all variables included in the analysis. For example, consider a

data set with 215 cases and 19 variables. CART considers up to 215 times 19 splits for

a total of 4085 possible splits. Any problem will have a finite number of candidate

splits and CART will conduct a brute force search through them all.

Chapter 5 Experiments and Discussions

 77

Choosing a Split

CART’s next activity is to rank order each splitting rule on the basis of a

quality-of-split criterion. The default criterion used in CART is the GINI rule,

essentially a measure of how well the splitting rule separates the classes contained in

the parent node.

Besides Gini, CART includes six other single-variable splitting criteria - Symgini,

twoing, ordered twoing and class probability for classification trees, and least squares

and least absolute deviation for regression trees - and one multi-variable splitting

criteria, the linear combinations method. The default Gini method typically performs

best, but, given specific circumstances, other methods can generate more accurate

models. CART’s unique “twoing” procedure, for example, is tuned for classification

problems with many classes, such as modeling which of 170 products would be chosen

by a given consumer.

Stopping Rules and Class Assignment

Once a best split is found, CART repeats the search process for each child node,

continuing recursively until further splitting is impossible or stopped. Splitting is

impossible if only one case remains in a particular node or if all the cases in that node

are exact copies of each other (on predictor variables). CART also allows splitting to

be stopped for several other reasons, including that a node has too few cases. (The

default for this lower limit is 10 cases, but may be set higher or lower to suit a

Chapter 5 Experiments and Discussions

 78

particular analysis).

Once a terminal node is found we must decide how to classify all cases falling

within it. One simple criterion is the plurality rule: the group with the greatest

representation determines the class assignment. CART goes a step further: because

each node has the potential for being a terminal node, a class assignment is made for

every node whether it is terminal or not. The rules of class assignment can be modified

from simple plurality to account for the costs of making a mistake in classification and

to adjust for over- or under-sampling from certain classes.

Pruning Trees

Instead of attempting to decide whether a given node is terminal or not, CART

proceeds by growing trees until it is not possible to grow them any further. Once

CART has generated what we call a maximal tree, it examines smaller trees obtained

by pruning away branches of the maximal tree. The reason CART does not stop in the

middle of the tree-growing process is that there might still be important information to

be discovered by drilling down several more levels.

Testing

Once the maximal tree is grown and a set of sub-trees are derived from it, CART

determines the best tree by testing for error rates or costs. With sufficient data, the

simplest method is to divide the sample into learning and test sub-samples. The

Chapter 5 Experiments and Discussions

 79

learning sample is used to grow an overly-large tree. The test sample is then used to

estimate the rate at which cases are misclassified (possibly adjusted by

misclassification costs). The misclassification error rate is calculated for the largest

tree and also for every sub-tree. The best sub-tree is the one with the lowest or

near-lowest cost, which may be a relatively small tree.

Some studies will not have sufficient data to allow a good-sized separate test

sample. The tree-growing methodology is data intensive, requiring many more cases

than classical regression. When data are in short supply, CART employs the

computer-intensive technique of cross validation.

Cross Validation

CART uses two test procedures to select the “optimal” tree, which is the tree with

the lowest overall misclassification cost, thus the highest accuracy. Both test

disciplines, one for small datasets and one for large, are entirely automated, and they

ensure the optimal tree model will accurately classify existing data and predict results.

For smaller datasets and cases when an analyst does not wish to set aside a portion of

the data for test purposes, CART automatically employs cross-validation. For large

datasets, CART automatically selects test data or uses pre-defined test records or test

files to self-validate results.

Cross validation is used if data are insufficient for a separate test sample. In such

cases, CART grows a maximal tree on the entire learning sample. This is the tree that

Chapter 5 Experiments and Discussions

 80

will be pruned back. CART then proceeds by dividing the learning sample into 10

roughly-equal parts, each containing a similar distribution for the dependent variable.

CART takes the first 9 parts of the data, constructs the largest possible tree, and uses

the remaining 1/10 of the data to obtain initial estimates of the error rate of selected

sub-trees. The same process is then repeated (growing the largest possible tree) on

another 9/10 of the data while using a different 1/10 part as the test sample. The

process continues until each part of the data has been held in reserve one time as a test

sample. The results of the 10 mini-test samples are then combined to form error rates

for trees of each possible size; these error rates are applied to the tree based on the

entire learning sample.

5.3.2 Bayesian Belief Network Modeling

The HUGIN System is a tool enabling one to construct model based decision

support systems in domains characterized by inherent uncertainty. The models

supported are Bayesian belief networks and their extension influence diagrams. The

HUGIN System allows the user to define both discrete nodes and to some extent

continuous nodes in the models.

Bayesian networks are often used to model domains that are characterized by

inherent uncertainty. This uncertainty can be due to imperfect understanding of the

domain, incomplete knowledge of the state of the domain at the time where a given

task is to be performed, randomness in the mechanisms governing the behaviour of the

Chapter 5 Experiments and Discussions

 81

domain, or a combination of these.)

Formally, a Bayesian belief network can be defined as follows: A Bayesian belief

network is a directed acyclic graph with the following properties:

• Each node represents a random variable.

• Each node representing a variable A with parent nodes representing variables

B1, B2,..., Bn is assigned a conditional probability table (cpt):

The nodes represent random variables, and the edges represent probabilistic

dependencies between variables. These dependences are quantified through a set of

conditional probability tables (CPTs): Each variable is assigned a CPT of the variable

given its parents. For variables without parents, this is an unconditional (also called a

marginal) distribution.

Inference in a Bayesian network means computing the conditional probability for

some variables given information (evidence) on other variables. This is easy when all

available evidence is on variables that are ancestors of the variable(s) of interest. But

when evidence is available on a descendant of the variable(s) of interest, we have to

perform inference against the direction of the edges. To this end, we employ Bayes'

Theorem:

An influence diagram is a belief network augmented with decisions and utilities

Chapter 5 Experiments and Discussions

 82

(the random variables of an influence diagram are often called chance variables).

Edges into decision nodes indicate time precedence: an edge from a random variable

to a decision variable indicates that the value of the random variable is known when

the decision will be taken, and an edge from one decision variable to another indicates

the chronological ordering of the corresponding decisions. The network must be

acyclic, and there must exist a directed path that contains all decision nodes in the

network.

We have developed a prototype BBN to show the potential of one of the quality

prediction models: BBN, and illustrated their useful properties using real metrics data

from the project. The quality prediction BBN example is shown in Figure 5.1. The

node probability is determined by the metrics and the testing data, see Table 5.1.

Figure 5.1 also shows the execution of the BBN model using the Hugin Explorer tool

[35].

Chapter 5 Experiments and Discussions

 83

Figure 5.1 The quality prediction BBN model and execution demonstration.

5.4 Experiment Results

5.3.1 Classification Tree Results Using CART

 We apply the metrics and testing results in Table 5.1 to the CART tool, and get the

classification tree results of predicting the quality variable “Fail”. Table 5.2 is the

option setting when we construct the tree modeling. The tree constructed is shown as

Figure 5.2, and the relative importance of each metric is listed in Table 5.3.

 The detailed information and the report of running CART can be found in

Appendix A.

Chapter 5 Experiments and Discussions

 84

Table 5.2 Option Setting when constructing the classification tree

Table 5.3 Variable importance in classification tree

 Construction Rule Least Absolute Deviation
 Estimation Method Exploratory - Resubstitution
 Tree Selection 0.000 se rule
 Linear Combinations No

 Initial value of the complexity parameter = 0.000
 Minimum size below which node will not be split = 2
 Node size above which sub-sampling will be used = 18
 Maximum number of surrogates used for missing values = 1
 Number of surrogate splits printed = 1
 Number of competing splits printed = 5
 Maximum number of trees printed in the tree sequence = 10
 Max. number of cases allowed in the learning sample = 18
 Maximum number of cases allowed in the test sample = 0
 Max # of nonterminal nodes in the largest tree grown = 38
 (Actual # of nonterminal nodes in largest tree grown = 10)
 Max. no. of categorical splits including surrogates = 1
 Max. number of linear combination splits in a tree = 0
 (Actual number cat. + linear combination splits = 0)
 Maximum depth of largest tree grown = 13
 (Actual depth of largest tree grown = 7)
 Maximum size of memory available = 9000000
 (Actual size of memory used in run = 5356)

 Relative Number Of Minimum
 Metrics Importance Categories Category

 CMETHOD 100.000
 TLOC 45.161
 SCLASS 43.548
 CLOC 33.871
 SLOC 4.839
 SMETHOD 0.000
 CCLASS 0.000

 N of the learning sample = 18

Chapter 5 Experiments and Discussions

 85

Figure 5.2 Classification tree structure

Table 5.4 Terminal node information in classification tree

From Figure 5.2, we can see that the 18 learning samples are classified into 9

groups (terminal nodes), whose information are listed in Table 5.4. The most important

vector was the number of methods in the client program (CMethod), and the next three

Parent
 Node Wgt Count Count Median MeanAbsDev Complexity

--
 1 1.00 1 13.000 0.000 17.000
 2 2.00 2 35.000 2.500 17.000
 3 1.00 1 6.000 0.000 6.333
 4 1.00 1 2.000 0.000 2.500
 5 1.00 1 7.000 0.000 4.000
 6 6.00 6 3.000 0.500 4.000
 7 3.00 3 4.000 0.000 3.000
 8 1.00 1 17.000 0.000 14.000
 9 2.00 2 2.000 0.500 8.000

CMETHOD< 7

TLOC< 1495.5 TLOC< 638.5

TLOC< 2758.5

CMETHOD< 26

SLOC< 908.5

TLOC< 921.5

TLOC< 1208.5

1 2

4

7

8

9

3

5 6

Chapter 5 Experiments and Discussions

 86

most important vectors were TLOC, SCLASS and CLOC. From the node information,

we can observe that the most non fault-prone nodes are those programs with

638.5<TLOC<921.5 and 7<CMETHOD<26 and SLOC<908.5, or CEMTHOD>7 and

TLOC<638.5. The relationship between classification results and three main metrics

was analyzed and listed in Table 5.5.

Terminal Node Mean Faults CMethod TLOC SLOC
4 2 7~26 638.5~921.5 <=908.5
9 2 >7 <=638.5 -
6 3 7~26 1208.5~2758.5 <=908.5
7 4 7~26 638.5~921.5 >908.5
3 6 >7 <=638.5 -
5 7 7~26 638.5~921.5 <=908.5
1 13 <=7 <=1495.5 -
8 17 >26 638.5~921.5 -
2 35 <=7 >1495.5 -

Table 5.5 Relationship between classification results and 3 main metrics

5.3.2 BBN Results Using Hugin

We constructed an influence diagram for the CORBA programs according to the

metrics and testing results collected in the testing procedure, as shown in Figure 5.3.

The “TestResult” here is the variable “Fail” in Table 5.1. The reason why we chose the

simplest diagram here to let each metric influences the testing result directly is that, we

assume that each of these metrics has its own impacts on the testing result, even if

there are some redundancy or interaction between these metrics. We would not omit

any important relationships using such diagram, and it should be a good starting point

Chapter 5 Experiments and Discussions

 87

for our analysis.

Once the influence diagram is constructed, we input the probability of metrics and

testing results collected in our test procedures, as shown in Figure 5.4.

Figure 5.3 The Influence Diagram of the BBN model

Figure 5.4 The probability description of nodes in BBN model

Chapter 5 Experiments and Discussions

 88

 (a) (b) (c)

Figure 5.5 The different probability distribution of metrics
according to the quality indicator (sum propagation)

The running result of Hugin tool are shown in Figure 5.5 and Figure 5.6, where (a)

is the original probability distribution of different metrics and testing results; (b) is the

probability distribution of the metrics when the number of faults is less than 5; (c) is

the probability distribution of the metrics when the number of faults is between 5 and

10. Figure 5.5 is the results of summation propagation, and Figure 5.6 is the results of

max propagation.

The sum propagation shows the true probability of state of nodes with the total

summation 1. For the max propagation, if a state of a node belongs to the most

Chapter 5 Experiments and Discussions

 89

 (a) (b) (c)

Figure 5.6 The different probability distribution of metrics
according to the quality indicator (max propagation)

probable configuration it is given the value 100. All other states are given the relative

value of the probability of the most probable configuration they found in comparison

to the most probable configuration. That is, assume a node N has two states a and b,

and b belongs to the most probable configuration of the entire BBN which has the

probability 0.002. Then, b is given the value 100. Now, assume that the most probable

configuration which a belongs to has probability 0.0012. Then, a is given the value 60.

Using max propagation instead of sum propagation, we can find the probability of

Chapter 5 Experiments and Discussions

 90

the most likely combination of states under the assumption that the entered evidence

holds. In each node, a state having the value 100.00 belongs to a most likely

combination of states.

From the Figure 5.6(b), we can find the best combination of the metrics with

respect to the corresponding testing results, as listed in Table 5.6. For test result

between 0 and 5, the ranges of CMethod, TLOC and SLOC are very close to the results

of classification tree in Table 5.5.

TestResult CCLASS CMethod SCLASS SMethod TLOC CLOC SLOC

0-5 1-5 10-50 1-5 10-50 1-2K 0-0.5K 0.5-1K
5-10 1-5 10-50 1-5 10-50 1-2L 0.5-1K 0.5-1K

Table 5.6 Relationship between test result and metrics in BBN

5.5 Comparison and Discussion

In our experiment, we used some real CORBA programs as the testing data and

applied them to two quality prediction models: classification tree model and Bayesian

Belief Network model. We adopted two commercial tools: CART and Hugin systems

to implement the two models accordingly. From the experimental results listed above,

we compared the quality prediction ability of the two models.

First, classification tree model predicts the quality of a program by constructing a

tree model according to the collected metrics. If the learning sample is large enough,

the prediction result of classification tree would be very accurate. It means that we

Chapter 5 Experiments and Discussions

 91

could predict the quality of a program by its metrics accurately according to the

classification tree model.

However, the disadvantage of classification tree modeling is that it needs large

learning data and more data descriptions. In our case, the classification tree result will

be more accurate if we had used more programs for learning, and more metrics could

be collected to describe the features of various aspects for the given programs.

As BBN constructs the influence diagram of the dependency relationship of the

metrics and testing result, it can predict the range of testing results by giving the

combination of different metrics. Also, it can suggest the best combination of metrics,

which is more clear in BBN than in classification tree modeling, if we want to reduce

the testing result to a specific range.

The obvious disadvantage of BBN model is that user should know the dependent

relationship very well in his specific domain before he can construct a correct

influence diagram and get the prediction result. But this kind of expert acknowledge is

usually not available before the prediction results.

In our experiment, as the testing data is restricted, only 18 programs were used to

construct the models and validate the prediction. To make the comparison more

accurate and fair, we will adopt more programs as test data in our future work. Also, if

we could collect data from real systems based on components, we could apply these

models to the components as well as the whole systems to get the relationship of their

qualities.

 92

Chapter 6

Conclusion

The scale of modern software systems are getting increasingly large and complex.

They are not easy to control, resulting in high development cost, low productivity,

unmanageable software quality and high risk to move to new technology.

Consequently, there is a growing demand of searching for a new, efficient, and

cost-effective software development paradigm.

One of the most promising solutions today is the component-based software

development (CBSD) approach. This approach is based on the idea that software

systems can be developed by selecting appropriate off-the-shelf components and then

assembling them with a well-defined software architecture. As CBSD is to build

software systems using a combination of components including off-the-shelf

components, components developed in-house and components developed

contractually, the over quality of the final system greatly depends on the quality of the

selected components. We need to first measure the quality of a component before we

could certify it. Software metrics are designed to measure different attributes of a

Chapter 6 Conclusion

 93

software system and development process, indicating different levels of quality in the

final product .

In order to make use of the results of software metrics, several different techniques

have been developed to describe the predictive relationship between software metrics

and the classification of the software components into fault-prone and non fault-prone

categories. These techniques include discriminant analysis, classification trees, pattern

recognition, Bayesian network, case-based reasoning (CBR), and regression tree

models.

From our observations, conventional Software Quality Assurance (SQA)

techniques are not applicable to CBSD due to its special features. For this reason, we

investigate the most efficient and effective quality assurance approach suitable to

CBSD in our research.

First, we propose a QA model for component-based software development, which

covers eight main processes in CBSD: component requirement analysis, component

development, component certification, component customization, and system

architecture design, integration, testing, and maintenance.

We also propose the Component-based Program Analysis and Reliability

Evaluation (ComPARE) environment to evaluate the quality of software systems in

component-based programming technology. ComPARE automates the collection of

different metrics, the selection of different prediction models, the formulation of

user-defined models, and the validation of the established models according to fault

Chapter 6 Conclusion

 94

data collected in the development process. Different from other existing tools,

ComPARE takes dynamic metrics into account (such as code coverage and

performance metrics), integrates them with process metrics and more static code

metrics for object-oriented programs (such as complexity metrics, coupling and

cohesion metrics, inheritance metrics), and provides different models for integrating

these metrics to an overall estimation with higher accuracy.

Finally, we apply different quality predicted techniques on some component-based

programs in real world. From the analysis of these predicted results, we also have

some discussions on the quality prediction models, which is capable to apply to

component-based software systems.

However, as the testing data is restricted in our experiment, only 18 programs are

used to construct the models and validate the prediction. To make the comparison

more accurate and fair, we will adopt more programs as test data in our future work.

Also, in case that we can collect real systems based on components, we can apply these

models the components as well as the whole systems to get the relationship of their

qualities. We can also consider to adopt other existing quality prediction models to

these component-based software system in order to give most appropriate models

applicable to CBSD.

 95

Appendix A

Classification Tree Report of CART

CART VERSION 4.0.0.20

 Case weights not supported for LAD rule.

 RECORDS READ: 19
 RECORDS DELETED, DEPENDENT VARIABLE MISSING: 1
 RECORDS WRITTEN IN LEARNING SAMPLE: 18

 LEARNING SAMPLE VARIABLE STATISTICS
 ===================================

 VARIABLE LEARN

 TLOC MEAN| 1905.556
 SD| 1132.905
 N| 18.000
 SUM| 34300.000
 CLOC MEAN| 1071.667
 SD| 989.644
 N| 18.000
 SUM| 19290.000
 SLOC MEAN| 833.889
 SD| 289.280
 N| 18.000
 SUM| 15010.000
 CCLASS MEAN| 4.000
 SD| 2.612
 N| 18.000
 SUM| 72.000
 CMETHOD MEAN| 23.611
 SD| 36.398
 N| 18.000
 SUM| 425.000
 SCLASS MEAN| 4.611
 SD| 4.828
 N| 18.000
 SUM| 83.000
 SMETHOD MEAN| 33.278
 SD| 10.670
 N| 18.000
 SUM| 599.000
 FAIL MEAN| 7.778
 SD| 9.932
 N| 18.000
 SUM| 140.000

Appendix A Classification Tree Report of CART

 96

 CURRENT MEMORY REQUIREMENTS
 TOTAL: 4555. DATA: 144 ANALYSIS: 4411.
 AVAILABLE: 9000000. SURPLUS: 8995445.

 BUILD PREPROCESSOR CPU TIME: 00:00:00.16

 THE DATA ARE BEING READ ...

 18 Observations in the learning sample.
 FILE: D:\RESEARCH\ComPARE\test-data\test-data.XLS[xls7]

 CART IS RUNNING.

 EXPLORATORY BUILD CPU TIME: 00:00:00.05

 Tree constructed with complexity parameter = 0.000

 =============
 TREE SEQUENCE
 =============
 Dependent variable: FAIL

 Terminal Resubstitution Complexity Relative Rho
 Tree Nodes Relative Error Parameter Complexity Squared
 --
 1 9 0.090 0.000 0.000 0.910
 2 7 0.140 2.500 0.025 0.860
 3 6 0.170 3.000 0.030 0.830
 4 3 0.360 6.333 0.063 0.640
 5 2 0.530 17.000 0.170 0.470
 6 1 1.000 47.000 0.470 0.000

 Initial median = 4.000
 Initial mean absolute deviation = 5.556

 RESUBSTITUTION RELATIVE ERROR VS. NUMBER OF NODES
 --
 1.000 |* |
 | |
 0.886 | |
 | |
 0.773 | |
 | |
 0.659 | |
 | |
 0.545 | * |
 | |
 0.431 | |
 | * |
 0.318 | |
 | |
 0.204 | |
 | * * |
 0.090 | *|
 --
 1.000 | 5.000 | 9.000
 3.000 7.000

Appendix A Classification Tree Report of CART

 97

 COMPLEXITY VS. NUMBER OF NODES
 --
 47.000 |* |
 | |
 41.125 | |
 | |
 35.250 | |
 | |
 29.375 | |
 | |
 23.500 | |
 | |
 17.625 | * |
 | |
 11.750 | |
 | |
 5.875 | * |
 | * * |
 0.000 | *|
 --
 1.000 | 5.000 | 9.000
 3.000 7.000

 =======================
 REGRESSION TREE DIAGRAM
 =======================

 |
 ------------------1------------------
 | |
 -----2---- -----------------------3----------------------
 | | | |
 ---------4---------
 | |
 ----------5---------
 | |
 ----------6----------
 | |
 -------7-------
 | |
 -----8----
 | |

 Terminal Regions

 1 2 3 4 5 6 7 8 9

 ================
 NODE INFORMATION
 ================

Appendix A Classification Tree Report of CART

 98

 * Node 1: CMETHOD *
 * N: 18 *

 ******************************* *******************************
 * Node 2 * * Node 3 *
 * N: 3 * * N: 15 *
 ******************************* *******************************

 Node 1 was split on CMETHOD
 A case goes left if CMETHOD <= 7.000
 Improvement = 2.611 Complexity Threshold = 47.000

 Node Cases Wgt Count Median MeanAbsDev
 1 18 18.00 4.000 5.556
 2 3 3.00 30.000 7.333
 3 15 15.00 3.000 2.067

 Surrogate Split Assoc. Improve.
 1 SCLASS r 14.000 0.333 1.500

 Competitor Split Improve.
 1 SCLASS 14.000 1.500
 2 SMETHOD 21.500 0.278
 3 TLOC 2638.000 0.222
 4 SLOC 768.500 0.167
 5 CCLASS 10.000 0.167

 * Node 2: TLOC *
 * N: 3 *

 =============================== ===============================
 = Terminal Node 1 = = Terminal Node 2 =
 = N: 1 = = N: 2 =
 =============================== ===============================

 Node 2 was split on TLOC
 A case goes left if TLOC <= 1495.500
 Improvement = 0.944 Complexity Threshold = 17.000

 Node Cases Wgt Count Median MeanAbsDev
 2 3 3.00 30.000 7.333
 -1 1 1.00 13.000 .
 -2 2 2.00 35.000 2.500

 Surrogate Split Assoc. Improve.
 1 CLOC s 672.500 1.000 0.944

 Competitor Split Improve.
 1 CLOC 672.500 0.944
 2 SCLASS 1.500 0.944
 3 SLOC 932.500 0.278
 4 SMETHOD 29.500 0.278

Appendix A Classification Tree Report of CART

 99

 * Node 3: TLOC *
 * N: 15 *

 =============================== *******************************
 = Terminal Node 3 = * Node 4 *
 = N: 1 = * N: 14 *
 =============================== *******************************

 Node 3 was split on TLOC
 A case goes left if TLOC <= 638.500
 Improvement = 0.167 Complexity Threshold = 6.333

 Node Cases Wgt Count Median MeanAbsDev
 3 15 15.00 3.000 2.067
 -3 1 1.00 6.000 .
 4 14 14.00 3.000 2.000

 Surrogate Split Assoc. Improve.
 1 CLOC s 269.000 1.000 0.167

 Competitor Split Improve.
 1 CLOC 269.000 0.167
 2 SLOC 908.500 0.111
 3 CCLASS 10.000 0.111
 4 CMETHOD 96.500 0.111
 5 SCLASS 3.500 0.111

 * Node 4: TLOC *
 * N: 14 *

 ******************************* ===============================
 * Node 5 * = Terminal Node 9 =
 * N: 12 * = N: 2 =
 ******************************* ===============================

 Node 4 was split on TLOC
 A case goes left if TLOC <= 2758.500
 Improvement = 0.111 Complexity Threshold = 8.000

 Node Cases Wgt Count Median MeanAbsDev
 4 14 14.00 3.000 2.000
 5 12 12.00 3.000 2.083
 -9 2 2.00 2.000 0.500

 Surrogate Split Assoc. Improve.
 1 CMETHOD s 25.500 0.500 0.056

 Competitor Split Improve.
 1 CLOC 3234.000 0.111
 2 SLOC 908.500 0.111

Appendix A Classification Tree Report of CART

 100

 3 CCLASS 10.000 0.111
 4 CMETHOD 96.500 0.111
 5 SCLASS 3.500 0.056

 * Node 5: CMETHOD *
 * N: 12 *

 ******************************* ===============================
 * Node 6 * = Terminal Node 8 =
 * N: 11 * = N: 1 =
 ******************************* ===============================

 Node 5 was split on CMETHOD
 A case goes left if CMETHOD <= 26.000
 Improvement = 0.778 Complexity Threshold = 14.000

 Node Cases Wgt Count Median MeanAbsDev
 5 12 12.00 3.000 2.083
 6 11 11.00 3.000 1.000
 -8 1 1.00 17.000 .

 Competitor Split Improve.
 1 SLOC 908.500 0.222
 2 TLOC 1625.500 0.111
 3 CLOC 555.500 0.111
 4 SCLASS 3.500 0.111
 5 SMETHOD 21.500 0.056

 * Node 6: SLOC *
 * N: 11 *

 ******************************* ===============================
 * Node 7 * = Terminal Node 7 =
 * N: 8 * = N: 3 =
 ******************************* ===============================

 Node 6 was split on SLOC
 A case goes left if SLOC <= 908.500
 Improvement = 0.167 Complexity Threshold = 3.000

 Node Cases Wgt Count Median MeanAbsDev
 6 11 11.00 3.000 1.000
 7 8 8.00 3.000 1.000
 -7 3 3.00 4.000 .

 Surrogate Split Assoc. Improve.
 1 TLOC s 1625.500 0.333 0.056

 Competitor Split Improve.
 1 TLOC 921.500 0.056

Appendix A Classification Tree Report of CART

 101

 2 CLOC 378.500 0.056
 3 CMETHOD 11.500 0.056
 4 SCLASS 3.500 0.056
 5 SMETHOD 21.500 0.056

 * Node 7: TLOC *
 * N: 8 *

 =============================== *******************************
 = Terminal Node 4 = * Node 8 *
 = N: 1 = * N: 7 *
 =============================== *******************************

 Node 7 was split on TLOC
 A case goes left if TLOC <= 921.500
 Improvement = 0.056 Complexity Threshold = 2.500

 Node Cases Wgt Count Median MeanAbsDev
 7 8 8.00 3.000 1.000
 -4 1 1.00 2.000 .
 8 7 7.00 3.000 1.000

 Surrogate Split Assoc. Improve.
 1 CLOC s 378.500 1.000 0.056

 Competitor Split Improve.
 1 CLOC 378.500 0.056
 2 CMETHOD 11.500 0.056
 3 SCLASS 4.500 0.056

 * Node 8: TLOC *
 * N: 7 *

 =============================== ===============================
 = Terminal Node 5 = = Terminal Node 6 =
 = N: 1 = = N: 6 =
 =============================== ===============================

 Node 8 was split on TLOC
 A case goes left if TLOC <= 1208.500
 Improvement = 0.222 Complexity Threshold = 4.000

 Node Cases Wgt Count Median MeanAbsDev
 8 7 7.00 3.000 1.000
 -5 1 1.00 7.000 .
 -6 6 6.00 3.000 0.500

Appendix A Classification Tree Report of CART

 102

 =========================
 TERMINAL NODE INFORMATION
 =========================

Parent
 Node Wgt Count Count Median MeanAbsDev Complexity

--
 1 1.00 1 13.000 0.000 17.000
 2 2.00 2 35.000 2.500 17.000
 3 1.00 1 6.000 0.000 6.333
 4 1.00 1 2.000 0.000 2.500
 5 1.00 1 7.000 0.000 4.000
 6 6.00 6 3.000 0.500 4.000
 7 3.00 3 4.000 0.000 3.000
 8 1.00 1 17.000 0.000 14.000
 9 2.00 2 2.000 0.500 8.000

 ===================
 VARIABLE IMPORTANCE
 ===================

 Relative Number Of Minimum
 Importance Categories Category

 CMETHOD 100.000
 TLOC 45.161
 SCLASS 43.548
 CLOC 33.871
 SLOC 4.839
 SMETHOD 0.000
 CCLASS 0.000

 N of the learning sample = 18

 ===============
 OPTION SETTINGS
 ===============

 Construction Rule Least Absolute Deviation
 Estimation Method Exploratory - Resubstitution
 Tree Selection 0.000 se rule
 Linear Combinations No

 Initial value of the complexity parameter = 0.000
 Minimum size below which node will not be split = 2
 Node size above which sub-sampling will be used = 18
 Maximum number of surrogates used for missing values = 1
 Number of surrogate splits printed = 1
 Number of competing splits printed = 5
 Maximum number of trees printed in the tree sequence = 10
 Max. number of cases allowed in the learning sample = 18
 Maximum number of cases allowed in the test sample = 0
 Max # of nonterminal nodes in the largest tree grown = 38
 (Actual # of nonterminal nodes in largest tree grown = 10)
 Max. no. of categorical splits including surrogates = 1

Appendix A Classification Tree Report of CART

 103

 Max. number of linear combination splits in a tree = 0
 (Actual number cat. + linear combination splits = 0)
 Maximum depth of largest tree grown = 13
 (Actual depth of largest tree grown = 7)
 Maximum size of memory available = 9000000
 (Actual size of memory used in run = 5356)

 TOTAL CPU TIME: 00:00:00.22

 104

Appendix B

Publication List

1. “Component-Based Software Engineering: Technologies, Development

Frameworks, and Quality Assurance,” Xia Cai, M.R.Lyu, K.F.Wong and R. Ko,

Proceedings of Seventh Asia-Pacific Software Engineering Conference (APSEC

2000), Singapore, Dec. 2000, pp.372-379.

2. “ComPARE: A Generic Quality Assessment Environment for

Component-Based Software Systems,” Xia Cai, M.R.Lyu, K.F.Wong and M.Wong,

Proceedings of The 2001 International Symposium on Information Systems and

Engineering (ISE'2001), Las Vegas, USA, Jun. 2001, pp. 348-354.

3. “Component-based Embedded Software Engineering: Development

Framework, Quality Assurance and A Generic Assessment Environment", Xia Cai,

M.R.Lyu and K.F.Wong, Accepted by the Special Issue of International Journal of

Software Engineering & Knowledge Engineering (IJSEKE) on Embedded

Software Engineering, Apr. 2002.

 105

Bibliography

[1] A.W.Brown, K.C. Wallnau, “The Current State of CBSE,” IEEE Software,

Volume: 15 5, Sept.-Oct. 1998, pp. 37 – 46.

[2] M. L. Griss, “Software Reuse Architecture, Process, and Organization for

Business Success,” Proceedings of Eighth Israeli Conference on Computer

Systems and Software Engineering, 1997, pp. 86-98.

[3] P.Herzum, O.Slims, "Business Component Factory - A Comprehensive Overview

of Component-Based Development for the Enterprise," OMG Press, 2000.

[4] Hong Kong Productivity Council, http://www.hkpc.org/itd/servic11.htm ,April,

2000.

[5] IBM: http://www4.ibm.com/software/ad/sanfrancisco, Mar, 2000.

[6] I.Jacobson, M. Christerson, P.Jonsson, G. Overgaard, "Object-Oriented Software

Engineering: A Use Case Driven Approach," Addison-Wesley Publishing

Company, 1992.

[7] W. Kozaczynski, G. Booch, “Component-based software Engineering,” IEEE

Software Volume: 155, Sept.-Oct. 1998, pp. 34–36.

http://www.hkpc.org/itd/servic11.htm
http://www4.ibm.com/software/ad/sanfrancisco

Bibliography

 106

[8] M.R.Lyu (ed.), Handbook of Software Reliability Engineering, McGraw-Hill,

New York, 1996.

[9] Microsoft: http://www.microsoft.com/com, Nov. 2001.

[10] J.Q. Ning, K. Miriyala, W. Kozaczynski,, “An Architecture-Driven,

Business-Specific, and Component-Based Approach to Software Engineering,”

Proceedings of Third International Conference on Software Reuse: Advances in

Software Reusability, 1994, pp. 84 -93.

[11] OMG: http://www.omg.org/corba, Nov. 2001.

[12] G. Pour, “Component-based Software Development Approach: New

Opportunities and Challenges,” Proceedings of Technology of Object-Oriented

Languages, 1998, TOOLS 26, pp. 375-383.

[13] G. Pour, “Enterprise JavaBeans, JavaBeans & XML Expanding the Possibilities

for Web-Based Enterprise Application Development,” Proceedings Technology

of Object-Oriented Languages and Systems, 1999, TOOLS 31, pp.282-291.

[14] G.Pour, M. Griss, J. Favaro, “Making the Transition to Component-Based

Enterprise Software Development: Overcoming the Obstacles – Patterns for

Success,” Proceedings of Technology of Object-Oriented Languages and

systems, 1999, pp. 419.

[15] G.Pour, “Software Component Technologies: JavaBeans and ActiveX,”

Proceedings of Technology of Object-Oriented Languages and systems, 1999,

http://www.microsoft.com/com
http://www.omg.org/corba

Bibliography

 107

pp. 398.

[16] C. Rajaraman, M.R. Lyu,"Reliability and Maintainability Related Software

Coupling Metrics in C++ Programs," Proceedings of Third IEEE International

Symposium on Software Reliability Engineering (ISSRE'92), 1992, pp.

303-311.

[17] C. Rajaraman, M.R. Lyu, "Some Coupling Measures for C++ Programs,"

Proceedings of TOOLS USA 92 Conference, August 1992, pp. 225-234.

[18] C.Szyperski, "Component Software: Beyond Object-Oriented Programming,"

Addison-Wesley, New York, 1998.

[19] SUN http://developer.java.sun.com/developer,Mar. 2000

[20] Y.M.Wang, O.P.Damani, W.J. Lee, “Reliability and Availability Issues in

Distributed Component Ojbect Model (DCOM),” Proceedings of Fourth

International Workshop on Community Networking, 1997, pp. 59 –63.

[21] S.M. Yacoub, B. Cukic, H.H. Ammar, “A Component-Based Approach to

Reliability Analysis of Distributed Systems,” Proceedings of the 18th IEEE

Symposium on Reliable Distributed Systems, 1999, pp. 158 –167.

[22] S.M.Yacoub, B. Cukic, H.H.Ammar, “A Scenario-Based Reliability Analysis of

Component-based Embedded Software,” Proceedings of 10th International

Symposium on Software Reliability Engineering, 1999, pp. 22 –31.

[23] S.S.Yau, B. Xia, “Object-Oriented Distributed Component Software

http://developer.java.sun.com/developer

Bibliography

 108

Development based on CORBA,” Proceedings of COMPSAC’98, 1998, pp.

246-251.

[24] C.H.Schmauch, "ISO9000 for Software Developers,", ASQC Quality Press,

1994

[25] J.Voas and J.Payne, “Dependability Certification of Software Components,”

The Journal of Systems and Software, 52, pp.165-172, 2000,

 [26] N. E. Fenton and N. Ohlsson, ”Quantitative Analysis of Faults and Failures in a

Complex Software System,” IEEE Transactions on Software Engineering,

SE-26(8), pp.797–814, Aug. 2000.

[27] S.S.Gokhale and M.R.Lyu, “Regression Tree Modeling for the Prediction of

Software Quality,” Proceedings of Third ISSAT International Conference on

Reliability and Quality in Design, Anaheim, California, March 1997.

[28] Metamata: http://www.metamata.com/metrics.html, Nov. 2001.

[29] Jprobe: http://www.sitraka.com/software/jprobe/, Nov. 2001.

[30] J.Munson and T.Khoshgoftaar, “The Detection of Fault-Prone Programs,”

IEEE Transactions on Software Engineering, SE-18(5), May 1992.

[31] A. A. Porter and R. W. Selby, “Empirically Guided Software Development

Using Metric-Based Classification Trees,” IEEE Software, pp. 46-53, Mar.1990.

[32] L.C.Briand, V.R.Basili and C.Hetmanski, “Developing Interpretable Models for

Optimized Set Reduction for Identifying High-Risk Software Components,”

http://www.metamata.com/metrics.html
http://www.sitraka.com/software/jprobe/

Bibliography

 109

IEEE Transactions on Software Engineering, SE-19(11), pp.1028-1034,

Nov.1993.

[33] N.E.Fenton and M.Neil, “A Critique of Software Defect Prediction Models,”

IEEE Transactions on Software Engineering, SE-25(5), pp.675-689, Oct. 1999.

[34] K.E.Emam, S.Benlarbi, N.Goel and S.N.Rai, “Comparing Case-Based

Reasoning Classifiers for Predicting High Risk Software Components,” The

Journal of systems and Software, 55, pp.301-320, 2001.

[35] http://www.hugin.com, Nov. 2001.

[36] M.R.Lyu, J.S.Yu, E.Keramidas and S.R.Dalal, “ARMOR: Analyzer for

Reducing Module Operational Risk,” Proceedings of Twenty-Fifth

International Symposium on Fault-Tolerant Computing (FTCS-25),

pp.137-142, 1995.

[37] A.A.Keshlaf and K.Hashim, “A Model and Prototype Tool to Manage Software

Risks,” Proceedings of First Asia-Pacific Conference on Quality Software,

pp.297-305, 2000.

[38] J.F.Patenaude, E.Merlo, M.Dagenais and B.Lague, “Extending Software

Quality Assessment Techniques to Java Systems,” Proceedings of Seventh

International Workshop on Program Comprehension, pp.49-56, 1999.

[39] T.Systa, Y.Ping and H.Muller, “Analyzing Java Software by Combining Metrics

and Program Visualization,” Proceedings of Fourth European Software

http://www.hugin.com

Bibliography

 110

Maintenance and Reengineering, pp.199 –208, 2000.

[40] A.Rhodes,, “Component-Based Development for Embedded Systems,”

Proceedings of Systems Conference, No.313.

[41] Salford Systems: http://www.salford-systems.com, Nov. 2001.

[42] D.J.Smith, “Achieving Quality Software (Third Edition),” Chapman & Hall,

1995

[43] J.Sanders and E.Curran, "Software Quality: A Framework for Success in

Software Development and Support," Addison-Wesley Publishing Company,

1994

[44] Flashline: http://www.flashline.com, Nov. 2001

[45] G. Xing and M.R. Lyu, "Testing, Reliability, and Interoperability Issues in the

CORBA Programming Paradigm," Proceedings of 1999 Asia-Pacific Software

Engineering Conference (APSEC'99), pp. 530-536, 1999.

http://www.salford-systems.com
http://www.flashline.com

