
Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 1

Depar tment of Computer Science and Engineer ing

Chinese University of Hong Kong

Final Year Project Repor t

1999 - 2000

LYU9905

Secur ity in M obile Agent E-Commerce Systems

Prepared by Wong Tsz Yeung 97623604

Supervisor LYU Rung Tsong Michael

April, 2000

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 2

Abstract

Electronic commerce technology offers the opportunity to integrate and optimize global shopping.

The computers of various companies will communicate with each other to determine the availability

of products and to place as well as confirm orders. Mobile software agent has become an important

aspect in electronic commerce. Electronic commerce and information retrieval are two prospective

directions for applications of mobile agents. Nevertheless, security is a crucial concern for such

systems. In this report, we will discuss about the mobile agent technology for e-commerce system.

Also we will describe the system we have built for our final year project – the Shopping Information

Agent System (SIAS) based on mobile agent technology. We will discuss the security problem issues

for the mobile agents, and particularly we will analyze possible security attacks by malicious hosts to

agents in our system, and our solutions to prevent these attacks. Finally, reliability of e-commerce

system is also an important aspect. We will discuss the reliability problem for our system, especially

we will analyze the fault tolerance design in our system.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 3

Table of Content

ABSTRACT .. 2

TABLE OF CONTENT... 3

INTRODUCTION... 5

1. SIAS – SHOPPING INFORMATION AGENT SYSTEM... 6

1.1. SYSTEM DESIGN ... 6

1.1.1. Object Description.. 7

1.1.2. Flow Description.. 9

1.2. IMPLEMENTATION.. 11

1.2.1. Choice of Programming Language.. 11

1.2.2. Choice of Mobile Agent Platform.. 11

1.2.3. Technology used in Objects... 11

1.2.3.1. Agent .. 11

1.2.3.2. Database Server... 11

1.2.3.3. Launch Server ... 12

1.2.3.4. Client Program .. 12

1.3. SNAPSHOTS... 12

2. SECURITY DESIGN IN SIAS.. 16

2.1. SECURITY PROBLEMS IN SIAS... 16

2.1.1. Modification of Query Product IDs... 17

2.1.2. Modification of Query Quantities.. 17

2.1.3. Spying Out and Modification of Query Results.. 17

2.1.4. Modification of Itinerary of an Agent .. 18

2.1.5. Hybrid Attack ... 18

2.2. DESIGN OF SOLUTIONS TO SECURITY PROBLEMS OF SIAS... 19

2.2.1. Closed Network .. 19

2.2.2. Agent Tampering Prevention... 20

2.2.3. Agent Tampering Detection... 20

2.3. IMPLEMENTATION.. 21

2.3.1. RSA Object ... 21

2.3.2. Key Server .. 22

2.3.3. How Cryptographic Measures Work.. 23

2.4. FLOW DESCRIPTION .. 24

2.5. SECURE AGENT TRANSMISSION IN SIAS .. 26

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 4

2.5.1. Design.. 26

2.5.2. Implementation... 28

2.5.2.1. DHKey Object... 28

2.5.2.2. DHKey Server ... 28

2.5.2.3. Envelop Agent ... 29

2.5.3. Flow Description.. 29

3. RELIABILITY IN SIAS.. 32

3.1. DESIGN... 32

3.1.1. Faulty Components... 32

3.1.2. Logging System... 33

3.1.2.1. Logging in Database Server ... 33

3.1.2.2. Logging in Launch Server.. 34

3.1.2.3. Logging in Key Server and DHKey Server ... 35

3.1.3. Connection Availability Detection... 35

3.1.4. Weakness in Fault-Tolerance Design... 37

3.2. IMPLEMENTATION.. 37

3.2.1. Implementation of Logging System.. 38

3.2.2. Implementation of Connection Availability Detection... 38

3.2.2.1. Modification in Launch Server and Database Servers.. 39

3.2.2.2. Modification in Monitor Program... 39

3.2.3. Flow Description of Monitor Program.. 40

4. EVALUATION OF SECURE SIAS... 41

4.1. SECURITY ANALYSIS ... 41

4.2. PERFORMANCE MEASUREMENTS ... 41

CONCLUSION ... 44

ACKNOWLEDGEMENT .. 44

REFERENCE.. 45

APPENDIX ... 46

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 5

Introduction

Nowadays, electronic commerce systems have been established all over the world. Most of them

have adopted the traditional client-server model in communication and data transfer. Our project is

aimed to apply the use of mobile agent technology on top of e-commerce systems. Moreover,

e-commerce systems always need to transfer critical and confidential data over the network, such as

credit card number. The main theme of our project is to emphasize on the security problems and

corresponding solutions. Last but not least, the reliability of the e-commerce system is also an

important topic. In this project, we also investigate and implement solutions upon reliability of agent

system.

We will presents the details of SIAS, Shopping Information Agent System, that we have implemented.

SIAS is a web-based e-commerce mobile agent system that provides users with information of

products for sale in an electronic marketplace. Advantages of SIAS include such agent’s properties

as delegation of tasks and reduction of communication costs.

The system is written in Java programming language with support of the Concordia application

programming interface (API), which is developed by Mitsubishi Electric Research Lab. In the

coming subsections, we will describe the basic design, implementation details as well as the

functionality of SIAS. More importantly, we will describe the security design and implementation as

well as reliability features of SIAS.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 6

1. SIAS – Shopping Information Agent System

Figure 1. What the System Does

SIAS implements mobile agents to retrieve information of products in an electronic marketplace. An

electronic marketplace consists of merchants that sell products on the network. Each merchant

maintains a distinct database that consists of prices and the corresponding stocks of different

products. Each database uses the same database table in order to achieve consistency in data format

and simplicity of data retrieval.

SIAS keeps a roaster of all the merchant hosts on the network. It also keeps a name list of all the

products selling on the marketplace. Users can use the client program to choose the products and the

corresponding quantities that they desire to buy from the list of products. Whenever a user sends a

request to the agent server, the agent server creates an agent for the user. The agent, on behalf of the

user, collects the information about the availability and price of each product from merchant hosts in

the network. The agent travels through the network according to its itinerary, or path, which is

pre-determined by user before it is launched. After the agent has visited all hosts specified in its

itinerary, it returns to its sender and reports the lowest prices and corresponding sellers. The design

of the system is described in details in the next subsection.

1.1. System Design
SIAS is designed using the object-oriented paradigm because the concept of objects is useful to

describe agents. There are four main types of objects in the system, namely Agents, Launch

Servers, Database Servers as well as the client program. We describe the object details and

control flow of the system in this subsection.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 7

1.1.1. Object Description
I, The Agent object: it keeps a list of product identification numbers (IDs) and a list of

corresponding quantities specified by users. It is responsible for travelling around the

network and collect product information for users from different hosts. It also keeps an

itinerary; it travels through the network according to the order of hosts in its itinerary.

Whenever an Agent arrives at a host, it retrieves data from it and appends the retrieved data

to a list of product entries. It is also responsible for calculating the purchasing combination

that is lowest in price.

II, The Launch Server object: it is responsible for creating Agents for users, sending the

Agents to the network, and receiving the Agents when they finish visiting all the hosts

specified in their itineraries. It provides a gateway between client programs and the agent

environment.

III, The Database Server object: it stores the information of products available at a particular

host (each host has its own instance of this object), and is responsible for retrieving

required information for an Agent when it arrives at the host. It can receive incoming

Agents, and executes the codes of the received Agents. After executed the request of an

incoming Agent, it sends the Agent to the next host.

IV, The Client Program: it is a Java Applet. It lets users to choose the products and the

corresponding quantities. Each instance of the client program can communicate with the

Launch Server in order to launch Agents and receive results reported by Agents. It is a

multi-threaded application, therefore it enables users to send out several queries at

simultaneously.

The following figures show the details of the above objects.

 Figure 2. Object Details of Database Server.

Database Server

 Methods:

 - handleAgent

 This method is invoked when an Agent arrives at the

Database Server. This method will invoke the queryServer

of the incoming Agent, appends the result in the List of

product query result, and sends out the Agent.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 8

Figure 3. Object Details of Agent.

 Figure 4. Object Details of Launch Server

Agent

 Attributes:

 - List of Product ID

 stores product IDs inputted by user

 - List of Product Quantities

 stores the quantities of corresponding products

 - List of product query result

 stores the product entries retrieved from Database Servers

 Methods

 - queryServer

 This method is invoked by Database Servers. When an

Agent arrives at a Database Server, the Database Server

invokes this method. The Database Server appends the

query result into the List of product query result.

 - reportCheapest

 This method is invoked by Launch Server. When an Agent

finishes travelling all the hosts specified in its itinerary, it

returns to the Launch Server. The Launch Server executes

this method, and sends the result to Client Program.

Launch Server

 Attributes:

 - Hashtable result

 It is used to map the Agent’s ID to a character string. It

stores the report generated by an Agent

 Methods:

 - launch

 This method is invoked when users send requests to the

Launch Server. The Launch Server creates an Agent,

initializes its attributes with the user’s input, determine the

itinerary, and, at last, launches the Agent.

 - handleAgent

 This method is invoked when an Agent arrives at the

Launch Server. This method will invoke the

reportCheapest of the incoming Agent, and store the result

string to the result hashtable for users to query.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 9

1.1.2. Flow Description
This subsection describes the flow of SIAS. It describes the flow in terms of the interactions between

objects and how a user can make a successful request.

When a user makes a request for product information by using a client program, the request is sent to

the Launch Server. The Launch Server will create a new Agent and initialize the variables according

to the request made by the user. Next, the itinerary of the Agent will be instantiated. The Agent is

now ready to launch.

After launching, the Agent will start visiting all the hosts specified in its itinerary. Whenever it

arrives at a Database Server, it will stay there. Within the execution environment provided by the

Database Server, the executions of Agent will be governed by the Database Server. In a normal case,

i.e. the host is a trustful one, the Database Server will execute the queryServer of the incoming

Agent, and then goes to another host. But, if the host is a malicious one, the execution of the Agent

will be different. This will be covered in later sections. After the execution has been finished, the

Agent will leave the host, and continues to visit other hosts specified in its itinerary in a round-trip

manner.

After it has visited all the hosts specified in its itinerary, it will return to the Launch Server. The

handleAgent of the Launch Server will control over the execution of the Agent. The Launch Server

executes the reportCheapest of the incoming Agent and saves the report into its hash table result.

At last, the report inside result will be sent to client program.

On the other hand, the client program will wait for the report while the Agent is travelling among

hosts. When the report is ready, it will send a request to the server and receive it.

Figure 5 shows a detail flow of SIAS. Some technical terms that has been used in Figure 5 will be

discussed in next subsections.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 10

Figure 5. The Flow Description of SIAS.

Explanation of steps:

1, Client program launches a request to the Launch Server object upon user input using Java

Remote method Invocation (RMI);

2, Launch Server creates an Agent object;

3, Launch Server initializes the Agent with user-specified products and corresponding quantites,

as well as the itinerary;

4, Launch Server sends the Agent to the network;

5, Database Server on Host One retrieves the required information for the incoming Agent;

6, Agent goes to the next destination;

7, Database Server on Host Two repeats Step (5);

8, Agent goes to other hosts in its itinerary;

9, Database Server on every host repeats Step (5);

10, Launch Server receives the returning Agent and calculates the cheapest prices;

11, Launch Server reports the result to client program by Java RMI.

Agent System

Host One
(Concordia Agent

Transporter)

Host Two
(Concordia Agent

Transporter)

Host N
(Concordia Agent

Transporter)

Launch Server
(RMI Server & Concordia

Agent Transporter)

Client Program
(Java Applet with RMI)

Step (1) Step (11)

Step (6) Step (8)

Step (7) Step (9)

Step (10)Step (4)

Database Server
executes Step(5)

Launch Server exeutes
Step (2) & (3)

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 11

1.2. Implementation
SIAS is implemented by using Java programming language with the support of Concordia API. The

choice of programming language and mobile agent platform, together with other implementation

details will be discussed in the following subsections.

1.2.1. Choice of Programming Language
We choose Java programming Language to implement SIAS with three main reasons. First, Java is a

platform independent language. This feature enables us to execute our system in different OS.

Second, most mobile agent platforms that are currently available, including Concordia, is built on

top of Java. Last but not least, Java provides many useful APIs such as Java Cryptography

Extension, JCE, that enables us to build security measures on top of our current system.

1.2.2. Choice of Mobile Agent Platform
We choose Concordia mobile agent platform, among others like IBM Aglets Software Development

Kit (ASDK) to implements SIAS because of its simplicity. The Concordia API is much easier than

others. This saves a lot of time in developing our agent system.

Another important reason for us to choose Concordia is that it allows full manipulation of execution

of agent code. This feature provides us a way to simulate a behavior of a malicious host, which does

not execute agent code in an intended way.

1.2.3. Technology used in Objects
In SIAS, not only the Concordia API, but also other APIs are used. In this section, we will discuss

the implementation details in the four main objects.

1.2.3.1. Agent

It is implemented by the support of Concordia. It is a subclass of a Concordia object, called agent.

With the help of agent, we can ignore the difficulties concerning networking. The Concordia has

implemented the dispatch (or marshal) and retract (or unmarshal) of agent. This reduces the

difficulties in building mobile agent system.

1.2.3.2. Database Server

The Database Server has used objects from Concordia. Concordia provides a class called Agent

Transporter . The Agent Transporter provides the object that has used it the ability to send out

agents and receive incoming agents. The Agent Transporter provides an execution environment for

incoming agents to execute their code. Under such an environment, the agent is fully controlled by

the Database Server. Therefore, it is a good point for us to use Agent Transporter in order to

simulate the behavior of malicious hosts.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 12

The Database Server has a SQL server behind it. We choose to use Oracle 8i SQL server. As we are

using Java programming Language, we have to use JDBC (Java Data Base Connectivity) to connect

with SQL server. As Oracle 8i fully supports the use of JDBC, so we choose it.

1.2.3.3. Launch Server

The Launch Server also uses the Agent Transporter since it needs to send out Agents when client

requests arrive, and receives incoming Agents when an Agent has completed its tour on the network.

The Launch Server uses Java Remote Method Invocation (RMI). RMI is a Java API which helps to

build client-server distributed system. We use RMI as the connection between client programs (RMI

clients) and Launch Server (RMI server). RMI supports multiple client connections. Therefore, the

hash table, which maps Agent's IDs to reports, used in the data structure of Launch Server is to

enable multiple client connections.

A question may be raised: Why don’t use web browser (or client program) to send and receive agents

directly?

At first, our primary design uses client programs to send and receive Agents directly; there is no

Launch Server in the very beginning design. Unfortunately, in order to use web browser to send out

Agents, the user has to install the whole package of the Concordia API. Also, the user has to install

an additional plug-in, namely Java plug-in, for the web browser. After these, the user also has to do a

lot of configurations in order to send and receive successfully. This is not user-friendly for users to

do such tedious works.

But, with RMI, user does not need to install or configure any additional things. Just a Java-enable

web browser can use to send and receive requests. Therefore, we choose to use RMI and introduce

the Launch Server in our system.

1.2.3.4. Client Program
The Client Program is a Java Applet. Every Java-enabled web-browser can run our client program.

The Client Program uses RMI to connect with the Launch Server. Also, it uses Thread, a Java object,

to develop the multi-threaded feature.

1.3. Snapshots
We have implemented a graphical user interface (GUI) for SIAS. We present some screen shots that

demonstrate the use of SIAS in this subsection. Figures 6 to 8 show a typical run of the system.

Our current system involves one Launch Server and 26 Database Servers.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 13

Figure 6 shows the GUI when an user starts the applet on a web browser. On Figure 7, it shows the

user is editing his/her buying list. At last, on Figure 8, it shows the user finishes his/her queries. It

also shows that the user can make several queries at one time.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 14

Figure 6. Applet starts, showing the user interface of the system.

Description of the GUI

1, Item List: This list contains all the products in the system. Users can choose their desired

products from it.

2, Description Text: This text area is for displaying product description, such as name of the

product.

3, Add Item Button: This button is to add a select item from Item List to Buying List.

4, Remove Item Button: This button is to remove a select item from the Buying List.

5, View Price Button: This button is to query information of products listed on Buying List.

6, Security Button: This button is to turn the Security attacks detection On or Off.

7, SSL Button: This button is to turn the Secure Socket Layer Transmission On or Off.

8, Category List: This list contains all the categories of products in the system.

9, Quantity: This text field is for user to change quantity when adding a product to Buying

List.

10, Buying List: This list contains all the products that users have chosen.

11, Photo Displaying Area: This area is used for displaying the photo of the selected product.

12, Merchant List: This list contains all the merchants in the system. Users can have choices

on selecting which supermarkets that users want to query.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 15

Figure 7. User is now choosing products

into his/her Buying L ist.

Figure 8. The system reports the query results in the Price Windows.

Description of Price Window:

1, Supermarket Column: this column displays,

for each product, the merchant that is selling

at the lowest price.

2, Name Column: this column displays the

name of each product.

3, Quantity Column: this column displays the

quantity of each product that users have

specified.

4, Price Column: this column displays the price

of each product times the quantity specified

by users.

5, Close Window Button: this button is to close

the Price Window

6, Another Price Window: this shows the applet

can handle multiple queries simultaneously.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 16

2. Secur ity Design in SIAS

SIAS is a web-based system, attacks from the Web to the system are likely, and security is an

important issue of the system design. Moreover, system security is of crucial importance to

applications in an electronic marketplace, where money transaction is concerned. This section

describes the security challenges of SIAS, and presents a simple but original approach to solve the

problems.

SIAS is a mobile agent system, and is therefore subject to all kinds of attacks described in previous

sections. Both host security and agent security would be issues of SIAS. However, since we have

built SIAS using the Java programming language, which provides strong security mechanisms to

protect hosts against malicious programs or agents through the use of Java Virtual Machine (JVM),

host security problem is very much simplified and solved. On the other hand, agent security needs

much more concerns. In what follows, only agent security of SIAS against malicious hosts would be

discussed.

In the following subsections, we will discuss the security problem in SIAS, describe how a malicious

host performs attacks on an Agent, as well as the solution to detect such attacks. This will cause

changes on the primary design of SIAS.

2.1. Secur ity Problems in SIAS
To start our discussion of security problem in SIAS, we first have to address the security

requirements for SIAS. There have three primary requirements:

1, Integrity: the query results reported by an Agent must truly represent the market prices of the

products and at the quantities specified by the user.

2, Confidentiality: information collected from a host by an Agent should not be disclosed to other

hosts or Agents.

3, Authenticity: an Agent must visit and collect information truly from the list of hosts specified

by users, i.e. the itinerary.

None of the above 3 requirement should be violated, or the Agent is suffered from security attack(s).

Without a special design, all these requirements can be easily violated by the attacks of malicious

hosts. There are four possible types of such attacks to agents that can compromise the security of the

system, namely modification of query product IDs of an Agent, modification of query quantity

of query quantities of an Agent, spying out and modification of query results, as well as

modification of itinerary of an Agent.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 17

To limit the complexity of our discussion, we impose one assumption in SIAS security design: Only

one or no malicious host is on the network.

2.1.1. Modification of Query Product IDs
The list of product IDs specified by user is stored as the product ID list attribute in the Agent (see

Figure 2). However, the list is store in plain text form. When an Agent arrives at a malicious host,

the malicious host can easily spy out the list of product IDs. As the Agent is under the full control of

the host, the host can changes the product IDs very easily. When the Agent goes to another host, the

later host would not aware that the list of product IDs has been changed. The host would response to

the wrong product IDs and report wrong information to users. This violates the integrity

requirement.

The malicious host can benefit from this kind of attack. When an Agent returns back to the Launch

Server, it will check against the list of product IDs and the retrieve product information in order to

find the cheapest purchasing combination. The malicious host can eliminate all the competitors

before it if the system is not clever enough to detect such attacks. If the malicious host is the last

destination in the itinerary of an Agent, it can completely dominate the choices of user. The user can

only choose the malicious host, although it probably provides the most expensive goods, as it seems

to the user that there is only one store provides such products.

2.1.2. Modification of Query Quantities
Similar to the modification of query products, when an Agent goes to a malicious host, the malicious

host can change the quantities of products the Agent wants to query as the list of query quantity list

is simply in plain text form. When the Agent goes to another host, the later host will respond to the

modified quantities of query, and report wrong information. This also violates the integrity of

queries.

The malicious host can still benefit from this kind of attack, but less than that of the previous kind of

attack. In a scenario that the malicious host is the last one in the itinerary of an Agent, the malicious

host can force the Agent is reported as many quantities as possible. If owner of the victim Agent is

not careful enough and cannot aware of such changes in the report, the user will be cheated.

2.1.3. Spying Out and Modification of Query Results
Agents carry query results is also in plain text form. Therefore, when an Agent goes to a malicious

host, the malicious host can spy out and modify the results that the Agent has collected from

previous hosts in such a way that the changed results would favor the malicious host itself. For

example, a malicious host may raise the prices quoted by other hosts, to convince the user that it is

selling at the lowest price, which is not the truth. This violates the confidentiality and integrity of

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 18

query results.

From the viewpoint of the malicious host, this attack is a very effective one. The malicious host can

successfully eliminate competitors that have been visited by the victim Agent by raising their quoted

prices. If the malicious host is the last one of the itinerary of the Agent, it can eliminate all its

competitors.

2.1.4. Modification of Itinerary of an Agent
Inside the execution environment of the Agent Transporter, which is provided by Concordia API, a

malicious host can have fully control over an Agent. It can access all its attributes, even the attributes

that are forbidden to access. The itinerary, which is a forbidden area, is one of our concerns. When

an agent goes to a malicious host, the malicious host can modify the itinerary (or path) of the Agent

so that the Agent will go to a host not specified by user. This violates the authenticity requirement of

the system.

This is a very important attack from the viewpoint of a malicious host. A malicious host can change

the itinerary of an Agent in such a way that its next destination is the Launch Server. Then, the Agent

will be cheated as it has finished its tour on the network. Therefore, the malicious host can get rid of

all the hosts that are ranked behind it in the itinerary.

2.1.5. Hybrid Attack
After describing the above four kinds of attacks, one can easily come up with ideas of mixing the

attacks.

For example, a malicious host can combine the third and the fourth kinds of attacks to get rid of all

its competitors no matter where it is on the itinerary of the victim Agent. A malicious host can first

carry out the third attack; it can raise all prices inside the query result list. Then, it can proceed with

the fourth attack; it can change the next destination to be the Launch Server. Eventually, the effect

becomes the Agent will choose all the products from the malicious host.

One can also comes up with another kind of attack combination that is much more complex

(indicated on Figure 9). This would combine three kinds of attacks, except the second one. First,

when the agent comes to a malicious host, the host can raise all prices inside the query result list.

Then, it will backup the list of product IDs inside the Agent, at last, it sets the list of product IDs to

nothing (or null). The effect of this is to let all the hosts that will be visited later to retrieve nothing

from the databases. One more step need to do before the Agent launches is to append a destination in

the itinerary. One can add a destination to be the malicious host itself before the Agent returns back

to the Launch Server. What is the aim of this? The main purpose is to fake the system; when the

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 19

victim Agent visits the malicious host again, it will restore the list of product IDs to be the original

list. Then, it seems that the Agent has visited all the hosts, but all the products that are cheapest are

from the malicious host, however, may be the malicious host is selling the most expensive goods.

 Figure 9. A complex hybrid attack.

The above is only a subset of possible attacks. There are other attacks such as replaying of query

results and masquerading of hosts. However, these attacks are more complex, and require more

efforts for designing as well as implementing both attacks and defenses. For the time being, we

consider the four simple attacks only.

2.2. Design of Solutions to Secur ity Problems of SIAS
Having figured out the four system vulnerabilities described above, we have to implement

mechanisms to protect our systems against exploitation of these vulnerabilities. As there is currently

no good solution to mobile agent security in general, therefore we have to design our own

mechanisms to defend against possible attacks.

We have developed a simple but original approach to protect agents in SIAS against attacks from

malicious host, based on public key cryptographic techniques. It is actually a mixed approach of the

solutions, i.e., establishing a closed network, agent tampering prevention and agent tampering

detection, discussed before.

2.2.1. Closed Network
We introduce a new object, namely K ey Server , into our system, which provides a public key

infrastructure (or PKI) for Agents and hosts in the system. Each Agent or host should have a public

key certificate registered to the Key Server for encryption or decryption purposes later on. The

Launch Server generates a pair of keys for each agent created, and registers the public key of the

Agent with a unique agent identification number (or Agent ID) to the Key Server at run-time. On the

Host 1
Malicious

Host
Host N

Launch Server

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 20

other hand, each host must identify itself and register its public key with its unique network address

(in our implementation, IP address is used) to the Key Server at the time it starts; it is a means as a

formal paper writing. Thus, in effect, this establishes a closed set of hosts registered and known to

the Key Server. Agents are then confined to travel among a closed network formed by these hosts.

This can get rid of foreign malicious hosts.

2.2.2. Agent Tampering Prevention
In order to protect query integrity, an agent can encrypt its list of products and quantities using its

private key before it is launched from the Launch Server. Since only the Launch Server possess the

private key for the agent, malicious hosts would not be able to duplicate the encrypted product and

quantity lists.

Moreover, each host should encrypt the query results returned to the agent with the public key of the

agent. Therefore, the malicious host cannot modify the query result since it does not have the private

keys of other hosts. The Launch Server can decrypt the original query result, and confidentiality of

query results is achieved.

 Figure 10. Agent Tampering Detection.

2.2.3. Agent Tampering Detection
The itinerary of an Agent is a variable hidden by the Concordia system and normally not accessible.

However, hosts can actually have access to the itinerary of an incoming agent by controlling the

execution of the Concordia Agent Transporter. A malicious host would be able to change the

itinerary of the agent. As before, the straightforward method of protecting the itinerary is to encrypt

it. However, this requires modification of the agent transporter of Concordia, i.e. hacking the source

code of Concordia API, which is not desirable and also not feasible to do so.

We work around the problem by introducing a new variable, namely Encrypted_Itinerary, which

makes use of the itinerary of an Agent. When an agent arrives at a host, the host should read the

itinerary of the agent, and encrypt the host name (or IP address) of the next host using its own

private key to form an encrypted itinerary EI1. EI1 will be assigned to Encrypted_Itinerary. Then,

I, {Product ID list} changed to: EA(Product ID list)

II, {Product Quantity list} changed to: EL(Product Quantity list)

III, {Query result} changed to: EH(Query result)

Key

A: agent;

H: host;

EX(Y): the ciphertext of Y encrypted by the private key of X;

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 21

when the agent arrives at a second host, the itinerary of the Agent is changed as the entry for the

visited host has been removed. The second host should encrypt the new itinerary, with its own

private key. However, before this happens, EI1 should concatenate with the itinerary it reads from the

Agent. At last, the concatenated list will be assigned to Encrypted_Itinerary. This keeps on to form a

chain of encrypted itineraries. When the agent returns to the Launch Server, the Launch Server will

decrypt the chain of encrypted itineraries layer by layer using the public keys of the hosts. This

enable our system to check the consistency of all itineraries and check with a copy of the original

itinerary it saves before launching the Agent. If a malicious host ever changes the itinerary of the

agent, it is likely to be reflected in the encrypted itinerary chain and detected finally.

 Figure 11. Agent Tempering Detection.

2.3. Implementation
We have introduced 3 main modifications to SIAS, namely the RSA object, K ey Server object and

cryptographic measures.

2.3.1. RSA Object
The RSA object is the core part of our public key infrastructure (PKI).

This object implements the famous asymmetric cryptographic algorithm, RSA. When a RSA is

constructed, a pair of private and public keys will be generated. With the keys, 2 main operations can

be carried out, which are encrypt and decrypt. These two operations change a message (a character

string only) into a ciphertext (a character string), and vice versa.

New attribute for Agent: Encrypted_Itinerary

Encrypted_Itinerary = EH1(Next Host at Host H1) + EH2(Next Host at Host H2)+ ...

+ EHn(Next Host at Host Hn);

At Launch Server, we compare original itinerary to :

DH1(EH1(Next Host at Host H1)) + DH2(EH2(Next Host at Host H2))+ ...+

DHn(EHn(Next Dost at Host Hn))

;

If they are not equal, we can detect which host is the malicious one by detecting

which decrypted part goes wrong.

Key

H: host;

EX(Y): the ciphertext of Y encrypted by the private key of X;

DX(Y): the plaintext of Y decrypted by the public key of X;

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 22

We implement this RSA object with a great help from the Java class called BigInteger , in the

package j ava.math. It provides such helpful methods as modulus arithmetic that enable us to

implement the RSA algorithm a lot easier. Figure 12 shows the object details of RSA.

 Figure 12. Object details of RSA.

2.3.2. Key Server
The Key Server acts as a Certificate Authority (CA) in our PKI. The Key Server is used to store and

distribute public keys that belong to Agents or hosts. Whenever a Database Server starts up or an

Agent is created, a public key is stored to the Key Server by calling the putPublicKey method of Key

Server. Whenever the Launch Server needs a host's public key or a Database Server needs an

Agent's public key, it calls the getPublicKey method of Key Server. The connection between

Database Servers or Launch Server and the Key Server is done by Java Remote Method Invocation

(RMI).

A question may be asked: Why use RMI instead of agents to transmit the public keys?

The answer is simple. We use PKI to solve the security problem in our agent system. But, if the PKI

involves agents, a new security problem concerning agents will be raised. Then, we may need to use

another security measure to solve the induced problem. This will start an endless loop in building the

PKI. So, we choose to use RMI in transmission of keys in our PKI. Although RMI may induce other

security problems, it is more feasible than using agents. A solution to RMI security problem is to use

Secure Socket Layer (SSL) transmission. This can prevent intruders from stealing the public key or

doing replaying attack.

RSA

 Attributes:

 - private key & public key

 This key pair is generated when the object is constructed. The

length of a key is 128 bit.

 Methods:

 - getPrivateK ey

 It is used to retrieve the private key

 - getPublicK ey

 It is used to retrieve the public key

 - encrypt

 It accepts a string and a key. It returns a ciphertext as a string.

 - decrypt

 It accepts a ciphertext and a key. It returns a plain text as a string.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 23

Figure 13 shows the object details of Key Server.

 Figure 13. Object Details of K ey Server.

2.3.3. How Cryptographic Measures Work
With the introduction of the above objects, our security system still needs a mechanism in order to

detect or prevent security attacks. Our design is to use Launch Server to detect whether attacks

happen or not.

Before an Agent leaves the Launch Server, the Launch Server will do several security measures first.
�

First, the Launch Server will back up the original list of product IDs and list of product

quantities. This is used for validating the 2 lists when the Agent comes back.
�

Second, the Launch Server will back up the original itinerary. This is used to detect malicious

host if it alters the itinerary of the Agent.
�

At last, the Launch Server will encrypt the list of product IDs and list of product quantities.

Then, the Agent can be launched.

After an Agent has traveled through the network and goes back to the Launch Server, the Launch

Server will check the attributes inside the Agents against its backups.
�

First, the Launch Server will decrypt the list of product IDs and list of product quantities.

Then, it will check them against its backup versions. If this fails, it can report to the user that

security requirement is violated.
�

Second, the Launch Server will decrypt the Encrypted_Itinerary in the Agent in the way that is

specified in Figure 11. It will also check for the violation of security requirements.
�

If none of the above check is failed, the Launch Server can continue to report the cheapest

purchasing combination to user.

These measures have introduced additional attributes to Launch Server. The additional attributes are

K ey Server

 Attributes:

 - Hashtable key

 It is used to map Agent’s ID as well as host’s IP address to a RSA

public key.

 Methods:

 - getPublicK ey

 It is used to retrieve a public key by supplying a host’s IP address

or an Agent’s ID as the method argument.

 - getPrivateK ey

 It is used to hash a public key to the key hashtable with an

Agent’s ID or a host’s IP address as the hash key.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 24

all hashtables, so this can efficiently map Agent’s ID to the backup data. Figure 14 shows the

additional attributes to Launch Server.

 Figure 14. Addition Attr ibutes to Launch Server.

2.4. Flow Descr iption
When a user makes a request for product information by using a client program, the request is

received by the Launch Server. The Launch Server will create a new Agent and initialize the

variables according to the request made by the user. Next, the itinerary of the Agent will be

instantiated. But, before it launches, we create an RSA object for the created Agent. The Launch

Server then sends the public key of the Agent to the Key Server, and the private key is stored in the

Launch Server. The purpose of saving the private key in Launch Server is to avoid the tempering as

well as modification of the private key if it is stored inside an Agent.

Whenever it arrives at a Database Server, the Database Server will retrieve the public key of the

incoming Agent from the Key Server. The Database Server then uses the public key to decrypt the

list of product IDs. The query results are protected by using cryptographic techniques, so the Agent

will leave after all the query results are retrieved from the database. The Agent continues to visit

other hosts specified in its itinerary in a sequential way.

After it has visited all the hosts specified in its itinerary, it will return to the Launch Server. The

Launch Server will retrieve public keys of all the hosts that are specified in the itinerary of the

incoming Agent. Then, the Launch Server will check the integrity of the list of product IDs, also the

list of product quantities. Moreover, the Launch Server will check whether the itinerary is changed

or not. If all the security checks are passed, the Launch Server executes the reportCheapest of the

incoming Agent and saves the report into its hash table result. Or, the Launch Server will issue error

messages to the client saying that the Agent has been modified.

In Figure 15, we will describe the new flow of SIAS. Our current implement uses one Launch Server,

one Key Server and 26 Database Servers.

Additional Attr ibutes to Launch Server:

Hashtable originalProductID

 This maps Agent’s ID to the backup list of product IDs

Hashtable originalQuantity

 This maps Agent’s ID to the backup list of product quantities

Hashtable originalI tinerary

 This maps Agent’s ID to the backup itinerary

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 25

Figure 15. Flow Description of Secure SIAS. (1 of 2)

Host One
(Concordia Agent

Transporter)

Host Two
(Concordia Agent

Transporter)

Host N
(Concordia Agent

Transporter)

Launch Server
(RMI Server & Concordia

Agent Transporter)

Client Program
(Java Applet with RMI)

Step (1) Step (15)

Step (9) Step (11)

Step (13)Step (6)

Database Server
executes Step (7) & (8)

Launch Server exeutes
Step (2), (3), (4) & (5)

Key Server
(RMI Server)

Step (10)

Step (12)

Step (14)

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 26

Figure 16. Flow Description of the Secure SIAS. (2 of 2)

2.5. Secure Agent Transmission in SIAS
In this section, our focus is not on agent security. We focus on the security problem dealing with

transmission of agents between hosts.

As agent is travelling in the network, it is easy for people to tap the network and steal the agent

while transmission. The purpose of stealing the agent can be, for example, doing replaying attack;

the hacker can save the agents, and then sends it out again. In this way, the system cannot distinguish

whether the replaying agent is created by the user or not. This can violates the Authenticity of the

system. In order to prevent this kind of attack, we choose to use cryptographic technique to deal with

the problem.

2.5.1. Design
We adopt the idea of Secure Socket Layer (SSL) transmission in designing Secure Agent

Transmission. In SSL protocol, it uses RSA algorithm to achieve a secure transmission channel.

Explanation of steps:

1, Client program launches a request to the Launch Server upon user input by using RMI;

2, Launch Server creates an Agent object;

3, Launch Server initializes the Agent with user-specified products and quantities, and the

itinerary of agent;

4, Launch Server generates a RSA key pair for Agent;

5, Launch Server encrypts product IDs and quantities lists for Agents and registers the public

key of agent to Key Server;

6, Launch Server sends the Agent to the network;

7, Database Server on Host One retrieves public key of Agent from Key Server;

8, Database Server retrieves the required information for the incoming Agent, encrypts the

result using its own private key, and encrypt the itinerary of Agent.

9, Agent goes to the next destination;

10, Database Server on Host Two repeats Steps (7) & (8);

11, Agent goes to other hosts in its itinerary;

12, Database Server on every host repeats Steps (7) & (8);

13, Launch Server receives the returning Agent and calculates the cheapest purchasing

combination;

14, Launch Server decrypts the query product IDs and quantities to verify its integrity. It also

decrypts the encrypted itinerary to detect malicious host. After checking is finished, the

Launch Server sends a request to Key Server to destroy the public key of the Agent.

15, Launch Server reports the cheapest purchasing combination to client program.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 27

However, our original RSA implementation cannot handle encryption and decryption of binary data.

Therefore, we choose to use symmetric key cryptographic techniques to encrypt the transmitted data.

Nevertheless, we cannot exchange a symmetric key on the network as it is not secure to do so.

Therefore, we use the Diffie-Hellman K ey Exchange for exchanging the symmetric key between 2

hosts securely. With two hosts sharing the same symmetric key, we can encrypt all the data that is

need to transmit on the network.

 Figure 17. Envelop Agent Approach. (1 of 2)

Our approach is to use an Envelop Agent Approach to enclose the encrypted agent.
�

First, we have to use Diffie-Hellman K ey Exchange algorithm to exchange the symmetric key

between the two communicating hosts.
�

Then, we use the exchanged key to encrypt the agent on the sending host. We use bitwise XOR

to encrypt the whole agent.
�

As the object is messed up after encryption, the Agent Transporter at the receiving host cannot

distinguish whether it is an agent or a pile of garbage. Therefore, we introduce an Envelop

Agent in order to transmit the encrypted agent.
�

We put the encrypted agent inside the Envelop Agent, then we send the Envelop Agent out.

 Figure 18. Envelop Agent Approach. (2 of 2)

�

When receiving the Envelop Agent, the receiving host will decrypt the encrypted agent by

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 28

using the symmetric key exchanged between it and the sending host.

2.5.2. Implementation
We have introduced 3 new objects in order to achieve secure agent transmission. The approach is

very similar the RSA and Key Server.

2.5.2.1. DHKey Object

The DHK ey object contains a key pair, one is public and another is private. This object implements

the key generation of Diffie-Hellman K ey Exchange algorithm. It also implements the method for

changing object to bytes, and changing bytes to object. The encrypt and decrypt method is

implemented by using bitwise Exclusive OR.

 Figure 19. Object Details of DHK ey.

2.5.2.2. DHKey Server

DHK ey Server plays a similar role as the Key Server. It is used to store and distribute public keys

that belong to hosts. Whenever a Database Server or Launch Server starts, a public key of the host is

sent to and stored in DHKey Server by calling the putPublicKey method of DHKey Server.

Whenever the Launch Server or a Database Server needs a host’s public key, it calls the

DHK ey

 Attributes:

 - private key & public key

 This key pair is generated when the object is constructed.

 Methods:

 - getPrivateK ey

 It is used to retrieve the private key.

 - getPublicK ey

 It is used to retrieve the public key.

 - toByteArea

 It is used to transform an object to an array of bytes.

 - toObject

 It is used to transform an array of bytes to an object.

 - encrypt

 It is used to transform an object into an encrypted byte

array

 - decrypt

 It is used to transform an encrypted byte array to the

original object

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 29

getPublicKey method of DHKey Server.The connection between Database Servers or Launch Server

and the DHKey Server is done by Java RMI.

The reason for using Java RMI in connection with DHKey Server is the same as the Key Server. The

following figure (Figure 20) shows the object details of DHKey Server.

 Figure 20. Object Details of DHK ey Server.

2.5.2.3. Envelop Agent

Envelop Agent is an agent that is capable to carry an encrypted Agent. It doesn’t have any methods

as it is just used for transportation.

 Figure 21. Object Details of Envelop Agent.

2.5.3. Flow Description
When a user makes a request for product information by using a client program, the request is

received by the Launch Server. The Launch Server will create a new Agent and initialize the

variables and itinerary according to the request made by the user. But, before it launches, we retrieve

the public key of its next destination from DHKey Server. The Launch Server then computes the

symmetric key by using the private key stored in the Launch Server and also the retrieved public key.

We then encrypt the Agent and put it into the Envelop Agent. At last, we send out the Envelop Agent

to the network.

DHK ey Server

 Attributes:

 - Hashtable key

 It is used to map host’s IP address to a Diffie-Hellman public key.

 Methods:

 - getPublicK ey

 It is used to retrieve a public key by supplying a host’s IP address

as the method argument.

 - getPrivateK ey

 It is used to hash a public key to the key hashtable with a host’s

IP address as the hash key.

Envelop Agent

 Attributes:

 Byte Array Encrypted_Agent

 - It is an array of bytes for carrying an encrypted Agent.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 30

Whenever the Envelop Agent arrives at a Database Server, the Database Server will retrieve the

public key of its previous host from the DHKey Server. The Database Server then uses the retrieved

public key and its private key to generate a symmetric key to decrypt the encrypted Agent. Then, the

Database Server can use the original Agent to make query. After the query has been finished, the

original Agent must be encrypted again. However, the Database Server has to generate another key

because the target host has changed. Again, it retrieves public key, generate a symmetric key with the

public key and its private key, encrypt the Agent, put the encrypted Agent back to the Envelop Agent,

and at last send it to the next host.

After it has visited all the hosts specified in its itinerary, it will return to the Launch Server. The

Launch Server will retrieve public keys of the previous host that the Agent has travelled. Then, the

Launch Server will decrypt the encrypted Agent, and carry out reportCheapest of the original Agent.

At last, the result will be sent to the user.

Figure 22. Flow Description of Secure Agent Transmission. (1 of 2)

Host One
(Concordia Agent

Transporter)

Host Two
(Concordia Agent

Transporter)

Host N
(Concordia Agent

Transporter)

Launch Server
(RMI Server & Concordia

Agent Transporter)

Client Program
(Java Applet with RMI)

Step (1) Step (17)

Step (11) Step (13)

Step (15)Step (6)

Database Server
executes Step (7) - (10)

Launch Server exeutes
Step (2), (3), (4) & (5)

DHKey Server
(RMI Server)

Step (12)

Step (14)

Step (16)

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 31

Figure 23. Flow Description of Secure Agent Transmission. (2 of 2)

Explanation of steps:

1, Client program launches a request to the Launch Server upon user input by using RMI;

2, Launch Server creates an Agent object;

3, Launch Server initializes the Agent with user-specified products and quantities, and the

itinerary of agent;

4, Launch Server retrieves public key of next host of the Agent to generate a symmetric key;

5, Launch Server encrypts the Agent using the symmetric key, and puts the encrypted Agent

into the Envelop Agent;

6, Launch Server sends the Envelop Agent to the network;

7, Database Server on Host One retrieves public key of Launch Server from DHKey Server;

8, Database Server generates a symmetric key and decrypts the encrypted Agent inside the

Envelop Agent.

9, Database Server retrieves the required information for the incoming Agent

10, Database Server retrieves the public key of Host Two and generates another symmetric key

for encrypting the Agent. After the Agent is encrypted, it is put back into the Envelop Agent.

11, Envelop Agent goes to the next destination;

12, Database Server on Host Two repeats Steps (7) to (10);

13, Agent goes to other hosts in its itinerary;

14, Database Server on every host repeats Steps (7) to (10);

15, Launch Server receives the returning Agent and retrieves the public key of Host N. It

generates a symmetric key and decrypts the encrypted Agent in the Envelop Agent;

16, Launch Server calculates the cheapest purchasing combination after decrypting the Agent;

17, Launch Server reports the cheapest purchasing combination to client program.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 32

3. Reliability in SIAS

SIAS is a web-based e-commerce system. Not only security is an important aspect, but also

reliability is a vital feature of a successful system. As an e-commerce system always involved such

critical data as money transaction, frequent data lost is not acceptable. Therefore, we have to design

measures in order that when a component fails, it can be restarted within a certain amount of time.

As our system is highly dependent on the performance of Concordia API, the faults that are raising

from the Concordia API are not avoidable. Therefore, we cannot do anything to stop the failure of

anyone of the Concordia components. Hence, we have to design measures to restart a Concordia

component whenever it fails.

3.1. Design
We have designed an original approach that can efficiently restart Concordia components whenever

a failure is detected. We will also discuss its advantages and weaknesses.

3.1.1. Faulty Components
SIAS is built on top of the Concordia API, therefore many components are having chances to fail.
�

Database Server is one of the Faulty Components. In Concordia architecture, whenever an agent

wants to travel to next destination, but, in fact, the expected host is down or does not exist, an

exception will be raised, and the agent will stop travelling on the network. More than that, the

agent will be destroyed also. This is an undesirable consequence for a data-critical mobile agent

system. As mobile agent carries data or result with it while it is travelling on the network; such

an exception will lead a total data loss.

Moreover, as the Database Server provides an execution environment for Agent to execute its

code, the failure of the Database Server will also destroy the Agent that is executing on the host.

This will also lead to a total data loss.

�

Launch Server is also one of the Faulty Components. As one of the uses of Launch Server is to

send and receive Agents, it also has the same problem as the Database Server.

The best case is:

 Launch Server fails when an Agent is just created. This loss will have the least effect.

No data will be lost in this case.

The worst case is:

 Launch Server fails when an Agent returns / is returning to Launch Server. This will

lose all the data that the Agent has collected on the network.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 33

However, the Launch Server has stored many important data that is employed in the security

measures of SIAS, such as private keys of Agents. The failure of the Launch Server will

eventually lead to the recovery of the whole system. One simple reason is that we cannot

recover the private keys of Agents when the Agents come back after the recovery; those

corresponding public keys will become useless, and the Agents that are on the network will fail

the security check with the lack of private keys. Therefore, we have to recover the whole

system.

�

The Key Server and DHKey Server are not Faulty Components since they do not involve

Concordia component. However, if they fail, for other reasons such as failure on power supply,

their recovery processes will lead to a whole system recovery. It is because their failures will

lose all the public keys stored in them. Without the public keys, the public key infrastructure

as well as the secure agent transmission will be failed. The only way is to restart the whole

system.

The above context has listed the situations of failures as well as the consequences when such failures

do happened. The following subsections will describe the measure to tackle the above failure

behaviors.

3.1.2. Logging System
One of our approaches is to use LOG to monitor the system status. With a carefully designed

Logging System, we can determine the state as well as the availability of a component by inspecting

the Log File of each component. We can search for Error M essages and Abnormal States in order

to determine whether a component is needed to restart or not.

In our design, we have one Launch Server, one Key Server, one DHKey Server as well as 26

Database Servers. Totally, we have 29 Log Files to inspect. Each Log File has at most two states to

be indicated, one is Initialization and another one is Handle Agent.

3.1.2.1. Logging in Database Server

For Database Server, the Initialization stage involves the following processes:
�

Starting an Agent Transporter, which is a Concordia object. If the Database Server fails to start

the Agent Transporter, it should leaves an Error Message on the Log File stating that it fails in

the Initialization Stage, and the Database Server needs to be restarted.

�

Sending a public key to Key Server and DHKey Server. If the Database Server fails to send the

keys to Key Serve or DHKey Server, this indicates that one of the servers, or both of them, is out

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 34

of order. The Log File of Database Server should write an Error Message on its Log File to

indicate the failure in the Initialization Stage. However, no need to restart the Database Server

this time, as the failure of Key Server or DHKey Server will lead to a whole system recovery.

This will be discussed soon.

 Figure 24. A Database Server Log File.

For the Handle Agent stage, it involves the following processes:
�

The notification of the arrival of the Agent. This process will not involve any exceptions.

�

Querying the SQL server. In this process, mainly SQL server exception will be caught. For

example, the SQL server is down or the products do not exist in the SQL server. In this case, the

Error Message does not need to write on the Log File. It is because the failures are coming from

the SQL server, not the Database Server.

�

Sending Agent to the next host. This process will involve failures, especially this will cause the

whole Agent to be destroyed because of the failure of the next host. This failure is not worth

writing Error Message to Log File since the failure is not happened on the local Database

Server, rather it happens on the next Database Server. However, we can write the Error

Message to another host. This situation will be discussed and solved in the coming subsection.

3.1.2.2. Logging in Launch Server

For Launch Server, the Initialization stage involves the following processes:
�

Starting an Agent Transporter. The situation is similar to that of Database Server. If the Launch

Server fails to start the Agent Transporter, it should write an Error Message on the Log File

stating that it fails in the Initialization Stage, and the Launch Server needs to be restarted.

�

Sending a public key to DHKey Server. It is the same case as the Database Server. If the Launch

Server fails to send the key DHKey Server, this indicates that the server is down. This needs a

[initialization] Local Host : 137.189.88.211

[initialization] Public Key is sent to KeyServer

[initialization] Public Key is sent to DHKeyServer

[initialization] Initialization Done.

[initialization] Listening to Incoming Agents

[handle agent] Agent arrived

[handle agent] finish query server

[handle agent] send agent to next host

..........

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 35

whole system recovery.

 Figure 25. A Launch Server Log File.

The Handle Agent stages involves several processes:
�

In an Agent creation process, it needs to send public key to Key Server. This may fail if the Key

Server is down. This needs to write an Error Message to the Log File of the Launch Server. Also,

this Error Message indicates that the whole system needs to be recovered. Also, the same

situation happens when the Agent needs to retrieve the public key from DHKey Server in order

to travel to the next host.

�

When the Agent comes back to the Launch Server, the only point that it will fail is to get public

keys from Key Server in order to handle the implemented security measures. If the Key Server

fails, this will also needs a whole system recovery.

3.1.2.3. Logging in Key Server and DHKey Server
For Key Server and DHKey Server, their stages are different from the previous components.

Although they still have the initialization stage, after that, they are waiting for request to store and

retrieve keys. Therefore, the failure can only be reflected in the initialization stage. The failure of

these servers will cause a whole system recovery.

After discussions of the Logging System, the data inside Agent is still not being protected. We cannot

stop Agent from travelling to fail servers. We still need another mechanism to improve the reliability

of the current design.

3.1.3. Connection Availability Detection
We introduce another mechanism to protect the data inside Agent. It is called Connection

Availability Detection, CAD. By using CAD, we can successfully stop Agent from travelling to fail

servers until those servers are being restarted.

Mon Apr 17 05:46:34 CST 2000 >> [initialization] Public Key is sent to DHKeyServer

Mon Apr 17 05:46:34 CST 2000 >> [initialization] Initialization Done.

Mon Apr 17 05:50:05 CST 2000 >> [agent creation] An agent is created

Mon Apr 17 05:50:08 CST 2000 >> [agent creation] agent is launched

Mon Apr 17 05:51:50 CST 2000 >> [handle agent] received an agent

Mon Apr 17 05:51:51 CST 2000 >> [agent creation] An agent is created

Mon Apr 17 05:51:52 CST 2000 >> [agent creation] agent is launched

Mon Apr 17 05:54:40 CST 2000 >> [handle agent] received an agent

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 36

 Figure 26. CAD, Connection Availability Detection.

The idea behind CAD is simple:
�

Before an Agent leaves a host, it has to detect whether the connection to the next host is

available or not. The method is analogous to the UNIX command PING. Before the Agent goes

on, we PING the next host and wait for the next host to response.
�

If next host is alive, it should response to the request by the Agent. Once the Agent receives such

a reply, it is guarantee that the connection the next host is available. Then, the Agent can travel

to the next host without data loss.
�

If the next host is dead, it will not be able to reply such a request. In this case, we have come up

with 2 solutions:

1, The Agent should continue to send requests to the next host until the next host replies the

message. This involves a busy wait. This wastes a lot of resources and is not efficient to do

so.

2, The Agent should give up sending requests to the next host. Instead of travelling to the next

host in its itinerary, the Agent puts the current next host to be the last position in its itinerary,

i.e. skip that host. Then, the Agent detects the connection availability of the new next host.

This method is more efficient than the previous one.

�

However, solution 2 brings about a fatal problem to our design: it does not fit our security

requirement. As, in solution 2, the Agent is able to change its itinerary, this will violate the

Agent Tempering Detection design. With this mechanism, the security measure is not able to

distinguish whether the Agent suffers from a security attack or not because the itinerary is being

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 37

changed and the security requirement will report a failure by decrypting the Encrypted_Itinerary

inside Agent. Although solution 1 has a hit on system performance, solution 2 violates the

security requirement. Therefore, we choose solution 1 to be our CAD design.

With the CAD and Logging System working together, we can guarantee that the new SIAS design is

a Fault-Tolerance design. However, the system still cannot prevent data loss in some situations.

3.1.4. Weakness in Fault-Tolerance Design
In our current design, we still cannot stop data loss in some failure situations.

�

When the failures are happened in Launch Server, Key Server or DHKey Server, based on the

previous analysis, the whole system needs to be recovered. All the processes that the Agents are

running on will be terminated. Hence, a total data loss will be resulted. This kind of data loss

cannot be avoided as only the recovery of the failed component will violate the security design

and also the secure agent transmission design.

�

When the failure occurs in the server, mainly Database Server and sometimes Launch Server,

that the Agent resides, the Agent will be destroyed as its execution environment is destroyed also.

This kind of data loss is also not avoidable.

Having discussed the whole fault-tolerance design, we need a new component to take the

responsibility to restart the faulty component(s). In the coming section, we will discuss the

implementation of the fault-tolerance design.

3.2. Implementation
We have introduced a new component called M onitor Program to handle the Component Recovery

and CAD, Connection Availability Detection. The Monitor Program is written Perl, which is

available in all the UNIX workstations.

A question is may be raised: Why don’t we use Java instead of Perl to implement the Monitor

Program?

The reason is that the whole design of SIAS is built on top of Java. It seems that Java is an obvious

choice of the implementation of Monitor Program. However, what if the failure is not resulted in

Concordia components, instead, it happens in the Java Virtual Machine. If our Monitor Program is

also implemented by Java, it will fail too. Therefore, we choose a separate platform to implement the

Monitor Program. The Monitor Program will fail only if the Perl interpreter fails, which is seldom

happens.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 38

3.2.1. Implementation of Logging System

 Figure 27. Log Analysis.

The Logging System is implemented in the Monitor System.
�

First, the Monitor Program opens the Log File, and reads the Log File line by line. By reading

the Log File, the Monitor Program knows what the current state of the component is by reading

the state tag at the start of each line. The Monitor Program will look for Error Message

throughout the whole Log File.

�

If no Error Message is found, the Monitor Program will search for Error Message in Log Files

of other components.

�

If Error Message is found, the Monitor Program will send a restart signal to the target

component. The target component will be killed and start running again. If the error needs a

whole system recovery, the Monitor Program will send restart signals to all components in the

system. After sending the restart signal(s), the Monitor Program will continue to search for

Error Message in Log Files.

�

A forever loop is used in Monitor Program to continuously check all the components in the

system.

The restart signal is another Perl program. The restart signal is sent to the target machines by using

RSH, which is a UNIX command. With the Monitor Program and the restart signal program, we

can implements the Logging System.

3.2.2. Implementation of Connection Availability Detection
The implementation of CAD involves the modification of Launch Server and Database Servers. Also,

the Monitor Program has also taken part in the CAD implementation.

......

[initialization] Listening to Incoming Agents

[handle agent] Agent arrived

[handle agent] Error in connecting to SQL Server

......

State Tag

Error Message

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 39

3.2.2.1. Modification in Launch Server and Database Servers

In Launch Server and Database Servers, we have to add a code segment in order to PING the next

destination. The PING program is written in Java by using the RMI. The idea is to check whether a

Logic Address, RMI Address, is bind to a Physical Address, IP Address, or not.

If the RMI Address does not exist, the PING program will catch an exception. Then, the Agent

should issue another PING request to the target machine until the Monitor Program restarts the

server. If the RMI Address exists, the PING program will return true and the Agent can proceed to the

next host.

With the Logging System as well as the CAD implementation inside Launch Server and Database

Servers, the Fault-Tolerance implementation is completed. However, we can enhance the efficiency

of the current Fault-Tolerance by extra implementation in Monitor Program.

3.2.2.2. Modification in Monitor Program
In our current implementation, whenever the CAD mechanism detects a broken connection, the

Agent has to wait until the Monitor Program restarts the target component. However, we can have

the detection to happen before the Agent does such job. The trick is to put the CAD mechanism

inside the Monitor Program.

Whenever the Monitor Program is inspecting the Log File of a server, the Monitor Program can also

PING that server. If the disconnection cannot be reflected in the Log File, we can still uses CAD

mechanism to recover such failures.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 40

3.2.3. Flow Description of Monitor Program

Figure 28. Flow Description of M onitor Program.

�

Step (1)

When the Monitor Program starts, it first inspects Server One, it may be a Launch Server,

Key Server, DHKey Server or Database Server. It inspects the Log File of Server One in

order to search for Error Messages. If Error Message is found, it will send a restart signal

to Server One. Then, it carries out CAD, Connection Availability Detection, by the Ping

Program. If Server One fails in CAD, the Monitor Program will send restart signal to

Server One.
�

Step (2) repeats the processes in Step (1).
�

The same step is done throughout all the servers in the network.
�

Let Server N is the last server in the network. After Step (3) has finished the processes, it goes

back to Step (1). This cycle will go on forever until the Monitor Program dies.

Monitor

Program

Server One

Server Two

Server N

Step (1)
 Step (2)

Step (3)

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 41

4. Evaluation of Secure SIAS

In this section, we evaluate the security design we implemented. There are two aspects to evaluate.

First, we analyze the security provided to SIAS by the additional measures. Then, we measure the

performance overhead introduced to the system by such measures.

4.1. Secur ity Analysis
The security of the additional measures lies mainly on the introduction of the Key Server that

facilitates the use of public key cryptography. Assuming the Key Server and the communication

channel with it is secure enough, which can be justified by the Secure Socket Layer, the closed

network we want can be built effectively.

Furthermore, if the keys of Agents are managed properly, the prevention of modification of the

encrypted product and quantity lists of an Agent by a malicious host is supported by the RSA

encryption algorithm, of which the difficulty to break is equivalent to the factoring problem. The

time complexity for breaking the system depends on the length of the key in number of bits. The

longer the key is, the more secure would be the system. In our implementation, we have chosen a

key length of 128 bits. This would be sufficiently secure for domestic purpose.

Similarly, a malicious host would understand to modify the encrypted query results collected by an

Agent from another host at the same complexity. Therefore, integrity of queries, and confidentiality

and integrity of query results can be achieved by prevention of tampering.

For the detection of modification to itinerary of an agent by a malicious host, suppose there is only a

single malicious host, out of N hosts, that wants to modify the itinerary of an agent. Since the

encrypted itineraries are chained together, the malicious host would need to fake all the (N-1)

encrypted itineraries from other hosts to avoid being detected, which would be too complex to an

ordinary attacker. Therefore, the itinerary of the agent can be assured, and authenticity achieved.

However, as mentioned before, there do exist other attacks that we have not considered completely,

such as replaying attacks, timing attacks, and repeated cipher-text attacks.

4.2. Per formance M easurements
We have tested the times for SIAS to launch a single agent before and after implementation of the

security mechanisms described in Section 6. Round trip times (RTTs) required for an agent to travel

around an electronic market, consisting of 26 hosts, are measured under different situations. We have

chosen 26 Sun SPARC workstations, listed in Figure 29. They have similar hardware configuration,

so the overhead introduced by each machine is more or less the same.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 42

 Figure 29. Database Server Locations

To evaluate the performance overhead introduced, we have tested the times for SIAS to launch a

single agent with and without security measures. Round trip times (RTTs) required for an agent to

travel around an electronic market of different number of hosts, with and without security

enforcement, are measured respectively. Queries of different sizes (number of product items) have

been tested. The results are plotted in Figures 30 (without security) and 31 (with security) below.

137.189.88.173 (sparc73)

137.189.88.174 (sparc74)

137.189.88.175 (sparc75)

137.189.88.176 (sparc76)

137.189.88.177 (sparc77)

137.189.88.181 (sparc81)

137.189.88.182 (sparc82)

137.189.88.183 (sparc83)

137.189.88.184 (sparc84)

137.189.88.185 (sparc85)

137.189.88.186 (sparc86)

137.189.88.187 (sparc87)

137.189.88.188 (sparc88)

137.189.88.189 (sparc89)

137.189.88.190 (sparc90)

137.189.88.191 (sparc91)

137.189.88.211 (hpc1)

137.189.88.212 (hpc2)

137.189.88.213 (hpc3)

137.189.88.214 (hpc4)

137.189.88.215 (hpc5)

137.189.88.216 (hpc6)

137.189.88.217 (hpc7)

137.189.88.218 (hpc8)

137.189.88.219 (hpc9)

137.189.88.220 (hpc10)

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 43

Figure 30. Average Agent Travelling Time (without Security).

Figure 31. Average Agent Travelling Time (with Security).

Results show that, the RTT for an agent to travel in SIAS changes more or less linearly over the

number of hosts in the system. This is due to the additional time to travel an additional host, and the

overhead for each additional host is more or less the same. Moreover, the RTT is also linearly

increasing as the number of products of the query increases. This can be explained by the increases

in number of database transactions and time to transport an agent. When security is enforced, the

RTT increases in general. For the maximum number of hosts of 26, and maximum size of query of

90 products, the RTT increases by 100 seconds, from 230 seconds to 350 seconds. This can be

explained by the extensive use of the RSA algorithm to encrypt and decrypt each item, which is time

consuming, especially when the key is long. Therefore, we see a trade-off between security and

performance in SIAS.

������� � 	��
��	�� ����
�� � ��� � � � ��	�
�� ���

�
� �������
� ���������
� � �������
� ���������
��� �������
�����������

� � ����� ����� � � � � � � � � � � � ���

!#"%$�"�&('#"�) �)

��� � � �) � * "���+�)

� �-, � "�+�.�* �)
� �-, � "�+�.�* �)
���-, � "�+�.�* �)
/ �-, � "�+�.�* �)
� �-, � "�+�.�* �)
0��-, � "�+�.�* �)
� �-, � "�+�.�* �)
1��-, � "�+�.�* �)
� � , � " + . * �)

2
3�4 5 6 7�4(287�4 9 :�;<5 6 3�4 = = > 9 7�;<> ?848@ AB> : C�D�4 E F�5 > : G�H

I
J I�I�I�I
K I�I�I�I�I
K J I�I�I�I
L�I�I�I�I�I
L J I�I�I�I
M�I�I�I�I�I
M J I�I�I�I

K M JONQPRK�KSK M K JTK NTK P L K L�MSL J

U(V�W V X(Y�V�Z : Z

?�> = = Z 4 E V�9 [�Z

K I�\ 5 V�[�F E : Z
L�I�\ 5 V�[�F E : Z
M�I�\ 5 V�[�F E : Z
] I�\ 5 V�[�F E : Z
J I�\ 5 V�[�F E :
^�I�\ 5 V�[�F E : Z
N I�\ 5 V�[�F E : Z
_�I�\ 5 V�[�F E : Z
P I \ 5 V [F E : Z

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 44

Conclusion

We studied the technology of autonomous mobile agents and discussed the problem of malicious

hosts in a mobile agent system. We implemented SIAS as a sample application of mobile agents,

which reduces communication cost and allows delegation of tasks. We addressed some security

problems of malicious hosts in SIAS, and developed a primitive approach to protect the agents. We

analyzed the security of our approach, and believe it is strong enough for domestic purpose. We

measured the performance overhead of the security measures, saw a trade-off between performance

and security for SIAS, and learned that it takes time for a malicious host to attack an agent. We

analyzed the reliability of SIAS and implement a fault-tolerance design of SIAS. We believe that

mobile agent technology will be a new trend in electronic commerce technology.

Acknowledgement

We would like to express our gratitude to Michael Rung Tsong LYU, our project supervisor. He has

provided many valuable suggestions and comments to us throughout this project. We are much

appreciated by his patience and kindness in advising us.

Moreover, we would like to thanks Anthoy, H.W. Chan, CSE/CUHK M.Phil Year 2 student, which

helps us a lot in discussing the security of mobile agent.

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 45

Reference

[1] Danny B. Lange and Mitsuru Oshima, “Programming and Deploying Java(TM) Mobile Agents

with Aglets(TM)” .

[2] IBM Aglets Software Development Kit Home Page, URL: http://www.trl.ibm.co.jp/aglets/

[3] Concordia - Java Mobile Agent Technology, URL:

http://www.meitca.com/HSL/Projects/Concordia/

[4] ObjectSpace Voyager, URL: http://www.objectspace.com/products/prodVoyager.asp

[5] Java(TM) Cryptography Extension, URL: http://java.sun.com/products/jce/index.html

[6] Java(TM) Remote Method Invocation (RMI), URL:

http://java.sun.com/products/jdk/1.3/docs/guide/rmi/index.html

[7] Fritz Hohl, "A Model of Attacks of Malicious Hosts Against Mobile Agents", 4th Workshop on

Mobile Object Systems (MOS'98): Secure Internet Mobile Computations

[8] "SIAS: A Secure Shopping Information Agent System", Anthony H. W. Chan, T. Y. Wong, Caris

K. M. Wong, and Michael R. Lyu accepted by Fourth International

Conferences on Autonomous Agents (AGENTS 2000), Spain, June 3-7, 2000

[9] “SIAS: A Secure Shopping Information Agent System”, Anthony H. W. Chan, T. Y. Wong, Caris

K. M. Wong, and Michael R. Lyu accepted by the 15th International Conference on Information

Security, Beijing, China,

[10] “Design, Implementation, and Experimentation on Mobile Agent Security for Electronic

Commerce Applications” Anthony H. W. Chan, T. Y. Wong, Caris K. M. Wong, and Michael R.

Lyu accepted by The 2000 International Conference on Parallel and Distributed Processing

Techniques and Applications, June 26 - 29, 2000 Monte Carlo Resort, Las Vegas, Nevada, USA

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 46

Appendix

A Statistical Comparison of different designs of SIAS

Primary Design
M odule Name Lines of Code

Agent 318
Database Server 134
Launch Server 186
Client Program 533

Total number of lines of code = 1171

Secure Design
M odule Name Lines of Code

Agent 344
Database Server 208
Launch Server 432
Client Program 585
RSA 276
Key Server 198
Simulation of Malicious Host 204

Total number of lines of code = 2247

Secure Agent Transmission Design
M odule Name Lines of Code

Agent 344
Database Server 325
Launch Server 553
Client Program 791
DHKey 183
DHKey Server 184
Envelop Agent 54

Total number of lines of code = 2380

Department of Computer Science and Engineering, CUHK Final Year Project Report

LYU9905 Security in Mobile Agent E-Commerce Systems Page 47

Fault Tolerance Design
M odule Name Lines of Code

Agent 344
Database Server 325
Launch Server 553
Client Program 791
Monitor Program 143
Ping Program 29
Restart Program 96

Total number of lines of code = 2185

Final Design (Basic Design + Secure Design + Secure Agent Transmission + Fault Tolerance

Design, with optimization of code)
M odule Name Lines of Code

Agent 280
Database Server 334
Launch Server 677
Client Program 761
RSA 278
Key Server 117
Simulation of Malicious Host 403
Envelop Agent 59
DHKey 179
DHKey Server 108
Monitor Program 143
Ping Program 29
Restart Program 96

Total number of lines of code = 3464

