
 Quality Assurance for Component-Based Software Development

 1

1. Introduction

Over the last several decades, as software systems become more and more large-scale,

complex and uneasily controlled, software community has faced the challenge of high

development cost, low productivity, uncontrollable software quality and risk to move to

new technology. This has created a fast growing demand for rapid and cost-effective

development of large-scale, complex and highly maintai nable software systems

[Pour99c]. It also causes searching for a new, efficient, and cost-effective software

development paradigm.

The most promising solution now is component -based software development

approach. This approach is based on the idea that developing software systems by

selecting building blocks of a new system from off-the-shelf components and assembling

the selected components with an appropriate software architecture rather than

implementing the system from scratch [Pour98]. These components can be existing

subsystems by internal or external sources, or commercial off -the-shelf (COTS)

components developed by different in-house developers using different languages and

different platforms.

Component-based software development (CBSD) has potential to reduce significantly

development cost and time-to-market, and improve maintainability, reliability and

overall quality of applications [Pour99a] [Pour99b]. So it has raised a tremendous

amount of interests both in the research community and in the software industry.

Component

repository

Component 1

Component 2

Component n

Software

systems

 select assemble

...

Commercial Off-the-shelf

(COTS) components

 Quality Assurance for Component-Based Software Development

 2

Figure 1.1 Component-Based Software Development

The concept of using software components is not so new: as operating systems,

compilers, database systems, networking systems, and software tools are all indeed

software components, and they have well-defined functions and interfaces that can easily

tested and integrated with other software systems [Pour98]. What is new about

component-based software development approach is its use of commercial off-the-shelf

(COTS) software components as the building blocks of new systems. And this involves

new major activities such as evaluation, selection, customization, and integration of

off-the-shelf components; and evaluation, selection, and creation of software

architecture. As a result, the life cycle and software engineering model of

Component-Based Software Development is much different with the traditional ones,

that's what the Component-Based Software Engineering (CBSE) is focused.

 As yet, the software component technologies is far from matured, there is no existing

standards or guidelines in this new area, and we don't even have a unified definition of

the key item “component” in component-based software development [Brow98]. In

general, a component has three main features: 1) a component is a independent and

replaceable part of a system that fulfills a clear function; 2) a component works in the

context of a well-defined architecture; 3) it communicates with other components by the

interfaces.

 To ensure a component-based software system to run properly and effectively, the

system architecture is the most important. From both research community [Gris97] and

industry practice [IBM00], the system architecture of component -based software

systems should be a layered and modular architecture. A top application layer consists of

related application systems supporting a business. Below the application layer are

components reusable only for the specific business or application domain area, includes

components usable in more than a single application. A third layer of cross-business

middleware components includes common software and interfaces to other established

entities. The lowest layer of system software components includes interfaces to

hardware.

 Quality Assurance for Component-Based Software Development

 3

Figure 1.2 System Architecture of Component-Based Software Systems

2. Current Component Technologies

Some languages, such as Visual Basic, C++ and Java, and the supporting tools, make it

possible to share and distribute application pieces through approaches such as Visual

Basic Controls (VBX), ActiveX controls, class libraries, and JavaBeans. But each of

these approaches relies on some underlying services to provide the communication and

coordination necessary to piece together applications. The infrastructure of components

(sometimes called a component model) acts as the "plumbing" that allows

communication among components [Brow98]. Among the component infrastructure

technologies that have been developed, three have become somewhat standardized: the

OMG's CORBA, Sun's JavaBeans and Enterprise JavaBeans, and Microsoft's

Component Object Model (COM) and Distributed COM (DCOM) [Koza98].

2.1 Common Object Request Broker Architecture (CORBA)

 CORBA is an open standard for application interoperability that is defined and

Special business components

Common components

Basic

components

Application2
Application1 Application3

Application

Layer

 Quality Assurance for Component-Based Software Development

 4

supported by the Object Management Group (OMG), an organization of over 400

software vendor and object technology user companies [OMG00]. Simply stated,

CORBA allows applications to communicate with one another no matter where they are

located or who has designed them. CORBA 1.1 was introduced in 1991 by OMG and

defined the Interface Definition Language (IDL) and the Application Programming

Interfaces (API) that enable client/server object interaction within a specific

implementation of an Object Request Broker (ORB). CORBA 2.0 adopted in December

of 1994, defines true interoperability by specifying how ORBs from different vendors

can interoperate.

 The ORB is the middleware that establishes the client-server relationships between

objects. Using an ORB, a client can transparently invoke a method on a server object,

which can be on the same machine or across a network. The ORB intercepts the call and

is responsible for finding an object that can implement the request, pass it the parameters,

invoke its method, and return the results. The client does not have to be aware of where

the object is located, its programming language, its operating system, or any other system

aspects that are not part of an object's interface. In so doing, the ORB pr ovides

interoperability between applications on different machines in heterogeneous distributed

environments and seamlessly interconnects multiple object systems.

 In fielding typical client/server applications, developers use their own design or a

recognized standard to define the protocol to be used between the devices. Protocol

definition depends on the implementation language, network transport and a dozen other

factors. ORBs simplify this process. With an ORB, the protocol is defined through the

application interfaces via a single implementation language-independent specification,

the IDL. And ORBs provide flexibility. They let programmers choose the most

appropriate operating system, execution environment and even programming language

to use for each component of a system under construction. More importantly, they allow

the integration of existing components. In an ORB-based solution, developers simply

model the legacy component using the same IDL they use for creating new objects, then

write "wrapper" code that translates between the standardized bus and the legacy

interfaces.

 CORBA is widely used in Object -Oriented distributed systems including

component-based software systems because of the features that it offers a consistent

distributed programming and run -time environment over most commonly used

programming languages, operating systems and networks. Its Interface Definition

Language (IDL) is suitable for specifying the component interfaces without

 Quality Assurance for Component-Based Software Development

 5

implementation details [Yau98].

2.2 Component Object Model (COM) and Distributed COM (DCOM)

 Introduced in 1993, Component Object Model (COM) provides platform-dependent -

based on Windows® and Windows NT, and language-independent component-based

applications [Micr00].

 COM defines how components and their clients interact. This interaction is defined

such that the client and the component can connect without the need of any intermediary

system component. Specially, COM provides a binary standard that components and

their clients must follow to ensure dynamic interoperability. This enables on-line

software update and cross-language software reuse [Wang97].

 As an extension of the Component Object Model (COM), Distributed COM (DCOM),

introduced in 1996, is a protocol that enables software components to communicate

directly over a network in a reliable, secure, and efficient manner. Previously called

"Network OLE," DCOM is designed for use across multiple network transports,

including Internet protocols such as HTTP.

 When client and component reside on different machines, DCOM simply replaces the

local interprocess communication with a network protocol. Neither the client nor the

component is aware that the wire that connects them has just become a little longer.

2.3 Sun Microsystems’s JavaBeans and Enterprise JavaBeans

 Sun’s Java-based component model consists of two parts: the JavaBeans for

client-side component development and the Enterprise JavaBeans (EJB) for the

server-side component development. The JavaBeans component architecture is designed

to enable enterprises to build scalable, secure, multiplatform, business -critical

applications as reusable, client-side and server-side components [SUN00].

 Java platform offers an elegant and efficient solution to the portability and security

problems through the use of portable Java bytecodes and the concept of trusted and

untrusted Java applets. Java provides a universal integration and enabling technology for

enterprise application development. This includes:

 Quality Assurance for Component-Based Software Development

 6

1) interoperating across multivendor servers;

2) propagating transaction and security contexts;

3) servicing multilingual clients; and

4) supporting ActiveX via DCOM/CORBA bridges.

 JavaBeans and EJB extend all native strengths of Java including portability and

security into the area of component-based development. The portability, security, and

reliability of Java are well suited for developing server objects that are robust, and

independent of operating system, Web servers and database management servers.

2.4 Comparison between existing component technologies

2.4.1 EJB versus DCOM and CORBA

 EJB has several advantages for enterprise application development, as it provides

[Pour99a]:

1) efficient data access across heterogeneous server;

2) faster Java client connections, transaction state management, caching and

queuing;

3) connection multiplexing, and

4) transaction load balancing across servers.

Developing Web-based applications with EJB is significantly easier than with

CORBA and DCOM for the following reasons:

1) EJB is portable across Java virtual machines (VMs) and EJB servers. And the EJB

transaction server concept allows scalability, reliability, and atomic transactions

of enterprise applications on various platforms.

2) Application development with EJB does not involve low -level system

programming such as thread-aware programming. Scalability requirements are

automatically addressed by the EJB server implementation.

3) Application development with EJB does not involve creating and using Interface

Definition Language (IDL) files, as EJB de fines the interfaces between a

server-side component and its container. As a result, modification and

maintenance of applications using JavaBeans and EJB are easier than those using

CORBA or COM/DCOM.

4) Application development with EJB does not deal with transactional and security

semantics in the bean implementation and security rules for an EJB can be defined

 Quality Assurance for Component-Based Software Development

 7

at the time of assembly and deployment. Furthermore, the transaction semantics

are defined declaratively through a bean’s deployment descriptor rather than

programmatically. The EJB server automatically manages the start, commit, and

rollback of transactions on behalf on the EJB according to a transaction attribute

specified in the EJB deployment descriptor.

2.4.2 DCOM versus CORBA

 Comparison of difference between Microsoft's and OMG's technologies is listed in

table 2.1 [Brow98].

3. Case study

People have used current component technologies to their component software

development, such as object-oriented distributed component software development

[Yau98] and Web-based enterprise application development [Pour99a]. And there are

some commercial players involve in the software component revolution, such as BEA,

Microsoft, IBM and Sun [Koza98].

 In order to solve the high cost and low efficiency problems when software developers

want to modernize their current applications or maintain the complex specific software

system, IBM SanFrancisco project provides application developers with a distributed

object infrastructure and a set of application components which can be expanded and

enhanced by application developer to provide competitive differentiation [IBM00]. The

business process components, written in the Java language, are intended to lower the

barriers to widespread commercial implementation of distributed object solutions.

 OMG Microsoft
Component
interface

CORBA IDL for defining
component interfaces

Microsoft IDL for defining
component interfaces

Underlying mode The basic CORBA
client-component model

The basic COM client/component
model

Connection
protocol

IIOP, the interoperability
standard that allows different
CORBA vendors to work
together

DCOM for distributing
components across a network

 Quality Assurance for Component-Based Software Development

 8

Lifecycle

Life Cycle Service, to define
how component instances are
instantiated

Microsoft Transaction
Service(MTS) to provide a secure
runtime environment, transaction
management, and scalability

Service provided

1.Naming Service, to define
how component instances are
shared
2.Security Service, to define
how clients and component
instances work together
securely

 3.Transaction Service, to define
how distributed transactions are
controlled

1.DTC for distributed transaction
coordination

 2.Microsoft Message Queue for
asynchronous messaging.

Platform
dependency

Platform independent Platform dependent

Implementation

Creates no reference
implementations and depends
on vendors for actual delivery

Creates implementations

Table 2.1 Comparison of technologies from Microsoft and OMG

 SanFrancisco components are pre-tested to enable developers to build and modify

business applications quickly. Cross-platform applications can be built once and run on a

wide range of servers, including Windows NT, OS/400, AIX, Solaris, HP-UX and

Reliant UNIX.

 SanFrancisco includes an application Foundation layer, plus hundreds of Common

Business Objects (such as company, address, currency, business partner, unit of measure,

cash balances, etc.). In addition, application-specific support is provided for common

business processes such as general ledger, order processing, inventory management,

product distribution and accounts payable/receivable.

 SanFrancisco is building three layers of reusable code for use by application

developers.

 Quality Assurance for Component-Based Software Development

 9

 Figure 2.1 System Infrastructure of IBM SanFrancisco

• The lowest layer, called the Foundation, provides the infrastructure and services

that are required to build industrial -strength applications in a distributed,

managed-object, multi-platform applications.

• The second layer, called the Common Business Objects, provides definitions of

commonly used business objects that can be used as the foundation for

interoperability between applications.

• The highest layer, called the Core Business Processes, provides business objects

and default business logic for selected vertical domains. Initially, IBM

SanFrancisco is delivering business components in the domains of accounts

receivable, accounts payable, general ledger, order management (sales and

purchase), and warehouse management. Over time, these components will be

extended and enhanced with additional business processes, objects, and access to

more framework interfaces, providing greater application flexibility.

 Together, the Common Business Objects, the Foundation, and associated utilities form

the Base. The Base layers isolate an application from the complexities of multi-platform

network technology and free the application provider to focus on unique elements that

drive value to their customers.

 So far, SanFrancisco is the largest server-side Java initiative in the industry and is a

key element in IBM's Application Framework for e-business.

4. Software Quality Assurance

 Quality Assurance for Component-Based Software Development

 10

4.1 Traditional QA

Traditionally quality is defined as conformance to specification or requirements, and

failures arise when the software is not met the requirements. The International Standard

Quality Vocabulary (ISO 8402) defines quality as: “The totality of features and

characteristics of a product or service that bear on its ability to meet stated or implied

needs.” According to ISO9126, the definition of quality characteristics includes:

functionality, reliability, usability, efficiency, maintainability and portability.

According to Sanders and Curran [Sand94], Software Quality Assurance is a planned

and systematic pattern of actions to provide adequate confidence that the item or product

conforms to established technical requirements. In a more specific project context, it is

about ensuring that project standards and procedures are adequate to provide the required

degree of quality, and that they are adhered to throughout the project..

Quality Assurance focused on both the product and the process. The product-oriented

part of SQA (often called Software Quality Control) should strive to ensure that the

software delivered has a minimum number of faults and satisfies the users' needs. The

process-oriented part (often called Software Quality Engineering) should institute and

implement procedures, techniques and tools that promote the fault-free and efficient

development of software products.

Quality assurance activities include:

1) Management

Analysis of the managerial structure that influences and controls the quality of the

software is an SQA activity. It is essential for an appropriate structure to be in place

and for individuals within the structure to have clearly defined tasks and

responsibilities.

2) Documentation

It is essential to analyze the documentation plan for the project, to identify

deviations from standards relating to such plans, and to discuss these with project

management.

3) Standards and Practices

It is essential to monitor adherence to all standards and practices throughout the

project.

♦ Documentation standards.

 Quality Assurance for Component-Based Software Development

 11

♦ Design standards.

♦ Coding standards.

♦ Code commenting standards.

♦ Testing standards and practices.

♦ Software quality assurance metrics.

♦ Compliance monitoring.

4) Reviews and Audits

It is essential to examine project review and audit arrangements, to ensure that they

are adequate and to verify that they are appropriate for the type of project.

5) Testing

Unit, integration, system and acceptance testing of executable software are an

integral part of the development of quality software.

6) Problem Reporting and Corrective Action

It is essential to review and monitor project error-handling procedures to ensure

that problems are reported and tracked from identification right through to

resolution, and that problem caused are eliminated where possible. It is also

important to monitor the execution of these procedures and examine trends in

problem occurrence.

7) Tools, Techniques and Methods

Tools, techniques and methods for software production should be defined at the

project level.

8) Code and Media Control

It is essential to check that the procedures, methods and facilities used to maintain,

store, secure and document controlled versions of software are adequate and are

used properly.

Software Quality Assurance aims at cost-effective, flexibility, rich functionality,

certain reliability and safety of software systems. To achieve software quality, the life

cycle of software design is promoted, it mainly includes [Smit95]:

♦ requirements specification;

♦ system and module design;

♦ coding and implementation;

♦ test.

 Quality Assurance for Component-Based Software Development

 12

 Also, there are formal methods in software requirements specification, formal methods

permit each stage of design to be checked against the previous stage(s) from consistency

and correctness. Three main types of Formal Method are: 1) data-oriented Formal

Method, including model-based notation (VDM, Z) and algebraic notation (OBJ); 2)

process-oriented Formal Method, including communications sequential processes (CSP)

and calculus of concurrent systems (CCS); 3) state-oriented formal methods, such as

Petri-net.

 Moreover, different metrics can be applied to project control, predicting coding and

test times, productivity and machine usage; and quality assurance related to reliability

and safety. There are two main t ypes of metrics: process-related metrics and

product-related metrics [Jaco92]. Process-related metrics measure things like cost, effort,

schedule time and number of faults found during testing. While product-related metrics

predict coding and test times, productivity and machine usage. Some traditional metrics

are as follows: 1) lines of code; 2) percentage comment; 3) module complexity; 4)

subjective complexity; 5) control path cross; 6) design complexity; 7) design to code

expansion rate; 8) fan-in, fan-out; 9) fault detection rate; 10) number of changes by type;

11) staff quality and etc. [smit95].

 Testing is the last procedure to detect the existing faults in software. There are some

test tools, such as test drivers, test beds, emulators, and some packages like ADATEST,

Cantana, FX, Mans, Orion ICE designed by different companies to test software

developed by different languages.

Standards and guidelines are used to control the quality activities. The two most

famous and widely-used software quality standards are ISO 9000-3 and CMM model.

ISO 9000 is an international series of standards, developed by the International

Organization for Standardization, that specifies a basic set of requirements for a quality

system to provide consistent, acceptable quality products [Schm94]. Its emphasis is on

the development process and the management responsibilities associated with the

process. It focuses on establishing, documenting, and following a well-controlled,

reviewed, and improved. ISO9000-3 provides guidance on how to apply ISO 9000

standards to software development. The guidance is excellent and has adopted widely by

software community when designing quality software systems.

The Capability Maturity Model (CMM), developed by the Software engineering

Institute (SEI) , is a framework that describes the elements of an effective software

 Quality Assurance for Component-Based Software Development

 13

process and an evolutionary path that increases an organization's software process

maturity [Sand94]. A fundamental principle underlying the CMM is that the quality of a

software product can be improved by improving the process which produces it. The

CMM characterizes five levels of increasing process maturity, they are the Initial,

Repeatable, Defined, Managed and Optimizing maturity levels, by the extent to which

the organization's processes comply with specified key practices. The CMM is

something like a type of metric, in that it involves scoring criteria which enable a project

or organization to assess its maturity level in terms of software engineering practice.

 Besides ISO9003 and CMM, there are many localized and customized guidelines or

models of software quality assurance in different countries or areas. Particularly in Hong

Kong, Hong Kong Productivity Council has developed Hong Kong Software Quality

Assurance Model, a framework of standard practices that a software organization in

Hong Kong should have to produce quality software [HKPC00]. The HK Software

Quality Assurance Model provides the standard for local software organizations

(independent or internal; large or small) to: �
Meet basic software quality requirements; �
Improve on software quality practices; �
Use as a bridge to achieve other international standards; �
Assess and certify them to a specific level of software quality conformance.

 The seven practices that form the basis of the HK Software Quality Assurance Model

are: 1) Software Project Management; 2) Software Testing; 3) Software Outsourcing; 4)

Software Quality Assurance; 5) User Requirements Management; 6) Post

Implementation Support; and 7) Change Control.

4.2 QA for Object-Oriented software systems

4.2.1 Differences between Object-Oriented software and tradit ional systems

Object-Oriented technology is a technique for system modeling [Jaco92]. Different

from traditional procedure-based approach, OO views the system as a number of objects

that interact. Interest in the object-oriented method has grown rapidly over the last few

years. This is mainly due to the fact that it has shown many good qualities. Amongst the

most prominent qualities of a system designed with an object-oriented method are the

followings: �
Understanding of the system is easier as the semantic gap between the system and

reality is small;

 Quality Assurance for Component-Based Software Development

 14

�
Modifications to the model tend to be local as they often result from an individual

item, which is represented by a single object.

It is widely accepted that the OO paradigm significantly increases software reusability,

extendibility, interoperability, and reliability. The key concepts in OO paradigm are:

Object

A object encapsulates the data and operations on the data. A object communicates with

other objects by sending messages between them.

Class

A class is sometimes called the object's type, a class represents a template for several

objects and describes how these objects are structured internally. Objects of the same

class have the same definition both for their operations and for their information

structure.

Polymorphism

Polymorphism means that the sender of a stimulus does not need to know the receiving

instance's class. The receiving instance can belong to an arbitrary class.

Inheritance

If class B inherits class A, then both the operations and the information structure

described in class A will become part of class B.

Object-Oriented design is the process of identifying objects and their attributes,

identifying operations suffered by and required of each object, and establishing

interfaces between object [Booc86]. The design of objects involves three steps:

1) definition of objects;

2) attributes of objects;

3) communication between objects.

The fundamental concepts of OO design are shown in Figure 4.1.

Object-Oriented

Design

Method

Design
Object

Design

Object

Definition

Attributes of

Objects

Communication

Among Objects

 Quality Assurance for Component-Based Software Development

 15

Figure 4.1 Elements of Object Oriented Design

4.2.2 A Quality -focussed Object-Oriented Process --- OPEN

OPEN is a third-generation, full lifecycle process framework that is ideally suited for

both object -oriented and component -based development. OPEN standards for

Object-Oriented Process, Environment and Notation. It is fully described in a series of

books including [Grah97] and [Hend98].

Firstly, it is important to note that OPEN is a full lifecycle methodological approach.

Software can be considered to have a lifecycle from birth to death. The need for software

can arise when business problems need solution. Business decision making,

requirements engineering and systems analysis are all "early lifecycle" activities.

Similarly, a methodology should cover the late lifecycle activities. Whilst most are good

at program design and coding, they tend to tail off in their coverage of issues such as

deployment and user training and future enhancements/maintenance. Here, product

metrics are better developed.

Secondly, OPEN is a process-focussed methodological approach for software and

component development. From a methodological viewpoint, process is the key to good

software development practices. And OPEN is a framework defined by a process

metamodel. It means that OPEN is not rigidly specified, and the framework constraints

metalevel connections between Stages, Activities, Tasks, Deliverables, Producers and so

on. The actual Activities, Tasks etc. to be used are chosen by the user. In this way, the

user can tailor the OPEN process framework to fit exactly the requirements of their

project and organization.

OPEN is also well-suited for component-based development. It provides support for

components designing on the web.

4.2.3 Metrics for Object -Oriented Software Systems

The characteristics of software quality are not exhaustive and not even independent of

 Quality Assurance for Component-Based Software Development

 16

each other. Additionally, they often tend to conflict in a development. Therefore, when

starting a development, it is often a good idea to decide which characteristics are the most

important for this specific product and then focus on these throughout the development.

In Object-Oriented the focus is on mainatainability characteristics, as well as suitability

[Jaco92].

A necessary method for controlling a development is to use metrics. The metrics can

measure either the process of development or various aspects of the product. Because of

the characteristics of OO development, the "internal" attributes in the products includes:

modularity, low coupling, high cohesion, encapsulation and other, while the "external"

attributes expected by software users, are reliability, maintainability, and reusability

[Raja92a].

 Some Process-related metrics for OO development are as followings [Jaco92]: �
 Total development time; �
development time in each process and subprocess; �
time spent modifying models from previous processes; �
time spent in all kinds of subprocesses, usch as use case specification, object

specification, use case design, block design, block testing and use case testing for

each particular object; �
number of different kinds of fault found during reviews; �
number of change proposals for previous models; �
cost for quality assurance; �
cost for introducing new development process and tools;

 Traditional metrics on products (including code) may to some extent also be used in

object-oriented software. However the most common metric, lines of code, is actually

less interesting for object-oriented software. Here are some examples of metrics that are

more appropriate for object-oriented software [Jaco92]: �
Total number of classes; �
Number of classes reused and the number newly developed; �
Total number of operations; �
Number of operations reused and the number newly developed; �
Total number of stimuli sent; �
Number, width and height of the inheritance hierarchies; �
Number of classes inheriting(or using) a specific operation; �
Number of classes that a specific class is dependent on; �
Number of classes that are dependent on a specific class;

 Quality Assurance for Component-Based Software Development

 17

�
Number of direct users of a class or operation (the highest scored are candidates

for components). �
Average number of operations in a class; �
Length of operations (in statements); �
Stimuli sent from each operation; �
Average number of descendants for a class; �
Average number of inherited operations

 Besides all these general process-related and product-related metrics, many metrics

have been proposed to measure OO software complexity and assure software quality.

[Shih97] introduces a factor and a method to realize and measure the object-oriented

software complexity of a class hierarchy. Because inheritance and polymorphism are key

concepts in object-oriented programming, and are essential for achieving reusability and

extendibility, in [Raja92a] [Raja92b], the authors define four measures of coupling:

1) Class inheritance-related Coupling(CIC)

2) Class Non-Inheritance-related Coupling (CNIC)

3) Class Coupling (CC)

4) Average Method Coupling (AMC)

 Metamata is a company who provides some metrics and audits, Table 4.1 are some

example metrics for Java, one of OO languages [meta00].

Based on two approaches to software quality assurance used---fault prevention and

fault detection, the authors of [Lo98] examines the factors that affect software testability

in object-oriented software and proposes a preliminary framework for the evaluation of

software testability metrics. They are listed in Table 4.2.

4.2.5 Testing for Object-Oriented Software Systems

 Software testing is an important software quality assurance activity to ensure that the

benefits of OO programming will be realized. OO software testing has to deal with new

problems introduced by the powerful new features of OO languages, such as

encapsulation, inheritance, polymorphism, and dynamic binding [Kung98]. The

dependencies occurring in conventional systems are:

1) Data dependencies between variables;

2) Calling dependencies between modules;

 Quality Assurance for Component-Based Software Development

 18

3) Functional dependencies between a module and the variables it computes;

4) Definitional dependencies between a variable and its type.

OO systems have additional dependencies:

1) Class to class dependencies;

2) Class to method dependencies;

3) Class to message dependencies;

4) Class to variable dependencies;

5) Method to variable dependencies;

6) Method to message dependencies; and

7) Method to method dependencies.

OO testing problems can be summarized to be: 1) the understanding problem; 2) the

complex interdependency problem; 3) the object state behavior testing problem; and 4)

the tool support problem. The understanding problem is introduced by the encapsulation

and information hiding features. The dependency problem was caused by the complex

relationships that exist in an OO program. Objects have states and state dependent

behaviors. That is, the effect of an operation on an object depends also on the state of the

object and may change the state of the object. Thus, the combined effect of the operations

must be tested.

Test strategy

A test strategy can be defined as the order to unit testing and integration testing of the

classes in an OO program. The test order problem for the classes in an OO program can

be stated as finding an order to test the classes so that the effort required is minimum. The

example methodology consists of the following steps:

Step 1. Initially, base classes having no parents are chosen and a test suite is designed

that tests each member function individually and also the interactions among member

functions.

Step 2. A testing history associates each test case with the attributes it tests. In addition

to inheriting attributes from its parents, a newly defined subclass "inherits" its parent's

testing history.

Step 3. The inherited testing history is incrementally updated to reflect differences

from the parent and the result is a testing history for the subclass.

 Quality Assurance for Component-Based Software Development

 19

Step 4. With this technique, new attributes can be easily identified in the subclass that

must be tested along with inherited attributes that must be retested.

 Quality Assurance for Component-Based Software Development

 20

Metric Measures Description
Cyclomatic Complexity Complexity The amount of decision

logic in the code
Lines of Code Understandablility,

maintainability
The length of the code;
related metrics measure
lines of comments,
effective lines of code, etc.

Weighted Methods per
Class

Complexity,
understand-ability,
reusability

The number of methods in
a class

Response for a Class Design, usability,
testability

The number of methods
that can be invoked from a
class through messages

Depth of Inheritance Tree Reusability, testability The depth of a class within
the inheritance hierarchy

Coupling Between Objects Design, reusability,
maintainability

The number of other
classes to which a class is
coupled

Number of Attributes Complexity,
maintainability

The amount of state a class
maintains as represented by
the number of fields
declared in the class

Table 4.1 Metamata Metrics for Java

Types of Factors Testability Factors
Intra-method Execution Rate Propagation Rate
Inter-method Cohesion
Intra-class No of methods Depth in

inheritance tree
No of children

Inter-class No of coupling
Program No of disjoint inheritance trees

Table 4.2 testability factors according to different types

Step 5. The inherited attributes are retested in the context of the subclass by identifying

and testing their interactions with newly defined attributes in the subclass.

Step 6. The test cases in the parent class's test suite that can be reused to validate the

subclass and attributes of the subclass which require new test cases can also be identified

in the process.

 Quality Assurance for Component-Based Software Development

 21

Unit Test and Integration Testing

 In OO development, new test generation methods, test models, test coverage criteria

for classes are needed in unit tests. Several methods are proposed using flow graph-based

or data bindings of class.

When software components (or parts) are separately tested, they are integrated

together to check if they can work together properly to accomplish the specified

functions. The major testing focus here is their interfaces, integrated functions, and

integrated behaviors. A number of software integration testing approaches have been

used to perform software integration testing, such as top-down, bottom-up, sandwich,

and "big b ang". There are many differences between object-oriented programs and

traditional programs.

The first is the structural differences between an object-oriented program and a

traditional program. A conventional program consists of three levels of components: 1)

functions (or procedures); 2) modules; and 3) subsystems. However, an object-oriented

program consists of four levels of components: 1) function members defined in a class; 2)

classes; 3)groups of classes; and 4) subsystems.

The other major difference between an object-oriented program and a conventional

program is their behaviors. In a dynamic view, a conventional program is made a number

of active processes. Each of them has its control flow. They interact with one and another

through data communications. An object-oriented program consists of a collection of

active objects that communicate with one and another to complete the specified functions.

In a multiple-thread program, there are a number of object message flows executing at

the same time.

A method for integration testing suggests five distinct levels of object-oriented testing,

including a method, message quiescence, event quiescence, thread testing, and thread

interaction testing. The basic idea is to model the behaviors of an object -oriented

program using an object network.

Object State Testing

 Object State Testing is an important aspect of object oriented software testing. It is

different from the conventional control flow testing and data flow testing methods. In

control flow testin g, the focus is testing the program according to the control

 Quality Assurance for Component-Based Software Development

 22

structures(i.e., sequencing, branching, and iteration). In data flow testing, the focus is

testing the correctness of individual data define-and-use. Object state testing focuses on

testing the state dependent behaviors of objects.

Regression testing

 The main concern in regression testing is how to effectively and efficiently identify the

changes and their impact so that testing can be focused to the changed and affected

components. Another consideration in regression testing is reuse of existing test cases

and test suites.

Testing tools

Different tools are developed to assist testers in testing and regression testing.

Roong-Ko Doong and Phyllis G. Frankl [Kung98] reported their systematic approach to

unit testing of object-oriented programs and a set of test tools, called ASTOOT. The

major focus of this approach is how to automate the unit testing of abstract data types

(ADTs) in object-oriented programs in test data generation, test execution, and test

checking.

5. Quality Assurance for component-based software systems

5.1 The life cycle of component-based software systems

 Component-based software systems are developed by selecting various components

and assembling them together rather than programming from scratch, thus the life cycle

of component-based software systems is much different from that of the traditional

software systems. The life cycle of component-based software systems is as follows

[Pour98]:

♦ Requirements analysis;

♦ Software architecture selection, creation, analysis, and evaluation;

♦ Component evaluation, selection, and customization

♦ Integration

♦ Component-based software system testing

♦ Software maintenance

 Quality Assurance for Component-Based Software Development

 23

In the life cycle above, the two major activities are: 1) software architecture selection,

creation, analysis, and evaluation; 2) component evaluation, selection, and customization.

The architecture of software defines that system in terms of computational components

and interactions among components. The focus i s on composing or assembling

components that are likely to have been developed separately, even independently.

Component evaluation, selection and customization is a crucial activity in the life cycle

of component systems, it includes two main parts: 1) evaluation of each candidate

off-the-shelf component based on the functional and quality requirements that will be

used to assess that component; 2) customization of those candidate off-the-shelf

components that should be modified before being integrated in to the new

component-based software systems. And Integration is to make key decisions on how to

provide communication and coordination among various components of a software

system.

 Quality Assurance for component-based software systems should addresses the life

cycle and key activities to analysis the components and achieve high quality

component-based software systems. Quality Assurance technologies for

component-based software systems is currently premature because of the specific

characteristics of component systems from traditional systems.

 Although some QA technique such as reliability analysis model for distributed

software systems [Yaco99a] [Yaco99b], and component-based approach to Software

Engineering [Ning94] have been reached, there is still no clear and well -defined

standards or guidelines for component-based software systems. The identification of the

QA characteristics, along with the models, tools and metrics, are all under research.

5.2 Differences between components and objects

 Software components represent a new concept in how to build software applications,

but the foundations on which they are based have been around for quite some time as

objects. That is, component-base technology is based on OO technology, but there still

are some differences between component and objects.

 Objects are generally (though not always) defined at too low a level to be easily related

to a business process, and components are a higher-level, coarser-grained software entity.

A crucial difference between objects and components revolves around inheritance.

Objects support inheritance from parent objects, when an inherited attribute is changed in

 Quality Assurance for Component-Based Software Development

 24

the parent object, the change ripples through all the child objects that contain the

inherited attribute. While inheritance is a powerful feature, it can also cause serious

complications that result from the inherent dependencies it creates. In contrast to the

multiple inheritance model of objects, components are characterized by multiple

interfaces. Thus, components effectively eliminate the problem of dependencies related

to object inheritance, instead, component interfaces act as the "contract" between the

component and the application, the application has no view inside the component beyond

the exposed interface. This provides users with the flexibility to update components

while maintaining only the interface and behavior of the components [Herz00].

 A component has a life cycle as illustrated in Figure 5.1. Some metrics used to

identifying components include [Jaco92]: �
Size. This affects both reuse cost and quality. If it is too small, the benefits will not

exceed the cost of managing it. If it is too large, it is hard to have high quality. �
Complexity. This also affects reuse cost and quality. A too trivial component is not

profitable to reuse and with a too complex component it is hard to have high quality. �
Reuse frequency. The number of places where a component is used is of course

important too.

 reject

 affirmed for affirmed for

 new construction delivery

 new release of

 change proposal component library

 delete mark for deletion

Figure 5.1 The life cycle of a component

Proposal Under

Construction

Ready for

Distribution

To be deleted

(do not use)

Under use

 Quality Assurance for Component-Based Software Development

 25

5.3 Open problems about QA for component-based software

 Although some QA technique such as reliability analysis model for distributed

software systems [Yaco99a] [Yaco99b], and component-based approach to Software

Engineering [Ning94] have been reached, there is still no clear and well -defined

standards or guidelines for component-based software systems.

As many work has to be done to component-based software development, quality

assurance technologies for component-based software development has to address the

two inseparable parts: 1) How to certify quality of a component? 2) How to certify

quality of software systems based on components [Pour98]? To answer the questions,

models should be promoted to define the overall quality control of components and

systems; metrics should be found to measure the size, complexity and reliability of

components and systems; tools should be decided to test the existing components and

systems.

5.4 Quality Characteristics of Components

 To evaluate a component, we m ust determine how to certify the quality of

components. The quality characteristics of components are the foundation to guarantee

the quality of components, and thus the foundation to guarantee the quality of whole

component-based software systems. Here are some recommended characteristics of

quality of components.

 �
Functionality

-- The degree to which the component implements all required capabilities.

-- Contains all references and required items.

-- The degree to which a component is free from faults in its specification, design, and

implementation;

-- The degree to which a component is free from faults in its specification, design, and

implementation;

 �
Interface

-- The completeness of the input/output of a component

 Quality Assurance for Component-Based Software Development

 26

-- The flexibility of the interface to add/decrease some parameters

 �
Userability

-- The number of users of a component.

-- The sum of the lengths of time when used.

 �
Testability

-- Equipped with test cases, test plans and test report.

-- The ability of exception handling.

 �
Modifiability (Maintainability)

--The ease with which a component can be modified to correct faults, improve

performance or other attributes, or adapt to a changed environment.

-- The ease with which software can be maintained, for example, enhanced, adapted, or

corrected to satisfy specified requirements.

-- Modifiable with minimal impact.

 �
Documentation

-- Contains all documents necessary.

 �
Fault Tolerance (Reliability)

-- The ability of a component tolerates wrong inputs.

5.5 A Draft Qual ity Assurance Model for Component-Based Software Systems

 Because of the different process of component-based software from traditional

software, the quality assurance model should address both the process of components

and the total systems. Figure 5.2 illustrates this view.

Quality

Assurance

Model

Component
System

 Quality Assurance for Component-Based Software Development

 27

Figure 5.2 Quality Assurance Model for both components and systems

 The main practices related to components and systems should contain:

1) Component requirement analysis

the process of discovering, understanding, documenting, validating and managing

the requirements for a component.

2) Component development

the process of transferring the requirements to a well-functional component with

multiple interfaces.

3) Component certification

 the process that involves:

- component outsourcing: managing a component outsourcing contract and

auditing the contractor performance;

- component selecting: selecting the right components in accordance to the

requirement;

- component testing: confirm the component satisfies the requirement with

acceptable quality and reliability;

4) Component customization

the process that involves:

- modifying the component for the specific requirement;

- doing necessary changes to run the component on specific flatform;

- upgrading the specific component to get a better performance or a higher quality;

5) System architecture design

the process of evaluating, selecting and creating software architecture of a

component-based system.

6) System integration

the process of assembling components selected into a whole system.

7) System testing

 the process of evaluating a system to:

- confirm that the system satisfies specified requirements;

 Quality Assurance for Component-Based Software Development

 28

- identify and correct defects in the system before implementation.

8) System maintenance

 the process of providing operations and maintenance activities needed to use the

software effectively after it has been delivered.

 Practice overview is listed below. For consistency, each practice is described under the

heading of Definition, Objectives, Governing Policy and Process Overview Diagram.

5.5.1 Component Requirement Analysis

5.5.1.1 Definition

 Component requirement analysis is the process of discovering, understanding,

documenting, validating and managing the requirements for a component.

5.5.1.2 Objectives

 The objectives of component requirement analysis are to produce complete, consistent

and relevant requirements that a component should realize.

5.5.1.3 Governing Policy

 Component requirement analysis should contain complete and clear requirements that

a component should realize, as well as the programming language, the platform and the

interfaces related to the component.

5.5.1.4 Process Overview Diagram

 See Figure 5.3.

Initiators (Users, Customers,

Manager etc.)

Request for new development

 or change

 Quality Assurance for Component-Based Software Development

 29

Figure 5.3 Component Requirement Analysis Process overview

5.5.2 Component Development

5.5.2.1 Definition

Component development is the process of implementing the requirements to a

well-functional, high-quality component with multiple interfaces.

5.5.2.2 Objectives

 The objectives of component development are the final component product, the

interfaces and development documents.

5.5.2.3 Governing Policy

Requirements

Gathering and

Requirement

Analysis

Component

Modeling

Requirement

Validation

Component

Development

Component

Maintenance

Draft User Requirement

Format &

Structure

Component Requirement

 Document

Updated CRD with

Current URD
 User Requirement

 Changes

Data

Dictionary

 Structure for

naming &

Current

Requirement

Document

Template

 Quality Assurance for Component-Based Software Development

 30

 Component development should lead to the final component satisfying the

requirements with correct and expected result, well-defined and flexible interfaces.

5.5.2.4 Process Overview Diagram

 Developers

Implementation

Self-Testing

(Function)

Self-Testing

(Reliability)

Development

Document

Component

Certification

Component

Maintenance

Techniques required

Draft Component

Requirements

Well-Functional Component

Reliable Component

Submit
 For Reference

Existing

Component

Requirement

Document

 Quality Assurance for Component-Based Software Development

 31

Figure 5.4 Component Development Process overview

5.5.3 Component Certification

5.5.3.1 Definition

 Component certification is the process that involves:

- component outsourcing: managing a component outsourcing contract and

auditing the contractor performance;

- component selecting: selecting the right components in accordance to the

requirement for both function and reliability;

- component testing: confirm the component satisfies the requirement with

acceptable quality and reliability;

5.5.3.2 Objectives

 The objectives of component certification are to outsourcing, selecting and testing the

candidate components to check whether they satisfy the system requirement and achieve

the high quality and reliability.

5.5.3.3 Governing Policy

1. Component outsourcing should be charged by a Software Contract Manager;

2. All candidate components should be tested to be free from all known defects;

3. Testing should be in the target or simulated environment.

5.5.3.4 Process Overview Diagram

 System Requirements

Component

Outsourcing

Component

Testing

Component

Selecting

Acceptance
Component

Specific Component

 Component Released

Component

Well-Functional Component

 Component fit for the special
Contract Signoffs,

Reject

Component

Development

Document

 Quality Assurance for Component-Based Software Development

 32

Figure 5.5 Component Certification Process overview

5.5.4 Component Customization

5.5.4.1 Definition

 Component customization is the process that involves:

- modifying the component for the specific requirement;

- doing necessary changes to run the component on special flatform;

- upgrading the specific component to get a better performance or a higher quality;

5.5.4.2 Objectives

 The objectives of component customization are to making necessary changes to a

developed component so that it can be used in specific environment or cooperate with

other components well.

5.5.4.3 Governing Policy

 All components must be customized according to the system requirements on

environment or the requirements of other components with which the components should

work.

5.5.4.4 Process Overview Diagram

 System Requirements & Other

Component Requirements

Component

Customization

Component

Document

Component

Testing

Acceptance
Component

Specific System & Other

 Component Changed

Component

New Component Document

 Component fit for the special

Component

Reject

Component

Development

Document

System

 Quality Assurance for Component-Based Software Development

 33

Figure 5.6 Component Customization Process overview

5.5.5 System Architecture Design

5.5.5.1 Definition

 System architecture design is the process of evaluating, selecting and creating

software architecture of a component-based system.

5.5.5.2 Objectives

 The objectives of system architecture design are to collecting the users requirement,

identifying the system specification, selecting appropriate system architecture, and

determining the implementation details such as platform, programming language and

etc.

 5.5.5.3 Governing Policy

 System architecture design should address the advantage for the selecting architecture

from other architectures.

5.5.5.4 Process Overview Diagram

 Initiators

System Requirement

Gathering

System Requirement

Analysis

System Architecture

Design

System

Specification

System

Integration

Requests for New Systems

 Draft System Requirements

Format &

System Requirement Document

System Architecure

System Specification

Current

Document

Requirement

Document

Template

System

Testing
System

 Quality Assurance for Component-Based Software Development

 34

Figure 5.7 System Architecture Design Process overview

5.5.6 System Integration

5.5.6.1 Definition

 System integration is the process of assembling components selected into a whole

system under the designed system architecture.

5.5.6.2 Objectives

 The objective of system integration is the final system composed by the components

selected.

5.5.6.3 Governing Policy

 System integration should

5.5.6.4 Process Overview Diagram

 System

Requirement

System

Integration

Self-Testing

Component

Changing

Final

System

System

Maintenance

Requirements for New

 Draft System

Architecture

Fault Component

Selecting New Component

System Integration

Document

Current

Component

System

Architecture

System

Testing Final System

Component

Certification

Component

 Quality Assurance for Component-Based Software Development

 35

Figure 5.8 System Integration Process overview

5.5.7 System Testing

5.5.7.1 Definition

 System testing is the process of evaluating a system to:

- confirm that the system satisfies specified requirements;

- identify and correct defects in the system before implementation.

5.5.7.2 Objectives

 The objective of system testing is the final system integrated by components selected

in accordance to the system requirements.

5.5.7.3 Governing Policy

 System testing should contain function testing and reliability testing.

5.5.7.4 Process Overview Diagram

 System Design

Document

Testing

Strategy

System

Testing

User Acceptance

Testing

Test Completion

Activities

System

Maintenance

 Testing Requirements

 System Testing Plan

Test

System Tested

User Accepted System

System Integration

Software Life

Cycle

Component

Development

Component

System

Integration

Component

Document

System Test

Spec.

User Acceptance

Test Spec.

 Quality Assurance for Component-Based Software Development

 36

Figure 5.9 System Testing Process overview

5.5.8 System Maintenance

5.5.8.1 Definition

 System maintenance is the process of providing service and maintenance activities

needed to use the software effectively after it has been delivered.

5.5.8.2 Objectives

 The objectives of system maintenance are to provide an effective product or service to

the end-users while correcting faults, improve performance or other attributes or adapt to

a changed environment to keep the software usable and useful after it has been delivered.

5.5.8.3 Governing Policy

 There shall be a maintenance organization for every software product in operational

use. All changes about the system delivered should be reflected in the related documents.

5.5.8.4 Process Overview Diagram

Users

Support

Strategy

Problem

Management

System

Maintenance

 Request and Problem Reports

User Support Agreement

Software Support

Change Requests

System

Architecture

Design

Software

Testing

New Version

 Quality Assurance for Component-Based Software Development

 37

Figure 5.10 System Maintenance Process overview

6. Conclusion and Future Work

 Component-Base Software Development is a new promising software development

approach, which has potential to reduce significantly develop ment cost and

time-to-market, and improve maintainability, reliability and overall quality of

application. Because this approach is developing systems by selecting off-the-shelf

components and assembling them with an appropriate software architecture, it is much

different with the traditional ones. Quality Assurance is very important for

component-based software systems, especially when the components come from

different developers.

In this paper, a survey is done on current component-based software technologies and

the features they have. The survey is also about Quality Assurance for both traditional

approach and object-oriented technology. At last, I propose some features and a simple

draft of Quality Assurance Model for component-based software development.

 My future work is to complement the draft Quality Assurance model so that it can

actually guide the practices of component-based software development; and to find out

whether there are some testing tools and metrics available to test software components

under certain component technology.

 Quality Assurance for Component-Based Software Development

 38

7. References

[Adle95] R.M.Adler, “Emerging Standards for Component Software,”Computer,

Volume: 28 3, March 1995 , pp. 68 –77.

[Brow98] A.W.Brown, K.C. Wallnau, “The Current State of CBSE,” IEEE Software,
Volume: 15 5, Sept.-Oct. 1998, pp. 37 – 46.

[Grah97] I.Graham, B.Henderson-Sellers, H.Younessi, "The OPEN Process

Specification," Addison-Wesley, 1997.

[Gris97] M. L. Griss, “Software Reuse Architecture, Process, and Organization for

Business Success,” Proceedings of the Eighth Israeli Conference on
Computer Systems and Software Engineering, 1997, pp. 86-98.

[Hend98] B.Henderson-Sellers, A.J.H.Simons, H.Youness, "The OPEN Toolbox of

Techniques," Addison-Wesley, 1998.

 [Hend99] B.Henderson-Sellers, "OO software process improvement with metrics,"
Proceedings of Sixth International Software Metrics Symposium, 1999,
pp. 2 -8.

 [Herz00] P.Herzum, O.Slims, "Business Component Factory - A Comprehensive

Overview of Component-Based Development for the Enterprise," OMG
Press, 2000.

[HKPC00] Hong Kong Productivity Council, http://www.hkpc.org/itd/servic11.htm,

April, 2000

[IBM00] IBM: http://www-4.ibm.com/software/ad/sanfrancisco, Mar. 2000

 [Jaco92] I.Jacobson, M. Christerson, P.Jonsson, G. Overgaard, "Object-Oriented
Software Engineering: A Use Case Driven Approach," Addison-Wesley
Publishing Company, 1992

[Koza98] W. Kozaczynski, G. Booch, “Component-Based Software Engineering,”

IEEE Software Volume: 15 5 , Sept.-Oct. 1998 , pp. 34 –36.

 [Kung98] D.C.Kung,, H.Pei, Y.Toyoshima, C.Chen, J.Gao, "Object-oriented
software testing-some research and development," Proceedings of Third
IEEE International High-Assurance Systems Engineering Symposium,
1998, pp. 158 -165.

[Lam97] W. Lam, A.J.Vickers, “Managing the Risks of Component-Based

Software Engineering,”
Proceedings Fifth International Symposium on Assessment of Software
Tools and Technologies, 1997, pp. 123 –132.

 Quality Assurance for Component-Based Software Development

 39

 [Lo98] B.W.N. Lo, Haifeng Shi, "A preliminary testability model for
object-oriented software," Proceedings of International Conference for
Software Engineering: Education & Practice, 1998, pp. 330 -337.

 [Meta00] Metamata: http://www.metamata.com/products/metrics_top.html,

Mar,2000.

[Micr00] Microsoft: http://www.microsoft.com/isapi, Mar, 2000

[Ning94] J.Q. Ning, K. Miriyala, W. Kozaczynski,, “An Architecture-Driven,
Business-Specific, and Component-Based Approach to Software
Engineering,” Proceedings Third International Conference on Software
Reuse: Advances in Software Reusability, 1994, pp. 84 -93

[Ning97] J. Q. Ning, “Component-Based Software Engineering (CBSE),”

Proceedings Fifth International Symposium on Assessment of Software
Tools and Technologies, 1997, pp. 143-148.

[OMG00] OMG: http://www.omg.org/corba/whatiscorba.html, Mar. 2000

[Pour98] G. Pour, “Component-Based Software Development Approach: New
Opportunities and Challenges,” Proceedings Technology of
Object-Oriented Languages, 1998. TOOLS 26., pp. 375-383.

[Pour99a] G. Pour, “Enterprise JavaBeans, JavaBeans & XML Expanding the

Possibilities for Web-Based Enterprise Application Development,”
Proceedings Technology of Object-Oriented Languages and Systems,
1999, TOOLS 31, pp.282-291.

[Pour99b] G.Pour, M. Griss, J. Favaro, “Making the Transition to Component-Based

Enterprise Software Development: Overcoming the Obstacles – Patterns
for Success,” Proceedings of Technology of Object-Oriented Languages
and systems, 1999, pp.419 – 419.

[Pour99c] G.Pour, “Software Component Technologies: JavaBeans and ActiveX,”

Proceedings of Technology of Object-Oriented Languages and systems,
1999, pp. 398 – 398.

 [Raja92a] C. Rajaraman, M.R. Lyu,"Reliability and Maintainability Related

Software Coupling Metrics in C++ Programs," Proceedings 3rd IEEE
International Symposium on Software Reliability Engineering (ISSRE'92),
1992, pp. 303-311.

 [Raja92b] C. Rajaraman, M.R. Lyu, "Some Coupling Measures for C++ Programs,"

Proceedings TOOLS USA 92 Conference, August 1992, pp. 225-234.

[Sand94] J.Sanders, E.Curran, "Software Quality: A Framework for Success in

Software Development and Support," Addison-Wesley Publishing
Company, 1994

 Quality Assurance for Component-Based Software Development

 40

[Schm94] C.H.Schmauch, "ISO9000 for Software Developers,", ASQC Quality
Press, 1994

 [Shih97] T.K. Shih, C.M.Chung, C.C.Wang, W.C Pai, "Decomposition of inheritance
hierarchy DAGs for object-oriented software metrics," Proceedings of
International Conference and Workshop on Engineering of
Computer-Based Systems, 1997, pp. 238 -245.

[Smit95] D.J.Smith, “Achieving Quality Software(Third Edition),” Chapman &

Hall, 1995

[SUN00] SUN : http://developer.java.sun.com/developer/technicalArticles/Bean,
Mar. 2000

[Tran97] V. Tran, D.B. Liu, B.Hummel, “Component-Based Systems

Development: Challenges and Lessons Learned, Software,” Proceedings,
Eighth IEEE International Workshop on Technology and Engineering
Practice [incorporating Computer Aided Software Engineering], 1997,
pp. 452 – 462.

[Wang97] Y.M.Wang, O.P.Damani, W.J. Lee, “Reliability and Availability Issues in

Distributed Component Ojbect Model (DCOM),” Fourth International
Workshop on Community Networking Proceedings, 1997, pp. 59 –63.

[Yaco99a] S.M. Yacoub, B. Cukic, H.H. Ammar, “A Component-Based Approach to

Reliability Analysis of Distributed Systems,” Proceedings of the 18th
IEEE Symposium on Reliable Distributed Systems, 1999, pp. 158 –167.

[Yaco99b] S.M.Yacoub, B. Cukic, H.H.Ammar, “A Scenario-Based Reliability

Analysis of Component-Based Software,” Proceedings 10th International
Symposium on Software Reliability Engineering, 1999, pp. 22 –31.

[Yau98] S.S.Yau, B. Xia, “Object-Oriented Distributed Component Software

Development based on CORBA,” Proceedings of COMPSAC’98. The
Twenty-Second Annual International, 1998. pp. 246-251.

