

LYU9904 Final Report

Multi Model Digital Video Library

Department of Computer Science and Engineering,

The Chinese University of Hong Kong

Supervisor:

Prof. Michael Lyu

Student:

Jacky Ma

Joan Chung

Author of report:

Jacky Ma

1
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

AAbbssttrraacctt

This project, titled “Multi-Model Digital Video Library” , is targeted to built the skeleton of a

DVL system. We are aimed at an extensible framework that is modular in design, such that

enhancements can be implemented incrementally. In our implementation, the system includes

over 1Gb of video content, a query server, and a Java Applet Client which users can do

text-based search, browsing the result set quickly, and select videos to playback.

In this report, we will talk about the backgrounds of Digital Video Library Systems, including

the important issues and the techniques addressing the issues. Then we will move onto the

approach we taken in this project: how we defined our focus, what kind of tools did we use,

and also some possible system models we could chosen from. After introducing the approach,

we will draft an outline of our implementation, both in a system perspective and a modular

perspective, as well as introduce our user interface to end this section. Then we will go

through a discussion some issues on the implementation and come to a conclusion finally.

2
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

CCoonntteennttss

ABSTRACT ... 1

CONTENTS... 2

1. BACK GROUNDS.. 4

1.1 ISSUES ABOUT DIGITAL VIDEO LIBRARY .. 4

Building Video Databases.. 5

Indexing the Video Contents... 6

Breaking the Video into Segments... 7

Retrieving Video... 8

1.2 TECHNIQUES ADDRESS DVL ISSUES... 9

Text description of Video...11

Speech Analysis..11

Image Analysis..11

Natural Language Processing.. 13

2. APPROACH .. 14

2.3 FOCUS AND TARGETS .. 14

2.4 EQUIPMENTS & FACILITIES.. 15

2.5 PROGRAMMING TOOLS.. 16

Video Playback API - JMF... 17

Structured Data - XML... 23

Data management – JAXP... 28

2.6 JAVA XML SOLUTION MODELS.. 31

Client side - Graphical Java Applications.. 33

Client and Server side - Application Servers.. 34

Web-based Applications... 35

3. DESIGN & IM PLEM ENTATION .. 37

3.7 SYSTEM DESIGN.. 37

Overview ... 37

Implementation in Stages... 39

3.8 SYSTEM MODULES.. 42

3
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

JDVLVideo... 43

JDVLMsg... 44

JDVLServer ... 45

JDVLApplet ... 46

3.9 VIDEO PREPARATION AND INDEXING.. 50

Video, Icons, Titles and Scripts... 50

XML Database... 50

3.10 USER INTERFACE... 51

4. DISCUSSION... 55

JMF API vs. QuickTime for Java API... 55

XML vs. Database.. 55

Display Chinese Fonts on English platform... 56

5. CONCLUSION .. 57

ACK NOWLEDGEM ENT... 58

APPENDIX A: RESOURCES... 59

APPENDIX B: CODE STATISTIC .. 60

4
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

11.. BBaacckkggrroouunnddss

Vast digital libraries of information will soon be available on the Information

Superhighway as a result of emerging technologies for multimedia data processing.

These libraries will profoundly impact the conduct of business, professional, and

personal activity. However, it is not enough to simply store and play back video (as in

currently envisioned commercial video-on-demand services); to be most effective, new

technology is needed for searching through these vast data collections and retrieving

the most relevant selections.

The rise of Digital Video Library is aimed at addressing these needs: Developing new

technologies for data storage, search, and retrieval, and embedding them in a video

library system for use in education, training, sports and entertainment. Additional

applications include the recording and subsequent search of corporate meetings and

professional conferences. The new digital video library technology will allow more

independent, self-motivated access to information for self-teaching and exploration,

which can bring about a revolutionary improvement in the way education and training

are delivered.

1.1 Issues about Digital Video Library

Video is not like pure texts or images, it is large in size and contains audio and

sequence of images. It will be much more complex to handle video in computer world.

There are many questions arise before establish a digital video library. How do you

build a vast video database? How do you index the video contents? How can you

5
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

search and retrieve the video resources efficiently? How can you let users to view the

resources conveniently and effectively? New techniques are needed to organize and

search these vast data collections and retrieve the most relevant selections.

Video causes unique problems because of the difficulties in representing its contents. It

is well known that if you electronically scan a page of a book into a raster image, the

image will use a significantly greater amount of memory space than an ASCII

representation of the original text. While page description languages may be more

efficient, if the page contains many images, a raster image may be the only choice for

representation. Video is not only imagery, but consists about 30 images per second. The

adage “a picture is worth a thousand words” was never more appropriate. Details

descriptions of video images can be many thousands of words and even a short video

clip description can be massive. However, the alternative of no description leaves even

the shortest video clip a black box, giving the user no way to know what is within it.

The issues on creating a digital video library and utilizing and exploring the library are

also challenging parts in this topic.

Building Video Databases
Digital video takes a tremendous amount of space. Therefore, in order to build a video

database, we need to consider the video format for the databases. It is important to

choose a video format which can save space but still maintain the quality of video. A

single high quality, uncompressed video channel would require a bandwidth of 200

million bits per second. Such bandwidth requirements are not practical today or

perhaps ever, so the quality of the video may be reduced and compression schemes

used to make possible the inclusion of video into digital libraries. For example, the

MPEG algorithm for video compression was designed to deliver good quality at a very

high compression ratio and random access to various points within the sequence. It is a

scalable algorithm allowing more quality at the expense of requiring greater bandwidth.

The MPEG1 SIF resolution will work for standard CD-ROM bandwidth requirements

(1.2 Megabits per second), allowing 352 x 240 resolution at 30 frames per second or

352 x 288 resolution at 25 frames per second, thus delivering VHS quality NTSC/PAL

video.

Another consideration in the creation of a digital library is enabling access to the

resources in the databases. Even with MPEG1 compression, a thousand hours of video

will take approximately a terabyte (1024 gigabytes) of storage. It is so unlikely that

user workstations will have the complete library stored locally at their machines. Rather,

6
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

a key element of on-line digital video libraries will be the communication fabric

through which media servers and satellite (user) nodes are interconnected. Traditional

modem-based access over voice-grade phone lines is not adequate for this multimedia

application, as evidenced by the difficulty in trying to move VHS-quality video

between arbitrary sites on the Internet. The ideal fabric has the following

characteristics:

� communication should be transparent to the user. Special-purpose hardware and

software support should be minimized in both server and slave nodes.

� communication services must be cost effective, implying that link capability

bandwidth) be scalable to match the needs of a given node. Server nodes, for

example, will require the highest bandwidth because they are shared among a

number of satellite nodes.

� the deployment of a custom communication network should be avoided. The most

cost effective, and timely, solution will build on communication services already

available or in field-test.

Indexing the Video Contents
A library cannot be very effective if it is merely a collection of information without

some understanding of what is contained in that collection. Without that understanding

it could take hundreds of hours of viewing to determine if an item of interest is in a

1000-hour video library.

Information is found best on the Internet when the providers augment the information

with rich keywords and descriptors, provide links to related information, and allow the

contents of their pages to be searched and indexed. There is a long history of

sophisticated parsing and indexing for text processing in various structured forms, from

ASCII to PostScript to SGML and HTML. However, it is not as simple to index video

content.

An hour-long motion video segment clearly contains some information suitable for

indexing, so that user can find an item of interest within it. The problem is not the lack

of information in video, but rather the inaccessibility of that information to our

primarily text-based information retrieval mechanisms today. In fact, the video likely

contains an overabundance of information, conveyed in both the video signal (camera

motion, scene changes, colors) and the audio signal (noises, silence, dialogue). A

7
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

common practice today is to log or tag the video with keywords and other forms of

structured text to identify its contents.

But there are insufficiency of text descriptors, not only the manual preprocessing is

tedious and time consuming, but the text descriptors are seriously incomplete to the

video itself, identity of persons and objects and cinematic information are almost surely

to be left out. Also, text descriptors are biased by the ambiguity of natural language.

For example, one indexer may decide to label a particular video segment as occurring

in a public vehicle. Another may decide to label the same segment as occurring in a bus.

These different tags have implications for later browsing and retrieval of the video.

In order to reduce these limitations, there should be some technology supports to

handle the indexing automatically instead of manually.

Breaking the Video into Segments
Anyone who has retrieved video from the Internet may realize that it takes a long time

to move a video clip from one location to another because of its size. If a library

consists of only 30 minutes clips, when users check one out, it may take them 30

minutes to determine whether the clip met their needs. Returning a full one-half hour

video with only one minute is relevant is much worse than returning a complete book

with one chapter is needed. With a book, tables of contents allow users to quickly find

the material they need. However, since the time to scan a video cannot be dramatically

shorter than the real time of the video clips, a digital video library should be efficient at

giving users the relevant material. To make a faster retrieval and viewing, the digital

video library will need to support partitioning video into small-sized clips and some

alternate representations of the video.

Just as textbooks can be decomposed into paragraphs with different chapters and

subtitles, video library can be partitioned into video paragraphs. There are difficulties

arise in how to carry out video paragraphing. Analogous structure is contained in video

through scenes, shots and camera motions. The boundaries of paragraph could be done

by parsing and indexing on the video segment. Some videos, such as news broadcasts,

have a well-defined structure which could be parsed into short video paragraphs for

different news stories, sports and weather. Techniques monitoring the video signal can

break the video into sequences sharing the same spatial location. These scenes could be

used as paragraphs.

However, physically decomposing a video library into fixed number of small video

8
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

files will not meet the future needs of the library user. A more flexible alternative is to

logically segment the library by adding sets of video paragraph markers and indices,

but still keeping the video data intact in its original context, which allows later

enrichment of the description of the video content. Moreover, the video clip to return to

the user can be based dynamically on user and query characteristics, with more

annotations allowing more possible segmentations of the video data. In order for a

digital video library to be logically segmented as such, the system must be capable of

delivering a subset of a movie (rather than having that subset stored as its own movie)

quickly and efficiently to the user. Video compression schemes will have to be chosen

carefully for the library to retain the necessary random access within a video to allow it

to be logically segmented.

In addition to trying to size the video clips appropriately, the digital video library can

provide the users alternate representations or layers of information for the video. Users

review a given layer of information before deciding whether to incur the cost of richer

layers of information or the complete video clip. For example, a given half hour video

may have a text title, a text abstract, a full text transcript, a representative single image,

and a representative one minute “skim” video, all in addition to the full video itself.

The user could quickly review the title and perhaps the representative image, decide on

whether to view the abstract and maybe the full transcript, and finally the user may

decide whether to retrieve and view the full video.

Retrieving Video
An important part of the function of a digital video library is that it should provide the

utility for users to get the information they need easily and efficiently. There are two

standard to measure the performance in information retrieval: recall and precision.

Recall is the proportion of relevant documents that are actually retrieved. Precision is

the proportion of retrieved documents that are actually relevant. These two measures

may be traded off one for the other. Returning one document that is a known match to a

query guarantees 100% precision, but fails at recall if a number of other documents

were relevant as well. On the other hand, returning all of the library’s contents for a

query guarantees 100% recall, but fail at precision and filtering the information. The

goal of information retrieval is to maximize both recall and precision.

In many information systems, precision is maximized by narrowing the domain

considerably, extensively indexing the data according to the parameters of the domain,

and allowing queries only via those parameters. For example, a CD-ROM on animals

9
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

might fully index the data by genus, species, habitat, diet, growth rate, estimated

population, and other biological and environmental factors. The data becomes very

useful for its given purpose (e.g. studies on animals), but this approach lost the

generality of properties. A user may not be able to find all birds that are blue if color is

not one of the attributes which were indexed.

In attempting to create a general purpose digital video library, precision may have to be

sacrificed in order to ensure that the material the user is interested in will be recalled in

the result set. The result set may then become quite large, so the user may need to filter

the set and decide what is important.

In order to let user quickly skim the video objects to locate sections of interest and to

aid users in the identification of desired video when multiple objects are returned,

information visualization is required. Users often wish to peruse video much as they

flip through the pages of a book. Unfortunately, today's mechanisms for this are

inadequate. The results from a query may be too large to be effectively handled with

conventional presentations such as a scrollable list. To enable better filtering and

browsing, features that are important to the user should be emphasized and made

visible. What are these features, though, and how can they be made visible, especially

if the digital video library is general purpose rather than specialized to a particular

domain? These questions return us back to the problem of identifying the content

within the video data and representing it in forms that facilitate browsing, visualization,

and retrieval.

1.2 Techniques address DVL issues

To establish a digital video library, initially, there are raw materials of videotapes with

audio and video part. By using speech recognition and natural language processing

technologies, generates a corresponding text transcript of each of the video file

automatically. In addition to the generated text scripts, there may be some other

information given. Composing these sub-products, the part of text indexing is

completed. With the combination use of audio and image analysis techniques, the

10
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

segmentation and "paragraphing" of compressed video clips can be done. The whole

indexed video database is then built. The creation part of the database is offline. It is

just like the printing and binding procedure of book publishing. On the other hand,

exploration and retrieval of library resources is in real-time. User makes a textual query

or spoken query. The speech recognition is used in the user interface. The natural

language analysis technique is used for the searching part. User can online either watch

the returned video segment he/she wants or store it. Here is the overview of digital

video library system:

Overview of the Informedia Digital Video Library System [Informedia CMU]

11
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

Text description of Video
Text description of video is important for retrieval and user's searching. It can be the

title of a video, or a brief outline of the video. Close-caption recorders and OCR

technology can be used to convert this information into an electronic text representation,

suitable for processing and augmentation by the other techniques described in this

section. Even if no other automation techniques are used, a human indexer would

produce more accurate and complete text indices, or tags, for the video if given this

supplemental information rather than just a title or nothing at all.

For better text description of the video, they can be kept in separate fields where the

semantics of origin can be preserved, so that a user can filtering out the unwanted fields;

also the text description needs to be associated with the video it describes closely such

that the descriptions can be used to retrieve more precise, shorter duration video clips.

Speech Analysis
Much of the information conveyed in the audio for a given movie is captured in its

close-caption text. Even though much of broadcast television is close-captioned, many

other video and film assets are not. More importantly, typical video production

generates 50 to 100 more data that is not broadcast and therefore not captioned. Clearly,

effective use and reuse of all these video information assets within digital video

libraries will require automatic generation of transcripts in order to make the

information in the audio more accessible. Speech recognition technology can be

applied to automatic transcript generation, but the accuracy of speech recognition is low.

It still needs more time to improve the accuracy.

The audio conveys other information besides just dialog. Researchers have made

progress in identifying pauses and silence, as well as specialized audio parsers for

music, laughter, and other highly distinct acoustic phenomena. This information can

supplement the other structured descriptors, and some such as pauses may be especially

useful to identify natural start and stop times for video paragraphing as well as allowing

for a degree of compression in presenting a “skim” video.

Image Analysis
Image analysis is primarily used for the identification of breaks between scenes and the

identification of a single static frame icon that is representative of a scene. Image

12
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

analysis can be mainly use in the segmentation of video. Identifying camera pans and

zooms, edit effects like fades, cuts, and dissolves, can be useful for segmenting, or

“paragraphing”, the video into a group of frames when video library is formed. Each

group can be reasonably abstracted by a representative frame.

Video is segmented into scenes through the use of comparative difference measures.

Images with small histogram disparity are considered to be relatively equivalent. By

detecting significant changes in the weighted color histogram of each successive frame,

image sequences can be separated into individual scenes. With image analysis, it can

interpret camera motion which is one important method for video segmentation and

description.

However, a more efficient digital video library needs content-based video paragraphing

methods, and image analysis by itself cannot determine all of the information. Some

information system developers parse video in a particular domain, such as news

footage, to supplement the image analysis with more structure and semantics, while

others use human indexers to document video content, including space, time, weather,

characters, objects, character actions, object actions, relative position, screen position,

and cinematography. The digital video library user is interested in subject or content

retrieval, not just “ image” retrieval. The subject consists of both image content and

textual content (from audio and other sources); the combination specifies the content.

Any textual information attached is useful to quickly filter video segments locating

potential items of interest. But subsequent query is usually visual, referring to image

content. For example, “Find video with similar scenery,” “Find the same scene with

different camera motion,” “Find video with the same person,” and so on. Although part

of the capability can be realized by content-free methods, such as histogram

comparison, it is a long-term challenge to this field of computer vision research on the

real solutions in content-based image search.

13
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

Video Characterization: keywords, scene breaks, camera motion, significant objects (face

and text)

Natural Language Processing
Natural language queries allow straightforward description of the subject matter of the

material desired. An initial query may be textual, entered either through the keyboard,

mouse, or spoken words entered via microphone and recognized by the system.

Subsequent refinements of the query, or new, related queries may relate to visual

attributes such as: “ find me scenes with similar visual backgrounds.” Current retrieval

technology works well on textual material from newspapers, electronic archives and

other sources of grammatically correct and properly spelled written content. However,

the video retrieval task, based upon searching errorful transcripts of spoken language,

challenges the state of the art. Even understanding a perfect transcription of the audio

would be too complicated for current natural language technology.

There are several ways for natural language processing to improve the utility of a

digital video library:

� Query processing: the user must be able to specify a subject or content area for

search without having to resort to specialized syntax or complicated command

forms.

� Retrieval: once the system has digested a user query, the corresponding text objects

must be located, scored, and ranked according to user interest.

� Display: the video segments associated with each relevant text object must be

located, and appropriate scene boundaries identified for each video object (visual

sentence, paragraph or page) used to generate a menu of visual segments for user

selection.

14
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

22.. AApppprrooaacchh

2.3 Focus and Targets

A Digital Video Library involves a lot of advance technologies and also a lot of human

resources, so we have to define a more practical target for ourselves as a Final Year

Project. We would like to implement our project as the skeleton modules of a DVL,

where advance features can be plug into the project when they are ready later on. For

these ‘skeleton’ components, video playback and user query are the two core features

that we have to implement. Networking capability is another important issue that we

have to consider because it will affect the application structure which will affect the on

going of the project.

To carry out our project, we first need to understand the fundamentals of a DVL system.

Then we have to start to search for a suitable platform, API and other tools that help us

to build the platform. In order to implement the DVL progressively, we will first

develop a simple application for video playback; then a application that could retrieve

and playback video over the network; lastly we will have a server that can process

simple user query; and the integration of server with client to a simple DVL model.

15
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

Implement :
JMPlayer(local)

JMApplet(netw ork)

Implement :
JDVL

(User query and videl
playback)

Implement :
JMServer

(process query)

Study DVL fundamentals

Study JMF
(video playback)

Study XML & JAXP
(indexing and search

tools)

Prepare video files in
MPEG1 format

Manually indexing the
videos

workflow of our project

2.4 Equipments & Facilities

A PC(pc89184) act as our server, with Windows NT4.0 English version installed. The

PC is equipped 16Gb of harddisk, while 10Gb of the space is used to install another

DVL Demo ‘ Informedia’ from the Carnegie Mellon University. Another removable

harddisk with Windows98 Chinese version is used to develop the client, which should

display Chinese messages.

To prepare the MPEG1 video files from VHS tapes, we use a PC in multimedia lab

which equipped with a hardware video capture and encoding card. The video source is

mainly daily news from the TV, such that the domain is narrowed to achieve higher

precision and easier to be indexed manually.

16
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

To enable the video files to be retrieve from the network, we use a http server to serve

the purpose. At first we use a freeware SAMBER server, actually the server program is

good enough, but for better integration with the system, we change to the IIS4.0 server

from Microsoft, which we can monitor the network traffic more easily.

2.5 Programming Tools

Before we can start the implementation, we have to evaluate the cost and difficulties of

choosing different programming tools. JAVA is chosen as the programming language of

our project as we found it’s both convenient and powerful as well in the area of our

interest. It comes with some advantages over other programming environment in these

aspects:

� Platform independence – Java can be run on any machine any platform where Java

Virtual Machine is available. ‘Write Once Run Many’ capture the idea of Internet

revolution, and this is a trend.

� Network ready – Java is designed for network environment. It supports various

networking model, from simple connection to complex and powerful distributed

computing. This provides a scalable network model for the DVL system; we can

extend the library onto a network without too much change in the code. Moreover,

we can (and we did) implement the Client as a Java Applet, which can be accessed

using web browsers on the WWW. This brings convenience to the users.

� International appeal – Unicode is integrate into the Java. With appropriate fonts

installed, different languages can be process and display with no difficulties. And

we make use of this feature to display Chinese scripts and messages on a browser

of an English version Windows NT platform.

� Modular GUI design – GUI Building is one of the well-known features of Java.

The GUI support in Java is simple and efficient, that can free the programmers

from low level programming details and can play more effort on the higher-level

system architecture etc.

17
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

But nothing is ever perfect, there are drawbacks of using Java as programming

language also.

� Speed - Java is an interpreted language, programs written in Java won't be as fast

as those compiled languages such as C/C++.

� Immature - Java is a young language. The Virtual Machine is not efficient and

reliable enough, and the worse is that its API may subject to changes in successive

versions, which may lead to higher cost for maintaining the program.

But these drawback does not prevent us from using Java, because both disadvantages

will be not critical when the project going on – machines will be fast enough, Java will

be mature and the virtual machine will be efficient and reliable as well in the future.

Video Playback API - JMF
The Java Media Framework API (JMF) is a collection of classes that enable the display

and capture of multimedia data within Java applications and applets. It specifies a

unified architecture, messaging protocol and programming interface for playback,

capture and conferencing of compressed streaming and stored timed-media including

audio, video, and MIDI across all Java enabled platforms. Without this API, it’s

impossible for us to use Java as our development environment as the very first task of

our project is to playback video files (and this is an ESSENTIAL feature!).

JMF is being released as three packages: Player, Capture, and Conference. And we will

focus on the Player API that was used in our project for media playback.

Overview of Java Media Player

Java Media Player provides a platform-neutral framework for building media players.

Using Java Media Players, a programmer can synchronize and present time-based

media from diverse sources. In addition, developers can create applications using their

own media types or take advantage of a wide array of the integrated audio and video

media types including QuickTime, MPEG-1, MPEG-2, AVI, H.261, MIDI, AU, WAV,

and AIFF files.

Existing Players on desktop computers are heavily dependent on native code for

compute-intensive tasks like decompression and rendering. Some Java Media Players

require native code to support the features of a specific hardware device or operating

18
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

system, or to maintain compatibility with existing multimedia standards. Since Java

accommodates both Java byte code and native methods, developers and users can

choose among different Player implementations that use both Java and native objects.

Even for some specific media type, like Real Audio or Real Video, they can be handled

by JMF as other common media types because the developer Real Networks can (and

they do) provide a Java Media wrapper library on top of their development tool kit.

With the wrapper library, a programmer can handle all supported media types in the

same manner.

Interaction between a Java technology-based application, Java Media Framework API,

and native code

Working on the network environment, developers can use the Java Media Framework

API to implement a versatile media player that receives and plays multimedia data

from sources stored locally or on the network. It allows for cross-platform rendering,

control, and synchronization of supported media types independent of the network

protocol. And what’s important is that the networking model is so simple that

programmer can create a player just by giving the URL of media source. This greatly

reduces the workload of the programmer. From the client’s perspective, the applets

built with JMF can be run and does not have to worry about client-side support or

plug-ins. This is done by a Web server implementation of JMF, which allows

developers to deploy multimedia applets from a web server.

19
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

Lastly, with the concept of a media player as a Java Beans technology-based

component, the power and facility of the Java Media Framework comes to the reusable,

component driven world of beans. This hides the complexity of that underlying code,

so that the developers can focus more on the system architecture level.

Media Sources

For starting to use a Java Media Player, we first have to understand the concept of a

media source.

A Java Media Player encapsulates its media source. It is designed to present a particular

media source, identified by a universal resource locator (URL) and the media data may

be obtained from a variety of sources, such as local or network files and live broadcasts.

JMF categorize the media sources into ‘ reliable’ and ‘streaming’ .

� Reliable – the client is guaranteed to receive every packet from a reliable data

source such as a local or network file. The established protocols for reliable data

are Hypertext Transfer Protocol (HTTP) and FILE.

� Streaming – the data from a streaming media source is not guaranteed to be

delivered reliably and clients are expected to recover from gaps in the data.

Streaming data sources include broadcast media, multicast media, and

video-on-demand (VOD). Some example protocols are the Real-time Transport

Protocol (RTP) and the protocol used for VOD.

The degree of control that a client program can extend to the user depends on the type

of media source being presented. For example, a reliable media source such as a file

20
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

can be repositioned, allowing the user to replay the media stream or seek to a new

location in the stream. A broadcast media source, however, is under server control and

cannot be repositioned. Similarly, a VOD source might support limited user control, but

probably not the degree of control available with a reliable data source.

Players

A Player is a software machine that processes a stream of data, reading data from a

media source and rendering it at a precise point in time.

Players share a common model for timekeeping and synchronization. A Player's medi a

t i me represents the current position in the media stream. Each Player has a t i me

base that defines the flow of time for the Player. When a Player is started, its media

time is mapped to its time-base time. To be synchronized, Players must use the same

time base.

A Player's user interface can include both a visual component and a control-panel

component. A custom user-interface for a Player can be implemented or the Player's

default control-panel component can be used.

A Player must perform a number of operations before it is capable of presenting media.

Because some of these operations can be time consuming, JMF allows you to control

when they occur by defining the operational states of a Player and providing a control

mechanism for moving the Player between those states.

Media Events

The JMF event-reporting mechanism allows your program to respond to media-driven

error conditions, such as out-of-data or resource unavailable conditions. The event

system also provides an essential notification protocol so that when your program calls

an asynchronous method on a Player, it can only be sure that the operation is complete

by listening for the appropriate event.

A Cont r ol l er can post a variety of events that are derived from

Cont r ol l er Event . To receive events from a controller such as a Player, you

implement the Cont r ol l er Li s t ener interface. The following figure shows the

events that can be posted by a Cont r ol l er .

Controller events fall into three categories: change notifications, error events, and

transition events:

21
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

� Change notification events such as Rat eChangeEvent and

Dur at i onUpdat eEvent indicate that some attribute of the Player has changed,

often in response to a method call. For example, the Player posts a

Rat eChangeEvent when its rate is changed with a set Rat e call.

� Cont r ol l er Er r or Event s are posted by a Player when it has encountered a

problem and cannot recover. When a Player posts a Cont r ol l er Er r or Event ,

it is no longer usable. You can listen for Cont r ol l er Er r or Event so that your

program can respond to Player malfunctions, minimizing the impact on the user.

� Tr ansi t i onEvent s allow your program to respond to changes in a Player's

state. A Player posts transition events whenever it moves from one state to another.

Player States

A Java Media Player can be in one of six states. The Cl ock interface defines the two

primary states: Stopped and Started. Cont r ol l er breaks the stopped state down into

five standby states: Unrealized, Realizing, Realized, Prefetching, and Prefetched.

Progressing of states of a Player

In normal operation, a Player steps through each state until it reaches the Started state:

� A Player in the Unrealized state has been instantiated, but does not yet know

anything about its media other than its URL. When a media Player is first created,

it is Unrealized.

� When Real i ze is called, a Player moves from the Unrealized state into the

Realizing state. A Realizing Player is in the process of determining its resource

requirements. During realization, a Player acquires the resources that it only needs

to acquire once. These might include rendering resources other than exclusive-use

resources.

22
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

� When a Player finishes Realizing, it moves into the Realized state. A Realized

Player knows what resources it needs and something about the media it is to

present. Because a Realized Player knows how to render itself, it can provide its

visual components and controls. Its connections to other objects in the system are

in place, but it does not own any resources that would prevent another Player from

starting.

� When Prefetch is called, a Player moves from the Realized state into the

Prefetching state. A Prefetching Player is preparing to present its media. During

this phase, the Player can preload its media data, obtain exclusive-use resources,

and anything else that it must do every time it prepares to play. Prefetching might

have to recur if a Player's media presentation is repositioned, or if a change in the

Player's rate requires that additional buffers be acquired or alternate processing

take place.

� When a Player finishes Prefetching, it moves into the Prefetched state. A

Prefetched Player is ready to be started; it is as ready to play as it can be without

actually being started.

� Calling st ar t or syncSt ar t puts a Player into the Started state. A Started

Player's time-base time and media time have been mapped and its clock is running,

though the Player might be waiting for a particular time to begin presenting its

media data.

A Player posts Tr ansi t i onEvent s as it moves from one state to another. The

cont r ol l er Li s t ener interface provides a way for your program to determine

what state a Player is in and to respond appropriately. This mechanism allows you to

manage Player latency by controlling when a Player begins Realizing and Prefetching.

It also provides a way that you can ensure that the Player is in an appropriate state

before calling methods on the Player.

Creating and Displaying a Player

To Create a Player, you request it from the Manager by calling createPlayer. The

Manager uses the media URL that you specify to create an appropriate Player.

JMF specifies the timing and rendering model for displaying a media stream, but a

Player's interface components are actually displayed using java.awt. A Player can have

two types of components, its visual component and its control components. To

displaying a Player's Visual Component, which a Player displays its media data, you

23
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

first have to get the component by calling get Vi sual Component and then add it to

the applet's presentation space or application window. The layout of the Player

components is controlled through the layout manager. For the Player’s Control

Component, the procedure is similar to that of a Visual Component, but you get the

component by calling get Cont r ol Panel Component this time.

Finally, after the interface components are added, methods that control the playback of

media (e.g. st ar t , s t op, set Medi aTi me, etc) are ready to control the

presentation to the user. A simple call to the start can start the playback of media now.

MediaPlayer Java Bean

Using the MediaPlayer Java Bean is the simplest way to present media streams.

MediaPlayer encapsulates a full-featured JMF Player in a Java Bean. You can either use

the MediaPlayer bean’s default controls or customize its control Components. One key

advantage to using the MediaPlayer bean is that it automatically constructs a new

Player when a different media stream is selected for playback. This makes it easy to

play a series of media clips or enable the user to select the media clip that they want to

play.

To play a media clip with the MediaPlayer bean:

Construct an instance of MediaPlayer –

MediaPlayer mp1 = new javax.media.bean.playerbean.MediaPlayer();

Set the location of the clip you want to play:

mp1.setMediaLocation("http://jvideo/Sample1.mov");

Start the MediaPlayer:

mp1. st ar t () ;

You can stop playback by calling stop on the MediaPlayer:

mp1. st op() ;

Structured Data - XML
XML is the meta language defined by the World Wide Web Consortium (W3C) that can

be used to describe a broad range of hierarchical mark up languages. It is a set of rules,

guidelines, and conventions for describing structured data in a plain text, editable file.

Using a text format instead of a binary format allows the programmer or even an end

24
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

user to look at or utilize the data without relying on the program that produced it.

However the primary producer and consumer of XML data is the computer program

and not the end-user.

Overview of XML

The Extensible Markup Language (XML) is syntax for developing specialized markup

languages, which adds identifiers, or tags, to certain characters, words, or phrases

within a document so that they may be recognized and acted upon during future

processing. "Marking up" a document or data results in the formation of a hierarchical

container that is platform-, language-, and vendor-independent and separates the

content from any environment that may process it.

Like HTML, XML makes use of tags and attributes. Tags are words bracketed by

the ’<’ and ’>’ characters and attributes are strings of the form ’name="value"’ that are

inside of tags. While HTML specifies what each tag and attribute means, as well as

their presentation attributes in a browser, XML uses tags only to delimit pieces of data

and leaves the interpretation of the data to the application that uses it. In other words,

XML defines only the structure of the document and does not define any of the

presentation semantics of that document.

Implement XML technology using the Java programming language can even got

something more powerful: XML with cross-platform capabilities built in at the binary

level, so that we have a platform independent solution from backend to front-end.

When code and data are combined in the right ways, the pair becomes "portable

objects" – which is really an effective way to design large-scale distributed systems. In

a sense, XML technology makes the information exchange possible, and Java

technology makes the automation feasible.

25
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

XML data can be shuttled between many different types of servers and clients.

Here are some new rising applications that make use of XML:

� Traditional data processing – where XML encodes the data for a program to

process

� Document-driven programming – where XML documents are containers that build

interfaces and applications from existing components

� Archiving – the foundation for document-driven programming, where the

customized version of a component is saved (archived) so it can be used later

� Binding – where the DTD or schema that defines an XML data structure is used to

automatically generate a significant portion of the application that will eventually

process that data

While in this project, we are using XML for the first purpose; we use XML to encode

the datasource for the server to process. And we will go into some advantage of using

XML as a datasource of an application.

Platform independent

Information in an XML document is stored in plain text. This might seem like a

restriction if were thinking of embedding binary information in an XML document. But

this is the main reason for it to maintain the interoperability. By accepting and sending

information in plain text format, programs running on disparate platforms can

communicate with each other. This also makes it easy to integrate new programs on top

of older ones (without rewriting the old programs), by simply making the interface

between the new and old program use XML.

An example is web enabling legacy systems. It is very feasible to create a Java web

ennoblement application server that simply uses the services provided by the

underlying legacy system. Instead of rewriting the legacy system, if the system can be

made to communicate results and parameters through XML, the new and old system

can work together without throwing away a company's investment in the legacy

system.

And since XML is not a binary format, you can create and edit files with anything from

a standard text editor to a visual development environment. That makes it easy to debug

your programs, and makes it useful for storing small amounts of data. At the other end

26
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

of the spectrum, an XML front end to a database makes it possible to efficiently store

large amounts of XML data as well. So XML provides scalability for anything from

small configuration files to a company-wide data repository.

Structured

XML documents benefit from their structure.

As XML allow users to define their own tags and create the proper structural

relationships in the information (with a DTD), the validity and integrity of the data can

be checked with any XML parser easily. This makes the application code more reliable

and quick to develop by providing validity checking on the XML documents with help

of a DTD.

Moreover, the hierarchical structure also benefits the usage of XML from speed and

simplicity for creation and modification of XML documents.

And since the structure of the XML document can be specified in DTDs they provide a

simple way to make it easier to exchange XML documents that conform to a DTD. For

example, if two software systems need to exchange information, then if both of the

systems conform to one DTD, the two systems can process information from each

other.

Information Management

In XML, documents can be seen independently of files. One document can comprise

many files, or one file can contain many documents. This is the distinction between the

physical and logical structure of information. XML data is primarily described by its

logical structure. In a logical structure, principal interest is placed on what the pieces of

information are and how they relate to each other, and secondary interest is placed on

the physical items that constitute the information.

Rather than relying on file headers and other system-specific characteristics of a file as

the primary means for understanding and managing information, XML relies on the

markup in the data itself. A chapter in a document is not a chapter because it resides in

a file called chapter1.doc but because the chapter's content is contained in the

<chapter> and </chapter> element tags. When the elements carry self-describing

metadata with them, systems that understand XML syntax can operate on those

elements in useful ways. As XML markup provides metadata for all components of a

27
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

document, not merely the object that contains the document itself, this makes the pieces

of information that constitute a document just as manageable as the fields of a record in

a database.

The focus on information rather than documents from XML offers some important and

capabilities:

� Inline Reusability –XML documents can be composed from separate entities. And

the entities can be included "in line" in a document. The included sections look

like a normal part of the document, the whole document can be searched at one

time and can be downloaded as one piece. The modularization make it possible to

single-source a section so that an edit to it is reflected everywhere the section is

used, and yet a document composed from such pieces looks for all the world like a

one-piece document.

� Information harvesting – By enabling people to focus on information components

that make up documents rather than on the documents themselves, these systems

can identify and capture useful information components that have ongoing value

"buried" inside documents whose value as documents is limited. That is, a

particular document may be useful only for a short time, but chunks of information

inside that document may be reusable and valuable for a longer period.

Committed to a persistence layer

XML documents may be stored in files or databases. When stored in files, XML

documents are simply plain text files with tags (and possibly DTDs). It is very easy to

save your XML documents to a text file and pass the text file around to other machines,

platforms and programs (as long as they can understand the data). In case, XML

documents (files) can be viewed in a text editor on just about any platform.

Apart from plain text files, XML documents can also committed to a database

(relational or object) or any other kind of XML document store. There are commercial

products available which allow you to save XML documents to an XML storage layer.

What’s more is that XML documents can be retrieved from a persistence layer

(databases, file systems, XML stores). This lends XML to be used in real world

applications where the information being used by different parts of a system is the most

important thing.

28
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

Data management – JAXP
Java API for XML Parsing (JAXP) is a package of two vendor-neutral classes

SAXPar ser Fact or y and Document Bui l der Fact or y which can instantiate a

SAX Parser and a Document Bui l der respectively. The Document Bui l der , in

turn, creates DOM-compliant Document objects. The factory APIs enables XML

implementation of another vendor to plug in without changing your source code. It is

default to use the Sun’s reference implementation of SAX Parser and

DocumentBuilder.

SAX

SAX stands for ‘Simple API for XML’. This API was actually a product of

collaboration on the XML-DEV mailing list, rather than a product of the W3C. Though

it has the ‘ final’ characteristics as a W3C recommendation.

You can also think of this standard as the "serial access" protocol for XML that does

element-by-element processing. This is the fast-to-execute mechanism you would use

to read and write XML data in a server, for example. This is also called an event-driven

protocol, because the technique is to register your handler with a SAX parser, after

which the parser invokes your callback methods whenever it sees a new XML tag (or

encounters an error, or wants to tell you anything else).

Outline of a SAX Parser API

Above is basic outline of a SAX parser. First, the SAXPar ser Fact or y at the top

29
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

generates an instance of the par ser . Then the XML text is shown coming in to the

parser from the left. As the data is parsed, the parser invokes one of several callback

methods defined by the interfaces Document Handl er , Er r or Handl er ,

DTDHandl er , and Ent i t yResol ver . The events handled by each handler is

explained below:

� DocumentHandler – Methods like st ar t Document , endDocument ,

s t ar t El ement , and endEl ement are invoked when an XML tag is

recognized. This interface also defines methods char act er s and

pr ocessi ngI nst r uct i on, which are invoked when the parser encounters the

text in an XML element or an inline processing instruction, respectively.

� ErrorHandler – Methods er r or , f at al Er r or , and war ni ng are invoked in

response to various parsing errors. The default error handler throws an exception

for fatal errors and ignores other errors (including validation errors). Sometimes,

the application may need to recover from a validation error. Other times, it may

need to generate an exception. To ensure the correct handling, you'll need to

supply your own error handler to the parser.

� DTDHandler – Methods defined in this interface are invoked when processing

definitions in a DTD. When the parser sees an unparsed entity or a notation

declaration, it does nothing with the information except to pass it along to the

application using the DTDHandler interface. That interface defines two methods:

Not at i onDecl and unpar sedEnt i t yDecl . Whether the notation reference

is used to describe an unparsed entity or an attribute, it is up to the application to

do the appropriate processing.

� EntityResolver – The r esol veEnt i t y method is invoked when the parser must

identify data identified by a URI. In most cases, a URI is simply a URL, which

specifies the location of a document, but in some cases the document may be

identified by a URN - a public identifier, or name, that is unique in the web space.

The public identifier may be specified in addition to the URL. The

Ent i t yResol ver can then use the public identifier instead of the URL to find

the document, for example to access a local copy of the document if one exists.

A typical application provides a DocumentHandler, at a minimum. Since the default

implementations of the interfaces ignore all inputs except for fatal errors, a robust

implementation may want to provide an ErrorHandler to report more errors or report

them differently.

30
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

DOM

Document Object Model (DOM) represents an XML document into a tree structure of

objects in the program. You can then manipulate the object model in any way that

makes sense. This mechanism is also known as the "random access" protocol, because

you can visit any part of the data at any time. You can then modify the data, remove it,

or insert new data.

The DOM API is ideal for interactive applications because the entire object model is

present in memory, where it can be accessed and manipulated by the user. On the other

hand, constructing the DOM requires reading the entire XML structure and holding the

object tree in memory, so it is much more CPU and memory intensive.

Function of a DocumentBuilder

Above shows the function of a DocumentBuilder. First, the

javax.xml.parsers.DocumentBuilderFactory class is used to get a DocumentBuilder

instance (upper left), and use that to produce a Document (a DOM) that conforms to the

DOM specification (lower right).

The builder's newDocument() method can be used to create an empty Document.

Alternatively, you can use one of the builder's parse methods to create a Document

from existing XML data. The result is a DOM tree like that shown in the lower right

corner of the diagram.

31
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

After we have a Document object, we may apply different operations to it, including

creating, removing, changing, and transversing nodes; or setting and creating attributes

etc. This tree model can be even visualized using the JTree interface in javax.swing.

2.6 Java XML Solution Models

XML and Java can certainly be used to create some very interesting applications from

application servers to searchable websites. An ‘Big picture’ is given here to show a

possible arrangement of most ‘pieces’ of objects for a Java XML project.

Components in a Java XML solution

32
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

In the model, we have a ‘Source of XML’ which is actually a set of Java classes, that

reads a ‘XML’ document from either a file system, database system, or even from the

web, and that could be either a XML file or some other custom format which could be

convert to XML data by this component. This ‘Source of XML’ serves the application

server program with real XML data to process.

On the application server, it reads XML data from the Source, parse it (by Parser in

JAXP!), and keep it as Object model in memory, where various manipulation can be

carried out here. An object model is basically a set of classes (and interfaces) that you

have to define in order to represent the information in your XML documents. If you use

SAX, you have to write a DocumentHandler implementation class that is used by the

SAX parser to create your own object model. If you use a DOM parser, then a default

object model is provided.

For the client side, if it is a local application, than the entire user interaction is also

implemented here; and if it’s a remote client, RMI/CORBA or Servlet will be used for

communication through the Internet. And the clients on the remote side can either a

Java Application or an Applet, or even just an ordinary Web browser.

There are different types of presentation layers, namely web based and Java based. The

Servlet API is perfectly suited for creating web based user interfaces, in addition with a

Servlet enabled web server. The Swing API is very good for creating Java based client

apps.

These are the ‘big picture’ of a Java XML project, and different variation is possible.

33
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

Client side - Graphical Java Applications

Program flow of Graphical Java Applications

The simplest category of XML Java applications is the kind of Java application that

stores information in XML documents (files). By using XML to create your own

markup languages (i.e. your own file formats for your information) in an open way, you

don't have to use proprietary and binary file formats. Using XML over proprietary

binary file formats, allows your applications to have immense inter operability across

platforms.

34
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

Client and Server side - Application Servers

Overview of Java Application Server and the Client

Another category of Java applications called Java Application Servers (app server) and

they make good use of XML. Unlike client side graphical Java apps, which are very

standalone in their operations, app servers tie many different networked software

components together in order to provide information from multiple sources to a set of

client side Java apps or web browsers. An app server is actually a conglomeration of

several distributed and client/server software systems. Such and app server is actually a

system that makes many different networked software systems work together, to

process information that comes from various sources, and distribute this information to

a set of client apps that maybe running on different devices and platforms.

App servers traditionally give their client apps access to information in remote

databases, remote file systems, remote object repositories, remote web resources, and

even other app servers. All these information sources don't even need to reside on the

machine that hosts the app server. These remote resources may be on other machines on

the Intranet or the Internet, and maybe even on different platform, and different kind of

app servers.

XML allows these systems to talk with each other without requiring any special binary

35
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

information format converters or other service layers to translate between binary

formats (for encoding data). Also, since HTTP already supports transmission of plain

text, it is completely natural to move XML around using the Hyper Text Transfer

Protocol through firewalls and disparate networks. Where it brings simplicity for

exchange of data.

Web-based Applications

Overview of Java XML solution in Web-based Applications

Web-based applications are similar to app servers, except for one thing: Web-based

applications don't have client apps; instead they use web browsers on the client side.

They generate their front ends using HTML, which is dynamically generated by the

web-based app. In the Java world, Servlets are best suited for this job.

Web-based apps might themselves rely on another app server to gather information that

is presented on the client web browser. Also, you can write Servlets that get

information from remote or local databases, XML document repositories and even

36
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

other Servlets. One good use for web-based apps is to be a wrapper around an app

server, so that you can allow your customers to access at least part of the services

offered by your app server via a simple web browser.

In a real world scenario, both a web-based app and app server may be used together, in

order to provide your customers access to their information. In an Intranet setting, you

might deploy the clients that come with the app server, and in an Internet setting it

would be better to deploy a web-based app that sits on top of this app server, and gives

your customers relatively limited access to their data over the web via a simple web

browser.

37
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

33.. DDeessiiggnn &&

IImmpplleemmeennttaatt iioonn

3.7 System Design

For our project, we target to build a simple Digital Video Library that should have good

extensibility for adding advance features in the future. To achieve this, we design our

system in modules that could be implement in steps.

Overview

In our design, we have a client/server model over the Internet. There are a number of

reasons for we to implement the DVL as a client/server model:

38
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

Overview of the JDVL system

� The video database is huge (>1Gb), definitely not suitable to install on the client

computer.

� Multiple clients can access the server’s video storage concurrently, this increase

the video’s availability.

� Update of database (add/remove videos) is only done on the server.

And this model also benefits some extension of the system.

� With a network of server, the amount of video storage can increase dramatically,

while this is not possible with a client side application.

� Access control can be enforced by centralize administration.

� Different kind of server may exist (different platform, different backend support,

specialized video collection, etc.) while the client side can be kept unchanged.

Client Applet

In this model, we have the client as a Java Applet that can be run in a Web-browser that

supports Java Plug-in. This can make the client available on machines of different

configuration while still keeping the power to perform all it’s necessary functions.

39
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

As an Applet is only allowed to have socket connection with the machine where it’s

origin loaded from, so the files are reside on the same machine where the App Server

hosted.

The Client Applet connects with the App Server to perform queries and to gather the

results through TPC sockets. And then the video is retrieved from a Web Server with

HTTP streaming to playback. This is supported by JMF for MPEG1 file type.

App Server

The App Server is a Java application, hosted on a WindowsNT 4.0 Platform. It’s

responsible for parsing the XML database, and keeping all the records in its tree

structure Object Model.

Whenever there is a client connected to the server, a separated thread will be created to

handle the request. According to the query type, the thread will search the tree and

gather the result to return to the client.

Web Server

Currently we are using the Microsoft Internet Information Services (IIS) 4.0 on

WindowsNT 4.0 as our Web server. It’s responsible to serve the XML file to the App

Server.

It also serves the MPEG1 video files to the Client Applet through Hypertext Transfer

Protocol (HTTP). This is feasible in a network of sufficient bandwidth as the JMF use

in the Client Applet supports HTTP Streaming for MPEG1 files.

Implementation in Stages
Our implementation was separated in three stages, from a client side application, to a

java applet, and finally a client/server system.

Name Type Added Features

Playback of local media file JMPlayer Client side
application

Display synchronous script

JMApplet Java Applet Playback of remote media file through HTTP

40
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

 Thumbnail view of video collection

Query processing JDVL Client/Server
System

Multiple Document Interface, for open multiple
video at same time

JMPlayer

This was the earliest version. It’s an application that can playback a local video file and

display a synchronous script at same time.

Interface of JMPlayer

In this implementation, the video file and the script file are related by their filename

only. Whenever a video file is loaded, the program will look for the same filename

with .txt extension as the script file.

JMApplet

In this version, we change the implementation as a Java Applet, which could be run in a

browser. This is a step toward our final implementation. When the application becomes

an Applet, the user won’t need to download and install the program files by himself.

This brings a level of convenience over the Java application.

41
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

Interface of JMApplet – video playback

With an Applet implementation, we can no longer open local files. Thus we have to

switch from opening a local video file to open a remote video file. We do this by using

the HTTP streaming feature of JMF, which allows media data streams to be retrieved

from the remote computer using Hypertext Transfer Protocol. Therefore we setup a

Web Server and place the MPEG1 files in the Web Server to serve this purpose.

Besides switch to the network environment, we also add a “Library view” as a feature.

This “Library view” loads a set of thumbnails to represent the videos for user to

visualize what is the video about before actually downloading the video. The icons are

manually captured from the video segment. The binding of video file, icon file, and the

script file are specified in a custom record file. This record file is changed to the XML

file in the final version.

42
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

Interface of JMApplet – Library view

JDVL

This is our final version, which changes quite a lot compares with the previous versions.

The query server is implemented: users can now search the database by keyword, title,

or full script. For the client side, though it is still a Java Applet, but the user interface is

rewritten using a desktop view to support more features.

We will go through the JDVL system in the following sections.

3.8 System Modules

Client

ConsolePane QueryPane

LibraryPane

PlayerPane ScriptPane

Webserver to
server video

Server

RequestHandler

JDVLMsg

JDVLVideo
..

JDVLVideo

JDVLMsg
(Query string)

Interaction of objects in JDVL

The JDVL system is mainly divided into three kinds of classes: server side, client side,

43
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

and the network communication class.

4 Module are presented here, namely: JDVLVideo, JDVLMsg, JDVLServer, and

JDVLApplet.

In more detail, there is a sub-module RequestHandler for JDVLServer, and 5

sub-modules for JDVLApplet: ConsolePane, QueryPane, LibraryPane, PlayerPane, and

ScriptPane.

JDVLVideo
This class encapsulates the information of a video’s record in the XML file. It takes the

subtree structure in DOM as input parameters that represent a record and convert it to

its internal variables. This kind of object is used for the Server to pack the information

of a matched record for sending back to the Client. The Client Applet read the attributes

of this objects to retrieve the resources (video file, icon file) and also reads the

embedded script information. Then this information will used to generate the

presentation to the user.

Node of a video
in DOM tree

title
script

scriptTime
iconsrc

videosrc

Input
Exported
Interface

JD
V

LV
id

eo

Logic of JDVLVideo

Name Usage

Public JDVLVideo(Node video) Constructor. Input parameter is the tree
node structure of matched video

Public URL videosrc() Return the video resource’s URL

Public URL iconsrc() Return the icon resource’s URL

Public String title() Return the title of the video

Public Vector script() Return the full script of the video

Public int scriptTime(int timestamp) Return the script index by input the
corresponding media time

44
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

JDVLMsg
Object of this class is the only object that actually transmitted between the Server and

the Client.

On a Query action initiate from the Client, a JDVLMsg will be construct, with the

query type and query string as input, also an id to identify the message, and then send

to the Server. The Server will then read these parameters to determine the action.

After the Server process the query and a collection of video record is ready, another

JDVLMsg will be construct with the same id of the query message, the collection of

video record will be added (in form of JDVLVideo instants), and again transmit through

the network. Then the Client can get the records inside.

JDVLMsg

id type Msg

archive

JD
V

LV
id

eo
[0

]

JD
V

LV
id

eo
[1

]

JD
V

LV
id

eo
[2

]

JD
V

LV
id

eo
[n

]

JD
V

LV
id

eo
[n

-1
]

Name Usage

Public JDVLMsg(int type, int id) Constructor. type and id are the identifiers
of the message

Public JDVLMsg(int type, int id,
String msg)

Constructor. type and id are the identifiers
of the message. Msg maybe a query string
or an error message, depend on the type of
the message

Public int id() Return the id of the message

Public int type() Return the type of the message

Public String msg() Return the string message

Public Vector archive() Return the archive of JDVLVideo carried
by this JDVLMsg

Public void add(Node video) Add an video record to the archive

45
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

JDVLServer
JDVLServer is the implement class of the App Server. It implements the main()

function for starting the program. When it starts, it will load the XML file database, and

use the DocumentBuilder of JAXP to build a DOM. The Object model will be used for

the searching purpose. As keyword, script, and title are always used for searching,

therefore the server will prepare a search list for them respectively.

After building the DOM, the server will listen on the server socket, whenever a client is

connected, and a new thread, RequestHandler, will be create to process the request. By

using a thread model, the server can handle multiple Client request as the same time.

JDVLServer
XML

Document
DOM tree of video

records/
SearchList

JAXP
DocumentBuilder

ServerSocket JDVLMsg (query from client)

Create new RequestHandler

JDVLMsg(reply)

JDVLMsg(reply)

JDVLMsg(reply)

Request
Handler

Request
Handler

Request
Handler

Process Query

Client Applet

Client Applet

Client Applet

Flow of JDVLServer

RequestHandler

RequestHandler is constructed when a Client connects to the Server. It will bind with a

socket to communication with client.

As soon as it is constructed and run as a thread, it will read from the socket for a

JDVLMsg object, and determined which search list will be used by the type of

JDVLMsg. Then it will go through the corresponding search list and compare the item

46
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

with the query string, and get the matches.

Finally it will construct a JDVLMsg with same id as the incoming JDVLMsg, add the

matched collection in. And send the message back to the client through the connected

socket.

Name Usage

Public RequestHandler(Socket s) Constructor. Input parameter is the socket
connected with the client

JDVLApplet
JDVLApplet is the implement class of Client Applet. It is the class to be invoked by the

HTML file that is loaded by a client browser.

When it starts, it will get the origin of its host, where it could establish socket

connection to the App Server. Then it’ ll examine the system fonts installed to find one

that can display Chinese font, such that components that need to display Chinese

characters can be assigned with this font.

The last thing it does is to setup the interface for user to interact with. JDVLApplet use

a JdesktopPane to give a desktop environment, and the actual functions are carried out

in the internal windows. Currently, ConsolePane and QueryPane is default opened in a

new started Client Applet.

Name Usage

public String serveraddr Address of server. Sub-modules connect to
this server when needed

public Font cFont Chinese font. Interface components which
need to display Chinese characters will be
set to this font

public void loadLibrary(JDVLMsg
searchResult)

Create a library window from a given set of
search result

public void loadMovie(JDVLVideo
video)

Create a video player window and a script
window from a record of video

47
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

JDVLApplet

ConsolePane

QueryPane
JDVLMsg(query)

JDVLMsg(reply)

loadLibrary

LibraryPane

loadLibrary

LibraryPane loadVideo
PlayerPane

ScriptPane

loadVideo

PlayerPane

ScriptPane

Sturcture of JDVLApplet

ConsolePane

This class simply displays a textarea and provides methods for others to write a string.

It’s exist is for debug purpose, and may be disabled for a ‘user release’ .

Name Usage

public ConsolePane (JDVLApplet
parent)

Constructor. JDVLApplet instant is passed
as a parameter for calling and of
Applet-wide methods

public void println(String msg) Write a string on the ConsolePane

QueryPane

QueryPane is responsible for user query input. It consist of a Textfield for input the

48
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

query string, a drop-down list for user to choose the type of query (keyword, title,

script), and a submit button.

On submit, it’ ll create a thread to communicate with the server, passing the required

parameters as a JDVLMsg. When the server replies, it will call the JDVLApplet’s

loadLibrary() method to create a library view for the user to choose a video.

Name Usage

public QueryPane (JDVLApplet
parent)

Constructor. JDVLApplet instant is passed
as a parameter for calling and of
Applet-wide methods

LibraryPane

LibraryPane presents user a library view of thumbnails. Each thumbnail has a

short-title and also pop-up hint for the full title, and is associated with the

corresponding JDVLVideo object.

After it is constructed, by calling the loadLibrary() method in JDVLApplet will load

the result set of JDVLMsg as thumbnails in the library view. This module gets each

video record in the JDVLMsg, and then retrieves their icon picture from their iconsrc()

property. Then construct a button with the icon and the title, and associate the button

with the JDVLVideo object itself.

When use clicks one of the thumbnail buttons, the LibraryPane will call the loadMovie()

method in JDVLApplet with the corresponding JDVLVideo object as parameter.

Name Usage

public LibraryPane(JDVLApplet
parent)

Constructor. JDVLApplet instant is passed
as a parameter for calling and of
Applet-wide methods

public void loadLibrary(JDVLMsg
searchResult)

To load the library with result set in the
JDVLMsg

PlayerPane

PlayerPane use JMF API to playback video. It constructs a

javax.media.bean.playerbean.MediaPlayer and setup the status variables. When the

loadMovie() method is called, it will load and play the video specified by videosrc() of

the JDVLVideo object.

For adding a synchronous script display, the addScript() method will be called. This

49
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

will register a ScriptPane with this PlayerPane, so that the timer will take effect and call

ScriptPane’s synScript() method at each time interval (0.5 sec by default).

During the video is playing, user can resize the windows, can pause and restart the

video, and can mute the sound channel also.

Name Usage

public PlayerPane(JDVLApplet
parent)

Constructor. JDVLApplet instant is passed
as a parameter for calling and of
Applet-wide methods

public void loadMovie(JDVLVideo
video)

To load and play the video specified in
JDVLVideo

public void addScript(ScriptPane
scriptpane)

Register a ScriptPane with this PlayerPane,
such that the synchronous event will be
triggered

ScriptPane

ScriptPane is used to display a text script. It uses a JEditPane as the text component, so

that it can highlight the script sentence currently playing.

To load a ScriptPane with text, use the loadScript() method, which will read the script()

of the JDVLVideo object.

Method synScript() will re-print the script with highlight on the indexed line. It is

usually called by a PlayerPane, which hook the media time and the sentence of scripts

in synchronization..

Name Usage

public ScriptPane (JDVLApplet
parent)

Constructor. JDVLApplet instant is passed
as a parameter for calling and of
Applet-wide methods

public void loadScript(JDVLVideo
video)

To load the script specified in JDVLVideo

public void synScript(int idx) To re-print the script with high-light on the
indexed line

50
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

3.9 Video Preparation and Indexing

Video, Icons, Titles and Scripts
To build the library database, we need video, icons, and scripts. And all of these are

prepared manually, which could consider being most time consuming and tedious job

of the entire project.

We record the daily news from TV by VHS tapes, and use the PC in Multimedia Lab,

which equipped with hardware MPEG encoder card to convert the tapes into MPEG-1

files. Video segmentation is done manual, we cut the files by the natural boundary of

each news pieces.

To prepare the icons, we browse the video to select a frame that can represent the

subject of the video and scale it to a comfortable size. Similarly, but even more takes

more time, we listen to the video and type the scripts by ourselves, digest the subject

(to a curtain level) and draft the title for the video.

Obviously, to employ the project in large scale, this part must be automated. And the

automation needs more advance technologies like image processing and speech

recognition. Hopefully this could be achieved in the near future.

XML Database
The XML file is prepared using the resources mentioned in the previous section. Here

we will explain some of the tags used inside:

� video – defines a video entity, all of the child nodes are attributes of this video. and

attribute “ id” is a unique identifier for the video in the database.

� title – the title of the video clip

� keyword – some predefined keywords are used, in this way, keyword have a more

narrow scope of search, but with increased precision. Multiple keywords for a

video are allowed.

51
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

� script – encapsulate the scripts of the video.

� line – the actual script, the attribute “ time” is the media time of the video while this

line of script should be in synchronizes.

� iconsrc – the URL of the thumbnail icon of this video

� videosrc – the URL of the video file

The XML database structure

3.10 User Interface

In our Client Applet, a desktop view is used to provide greatest flexibility such that new

52
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

features can be added more easily by creating classes that implements the

InternalFrame interface.

User Interface - Query Pane

The figure shows our user interface. By default, the Query Pane is always on the

desktop, and cannot be dismissed; and the Console Pane is minimized so that it won’t

bother the user a lot. After the use enters a query and press the “Go!” button on the

Query Pane, a Library Pane will pops up, showing the result set of the query in

thumbnails.

In the Library Pane, thumbnails are used to represent the video items such that user can

quickly locate a video that can interest him, there are also pop-up hints showing the

title of the videos for user to know more information about the videos before actually

download and view the videos. When the user locates the interested video, he can

simply click the associated icon to play the video.

53
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

User Interface – Library Pane

When user click one of the icon, a Player Pane and a Script Pane will appear, showing

the video and the script of the chosen video respectively. Synchronous script will be

displayed during the playback of video; this allows the user to follow the video easily.

There is a control bar at the bottom of a Player Pane, user can pause/resume the video

playback, can mute the voice channel, and view the information of the video.

User Interface – Video playback and Script Pane

54
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

With a multiple-document interface, user can manipulate the Player Pane in anyway

they like: minimize, maximize, or resize in any aspect ratio. This allows the user to

view the video in a most comfortable way.

Another advantage of using desktop view is that we can open multiple videos at the

same time. But this seems not suitable on computers that do not have enough system

resources (CPU, ram, etc), where the slow down of system will be very noticeable.

User Interface – Multiple Video playback

55
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

44.. DDiissccuussssiioonn

JMF API vs. QuickTime for Java API
Though we cannot test our applet on the Unix workstation due to technical problem

(we are not the system admin and can not install some extended API package into the

system!), but cross-platform interoperability is still our concern. Using QuickTime for

Java, we have media playback feature on Microsoft Windows platform and the

Macintosh platform. On the other hand, in the current JMF release, when we use

MPEG-1 video format, it can only render on Unix platform and Microsoft Windows

platform. Therefore we cannot claim either one have much advantage over another.

But from some discussion on the Internet, we know that QuickTime is more mature

product, but is also tougher to use than JMF, it’s quite natural to choose an API of lower

entrance barrier. Moreover, Apple Computer is also interested in joining the JMF

project, so there is a chance that JMF will support MPEG-1 on Macintosh also.

XML vs. Database
Now we have a XML as a plain text file and the records are loaded into the program as

DOM, no modification will be made to the XML file, and so we don’t have to consider

the data consistence, concurrent update, etc. But for a fully automated system, updating

is continuous and there are multiple servers connected together (reference the “Java

XML Solution” section). Database backend is still a more feasible solution, data

integrity, security, etc. may be important also in such a scenario.

Moreover, the system can be scale up easily by integrated with existing databases. E.g.

we have a 10Gb video library from the Informedia project, which use ODBC as the

database interface. If the schema of the Informedia and our JDVL can be

inter-converted, then it’s possible to write an XML-ODBC interface to make use of the

56
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

video library.

Display Chinese Fonts on English platform
We develop the client program on the Chinese Windows platform in the beginning.

When we later port it to the English platform, we have difficult on displaying Chinese

Fonts on the English platform.

We have tried the following methods, but all of them are not successful:

� Install Chinese plug-in on the English platform.

� Change the Java VM setting in the file font.properties.

� Changing the code page for the browser that runs the Client Applet.

� Change the coding of the source document.

� Change the font of the interface component.

Lastly, we solve the problem use the last method mentioned, ie. change the font of the

interface component. But we do it wrongly at first: we hardcode the fontname which

should be able to display Chinese. Actually, the correct way is to let Java to examine all

the system fonts and test if the font could display a Chinese character using a method:

canDisplayUpTo(chinesesample).

57
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

55.. CCoonncclluussiioonn

In this year of work, we have developed a simple DVL system. In our final JDVL

system, we have a Browser-enabled Client interface, which is capable to display

Chinese messages on non-Chinese platform; we have a server that use XML to keep the

records, and can perform searching based on keyword, title, and the script of videos.

We learnt and used many new advancement of programming technology, including

JMF, XML, JAXP, etc. All of these are popular topics nowadays; having an understand

on them meant to be having powerful tools on constructing many types of poplar

applications. For a enterprise scale DVL system, there is still a long way to go, and a

lot of advance features can be added: Automation in video segmentation and indexing,

natural language processing in query, etc. On the other hand, we know that, as

broadband Internet becomes more popular, application for video consumption on

Internet will be as common too. Maybe, for some near future, we will even have a DVL

client embedded into the Operation System.

58
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

AAcckknnoowwlleeddggeemmeenntt

We would like to thank our supervisor, Prof. Michael Lyu, to give us valuable advice

in our work.

We would also like to thank the following people who did give us a hand: Mr. Tim,

Technical Staff, CSE Department, CUHK; Mr. Tony, Technical Staff, CSE

Department, CUHK; Vincent Cheung, M.Phil Student, CSE Department, CUHK;

Anson Lee, M.Phil Student, CSE Department, CUHK; Mole, Fellow Classmate, CSE

Department, CUHK.

59
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

AAppppeennddiixx AA:: RReessoouurrcceess

[Informedia] http://www.informedia.cs.cmu.edu/

[XML] http://www.xml.org/

[JMF] http://java.sun.com/jmf/

[JAXP] http://java.sun.com/xml/

[Multimedia] http://java.sun.com/features/1999/09/multimedia.html, JMF 2.0 - Multimedia

Takes Center Stage

[JMF White Paper] http://java.sun.com/marketing/collateral/jmf.html, JMF API White Paper

[XML White Paper] http://java.sun.com/xml/white-papers.html, White Papers about XML

Technology

[CO-STAR] http://java.sun.com/xml/co-stars.html, CO-STARS IN NETWORKING: XML

and JAVATM TECHNOLOGIES

[Portable Tech] http://java.sun.com/xml/ncfocus.html, Portable Data/Portable Code: XML &

JavaTM Technologies

[XML and Web] http://www.developerlife.com/dbsourceintro/default.htm, Introduction to XML,

Java, databases and the Web

[Java XML] http://www.developerlife.com/appoverview/default.htm, What is a Java XML

Application Server (and web based app, etc)?

60
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

AAppppeennddiixx BB::

CCooddee SSttaatt iisstt iicc

JMPlayer
Line Word Character File

113 246 2635 JMPlayer.java

58 117 1154 MyAboutDialog.java

44 116 909 MyFileDialog.java

37 99 872 MyIcon.java

125 216 2739 MyInterface.java

81 193 2547 MyLibraryDialog.java

33 39 692 MyMediaPlayer.java

94 143 2591 MyMenu.java

75 117 1485 MyQueryDialog.java

20 29 391 MyTimer.java

72 116 1420 MyURLDialog.java

752 1431 17435 total

JMApplet
Line Word Character File

69 103 1712 JMApplet.java

40 65 700 MMObject.java

24 61 699 MyAboutPanel.java

70 136 1605 MyLibraryPanel.java

144 242 3398 MyPlayerPanel.java

61
� ����� � � �	��
 � � ��� � ��� ��� ��� ��� ��� � � �	� � � � ��� �

113 334 10742 MySearchPanel.java

460 941 18856 total

JDVL
Line Word Character File

34 59 783 ConsolePane.java

104 185 2490 JDVLApplet.java

72 208 1406 JDVLMsg.java

170 363 4674 JDVLServer.java

91 196 2216 JDVLVideo.java

87 159 1994 LibraryPane.java

121 218 2559 PlayerPane.java

95 178 2419 QueryPane.java

61 110 1729 ScriptPane.java

835 1676 20270 total

