Quality Assurancéor ComponenBased Software Development

1. Introduction

Over the last several decades, as software systems become more and mscaleyrge
complex and uneasily controlled, software communitysifaced the challenge of high
development cost, low productivity, uncontrollable software quality and risk to move to
new technology. This has created a fast growing demand for rapid and cestective
development of large-scale, complex and highly maintai nable software systems
[Pour99c]. It also causes searching for a new, efficient, and coseffective software
development paradigm.

The most promising solution now is component -based software development
approach. This approach is based on the idea that dveloping software systems by
selecting building blocks of a new system fromthé&shelf components and assembling
the selected components with an appropriate software architecture rather than
implementing the system from scratc{Pour98]. These componés can be existing
subsystems by internal or external sources, or commercial off -the-shelf (COTS)
components developed by different-imouse developers using different languages and
different platforms.

Componenbased software development (CBSD) hasma@kto reduce significantly
development cost and timeto-market, and improve maintainability, reliability and
overall quality of applications [Pour99a] [Pour99b]. So it has raised a tremendous
amount of interests both in the research community and isdftesare industry.

/' Comporent 1

Component Software
. T |
repositon Component 2 system
Component n
select T assemie

Commercial Offthe-shelf
(COTS) componen

Quality Assurancéor ComponenBased Software Development

Figure 1.1 ComponentBased Software Development

The concept of using software components is not so new: as operating systems,
compilers, database systems, networking systems, and software tools are all indeed
software components, and they have wielfined functions and interfaces that can easily
tested and integrated with other software systems [Pour98]. What is new about
componenbased software development approach is its use of commerciti®fhelf
(COTS) oftware components as the building blocks of new systems. And this involves
new major activities such as evaluation, selection, customization, and integration of
off-the-shelf components; and evaluation, selection, and creation of software
architecture. As a result, the life cycle and software engineering model of
ComponenBased Software Development is much different with the traditional ones,
thats what the Componeii@ased Software Engineering (CBSE) is focused.

As yet, the software component techogies is far from matured, there is no existing
standards or guidelines in this new area, and we'tlemen have a unified definition of
the key item “component” in componentbased software development [Brow98]in
general, a component has three main feaes: 1) a component is a independent and
replaceable part of a system that fulfills a clear function; 2) a component works in the
context of a weHldefined architecture; 3) it communicates with other components by the
interfaces.

To ensure a componenbased software system to run properly and effectively, the
system architecture is the most important. From both research comm{@ritg97] and
industry practice [IBMO0O], the system architecture of component -based software
systems should be a layered amodular architecturé top application layer consists of
related application systems supporting a businesBelow the application layer are
components reusable only for the specific businesspmlicationdomain area, includes
components usable in morehtan a single application A third layer of cross-business
middleware components includes common software and interfaces to other established
entities The lowest layer of system software components includes interfaces to
hardware.

Quality Assurancéor ComponenBased Software Development

Anplicationz > Anplication1 { Anblication? Application

Sbnecial business comnone

Common comnoner

Basic

v

Figure 1.2 System Architecture of ComponenBased Software Systems

2. Current Component Technologies

Some languages, such as Visual Basic, C++ and Java, and the supporting tools, make it
possible to share and distribute application pieces through apptegsuch as Visual
Basic Controls (VBX), ActiveX controls, class libraries, and JavaBeanBut each of
these approaches relies on some underlying services to provide the communication and
coordination necessary to piece together applications. The infcisteiof components
(sometimes called a component model) acts as the "plumbing" that allows
communication among componen{Brow98]. Among the component infrastructure
technologies that have been developed, three have become somewhat standardized: the
OMG's CORBA, Sun's JavaBeans and Enterprise JavaBeans, and Microsoft's
Component Object Model (COM) and Distributed COM (DCOM) [Koza98].

2.1 Common Object Request Broker Architecturd CORBA)

CORBA is an open standard for application interoperability that is defined and

Quality Assurancéor ComponenBased Software Development

supported by the Object Management Group (OMG), an organization of over 400
software vendor and object technology user companies [OMGO00]. Simply stated,
CORBA allows applications to communicate with one another no matter where they are
located or who has designed them. CORBA 1.1 was introduced in 1991 by OMG and
defined the Interface Definition Language (IDL) and the Application Programming
Interfaces (API) that enable client/server object interaction within a specific
implementation of an Gject Request Broker (ORB). CORBA 2.0 adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors
can interoperate.

The ORB is the middleware that establishes the cliesserver relationships between
objects.Using an ORB, a client can transparently invoke a method on a server object,
which can be on the same machine or across a network. The ORB intercepts the call and
is responsible for finding an object that can implement the request, pass it the parameters,
invoke its method, and return the results. The client does not have to be aware of where
the object is located, its programming language, its operating system, or any other system
aspects that are not part of an object's interface. In so doing, the ORB pr ovides
interoperability between applications on different machines in heterogeneous distributed
environments and seamlessly interconnects multiple object systems.

In fielding typical client/server applications, developers use their own design or a
recognized standard to define the protocol to be used between the devices. Protocol
definition depends on the implementation language, network transport and a dozen other
factors. ORBs simplify this process. With an ORB, the protocol is defined through the
application interfaces via a single implementation languaigelependent specification,
the IDL. And ORBs provide flexibility. They let programmers choose the most
appropriate operating system, execution environment and even programming language
to use for ach component of a system under construction. More importantly, they allow
the integration of existing components. In an ORBased solution, developers simply
model the legacy component using the same IDL they use for creating new objects, then
write "wrapper" code that translates between the standardized bus and the legacy
interfaces.

CORBA is widely used in Object -Oriented distributed systems including
componenbased software systems because of the features thatffers a consistent
distributed programming and run -time environment over most commonly used
programming languages, operating systems and networks. Its Interface Definition
Language (IDL) is suitable for specifying the component interfaces without

Quality Assurancéor ComponenBased Software Development

implementation details [Yau98].

2.2 Comporent Object Model (COM) and Distributed COM (DCOM)

Introduced in 1993, Component Object Model (COM) provides platfdependent
based on Windows® and Windows NT, and languag@dependent componeiftased
applications [Micr00].

COM defines how compments and their clients interact. This interaction is defined
such that the client and the component can connect without the need of any intermediary
system componentSpecially, COM provides a binary standard that components and
their clients must follow to ensure dynamic interoperability. This enables online
software update and crekguage software reuse [Wang97].

As an extension of the Component Object Model (COM), Distributed COM (DCOM),
introduced in 1996, is a protocol that enables software coponents to communicate
directly over a network in a reliable, secure, and efficient manner. Previously called
"Network OLE," DCOM is designed for use across multiple network transports,
including Internet protocols such as HTTP.

When client and compomé reside on different machines, DCOM simply replaces the
local interprocess communication with a network protocol. Neither the client nor the
component is aware that the wire that connects them has just become a little longer.

2.3 Sun Microsystemss JavaBeansand Enterprise JavaBeans

Sun’s Javabased component model consistof two parts: the JavaBeans for
clientside component development and the Enterprise JavaBeans (EJB) for the
serverside component development. The JavaBeans component atokiisaesigned
to enable enterprises to build scalable, secure, multiplatform, business -critical
applications as reusable, cliesile and serveside components [SUNOQ].

Java platform offers an elegant and efficient solution to the portability and@gity
problems through the use of portable Java bytecodes and the concept of trusted and
untrusted Java applets. Java provides a universal integration and enabling technology for
enterprise application development. This includes:

Quality Assurancéor ComponenBased Software Development

1) interoperating across uttivendor servers;

2) propagating transaction and security contexts;
3) servicing multilingual clients; and

4) supporting ActiveX via DCOM/CORBA bridges.

JavaBeans and EJB extend all native strengths of Java including portability and
security into the area écomponentbased development. The portability, security, and
reliability of Java are well suited for developing server objects that are robust, and
independent of operating system, Web servers and database management servers.

2.4 Comparison between exting component technologies
2.4.1 EJB versus DCOM and CORBA

EJB has several advantages for enterprise application development, as it provides
[Pour99a]:
1) efficient data access across heterogeneous server;
2) faster Java client connections, transacton state management, caching and
gueuing;
3) connection multiplexing, and
4) transaction load balancing across servers.

Developing Webbased applications with EJB is significantly easier than with
CORBA and DCOM for the following reasons:

1) EJB is portable acrogava virtual machines (VMs) and EJB servers. And the EJB
transaction server concept allows scalability, reliability, and atomic transactions
of enterprise applications on various platforms.

2) Application development with EJB does not involve low -level system
programming such as threadware programming. Scalability requirements are
automatically addressed by the EJB server implementation.

3) Application development with EJB does not involve creating and using Interface
Definition Language (IDL) files, as EJB de fines the interfaces between a
serverside component and its container. As a result, modification and
maintenance of applications using JavaBeans and EJB are easier than those using
CORBA or COM/DCOM.

4) Application development with EJB does not deal withrigactional and security
semantics in the bean implementation and security rules for an EJB can be defined

Quality Assurancéor ComponenBased Software Development

at the time of assembly and deployment. Furthermore, the transaction semantics
are defined declaratively through a bean’s deployment descriptor rathéran
programmatically. The EJB server automatically manages the start, commit, and
rollback of transactions on behalf on the EJB according to a transaction attribute
specified in the EJB deployment descriptor.

2.4.2 DCOM versus CORBA

Comparison of dfference between Microso®% and OMG's technologies is listed in
table 2.1 [Brow98].

3. Case study

People have used current component technologies to their component software
development, such as objecioriented distributed component software developent
[Yau98] and Wekbased enterprise application development [Pour99a]. And there are
some commercial players involve in the software component revolution, such as BEA,
Microsoft, IBM and Sun [Koza98].

In order to solve the high cost and low efficarproblems when software developers
want to modernize their current applications or maintain the complex specific software
system, IBM SanFrancisc@rojectprovides application developers with a distributed
object infrastructure and a set of applicatiocomponents which can be expanded and
enhanced by application developer to provide competitive differentiation [IBM0O]. The
business process components, written in the Java language, are intended to lower the
barriers to widespread commercial implementatibdistributed object solutions.

OMG Microsoft
Component CORBA IDL for defining Microsoft IDL for defining
interface component interfaces component interfaces
Underlying mode The basic CORBA The basic COM client/component
clientcomponent model model
Connection [IOP, the interoperability DCOM for distributing
protocol standard that allows different | components across a network
CORBA vendors to work
together

Quality Assurancéor ComponenBased Software Development

Life Cycle Service, to define | Microsoft Transaction
Lifecycle how component instances are Service(MTS) to provide a secure
instantiated runtime environment, transaction
management, and scalability

1.Naming Service, to define | 1.DTC for distributed transaction
how component instances are coordination

shared 2.Microsoft Message Queue f
Service provided| 2.Security Serviceo define asynchronous messag.

how clients and component
instances work together
securely

3.Transaction Service, to defi
how distributed transactions gre

controlled
Platform Platform independent Platform dependent
dependency

Creates no reference Creates implementations

Implementation | implementations and depends
on vendors for actual delivery

Table 2.1 Comparison of technologies from Microsoft and OMG

SanFrancisco components are ptested to enable developers to build and modify
business applications quickly. Crgdatform applications can be built once and run on a
wide range of servers, including Windows NT, OS/400, AlX, Solaris, HP-UX and
Reliant UNX.

SanFrancisco includes an application Foundation layer, plus hundreds of Common
Business Objects (such as company, address, currency, business partner, unit of measure,
cash balances, etc.). In addition, applicatiegpecific support is provided forcommon
business processes such as general ledger, order processing, inventory management,
product distribution and accounts payable/receivable.

SanFrancisco is building three layers of reusable code for use by application
developers.

Quality Assurancéor ComponenBased Software Development

® User interface o
| ® Business rules p A
Commercial | ® |ngustry uniqueness p p
Applications | ® Cauntry unigueness : P
* Competitive defferentiators e i
- d4 &
) | | / 1 a
Business Core Business Process ‘ t
Frocess Warehouse Order . :
E‘,Dmpfnems HFI;"HF'| Management| Management GL :‘ ﬁ
g
T Commaon Business Objects
Base
l Foundation
Servers
Clients

Figure 2.1 Sysem Infrastructure of IBM SanFrancisco

» The lowest layer, called the Foundation, provides the infrastructure and services
that are required to build industrial -strength applications in a distributed,
manageebbject, multiplatform applications.

* The secod layer, called the Common Business Objects, provides definitions of
commonly used business objects that can be used as the foundation for
interoperability between applications.

* The highest layer, called the Core Business Processes, provides business obje
and default business logic for selected vertical domains. Initially, IBM
SanFrancisco is delivering business components in the domains of accounts
receivable, accounts payable, general ledger, order management (sales and
purchase), and warehouse managent. Over time, these components will be
extended and enhanced with additional business processes, objects, and access to
more framework interfaces, providing greater application flexibility.

Together, the Common Business Objects, the Foundatiomsandiated utilities form
the Base. The Base layers isolate an application from the complexities ofphatfiarm
network technology and free the application provider to focus on unique elements that
drive value to their customers.

So far, SanFrargco is the largest servside Java initiative in the industry and is a
key element in IBM's Application Framework foibesiness.

4. Software Quality Assurance

Quality Assurancéor ComponenBased Software Development

4.1Traditional QA

Traditionally quality is defined as conformance to specification equirements, and
failures arise when the software is not met the requirements. The International Standard
Quality Vocabulary (ISO 8402) defines quality as: “The totality of features and
characteristics of a product or service that bear on its ability to etestated or implied
needs.” According to IS09126, the definition of quality characteristics includes:
functionality, reliability, usability, efficiency, maintainability and portability.

According to Sanders and Curran [Sand94], Software Quality Assuiarcglanned
and systematic pattern of actions to provide adequate confidence that the item or product
conforms to established technical requirements. In a more specific project context, it is
about ensuring that project standards and procedures arat@dequrovide the required
degree of quality, and that they are adhered to throughout the project..

Quiality Assurance focused on both the product and the process. The poodunted
part of SQA (often called Software Quality Control) should strive to esure that the
software delivered has a minimum number of faults and satisfies the users' needs. The
processoriented part (often called Software Quality Engineering) should institute and
implement procedures, techniques and tools that promote the fafriée and efficient
development of software products.

Quiality assurance activities include:

1) Management
Analysis of the managerial structure that influences and controls the quality of the
software is an SQA activity. It is essential for an appropriatéLs&uo be in place
and for individuals within the structure to have clearly defined tasks and
responsibilities.

2) Documentation
It is essential to analyze the documentation plan for the project, to identify
deviations from standards relating to such plarg] to discuss these with project
management.

3) Standards and Practices
It is essential to monitor adherence to all standards and practices throughout the
project.

¢+ Documentation standards.

10

Quality Assurancéor ComponenBased Software Development

* & & & oo o

5)

6)

7

8)

Design standards.

Coding standards.

Code commenting standards.
Tesing standards and practices.
Software quality assurance metrics.
Compliance monitoring.

Reviews and Audits
It is essential to examine project review and audit arrangements, to ensure that they
are adequate and to verify that they are appropriate foytweedf project.

Testing
Unit, integration, system and acceptance testing of executable software are an
integral part of the development of quality software.

Problem Reporting and Corrective Action

It is essential to review and monitor project errdranding procedures to ensure
that problems are reported and tracked from identification right through to
resolution, and that problem caused are eliminated where possible. It is also
important to monitor the execution of these procedures and examine trends in
problem occurrence.

Tools, Techniques and Methods
Tools, techniques and methods for software production should be defined at the
project level.

Code and Media Control

It is essential to check that the procedures, methods and facilities used to maintain,
store, secure and document controlled versions of software are adequate and are
used properly.

Software Quality Assurance aims at costeffective, flexibility, rich functionality,
certain reliability and safety of software system$o achieve software qudy, the life
cycle of software design is promoted, it mainly includes [Smit95]:

¢

¢
¢
¢

requirements specification;
system and module design;
coding and implementation;
test.

11

Quality Assurancéor ComponenBased Software Development

Also, there are formal methods in software requirements specification, formatisietho
permit each stage of design to be checked against the previous stage @)nsistency
and correctness. Three main types of Formal Method are: 1) dataoriented Formal
Method, including modelbased notation (VDM,Z) and algebraic notation (OBJ); 2)
processoriented Formal Method, including communications sequential processes (CSP)
and calculus of concurrent systems (CCS); 8jateoriented formal methods, such as
Petrinet.

Moreover, different netricscan be applied toproject contro] predictingcoding and
test times,productivity and machine usagend quality assuranceelated to reliability
and safety. There are two maint ypes of metrics: processelated metrics and
productrelated metrics [Jac092]. Procestated metrics measure things likst; effort,
schedule time and number of faults found during testing. While prodeletted metrics
predictcoding and test times, productivity and machine us&ame traditionaimetrics
areas follows: 1) lines of code; 2) percentage commen8) module complexity, 4)
subjective complexity5) control path cross6) design complexity7) design to code
expansion ratg8) farin, fanrout, 9) fault detection ratel0) number of changes by type
11) staff qualityand etc[smit95].

Testing is the last proedure to detect the existing faults in software. There are some
test tools, such as test drivers, test beds, emulators, and some packages like ADATEST,
Cantana, FX, Mans, Orion ICE designed by different companies to test software
developed by different tguages.

Standards and guidelines are used to control the quality activities. The two most
famous and widelyused software quality standards are ISO 968@nd CMM model.
ISO 9000 is an international series of standards, developed by the International
Organization for Standardization, that specifies a basic set of requirements for a quality
system to provide consistent, acceptable quality products [Schm94]. Its emphasis is on
the development process and the management responsibilities associated with the
process. It focuses on establishing, documenting, and following a well-controlled,
reviewed, and improved. ISO9004B provides guidance on how to apply ISO 9000
standards to software development. The guidance is excellent and has adopted widely by
software ommunity when designing quality software systems.

The Capability Maturity Model (CMM), developed by the Software engineering
Institute (SEI) , is a framework that describes the elements of an effective software

12

Quality Assurancéor ComponenBased Software Development

process and an evolutionary path that inceases an organization's software process
maturity [Sand94]. A fundamental principle underlying the CMM is that the quality of a
software product can be improved by improving the process which produces it. The
CMM characterizes five levels of increasing process maturity, they are the Initial,
Repeatable, Defined, Managed and Optimizing maturity levels, by the extent to which
the organization's processes comply with specified key practices. The CMM is
something like a type of metric, in that it involves sogrcriteria which enable a project
or organization to assess its maturity level in terms of software engineering practice.

Besides ISO9003 and CMM, there are many localized and customized guidelines or
models of software quality assurance in diffepenintries or areas. Particularly in Hong
Kong, Hong Kong Productivity Council hagvelopedHong Kong Software Quality
Assurance Modela framework of standard practices that a software organization in
Hong Kong should have to produce quality softwat&PCO00]. The HK Software
Quiality Assurance Model provides the standard for local software organizations
(independent or internal; large or small) to:

» Meet basic software quality requirements;

» Improve on software quality practices;

» Use as a bridge to aigve other international standards;

» Assess and certify them to a specific level of software quality conformance.

The seven practices that form the basis of the HK Software Quality Assurance Model
are: 1) Software Project Management; 2) Software figs#) Software Outsourcing; 4)
Software Quality Assurance; 5) User Requirements Management; 6) Post
Implementation Support; and 7) Change Control.

4.2 QA for Object-Oriented software systems

4.2.1 Differences between ObjecOriented software and traditional systems

ObjectOriented technology is a technique for system modelifigaco92] Different
from traditional procedurbased approach, OO views the system as a number of objects
that interactInterest in the objeebriented method has grown rapidlyer the last few
years. This is mainly due to the fact that it has shown many good qualities. Amongst the
most prominent qualities of a system designed with an objeciented method are the
followings:

» Understanding of the system is easier as the semayap between the system and

reality is small;

13

Quality Assurancéor ComponenBased Software Development

» Modifications to the model tend to be local as they often result from an individual
item, which is represented by a single object.

It is widely accepted that the OO paradigm significantly incsssastvare eusability,
extendibility, interoperability, and reliabilityhe key concepts in OO paradigm are:

Object

A object encapsulates the data and operations on the data. A object communicates with
other objects by sending messages between them.

Class

A class is sometimes called the object's type, a class represents a template for several
objects and describes how these objects are structured internally. Objects of the same
class have the same definition both for their operations and for their information
structure.

Polymorphism

Polymorphism means that the sender of a stimulus does not need to know the receiving
instance's class. The receiving instance can belong to an arbitrary class.

Inheritance

If class B inherits class A, then both the operations and ta information structure
described in class A will become part of class B.

ObjectOriented design is the process of identifying objects and their attributes,
identifying operations suffered by and required of each object, and establishing
interfaces betweeobject [Booc86]. The design of objects involves three steps:

1) definition of objects;

2) attributes of objects;

3) communication between objects.

The fundamental concepts of OO design are shown in Figydre

ObjectOriented
Nacinr
Object Method
i Nacinr
Nacinr
Object Attributes of Communicatbn
Definition Objects Among Objects

14

Quality Assurancéor ComponenBased Software Development

Figure 4.1 Elements of Object Oriented Design

4.2.2 A Quality -focussed (hject-Oriented Process-- OPEN

OPEN is a thirdgeneration, full lifecycle process framework that is ideally suited for
both object -oriented and component-based development. OPEN standards for
ObjectOriented Proces Environment and Notation. It is fully described in a series of
books including (rah97 and [Hend93.

Firstly, it is important to note that OPEN is a full lifecycle methodological approach.
Software can be considered to have a lifecycle from birteathd The need for software
can arise when business problems need solution. Business decision making,
requirements engineering and systems analysis are all "early lifecycle" activities.
Similarly, a methodology should cover the late lifecycle activitiekil¥¥most are good
at program design and coding, they tend to tail off in their coverage of issues such as
deploymentanduser training and future enhancements/maintenance. Here, product
metrics are better developed.

Secondly, OPEN is a procesfocussedmethodological approach for software and
component developmerferom a methodological viewpoint, process is the key to good
software development practicesAnd OPEN is a framework defined by a process
metamodellt means that OPEN is not rigidly specifiednd the framework constraints
metalevel connections between Stages, Activities, Tasks, Deliverables, Producers and so
on. The actual Activities, Tasks etc. to be used are chosen by the user. In this way, the
user can tailor the OPEN process framework toif exactly the requirements of their
project and organization.

OPEN is also weHsuited for componenbased developmernit. provides support for

components designing on the web.

4.2.3 Metrics for Object-Oriented Software Systems

The characteristics of softw@quality are not exhaustive and not even independent of

15

Quality Assurancéor ComponenBased Software Development

each other. Additionally, they often tend to conflict in a development. Therefore, when
starting a development, it is often a good idea to decide which characteristics are the most
important for the specific product and then focus on these throughout the development.

In ObjectOriented the focus is on mainatainability characteristics, as well as suitability
[Jaco92].

A necessary method for controlling a development is to use metrics. The me#mcs ¢
measure either the process of development or various aspects of the product. Because of
the characteristics of OO development, the "internal” attributes in the products includes:
modularity, low coupling, high cohesion, encapsulation and other, white"gxternal”
attributes expected by software users, are reliability, maintainability, and reusability
[Raja92a].

Some Proceseelated metrics for OO development are as followings [Jaco92]:
» Total development time;
» development time in each process andmocess;
» time spent modifying models from previous processes;
» time spent in all kinds of subprocesses, usch as use case specification, object
specification, use case design, block design, block testing and use case testing for
each particular object;
» numter of different kinds of fault found during reviews;
number of change proposals for previous models;
cost for quality assurance;
cost for introducing new development process and tools;

YV V. V

Traditional metrics on products (including code) may to some extaisb be used in
objectoriented software. However the most common metric, lines of code, is actually
less interesting for objeairiented software. Here are some examples of metrics that are
more appropriate for objedriented software [Jaco92]:

> Total nunber of classes;
Number of classes reused and the number newly developed;
Total number of operations;
Number of operations reused and the number newly developed;
Total number of stimuli sent;
Number, width and height of the inheritance hierarchies;
Numberof classes inheriting(or using) a specific operation;
Number of classes that a specific class is dependent on;

YV VYV V VYV VY

Number of classes that are dependent on a specific class;

16

Quality Assurancéor ComponenBased Software Development

» Number of direct users of a class or operation (the highest scored are candidates
for components).

Average number of operations in a class;

Length of operations (in statements);

Stimuli sent from each operation;

Average number of descendants for a class;

Average number of inherited operations

YV VV VYV

Besides all these general processlated andoroductrelated metrics, many metrics
have been proposed to measure OO software complexity and assure software quality.
[Shih97] introduces a factor and a method to realize and measure the objedented
software complexity of a class hierarchy. Becaniseritance and polymorphism are key
concepts in objeebriented programming, and are essential for achieving reusability and
extendibility, in [Raja92a] [Raja92b], the authors define four measures of coupling:

1) Class inheritanceelated Coupling(CIC)

2) ClassNonInheritancerelated Coupling (CNIC)
3) Class Coupling (CC)

4) Average Method Coupling (AMC)

Metamata is a company who provides some metrics and audifgple 4.1are some
example metrics for Java, one of OO languages [meta00].

Based on two approachestsoftware quality assurance usedfault prevention and
fault detection, the authors of [L098] examines the factors that affect software testability
in objectoriented software and proposes a preliminary framework for the evaluation of
software testabity metrics. They are listed in Table 4.2.

4.2.5 Testing for Object-Oriented Software Systems

Software testing is an important software quality assurance activity to ensure that the
benefits of OO programming will be realized. OO software testing hasabwligh new
problems introduced by the powerful new features of OO languages, such as
encapsulation, inheritance, polymorphism, and dynamic binding [Kung98]. The
dependencies occurring in conventional systems are:

1) Data dependencies between variables;

2) Calling dependencies between modules;

17

Quality Assurancéor ComponenBased Software Development

3) Functional dependencies between a module and the variables it computes;
4) Definitional dependencies between a variable and its type.
OO0 systems have additional dependencies:
1) Class to class dependencies;
2) Class to method depdancies;
3) Class tomessagéependencies;
4) Class to variable dependencies;
5) Method to variable dependencies;
6) Method to message dependencies; and
7) Method to method dependencies.

OO testing problems can be summarized to be: 1) the understanding problem; 2) the
complex interdependency problem; 3) the object state behavior testing problem; and 4)
the tool support problem. The understanding problem is introduced by the encapsulation
and information hiding features. The dependency problem was caused by the complex
relationships that exist in an OO program. Objects have states and state dependent
behaviors. That is, the effect of an operation on an object depends also on the state of the
object and may change the state of the object. Thus, the combined effect efatensp
must be tested.

Test strategy

A test strategy can be defined as the order to unit testing and integration testing of the
classes in an OO program. The test order problem for the classes in an OO program can
be stated as finding an order to thstclasses so that the effort required is minimum. The
example methodology consists of the following steps:

Step 1. Initially, base classes having no parents are chosen and a test suite is designed
that tests each member function individually and alscetinteractions among member
functions.

Step 2. A testing history associates each test case with the attributes it tests. In addition
to inheriting attributes from its parents, a newly defined subclass "inherits" its parent's

testing history.

Step 3. Theinherited testing history is incrementally updated to reflect differences
from the parent and the result is a testing history for the subclass.

18

Quality Assurancéor ComponenBased Software Development

Step 4. With this technique, new attributes can be easily identified in the subclass that
must be tested alongith inherited attributes that must be retested.

19

Quality Assurancéor ComponenBased Software Development

Metric

Measures

Description

Cyclomatic Complexity

Complexity

The amount of decision
logic in the code

Lines of Code

Understandablility,
maintainability

The length of the code;
related metrics measure
lines of comments,

effective lines of code, etc.

Weighted Methods per Complexity, The number of methods in
Class understanehbility, aclass
reusability
Response for a Class Design, usability, The number of methods
testability that can be invoked from

class through messages

Depth of Inheritance Tree

Reusability, testability

The depth of a class within

the inheritance hierarchy

Coupling Between Object

s Design, reusability,

maintainability

The number of other
classes to which a class ig
coupled

Numbe of Attributes

Complexity,
maintainability

The amount of state a class

maintains as represented
the number of fields
declared in the class

Table 4.1 Metamata Metrics for Java

Types of Factors Testability Factors

Intramethod Execution Rate Propagation Rate

Intermethod Cohesion

Intra-class No of methods Depth in No of children
inheritance tree

Interclass No of coupling

Program No of disjoint inheritance trees

Table 4.2 testability factors according to different types

Step 5. Thénherited attributes are retested in the context of the subclass by identifying

and testing their interactions with newly defined attributes in the subclass.

by

Step 6. The test cases in the parent class's test suite#mdte reused to validate the

subclas and attributes of the subclass which require new test cases can also be identified

in the process.

20

Quality Assurancéor ComponenBased Software Development

Unit Test and Integration Testing

In OO development, new test generation methods, test models, test coverage criteria
for classes are needed in uagts. Several methods are proposed using flow gyaged
or data bindings of class.

When software components (or parts) are separately tested, they are integrated
together to check if they can work together properly to accomplish the specified
functions.The major testing focus here is their interfaces, integrated functions, and
integrated behaviors. A number of software integration testing approaches have been
used to perform software integration testing, such as tdpwn, bottomup, sandwich,
and "big bang". There are many differences between objeeabriented programs and
traditional programs.

The first is the structural differences between an objectoriented program and a
traditional program. A conventional program consists of three levels of compen&nt
functions (or procedures); 2) modules; and 3) subsystems. However, an-abjented
program consists of four levels of components: 1) function members defined in a class; 2)
classes; 3)groups of classes; and 4) subsystems.

The other major differece between an objeebriented program and a conventional
program is their behaviors. In a dynamic view, a conventional program is made a number
of active processes. Each of them has its control flow. They interact with one and another
through data commuriations. An objectoriented program consists of a collection of
active objects that communicate with one and another to complete the specified functions.
In a multiple-thread program, there are a number of objecessagéiows executing at
the same time.

A method for integration testing suggests five distinct levels of ebjasited testing,
including a method, message quiescence, event quiescence, thread testing, and thread
interaction testing. The basic idea is to model the behaviors of an object -oriented
program using an object network.

Object State Testing
Object State Testing is an important aspect of object oriented software testing. It is

different from the conventional control flow testing and data flow testing methods. In
control flow testin g, the focus is testing the program according to the control

21

Quality Assurancéor ComponenBased Software Development

structures(i.e., sequencing, branching, and iteration). In data flow testing, the focus is
testing the correctness of individual data defareduse. Object state testing focuses on
testing the wte dependent behaviors of objects.

Regression testing

The main concern in regression testing is how to effectively and efficiently identify the
changes and their impact so that testing can be focused to the changed and affected
components. Anothezonsideration in regression testing is reuse of existing test cases
and test suites.

Testing tools

Different tools are developed to assist testers in testing and regression testing.
RoongKo Doong and Phyllis G. FrankKlung9§ reported their systentie approach to
unit testing of objectoriented programs and a set of test tools, called ASTOOT. The
major focus of this approach is how to automate the unit testing of abstract data types
(ADTSs) in object-oriented programs in test data generation, test eecution, and test
checking.

5. Quality Assurancefor componentbased software systems
5.1The life cycle ofcomponentbased softwaresystems

Componentbased software systems are developed by selecting various components
and assembling them togethather than programming from scratch, thus the life cycle
of componentbased software systems is much different from that of the traditional
software systems. The life cycle of componerbased software systems is as follows
[Pour98]:

¢ Requirements analigs
Software architecture selection, creation, analysis, and evaluation;
Component evaluation, selection, and customization
Integration
Componentbased software system testing
Software maintenance

* & & o o

22

Quality Assurancéor ComponenBased Software Development

In the life cycle above, the two major activities aresajtware architecture selection,
creation, analysis, and evaluation; 2) component evaluation, selection, and customization.
The architecture of software defines that system in terms of computational components
and interactions among components. The focus i s on composing or assembling
components that are likely to have been developed separately, even independently.
Component evaluation, selection and customization is a crucial activity in the life cycle
of component systems, it includes two main parts: 1) evaluation of each candidate
off-the-shelf component based on the functional and quality requirements that will be
used to assess that component; 2) customization of those candidate off-the-shelf
components that should be modified before being integrated in to the new
componenbased software systems. And Integration is to make key decisions on how to
provide communication and coordination among various components of a software
system.

Quality Assurance for componerbased software systems should addressie life
cycle and key activities to analysis the components and achieve high quality
componenbased software systems. Quality Assurance technologies for
componenbased software systems is currently premature because of the specific
characteristics ofomponent systems from traditional systems.

Although some QA technique such as reliability analysis model for distributed
software systems [Yaco99a] [Yaco99b], and compondrmdsed approach to Software
Engineering [Ning94] have been reached, there is still no clear and well -defined
standards or guidelines for compondaised software systems. The identification of the
QA characteristics, along with the models, tools and metrics, are all under research.

5.2 Differences betweencomponents and objects

Software components represent a new concept in how to build software applications,
but the foundations on which they are based have been around for quite some time as
objects. That is, componeiitase technology is based on OO technology, but there still
are some differences between component and objects.

Objects are generally (though not always) defined at too low a level to be easily related
to a business process, and components are a-tegbErcoarsegrained software entity.
A crucial difference between objects and components revolves around inheritance.
Objects support inheritance from parent objects, when an inherited attribute is changed in

23

Quality Assurancéor ComponenBased Software Development

the parent object, the change ripples through all the child objects that contain the
inherited attribue. While inheritance is a powerful feature, it can also cause serious
complications that result from the inherent dependencies it creates. In contrast to the
multiple inheritance model of objects, components are characterized by multiple
interfaces. Thussomponents effectively eliminate the problem of dependencies related

to object inheritance, instead, component interfaces act as the "contract" between the
component and the application, the application has no view inside the component beyond
the exposed nterface. This provides users with the flexibility to update components

while maintaining only the interface and behavior of the components [Herz00].

A component has a life cycle as illustrated in Figure 5.1. Some metrics used to
identifying componentsclude [Jaco92]:

» Size. This affects both reuse cost and quality. If it is too smallpreefitswill not
exceed the cost of managing it. If it is too large, it is hard to have high quality.

» Complexity. This also affects reuse cost and quality. A tdadl component is not
profitable to reuse and with a too complex componéntird to have high quality.

> Reuse frequencyThe number of places where a component is used is of course
important too.

V\reject
affirmed for affirmed fqr

new | Proposal| construction Under delivery | Ready for
P CAnctriinrtini P Nictrihiitinn

— '\ Y

new release of

changew co‘?ponent library

To be deleted | Under use
<—delete— rarkfordeletig

(AA nnt 11co

Figure 5.1 The life cycle of a component

24

Quality Assurancéor ComponenBased Software Development

5.3 Open problems about QA forcomponentbased software

Although some QA technigue such as reliability analysis model for distributed
software systems [Yaco99a] [Yaco99b], and compondrmdsed approach to Software
Engineering [Ning94] have been reached, thee is still no clear and well -defined
standards or guidelines for componéatsed software systems.

As many work has to be done to componenbased software development, quality
assurance technologies for compondrased software development has to addsdise
two inseparable parts: 1) How to certify quality of a component? 2) How to certify
guality of software systems based on components [Pour98]? To answer the questions,
models should be promoted to define the overall quality control of components and
systems; metrics should be found to measure the size, complexity and reliability of
components and systems; tools should be decided to test the existing components and
systems.

5.4 Quality Characteristics of Components

To evaluate a component, we m ust determine how to certify the quality of
components. The quality characteristics of components are the foundation to guarantee
the quality of components, and thus the foundation to guarantee the quality of whole
componenbased software systems. Here arsome recommended characteristics of
guality of components.

B Functionality

-- The degree to which the component implements all required capabilities.

-- Contains all references and required items.

-- The degree to which a component is free from faulsts specification, design, and
implementation;

-- The degree to which a component is free from faults in its specification, design, and
implementation;

B Interface
-- The completeness of the input/output of a component

25

Quality Assurancéor ComponenBased Software Development

-- The flexibility of the interface to add/decrease some parameters

B Userability
-- The number of users of a component.
-- The sum of the lengths of time when used.

B Testability
-- Equipped with test cases, test plans and test report.
-- The ability of exception handig.

B Modifiability (Maintainability)

--The ease with which a component can be modified to correct faults, improve
performance or other attributes, or adapt to a changed environment.

-- The ease with which software can be maintained, for example, enthzadapted, or
corrected to satisfy specified requirements.

-- Modifiable with minimal impact.

B Documentation
-- Contains all documents necessary.

B Fault Tolerance (Reliability)

-- The ability of a component tolerates wrong inputs.

5.5 A Draft Quality Assurance Model for ComponentBased Software Systems
Because of the different process of component-based software from traditional

software, the quality assurance model should address both the process of components
and the total systems. Figub.2 illustrates this view.

Component System

26

Quality Assurancéor ComponenBased Software Development

Figure 5.2 Quality Assurance Model for both components and systems

The main practices related to components and systems should contain:

1)

2)

3)

4)

5)

6)

7

Component requirement analysis
the process of discovering, understanding, doauing, validating and managing
the requirements for a component.

Component development
the process of transferring the requirements to a-fuekttional component with
multiple interfaces.

Component certification

the process that involves:

- comporent outsourcingmanaging a component outsourcing contract and
auditing the contractor performance;

- component selectingelecting the right components in accordance to the
requirement;

- component testingonfirm the component satisfies the requiremenhwit
acceptable quality and reliability;

Component customization

the process that involves:

- modifying the component for the specific requirement;

- doing necessary changes to run the component on specific flatform;

- upgrading the specific component to get ddygierformance or a higher quality;

System architecture design
the process of evaluating, selecting and creating software architecture of a
componenbased system.

System integration
the process of assembling components selected into a whole system.

System testing

the process of evaluating a system to:
- confirm that the system satisfies specified requirements;

27

Quality Assurancéor ComponenBased Software Development

- identify and correct defects in the system before implememtati
8) System maintenance
the process of providing operations and maiatere activities needed to use the
software effectively after it has been delivered.
Practice overview is listed below. For consistency, each practice is described under the
heading of Definition, Objectives, Governing Policy and Process Overviegrana
5.5.1 Component Requirement Analysis

5.5.1.1 Definition

Component requirement analysis is the process of discovering, understanding,
documenting, validating and managing the requirements for a component.

5.5.1.2 Objectives

The objedives of component requirement analysis are to produce complete, consistent
and relevant requirements that a component should realize.

5.5.1.3 Governing Policy

Component requirement analysis should contain complete and clear requirements that
a compoent should realize, as well as the programming language, the platform and the
interfaces related to the component.

5.5.1.4 Process Overview Diagram

See Figure 5.3.

Initiators (Users, Customers
Manager etI.)

Request for new development

028hr—mn‘

Quality Assurancéor ComponenBased Software Development

Format &

Requirement Requirements

D oSructure
ocument >
- - Current

Gathering and

Draft User Requirement

Requirement

Analysis

Component Requirement

Stiucture for

Component

Data T aming &

Nirtinnans

Madeling

Updated CRD with

Component Requirement

p Component

NMaintananere

Currert URD Navialanman

alidation

User Requirement

Channe

Figure 5.3 Component Requirement Analysis Fcess overview

5.5.2Component Development

5.5.2.1 Definition

Component development is the process of implementing the requirements to a
well-functional, highquality component with multiple interfaces.

5.5.2.2 Objectives

The objectives of amponent development are the final component product, the
interfaces and development documents.

5.5.2.3 Governing Policy

29

Quality Assurancéor ComponenBased Software Development

Component development should lead to the final component satisfying the
requirements with correct and expected result,Adefined and flexible interfaces.

5.5.2.4 Process Overview Diagram

Developers

Component | |Requirement

Requirement >
- Existing

Component

NMaintananere

For Reference

Implementation

Self-Testing

(Fiinrtinn)

Self-

Techniques requirt

Draft Componer

Well-Functional Componer

Testing
liabili

Submi

Component

Cartifiratinn

30

Quality Assurancéor ComponenBased Software Development

Figure 5.4 Component Development Process overview

5.5.3Component Certification

5.5.3.1 Definition

Component certification is the process thatdlves:
- component outsourcingnanaging a component outsourcing contract and
auditing the contractor performance;
- component selectingelecting the right components in accordance to the
requirement for both function and reliability;
- component testingonfirm the component satisfies the requirement with
acceptable quality and reliability;

5.5.3.2 Objectives

The objectives of component certification are to outsourcing, selecting and testing the
candidate components to check whether they satisfyytera requirement and achieve
the high quality and reliability.

5.5.3.3 Governing Policy
1. Component outsourcing should be charged by a Software Contract Manager;

2. All candidate components should be tested to be free from all known defects;
3. Testing should®in the target or simulated environment.

5.5.3.4 Procegs Overview Diagram

System Requirements

Spedfic Component

Component
Component
Component
Development >
= Reject

Component Releas

Component

Tactine

-Functional Componet
Acc¥ptance .

Quality Assurancéor ComponenBased Software Development

Figure 5.5 Component Certification Process overview

5.5.4Component Customization

5.5.4.1 Definition

Component customization is thegmess that involves:

- modifying the component for the specific requirement;

- doing necessary changes to run the component on special flatform;

- upgrading the specific component to get a better performance or a higher quality;

5.5.4.2 Objectives

The ohjectives of component customization are to making necessary changes to a
developed component so that it can be used in specific environment or cooperate with
other components well.
5.5.4.3 Governing Policy

All components must be customized accordimghe system requirements on
environment or the requirements of other components with which the components should

work.

5.5.4.4 Process Overview Diagram

Component

Development

Component Chang

Component

NDNnriimMant

New Component Docume

Component

System | |

Component _| Component

Quality Assurancéor ComponenBased Software Development

Figure 5.6 Component Customization Process overview

5.5.5System Architecture Design

5.5.5.1 Definition

System architecture design is the process of evaluating, selecting and creating
software architecture of a compondiatsed system.

5.5.5.2 Objectives

The objectives of gstem architecture desigare to collecting the users requirement,
identifying the system specification, selecting appropriate system architecture, and
determining the implementation details such as platform, programming language and
etc.

5.5.5.3 Governing Policy

System archécture design should address the advantage for the selecting architecture
from other architectures.

5.5.5.4 Process Overview Diagram

Initiators

Requests for New Systems

Format &

Requirement System Requirement

Document >
- - Current

Draft System Requirements

Document

System Requiremeny

Analvcic

System Requirement Docum
System Architecture

em Architecure

System

Cnorifiratinn

stem }47 stem
iym, /Sglstem Specification ¥ ‘

I ntAnr AatiAn

Quality Assurancéor ComponenBased Software Development

Figure 5.7 System Architecture Design Process overview

5.5.6System Integration

5.5.6.1 Definition

System integration is the process of assembling components selected into a whole
system under the designed system architecture.

5.5.6.2 Objectives

The objective of system integration is the final system composed by the contpone
selected.

5.5.6.3 Governing Policy

System integration should

5.5.6.4 Process Overview Diagram

System

Pormmromaort

Requirements for New

System Architecture

Architactiira

—>
Current

Draft Systerr
Component

Self-Testing

Fault Component

Component

Component p Component

Cartifiratinn

hanging

Selecting New Component

System |« > System

Final System System Integratio

=)

Tactine NMaintananre

Dnciimen

Quality Assurancéor ComponenBased Software Development

Figure 5.8 System Integration Process overview

5.5.7System Testing

5.5.7.1 Definition
System testig is the process of evaluating a system to:

- confirm that the system satisfies specified requirements;
-identify and correct defects in the system beforplementation.

5.5.7.2 Objectives

The objective of gstem testings the final system integted by components selected
in accordance to the system requirements.

5.5.7.3 Governing Policy

System testinghould contain function testing and reliability testing.

5.5.7.4 Process Overview Diagram

System Desigr

ImravalNiaaVaVall

Testing Requirements

) Test .
Software Life Testing
Nucle Qtratan,
System Testing Pl
Sydem Test Component
System <ner PrrTITAT Component
Intanratinn Navialnnman
System Tested
User Acceptance Component
T8 SNNAT

User Acceptance

Usgr Accepted System

Test Completion

A ~tiviitioc

System

M AaintAnAan~n

System Integration

Quality Assurancéor ComponenBased Software Development

Figure 5.9 System Testing Process overview

5.5.8System Maintenance

5.5.8.1 Definition

System maintenance ithe process of providing service and maintenance activities
needed to use the software effectively after it has been delivered.

5.5.8.2 Objectves

The objectives ofystem maintenancare to provide an effective product or service to
the endusers while correcting faults, improve performance or other attributes or adapt to
a changed environment to keep the software usable and usefitltatebeen delivered.

5.5.8.3 Governing Policy

There shall be a maintenance organization for every software product in operational
use. All changes about the system delivered should be reflected in the related documents.

5.5.8.4 Process Overview iagram

Users

Request and Problem Reports

Software Suppg

System Support

Qtratam,

Architecture

User Support Aceemer

Problem

Change Reques

L » Software

Tactine

36

Quality Assurancéor ComponenBased Software Development

Figure 5.10 System Maintenance Process overview

6. Conclusion and Future Work

ComponeriBase Software Development is a new promising software development
approach, which has potential to reduce significantly develop ment cost and
time-to-market, and improve maintainability, reliability and overall quality of
application. Because this approach is developing systems by selecting othe-shelf
components and assembling them with an appropriate software architectigenitch
different with the traditional ones. Quality Assurance is very important for
componenbased software systems, especially when the components come from
different developers.

In this papera surveyis doneon current componesiiased software teablogies and
the features they have. The survey is alaboutQuality Assurance for both traditional
approach and objedairiented technology. At last, | propose some features and a simple
draft of Quality Assurance Model for compondratsed software developmte

My future work is to complement the draft Quality Assurance model so that it can
actually guide the practices of componedrdased software development; and to find out
whether there are some testing tools and metrics available to test software cenfmo
undercertaincomponentechnology.

37

Quality Assurancéor ComponenBased Software Development

7. References

[Adle95] R.M.Adler, “Emerging Standards for Component Software,”"Computer
Volume: 28 3 March 1995, pp. 6877.

[Brow98] A.W.Brown, K.C. Wallnau, “The Current State of CBSE,” IEEE Softw
Vdume: 15 5, SeptOct. 1998, pp. 37 46.

[Grah97] 1.Graham, B.Henders@ellers, H.Younessi, "The OPEN Process
Specification," AddisoiWesley, 1997.

[Gris97] M. L. Griss, “Software Reuse Architecture, Process, and Organizatit
Business Success,” Proceedings of the Eighth Israeli Conference on
Computer Systems and Software Engineering, 1997, pp886

[Hend98] B.Hendersoefellers, A.J.H.Simons, H.Youness, "The OPEN Toolbox of
Techniques," AddiseWesley, 1998.

[Hend99] B.Hendersoibellers, OO software process improvement with mettics
Proceedings of Sixth International Software Metrics Symposium, 1999,
pp. 2-8.

[Herz00] P.Herzum, O.Slims, "Bus&ss Component FactoryA Comprehensive
Overview of ComponerBased Development for the Enterprise,” OMG
Press, 2000.

[HKPCO00] Hong Kong Productivity Councihttp://www.hkpc.org/itd/servicll.htm
April, 2000

[IBMOO] IBM: http://www-4.ibm.com/software/ad/sanfrancisddar. 2000

[Jaco2)] I.Jacobson, M. Christerson, P.Jonsson, G. Overgaard, "@bjected
Software Engina@ng: A Use Case Driven Approach," Addisdresley
Publishing Company, 129

[Koza98] W. Kozaczynski, G. BoochComponerniBased Software Engineerifig
IEEE Software Volume: 155, Seffdct. 1998 , pp. 34-36.

[Kung98] D.C.Kung,, H.Pei, Y.Toyoshima, C.Chen, J.GObjectoriented
software testinggome research and developméRtroceedings of Third
IEEE International HighAssurarme Systems Engineering Symposium,
1998, pp. 158165.

[Lam97] W. Lam, A.J.Vickers,Managing the Risks of ComponeBased
Software Engineerjhg
Proceedings Fifth International Symposium on Assessment of Software
Tools and Technologies, 1997, pp. +232.

38

Quality Assurancéor ComponenBased Software Development

[Lo98] B.W.N. Lo, Haifeng Shi,A preliminary testability model for
objectoriented softwarg Proceedings of International Conference for
Software Engineering: Education & Practice, 1998, pp.-337.

[Meta00] Metamatahttp://www.metamata.com/products/metrics_top.html
Mar,2000.

[MicrO0] Microsoft: http://www.microsoft.com/isapMar, 2000

[Ning94] J.Q. Ning, K. Miriyala, W. Kozaczynski,Ah ArchitectureDriven,
BusinessSpecific, and Componetdased Approach to Software
Engineering’ Proceedings Third International Conference on Software
Reuse: Advances in Software Reusability, 1994, pp984

[Ning97] J. Q. Ning, “ComponerBased Software Engineering (CBSE),”
Proceedings Fifth International Symposium on Assessment of Software
Tools and Technologies, 1997, pp. 1488.

[OMGO00] OMG: http://www.omg.org/corba/whatiscorba.hialar. 2000

[Pour98] G. Pour, “ComponerBased Software Development Approach: New
Opportunities and Challenges,” Proceedings Technology of
ObjectOriented Languages, 1998. TOOLS 26., pp.-385.

[Pour99a] G Pour,“Enterprise JavaBeans, JavaBeans & XML Expanding the
Possibilities for WelBased Enterprise Application Developmént,
Proceeding3echnology of ObjeeDriented Languages and Systems,
1999 TOOLS 31 pp282291

[Pour99b] GPour, M. Griss, J. Favaro, “Making the Transition to CompoeBarsied
Enterprise Software Development: Overcoming the ObstadRegterns
for Success,” Proceedings of Technology of Ob{@géented Languages
and systems, 1999, pp.419119.

[Pour99c] G.Pour, “Software Component Technologies: JavaBeans and ActiveX,”
Proceedings of Technology of Obj&atiented Languages and systems,
1999, pp. 398-398.

[Raja92a] C. RajaramayM.R. Lyu,"Reliability and Maintainability Related
SoftwareCouplingMetrics in C++ Programs," Proceedings 3rd IEEE
International Symposium on Software Reliabilttygineering (ISSRE'92),
1992, pp. 30311.

[Raja92b] C. RajaramayM.R. Lyu,"Some Coupling Measures for C++ Programs,”
Proceedings TOOLS USA $2onfeenceAugust 1992, pp. 22234.

[Sand94] J.Sanders, E.Curran, "Software Quality: A Framework for Success in

Software Development and Support,” Addisdfesley Publishing
Company, 1994

39

Quality Assurancéor ComponenBased Software Development

[Schm94]

[Shih97]

[Smit95]

[SUNOO]

[Tran97]

[Wang97]

[Yaco99a]

[Yaco99b]

[Yau98]

C.H.Schmauch, "ISO9000 for Software DevelopeA§QC Quality
Press, 1994
T.K. Shih, C.M.Chung, C.C.Wang, W.C IDecomposition of inheritance
hierarchy DAGs for objeetriented software metri¢sProceedings of
International Cordrence and Workshop on Engineering of
ComputetBased Systems, 1997, pp. 2235.

D.J.Smith, “Achieving Quality Software(Third Edition),” Chapman &
Hall, 1995

SUN : http://developer.java.sun.com/developer/technicalArticles/Bean
Mar. 2000

V. Tran, D.B. Liu, B.Hummel, “Componetdased Systems

Development: Challenges and Lessons Learned, Software,” Proceedings,
Eighth IEEE Internatinal Workshop on Technology and Engineering
Practice [incorporating Computer Aided Software Engineering], 1997,

pp. 452—462.

Y.M.Wang, O.P.Damani, W.J. Lee, “Reliability and Availability Issues in
Distributed Component Ojbect Model (DCORNIFourth International
Workshop on Community Networking Proceedings, 1997, pp£639

S.M. Yacoub, B. Cukic, H.H. Ammar, “A Compond&sdsed Approach to
Reliability Analysis of Distributed Systems,” Proceedings of the 18th
IEEE Symposium oRReliable Distributed Systems, 1999, pp. 183%7.

S.M.Yacoub, B. Cukic, H.H.Ammar, “A ScenaBased Reliability
Analysis of ComponerBased Software,” Proceedings 10th International
Symposium on Software Reliability Engineering, 1999,3#-31.

S.S.Yau, B. Xia, “ObjeeOriented Distributed Component Software

Development based on CORBA,” Proceedings of COMPSAC’'98. The
TwentySecond Annual International, 1998. pp. 22Hl.

40

