
LYU 9902 Wireless Campus

Page 1

������� ���	��
��������	�

 Page

I. Abstract 3
II. Introduction 4
1. Wireless Technology and Architectural Evaluation

1.1 Introduction
1.2 What is a Wireless LAN?
1.3 Why use Wireless LAN?
1.4 Some Examples uses of Wireless LAN
1.5 Security in Wireless LAN
1.6 How Wireless LAN Works?
1.7 Wireless LAN Configurations
1.8 Hardware Evaluation of some wireless devices

5

5
5
5
6
6
7
8
11

2. Introduction to Direct X

2.1 What is Direct X?
2.2 Structure of Direct X

15

15
16

3. Introduction to WinSock

3.1 What you need to run WinSock application?
3.2 The Sockets Programming Paradigm under Windows
3.3 Overview of Connection-Oriented and Connectionless Application
3.4 Description of WinSock function
3.5 The Windows Programming Paradigm with WinSock
3.6 Blocking and event-Driven Application
3.7 Overlapped I/O, Scatter and Gather

17

18
19
20
21
26
27
27

4. Our Own Libraries

4.1 Our Direct Draw class:
4.2 Description of Direct Draw function:
4.3 Class "Sprite":
4.4 Class "Frame":
4.5 Class "Region":
4.6 An example of using a Spt file to represent an interactive object:
4.7 Our Direct Sound Class:

28

28
29
32
34
35
36
37

5. WinTalk (Program 1)

5.1 Introduction
5.2 The aim of this writing this program:
5.3 The pseudo-code of WinTalk:
5.4 Outcome

40

40
40
41
41

LYU 9902 Wireless Campus

Page 2

6. Reversi (Program 2)

6.1 Introduction
6.2 The aim of this writing this program:
6.3 The pseudo-code of Reversi:
6.4 Outcome

42

42
42
43
43

7. Plane (Program 3)

7.1 Introduction
7.2 The aim of this writing this program:
7.3 The pseudo-code of Plane:
7.4 Algorithm Analysis:
7.5 Outcome

44

44
44
45
47
49

8. Ball (Program 4)

8.1 Introduction
8.2 The aim of this writing this program:
8.3 The pseudo-code of Ball:
8.4 Outcome

50

50
50
51
51

9. ChatRoom (Program 5)

9.1 Introduction
9.2 The aim of this writing this program:
9.3 The new protocol and the generic server
9.4 The pseudo-code of ChatRoom-Client Program
9.5 The pseudo-code of ChatRoom-Server Program
9.6 Outcome

52

52
52
53
54
54
55

10. Fun with Learning English (FWLE)

10.1 Introduction
10.2 Interface of Fun with Learning English
10.3 Demonstration of a Scenario
10.4 The aim of this writing this program:
10.5 The pseudo-code of FWLE:
10.6 Algorithm
10.7 Outcome

56

56
57
58
60
61
62
65

11. Our Future Plan 66
References 67
Appendix A Statistics of Programs 68
Appendix B Progress Report 69

LYU 9902 Wireless Campus

Page 3

I . Abstract

Wireless technology provides ubiquitous connection in a concentrated area. When

wireless network is established for a campus, teachers and students can enjoy closer

interactions and better access to knowledge resources. Not only students will feel

more open and comfortable when they ask questions through wireless connections

with the teachers, but also teachers can interact with the students more privately and

directly, thus creating more personal relationship between teachers and students and

improving the quality of education. This close-up interactive environment is hard to

be provided with clumsy desk-top computers in a classroom setting, where such a

classroom would have to be carefully furnished and wired, thereby lowering the

density of participants in the room.

Wireless campus also allows teachers and students to stay in touch with education

material. They can conveniently access the library, check their e-mails, chat with

others, search information on the Internet, and retrieve or review education material.

Combining with thin-client devices, the wireless campus is an effective way for IT

ownership in schools with much reduced cost, compared with wired campus.

Furthermore, wireless campus encourages portability, connectivity, and

communication efficiency. The deployed network is scalable and flexible.

LYU 9902 Wireless Campus

Page 4

I I . Introduction

In our project, we need to implement the software infrastructure for wireless

environment. Here is a brief introduction to our FYP.

Firstly, we evaluate the differences between different OS. Finally, We choose

Windows as our working platform. It is because we can develop multi media more

easily under Windows. Moreover, Windows is more common among general users.

Secondly, we start to build our own libraries for software development in future.

We have created the libraries for socket programming, graphical and audio.

In the meantime, we have written some testing programs for testing our libraries.

Finally, we try to integrate all of the libraries, engine to build an educational

application for wireless network. At this stage, our final product is not finished yet.

But with our libraries and engines, we can widely extend our product for different

uses. For example, the learning style will change greatly. The classes can carry out

outside the classroom. People work in open area can access the resource though the

wireless LAN.

Although the wireless environment is still not command in the society, this technology

will become very important in the future years. We hope that our project can improve

the learning or working environment for the whole society.

LYU 9902 Wireless Campus

Page 5

1. Wireless Technology and Architectural Evaluation

1.1 Introduction
This objective calls for investigation on the different hardware in wireless and

thin-client equipment, and the forecast of what would be available in the near future

for the best performance and price consideration.

1.2 What is a Wireless LAN?
A wireless local area network (LAN) is a flexible data communications system

implemented as an extension to or as an alternative for, a wired LAN. Using radio

frequency (RF) technology, wireless LANs transmit and receive data over the air,

minimizing the need for wired connections. Thus, wireless LANs combine data

connectivity with user mobility.

1.3 Why use Wireless LAN?

There are several advantage for we to use wireless LAN:

1. Mobility: Wireless LAN systems can provide LAN users with access to real-time

information anywhere in their organization. This mobility supports service

opportunities not possible with wired networks.

2. Installation Speed and Simplicity: Installing a wireless LAN system can be fast

and easy and can eliminate the need to pull cable through walls and ceilings.

3. Installation Flexibility: Wireless technology allows the network to go where

wire cannot go.

4. Reduced Cost-of-Ownership: Overall installation expenses and life-cycle costs

of Wireless LAN can be significantly lower then tradition wired LAN. Long-term

cost benefits are greatest in dynamic environments requiring frequent moves and

changes.

5. Scalability: Wireless LAN systems can be configured in a variety of topologies

to meet the needs of specific applications and installations. Configurations are

easily changed and range from peer-to-peer networks suitable for a small number

of users to full infrastructure networks of thousands of users that enable roaming

over a broad area.

LYU 9902 Wireless Campus

Page 6

1.4 Some Examples uses of Wireless LAN
 �
Doctors and nurses in hospitals are more productive because hand-held or

notebook computers, PDA or HPC with wireless LAN capability deliver patient

information instantly. �
Network managers in dynamic environments minimize the overhead caused by

moves, extensions to networks, and other changes with wireless LANs. �
Training sites at corporations and students at universities use wireless

connectivity to ease access to information, information exchanges, and learning. �
Network managers installing networked computers in older buildings find that

wireless LANs are a cost-effective network infrastructure solution. �
Trade show and branch office workers minimize setup requirements by installing

pre-configured wireless LANs. �
Warehouse workers use wireless LANs to exchange information with central

databases, thereby increasing productivity. �
Network managers implement wireless LANs to provide backup for

mission-critical applications running on wired networks. �
Senior executives in meetings make quicker decisions because they have

real-time information at their fingertips.

1.5 Secur ity in Wireless LAN

Many people thin that Wireless LAN should be less secure than traditional wired LAN.

However, wireless technology has roots in military applications, security has long

been a design criterion for wireless devices. Security provisions are typically built

into wireless LANs, making them more secure than most wired LANs. It is extremely

difficult for unintended receivers (eavesdroppers) to listen in on wireless LAN traffic.

Complex encryption techniques make it impossible for all but the most sophisticated

to gain unauthorized access to network traffic. In general, individual nodes must be

security-enabled before they are allowed to participate in network traffic.

LYU 9902 Wireless Campus

Page 7

1.6 How Wireless LAN Works?

Wireless LANs use electromagnetic airwaves (radio or infrared) to communicate

information from one point to another without relying on any physical connection.

The data being transmitted is superimposed on the radio carrier so that it can be

accurately extracted at the receiving end. This is generally referred to as modulation

of the carrier by the information being transmitted. Once data is superimposed

(modulated) onto the radio carrier, the radio signal occupies more than a single

frequency, since the frequency or bit rate of the modulating information adds to the

carrier.

Multiple radio carriers can exist in the same space at the same time without interfering

with each other if the radio waves are transmitted on different radio frequencies. To

extract data, a radio receiver tunes in one radio frequency while rejecting all other

frequencies.

In a typical wireless LAN configuration, a transmitter/receiver (transceiver) device,

called an access point, connects to the wired network from a fixed location using

standard cabling. At a minimum, the access point receives, buffers, and transmits data

between the wireless LAN and the wired network infrastructure. The access point (or

the antenna attached to the access point) is usually mounted high but may be mounted

essentially anywhere that is practical as long as the desired radio coverage is obtained.

End users access the wireless LAN through wireless-LAN adapters, which are

implemented as PC cards in notebook or palmtop computers, as cards in desktop

computers, or integrated within hand-held computers. Wireless LAN adapters provide

an interface between the client network operating system (NOS) and the airwaves via

an antenna. The nature of the wireless connection is transparent to the NOS.

LYU 9902 Wireless Campus

Page 8

1.7 Wireless LAN Configurations

1. A simple wireless peer-to-peer network

Wireless LANs can be very simple. At its most basic, two PCs equipped with

wireless adapter cards can set up an independent network whenever they are

within range of one another. This is called a peer-to-peer network. Here is one of

an example.

Fig 1.1 A simple wireless peer-to-peer network

2. Client and Single Access Point

Installing an access point can extend the range of an ad hoc network, effectively

doubling the range at which the devices can communicate. Since the access point

is connected to the wired network each client would have access to server

resources as well as to other clients. Each access point can accommodate many

clients; the specific number depends on the number and nature of the

transmissions involved. Here is an example.

Fig 1.2 Client and Single Access Point

LYU 9902 Wireless Campus

Page 9

3. Multiple access points and roaming

Access points have a finite range. In a very large facility such as a warehouse, or

on a college campus it will probably be necessary to install more than one access

point. The goal is to blanket the coverage area with overlapping coverage cells so

those clients might range throughout the area without ever losing network contact.

The ability of clients to move seamlessly among a cluster of access points is

called roaming. Access points hand the client off from one to another in a way

that is invisible to the client, ensuring unbroken connectivity.

Fig 1.3 Multiple access points and roaming

4. Use of an extension point

To solve particular problems of topology, the network designer might choose to

use Extension Points to augment the network of access points. Extension Points

look and function like access points.

Fig 1.4 Use of an extension point

LYU 9902 Wireless Campus

Page 10

5. The use of directional antennas

One last item of wireless LAN equipment to consider is the directional

antenna. Let’s suppose you had a wireless LAN in your building A and

wanted to extend it to a leased building, B, one mile away. One solution

might be to install a directional antenna on each building, each antenna

targeting the other. The antenna on A is connected to your wired network via

an access point. The antenna on B is similar ly connected to an access point in

that building, which enables wireless LAN connectivity in that facility. Here

is an example.

Fig 1.5 The use of directional antennas

LYU 9902 Wireless Campus

Page 11

1.8 Hardware Evaluation of some wireless devices

1. Proxim RangeLan2

Our department has this set of Wireless device in last year. Proxim uses

license-free 2.4 GHz Frequency Hopping Spread Spectrum (FHSS) technology

for robustness and scalability. FHSS is well known for its ability to resist

interference and its ability to scale.

Specifications

Radio Data Rate 1.6 Mbps per channel,

800 Kbps fallback rate for extended range
Range ~400 feet (~122 m) in typical office environments

~700 feet (~213 m) in open spaces
Support Roaming Yes
OS need Win95/98, Windows NT, Windows CE 2.0,

NetWare, DOS, Windows for Workgroups
Frequency Band 2.4 GHz band

Fig 1.6 RangeLAN2 7401/02 PC Card

Fig 1.7 RangeLAN2 Ethernet and Token Ring Access Points

LYU 9902 Wireless Campus

Page 12

2. Lucnet Technologies WaveLAN

Our department just buys this set of Wireless device in this year. WaveLAN also

uses license-free 2.4 GHz Frequency for communication. One interesting feature

is that the communication bandwidth is related to the range of coverage.

Specifications

Radio Data Rate 11 Mbit/s,5.5 Mbit/s, 2 Mbit/s or 1 Mbit/s

(depend on range of cover)
Range Open Office: 525 to 1750 feet

Semi Open Office: 165 to 375 feet
Closed Office: 80 to 165 feet
(depend on communication bandwidth also)

Support Roaming Yes
OS need Novel Client 3.x & 4.x, Windows 95/98/2000,

Windows NT (NDIS Miniport driver),
Apple, Windows/CE

Frequency Band 2.400-2.4835 GHz band

Fig 1.8 WaveLAN IEEE Turbo PC Card

Fig 1.9 WavePOINT-II Access Point

LYU 9902 Wireless Campus

Page 13

3. Apple iBook Airpor t

Apple iBook is a notebook run in Mac OS. It provides a Wireless device called

AirPort, and it lets you use your iBook anywhere else you make yourself

comfortable. Its range is up to 150 feet from an AirPort hardware access point.

Specifications

(As Apple haven’t release detail specifications about this product, we can’t get

too much information about it)

Radio Data Rate Up to 11 Mbit/s
Range Open Office: 150 feet
Support Roaming unknown
OS need Mac OS 8

IEE 802.11 DSSS compliant
Frequency Band unknown

Fig 2.0 Apple iBook and the Airport station

LYU 9902 Wireless Campus

Page 14

4. BlueTooth

Actually, BlueTooth is not a Wireless device. It is a standard for future Wireless

communication. This the new Bluetooth technology was formed by representatives

from Ericsson Mobile Communications, Nokia Mobile Phones, and the IBM, Intel,

and Toshiba corporations.

Bluetooth answers the need for short-range wireless connectivity within three areas:

1. Data and Voice access points

Bluetooth facilitates real-time voice and data transmissions.

The technology makes it possible to connect any portable and stationary

communication device as easily as switching on the lights.

You can, for instance, surf the Internet and send e-mails on your portable PC or

notebook regardless of whether you are wirelessly connected through a mobile

phone or through a wire-bound connection (PSTN, ISDN, LAN, xDSL).

2. Cable replacement

Bluetooth eliminates the need for numerous, often proprietary, cable attachments

for connection of practically any kind of communication device.

Connections are instant and they are maintained even when devices are not within

line of sight. The range of each radio is approximately 10 meters, but it can be

extended to around 100 meters with an optional amplifier.

3. Ad hoc networking

A device equipped with a Bluetooth radio establishes instant connection to

another Bluetooth radio as soon as it comes into range.

Since Bluetooth supports both point-to-point and point-to-multipoint

connections, several sub-nets can be established and linked together ad hoc. The

Bluetooth topology is best described as a multiple sub-net structure.

LYU 9902 Wireless Campus

Page 15

2. Introduction to Direct X

2.1 What is Direct X?
DirectX is a set of development libraries for high performance games under

Windows95. DirectX consists of five major parts:

DirectDraw, DirectSound, DirectPlay, DirectInput, and Direct3D.

(Our project has used DirectDraw and Direct Sound only.)

DirectDraw

It is the most important. It allows direct access to the bits on the video card. It

also has the ability to store sur faces directly on the video card, this makes for

some amazingly fast blits.

DirectSound

It does low latency mixing of sound, as well as some basic sound

manipulations such as volume, pan, and frequency.

DirectPlay

It allows multiplayer games to connect via modem, null modem, lans, or other

networks. The interface is the same for all the different connect methods.

DirectInput

it is actually part of Windows95. It allows one to easily take advantage of all the

latest joysticks with ease.

Direct3D

It is a part of DirectX 2. It consists of two major modes, Retained Mode, a

high-level API in which the application retains the graphics data, and Immediate

Mode, a low-level API in which the application explicitly streams the data out to

an execute buffer.

LYU 9902 Wireless Campus

Page 16

2.2 Structure of Direct X

Fig 2.1. Structure of Direct X

DirectX is designed with hardware acceleration in mind. It tries to provide the lowest

possible level access to hardware, while still remaining a gener ic inter face.

HAL provide standard inter face for accessing the same kind of hardware. When

there is a request for hardware, HAL will search if the hardware exists, if it fails, HEL

will be called.

When HEL is called, it will try to simulate the hardware by software. If it fails, the

request will be ignored.

Advantages of this structure

1. It provides the lowest possible level access to hardware.

2. It provides the abstraction and a standard access inter face of hardware.

Developers no need to concern about the implementation details of that hardware.

3. After installing the newer version of direct x and the computer will support the

new hardware automatically.

The main reasons for using Direct X in our project

1. We want to write a fancy and interactive application, which need to deal with

large amount of graphics, animations and sounds.

2. The gener ic APIs provided by visual C for sound and graphics are too weak.

For example, there will be twinkling when updating the screen using the generic

API. Also, the generic API does not support mixing of sound buffer. So we cannot

play more than one wav file at the same time.

LYU 9902 Wireless Campus

Page 17

3. Introduction to WinSock

WinSock is the network application-programming interface (API) for Microsoft

Windows Operating System.

It is a translator of sorts. For programmers, it provides generic network services;

WinSock translates those generic network services into protocol-specifics requests

and performs the necessary task. Thus, WinSock shields the programmers from the

details of low-level network protocol.

Fig 3.1 Overviews of how WinSock works

WinSock

Application

WinSock API

Vendor API

(Protocol Stack)

Hardware API

Physical

Network

LYU 9902 Wireless Campus

Page 18

3.1 What you need to run WinSock application?
 �

Windows 95 or Windows NT 4.0 Operating System. (Windows 95 ship with

WinSock 1.1, Windows NT 4.0 ship with WinSock 2.0) �
Several vendors make WinSock implementations available for previous versions

of Windows (e.g. Windows 3.1 or Windows NT 3.51) �
Most of C and C++ compilers which can run under Windows Operating System.

Three distributions of WinSock currently exist. Fig x.x list the files associated with

each distribution.

Dynamic Link
Library (DLL)

Application Development Files Platform

WINSOCK.DLL 16-bit WinSock 1.1 WINSOCK.H
WINSOCK.LIB

16-bit or 32-bit
Windows

WSOCK32.DLL 32-bit WinSock 1.1 WINSOCK.H
WSOCK32.LIB

32-bit
Windows

WS2_32.DLL 32-bit WinSock 2.0 WINSOCK2.H
WS2_32.LIB

32-bit
Windows

Table 3.1 Files and platforms for the Three WinSock Distributions

LYU 9902 Wireless Campus

Page 19

3.2 The Sockets Programming Paradigm under Windows

Most of the WinSock development is follow the Berkeley sockets model. With some

exceptions, WinSock includes the most Berkeley sockets API. Most WinSock function

names and parameters is identical with the Berkeley sockets library. WinSock offers

additional functions that are used to cope with 16-bit Windows system.

WinSock use a client/server approach to communicate. One application is

theoretically always available (server side) and another request services as needed

(client side).

The server “creates” a socket, name it so that it can be identified and found by a client,

and then “ listens” for services requests. A client application creates a socket, finds a

server socket by name or address, and then “plugs in” to initiate a conversation. Once

a conversation is start, data can be sent in either direction.

At application level, both server and client need to know what messages and data to

expect from the other. They must use the same protocol.

Two fundamental types of client/server application pair exits in WinSock also:

connection-oriented and connectionless application.

LYU 9902 Wireless Campus

Page 20

3.3 Overview of Connection-Or iented and Connectionless Application

Fig 3.2 Overview of Connection-Oriented Application

Initialize
WinSock

WSAStartup()

Create a Socket
socket()

Name the
Socket
bind()

Release
WinSock

WSACleanup()

Close the
socket

closesocket()

Send and
Receive

recvfrom()
sendto()

Initialize
WinSock

WSAStartup()

Create a Socket
socket()

Find the Server
gethostbyname()
gethostbyaddr()

Release
WinSock

WSACleanup()

Close the
socket

closesocket()

Send and
Receive

recvfrom()
sendto()

Server application

Client application

Fig 3.3 Overview of Connectionless Application

Initialize
WinSock

WSAStartup()

Create a Socket
socket()

Name the
Socket
bind()

Accept
connection

listen()
accept()

Release
WinSock

WSACleanup()

Close the
socket

shutdown()
closesocket()

Send and
Receive

recv()
send()

Initialize
WinSock

WSAStartup()

Create a Socket
socket()

Find the Server
gethostbyname()
gethostbyaddr()

Connect to
Server

connect()

Release
WinSock

WSACleanup()

Close the
socket

shutdown()
closesocket()

Send and
Receive

recv()
send()

Server application

Client application

Connection
established

here

LYU 9902 Wireless Campus

Page 21

3.4 Descr iption of WinSock function

WSAStar tup() – Every WinSock application must make a successful call to this

function before making other WinSock calls. This function gives the WinSock DLL to

allocate resources, register the calling process, and possibly refuse service if no

system resources are available. Also, it uses to check with the WinSock DLL to see if

the version and features of WinSock is correct or not. Here is the function prototype

of WSAStartup() in WINSOCK.H

i nt PASCAL FAR WSASt ar t up (WORD wVer si onRequi r ed,

 LPWSADATA l pWSADat a) ;

socket() – This function is like the “socket()” function in Berkeley socket model.

Before any connection start, we have to create a socket. This socket is the end-point

between two end of the connection. When you successfully create a socket, it will

return a socket descriptor. User can pass this socket descriptor to other WinSock

function to designate the socket they want to use. Here is the function prototype of

socket()

SOCKET PASCAL FAR socket (i nt addr ess_f ami l y,

 i nt socket _t ype,

 i nt pr ot ocol) ;

bind() – This function is like the “bind()” function in Berkeley socket model. This

function allows the server to name a socket fully. Here is the function prototype of

bind()

i nt bi nd (SOCKET socket _descr i pt or ,

 const st r uct sockaddr FAR * name,

i nt namel en) ;

LYU 9902 Wireless Campus

Page 22

3.4 Descr iption of WinSock function (Cont’d)

gethostbyname() – This function is like the “gethostbyname()” function in Berkeley

socket model. It is used by the client application. It accepts a character string

containing a host name. It returns a pointer to a hostent srtucture if it finds the host,

or NULL if it does not. Here is the function prototype of gethostbyname()

st r uct host ent FAR * PASCAL FAR get host byname (const char FAR * host _addr ess) ;

gethostbyaddr() – This function is like the “gethostbyaddr()” function in Berkeley

socket model. It is used by the client application. It accepts a host address in IPv4

format. It returns a pointer to a hostent srtucture if it finds the host, or NULL if it

does not. Here is the function prototype of gethostbyaddr()

st r uct host ent FAR * PASCAL FAR get host byaddr (const char FAR * host _addr ess,

 i nt l en,

 i nt addr ess_t ype) ;

connect() – This function is like the “connect()” function in Berkeley socket model. It

is used by connection-or iented client application. This function is used to connect a

client socket to a server socket. Here is the function prototype of connect()

i nt PASCAL FAR connect (SOCKET socket _descr i pt or ,

 const st r uct sockaddr FAR * name,

i nt namel en) ;

listen() – This function is like the “ listen()” function in Berkeley socket model. It is

used by connection-or iented server application. After binding a socket to its address,

the server then call this function to wait for client requests. Here is the function

prototype of listen()

i nt PASCAL FAR l i st en (SOCKET socket _descr i pt or ,

 i nt backl og) ;

LYU 9902 Wireless Campus

Page 23

3.4 Descr iption of WinSock function (Cont’d)

accept() – This function is like the “accept()” function in Berkeley socket model. It is

used by connection-or iented server application. After setting the socket to

“ listening” , the server application should call this function to accept client requests.

Here is the function prototype of accept()

SOCKET PASCAL FAR accept (SOCKET socket _descr i pt or ,

 st r uct sockaddr FAR * addr ,

 i nt FAR * addr l en) ;

send() – This function is like the “send()” function in Berkeley socket model. After

the connection is established, the connection-or iented application can use this

function to send data to the other side. The destination of the data is understood to be

the address and port specified in the call to connect(). Here is the function prototype

of send()

i nt PASCAL FAR send (SOCKET socket _descr i pt or ,

const char FAR * dat a_buf f er ,

 i nt l en,

 i nt f l ags) ;

recv() – This function is like the “ recv()” function in Berkeley socket model. After the

connection is established, the connection-or iented application can use this function

to receive data from the other side. The source of the data is understood to be the

address and port specified in the call to connect(). Here is the function prototype of

recv()

i nt PASCAL FAR r ecv (SOCKET socket _descr i pt or ,

 const char FAR * dat a_buf f er ,

 i nt l en,

 i nt f l ags) ;

LYU 9902 Wireless Campus

Page 24

3.4 Descr iption of WinSock function (Cont’d)

sendto() – This function is like the “sendto()” function in Berkeley socket model.

After the connection is established, the connectionless application can use this

function to send data to the other side. The destination of the data is the socket

specified in the “ to” field. Here is the function prototype of sendto()

i nt PASCAL FAR sendt o (SOCKET socket _descr i pt or ,

const char FAR * dat a_buf f er ,

 i nt l en,

 i nt f l ags,

 const st r uct sockaddr FAR * t o,

 i nt t o_l en) ;

recvfrom() – This function is like the “ recvfrom()” function in Berkeley socket model.

After the connection is established, the connectionless application can use this

function to send data to the other side. The source of the data is the socket specified in

the “ from” field. Here is the function prototype of recvfrom()

i nt PASCAL FAR r ecvf r om (SOCKET socket _descr i pt or ,

const char FAR * dat a_buf f er ,

 i nt l en,

 i nt f l ags,

 st r uct sockaddr FAR * f r om,

 i nt f r om_l en) ;

shutdown() – This function is used for connection-or iented application. It is used to

notify the peer application before closing the socket. Here is the function prototype of

shutdown()

i nt PASCAL FAR shut down(SOCKET socket _descr i pt or ,

 i nt by_how) ;

LYU 9902 Wireless Campus

Page 25

3.4 Descr iption of WinSock function (Cont’d)

closesocket() – This function is like the “close()” function in Berkeley socket model.

It is used to close a communication. For connectionless connection, it can be call

directly. For connection-or iented connection, a shutdown() function should be call

before this function. Here is the function prototype of closesocket()

i nt PASCAL FAR cl osesocket (SOCKET socket _descr i pt or) ;

WSACleanup() – This is used to release all resource related to WinSock back to the

Operating System. It should be call at the end of every WinSock application. Here is

the function prototype of WSACleanup()

voi d WSACl eanup (voi d) ;

LYU 9902 Wireless Campus

Page 26

3.5 The Windows Programming Paradigm with WinSock

Feature of WinSock

Today, the newest version of WinSock is 2.2. Here is some feature of the newest

WinSock:

1. Multi-protocol support

The newest allow an application to use the familiar socket interface to achieve

simultaneous access to any number of installed transport protocols. Not like the

previous version, WinSock is no longer to use on TCP/IP only.

2. Asynchronous I /O and event objects

With Win32 programming environments, WinSock can extend to communicate

asynchronously. Asynchronous I/O enables an application to continue with other

processing while waiting for the I/O operation to complete.

3. Quality of Service

The newest WinSock established conventions for applications to negotiate

required service levels of communication service such as bandwidth and latency

for some quality demanding application such as multimedia communication.

As we can see, WinSock still has some advantages over traditional Berkeley socket

model.

LYU 9902 Wireless Campus

Page 27

3.6 Blocking and event–Driven Application

Blocking means that when a function is called, it stops all other processing in the

application and does not return until that function is completed. This is all right in

console application. However, in Windows GUI environment, it is a great problem.

Windows GUI are based on event dr iven. They receive and must quickly respond to

all the events (e.g. keystroke, mouse movement … etc.).

Luckily, the WinSock specification adds many extensions to the original Berkeley

socket API. One of the most important extensions for Win32 programming is the

support of asynchronous mode. Asynchronous notification is the best way to doing

Win32 GUI applications. Unlike traditional blocking operations, asynchronous

operations return immediately, no whether it fail or success. After the operation is

finished, the WinSock DLL will send a message to that calling application, indicate

the function is finished.

This helps us a lot in designing our program.

3.7 Over lapped I /O, Scatter and Gather
Not just asynchronous notification, the newest WinSock also provide one extension

that helps the programmers a lot in designing application: Over lapped I /O.

Asynchronous input and output (overlapped I/O) function return immediately, even

when an I/O request is still pending. With overlapped I/O, an application can continue

with other process while waiting for a send or receive operation to complete. These

overlapped I/O functions are:

1. WSASend()

2. WSASendTo()

3. WSARecv()

4. WSARecvFrom()

Also, the newest WinSock extends its Overlapped I/O with the concept of scatter and

gather . Scattered/Gathered I/O is much like vectored I/O in UNIX. All four functions

mention above can take an array of buffers as input parameters and can be used for

scatter/gather I/O. This technique is very useful when data being transmitted is

structured into two or more logical pieces.

LYU 9902 Wireless Campus

Page 28

4. Our Own Librar ies

In order to write a fancy and interactive application for the wireless network, we have

built our own graphical libraries and audio libraries. The following is the introduction

of them.

4.1 Our Direct Draw class:
Since the APIs provided by Direct Draw are so confused and complicated, we have

constructed our Class of Direct Draw to encapsulate the details of the function

calls. With this Class, we can create and access the objects of Direct Draw easily.

The prototype of our Direct Draw class: (written in pseudo-code)

Cl ass DD {

Publ i c:

DDSt ar t up() ;

Cr eat eDeskt opWi ndow(Wi ndow_handl er , Di r ect _X_obj ect) ;

DDFul l Conf i gur e(Di r ect _X_Obj ect) ;

DDWi nConf i gur e(Di r ect _X_Obj ect) ;

DDLoadPal et t e(Bmp_f i l e, Pal et t e_obj ect) ;

DDLoadBi t map(Bmp_f i l e, Sur f ace_obj ect) ;

DDSet Col or Key(Sur f ace_obj ect , Key_col or) ;

DDMakeOf f scr eenSur f ace() ;

DDCr eat eFl i pper (Fl i pper _Obj ect) ;

DDCr eat eFakeFl i pper (Fl i pper _Obj ect) ;

DDFl i ppi ng() ;

DDFi l l Sur f ace(coor di nat es, col or) ;

DDText Out (Sur f ace_obj ect) ;

Cl eanUp() ;

Pr i vat e:

 Di r ect _X_Obj ect DX;

Sur f ace pr i mar y_sur f ace, secondar y_sur f ace;

Wi ndow_handl er ghwnd;

Char act er Mode;

} ;

LYU 9902 Wireless Campus

Page 29

4.2 Descr iption of Direct Draw function:

DDStartup():

This function is used to create an instance of a DirectDraw object.

CreateDesktopWindow(Window_handler, Direct_X_object):

This function is use to create a window. We can also configure the window’s

attributes like width, height, style, menu name, and background by using this

function.

DDFullConfigure(Direct_X_Object):

This function is used to initialize the DirectDraw object with a full screen mode.

DDWinConfigure(Direct_X_Object):

This function is used to initialize the DirectDraw object with a window mode.

DDLoadPalette(Bmp_file, Palette_object):

This function is used to get the palette from a bmp file.

Palette is an array, which used to hold the actual color value from a bmp file.

Here is an example:
The picture:

The content of the bmp file:

DDLoadBitmap(Bmp_file, Surface_object):

This function is used to load a bitmap into a surface.

A surface is a object defined by Direct Draw to hold the content of a picture.

 The content of palette:

LYU 9902 Wireless Campus

Page 30

4.2 Descr iption of Direct Draw function: (Cont’d)

DDSetColorKey(Surface_object, Key_color):

This function is used to set a key color (transparency color) for a surface.

Here is an example:
 Background surface:

DDMakeOffscreenSurface():

This function is used to make offscreen surface (secondary surface).

Typically, we will construct at least 2 surfaces when using DirectDraw. The

primary surface and the secondary surface. Primary surface can be considered as

the memory content in the video card and is always be shown on the screen. In

the flipping process, the content of secondary surface will be copy to the primary

surface.

If we don’t use flipping, the cleanup process must be done directly to the primary

surface. Because the background surface will cover the foreground surface when

updating, the showing time of background picture will be longer than that of

foreground picture. Therefore, there will be twinkling effect in the human eyes.

If we use flipping, the cleanup and updating process will be done behind the

primary screen. We will flip the secondary surface only when all of the

foreground surfaces are ready. So it can eliminate the twinkling problem.

 Foreground surface:

 Color Key:

Put the foreground surface

without color key:

Put the foreground surface

with color key:

LYU 9902 Wireless Campus

Page 31

4.2 Descr iption of Direct Draw function: (Cont’d)

DDCreateFlipper(Flipper_Object):

This function is used to create a flipper instance

DDCreateFakeFlipper(Flipper_Object):

This function is used to create a fake flipper.

In window mode, flipper object is not supported, so we need to use this function

to create a fake flipper. It simulates the flipping process by using the memory

copy function. Its performance is as good as a real flipper.

DDFlipping():

This function is used to do the Flipping. This function will know whether we are

using the fake flipper or the real flipper.

DDFillSurface(coordinates, color):

This function is used to fill a rectangle on the surface. We can use this function to

cleanup the screen if we do not have a background picture.

DDTextOut (Surface_object):

This function is used to print text on a surface.

CleanUp():

This function is used to cleanup all Direct Draw Object.

LYU 9902 Wireless Campus

Page 32

4.3 Class “ Spr ite” :

Class Sprite is built to manipulate the * .spt files. It has included the data structure

for a spt file, the method for opening spt file and the method for handling spt’s

data.

Introduction to spt files:

In order to deal with the picture files (* .bmp) easily and efficiently. We have defined a

file type called spt file. Spt file can be used to represent a man, a dog, a robot, or other

interactive object in our application. Each sprite file (* .spt) has its corresponding

picture files (* .bmp). The file name of the picture files (* .bmp) and the information of

the sprite will be stored in its sprite file (* .spt).

Here is an example:

Fig.4.1 8 action pictures for a walking man

We have got the pictures of a walking man and want to play as an animation. So

we can define a spt file for that walking man.

Here is the content of the spt file:

By using this kind of spt file (Our programs have a different format of spt file,

this example is used for demo only), the programmer can write a generic

animation player to play some simple animation. Actually spt file can be used to

represent some interactive object rather than animation. There will be an

example later in this chapter.

Spr i t e_name: “ Wal ki ng Man”

No_of _f r ame: 8

Si ze_of _Pi ct ur e: 150 x 100

Pi ct ur e_f i l et ype: bmp

Pi ct ur e_f i l ename: wal k0, wal k1, wal k2, wal k3, wal k4, wal k5, wal k6, wal k7

Tr anspar ency_col or : 27

Fr ame_r at e: 25

Reser ved_space_f or _f ut ur e_use: ……………………………

LYU 9902 Wireless Campus

Page 33

4.3 Class “ Spr ite” : (Cont’d)

The prototype of Class Sprite: (written in pseudo-code)

c l ass Spr i t e

{

publ i c:

LoadSpr i t e (St r i ng spr i t e_f i l e) ;

 SaveSpr i t e (St r i ng spr i t e_f i l e) ;

 Set bmpf i l ename(st r i ng) ;

 Set I d (i nt) ;

 I nser t Fr ame (i nt , Fr ame) ;

 Del et eFr ame (i nt) ;

 Set Reser ved_st r i ng (i nt , st r i ng) ;

 Set Reser ved_i nt eger (i nt , i nt) ;

St r i ng get bmpf i l ename() ;

 I nt eger get I d () ;

 St r i ng Get Reser ved_st r i ng (i nt) ;

 I nt eger Get Reser ved_i nt eger (i nt) ;

pr ot ect ed:

Fr ame f r m[] ;

/ * Fr ame wi l l be i nt r oduced i n t he next sessi on * /

/ * Fr ame i s not pr i vat e because i t s member Ret i on need t o be r ead by some f r i end

f unct i ons f or r egi on cal cul at i ons * /

pr i vat e:

St r i ng Bmp_f i l ename;

I nt eger i d;

I nt eger no_of _f r ame;

St r i ng Reser ved_st r i ng[20] ;

I nt eger Reser ved_i nt eger [100] ;

} ;

LYU 9902 Wireless Campus

Page 34

4.4 Class “ Frame” :

Class Frame is built to store the information for each action. (Frame instance is

defined as the member under Sprite.)

A Sprite may include several actions. In page ?, the example of Sprite, the spt file is

representing a walking man with 8 frames.

Frame splitting:

Because each frame has its action picture, if there are many frames, it is so

troublesome to deal with large number of picture files. Therefore, we have written a

function for frame splitting. It let us to draw all the frame pictures in one picture file.

And the method for opening a spt file can recognize all the frames’ position

automatically.

Algorithm:

(Assumption: each frame is drawn within a square)

For y = 0 t o hei ght of pi ct ur e

For x = 0 t o wi dt h of pi ct ur e

 I f Pi xel (x, y) ! = backgr ound_col or and Pi xel (x, y) i s not used

 begi n

 / * Pi xel (x, y) i s t he upper l ef t cor ner of t hi s f r ame* /

 Fi nd t he upper r i ght cor ner of t hi s f r ame

Fi nd t he bot t om l ef t cor ner of t hi s f r ame

Save t he coor di nat es of t hi s f r ame i n a l i nked l i st

 end

 Next x

 Next y

The prototype of our Class Frame: (written in pseudo-code)

c l ass Fr ame

{

publ i c:

 Fr ame get _f r ame () ;

 Set _f r ame (Fr ame) ;

pr i vat e:

St r i ng name_of _f r ame;

I nt eger no_of _r egi on;

Regi on r g[] ;

/ * Regi on wi l l be i nt r oduced i n t he next sessi on * /

i nt go; / * f or ani mat i ng pur pose * /

i nt wai t ; / * f or ani mat i ng pur pose * /

St r i ng Reser ved_st r i ng[20] ;

I nt eger Reser ved_i nt eger [100] ;

} ;

LYU 9902 Wireless Campus

Page 35

4.5 Class “ Region” :

 Fig 4.2. Define regions for different parts of body

Region is an attribute of Frame. It stores the coordinates of a rectangle in the action

picture. (Retion instance is defined as the member under Frame.)

The 2 main purposes of region definition:

1. Because most of the pictures have an irregular shape, it is expensive to detect the

collision between them. On the other hand, if we define some rectangular regions

to represent the picture body, the collision detection will become simple.

2. Moreover, regions can represent buttons, different parts of a body or other

interactive objects on the picture.

The prototype of our Class Region: (written in pseudo-code)
cl ass Regi on

{

pr ot ect ed:

I nt eger x, y, w, h;

/ * They ar e not pr i vat e because t hey need t o be r ead by some f r i end f unct i ons

f or r egi on cal cul at i ons * /

} ;

Attachment of other Frame Attr ibutes

Actually, frames’ and regions’ positions are just some integer data attached in the

sprite file. We have also reserved some string and integer in a Spt file for future use.

These reserved data can have many meanings in future. For example, string can

represent a message, or a * .wav file name for the sound effect. An integer can

represent the frame rate, or other animating information.

LYU 9902 Wireless Campus

Page 36

4.6 An example of using a Spt file to represent an interactive object:

We want to create a refrigerator using a spt file. The user can open and close the

refrigerator by clicking on the side of the doors. There is a cake inside the refrigerator.

The user can eat the cake when click on it. But if the cake has been eat once, it cannot

be eat again.

The pictures for the refrigerator:

The regions defined for the frames:

We construct the spt file using the technique of constructing a finite state machine.

Here is the DFA for the refrigerator:

 Fig. 4.3 DFA for the refrigerator

LYU 9902 Wireless Campus

Page 37

Here is the content of the spt file:

Spr i t e_name: “ Ref r i ger at or ”

No_of _f r ame: 4

Tr anspar ency_col or : 0

Fr ame0:

No_of _Regi ons: 2

Coor di nat es_of _r egi ons: 20 30 20 30 20 80 20 40

When_cl i cki ng_r egi on0_got o_f r ame: 1 message: “ Open t he r ef r i ger at or ”

When_cl i cki ng_r egi on1_got o_f r ame: 1 message: “ Open t he r ef r i ger at or ”

Fr ame1:

No_of _Regi ons: 2

Coor di nat es_of _r egi ons: 24 60 80 70 110 30 40 160

When_cl i cki ng_r egi on0_got o_f r ame: 3 message: “ Eat t he cake”

When_cl i cki ng_r egi on1_got o_f r ame: 0 message: “ Cl ose t he r ef r i ger at or ”

Fr ame2:

No_of _Regi ons: 2

Coor di nat es_of _r egi ons: 20 30 20 30 20 80 20 40

When_cl i cki ng_r egi on0_got o_f r ame: 3 message: “ Open t he r ef r i ger at or ”

When_cl i cki ng_r egi on1_got o_f r ame: 3 message: “ Open t he r ef r i ger at or ”

Fr ame3:

No_of _Regi ons: 2

Coor di nat es_of _r egi ons: 24 60 80 70 110 30 40 160

When_cl i cki ng_r egi on0_got o_f r ame: 3 message: “ I have j ust eat ! ”

When_cl i cki ng_r egi on1_got o_f r ame: 2 message: “ Cl ose t he r ef r i ger at or ”

LYU 9902 Wireless Campus

Page 38

4.7 Our Direct Sound Class:

We have constructed our Class of Direct Sound to encapsulate the details of the

function calls. With this Class, we can create and access the objects of Direct Sound

easily.

The features of our audio library:

1. Support Wav file with different sample rate.

2. Different sounds can be over lap at the same time.

The prototype of our Direct Sound Class: (wr itten in pseudo-code)

c l ass SoundBuf f er

{

publ i c:

 Set upBuf f er Fr omWave(St r i ng) ;

 / * l oad a wave f i l e i nt o sound buf f er * /

 Pl ay (i nt eger) ;

 / * pl ay t he wave, t her e i s 2 mode of sound pl ayi ng

 t he nor mal mode and l oop mode.

 Loop mode ar e usual l y use f or backgr ound musi c * /

 St op () ;

 / * st op t he pl ayi ng of t he wave * /

 St at i c I ni t i al i zeDi r ect Sound() ;

/ * I ni t i al i ze Di r ect Sound, Thi s f unct i on i s st at i c because

i t f unct i on i s common t o al l i nst ance * /

 St at i c Shut downDi r ect Sound() ;

/ * Shut down Di r ect Sound, Thi s f unct i on i s st at i c because

i t f unct i on i s common t o al l i nst ance * /

 pr i vat e:

 LPDI RECTSOUNDBUFFER soundbuf f er ;

 / * t he act ual sound buf f er * /

 St at i c Di r ect Sound_Obj ect DS;

 / * Di r ect Sound Obj ect * /

} ;

Mixer problem in Direct Sound:

Direct Sound supports sound mixer which let different sounds to overlap at the same

time. Without mixer, when we want to play a sound buffer, we need to wait until there

is no sound playing.

We find that there is a restriction on the Mixer provided by Direct Sound. The same

sound buffer cannot be overlapped itself. For example, when we click on a man, there

will be a “hello” sound in our program. But if we click on the man many times so

frequently, the man will not respond to say “hello” every time. It is because there is a

“hello” sound still playing.

LYU 9902 Wireless Campus

Page 39

Mixer problem in Direct Sound: (Cont’d)

We have considered 3 possible solutions for the Mixer problem:

1. Create duplicate buffers for the same sound file

 Advantage:

 a. It is easy to implement.

 Disadvantages:

 a. It wastes a lot of memory space.

b. Don’t know how many buffers is enough. Longer sound may need

more buffers.

2. Create a constant number of buffers, load the sound file into the buffer only when

it needs to play.

 Advantage:

 a. It is difficult to implement.

Disadvantages:

a. It saves the memory space.

b. It leads to substantial delay of the sound, which is not acceptable.

3. When play a sound buffer, check whether it is being played. If yes, stop the sound

and play again from the beginning.

 Advantage:

 a. It is easy to implement.

Disadvantages:

a. If the sound have a lower volume at beginning and higher volume

at the end, user may realize that there is a cropping of sound.

b. If the sound is a human conversation, user may realize that there is

a cropping of sound.

Conclusion:

We have use method 3 for the solving the problem.

It is because usually, only sound effect will be overlapped itself. And Sound

effect is always very short and has a higher volume at the beginning.

LYU 9902 Wireless Campus

Page 40

5. WinTalk (Program 1)

 Fig 5.1 Snapshot

5.1 Introduction

WinTalk is a two-way communication program under Window OS. It works

like the “ talk” program under UNIX. It function is very simple. It allows

two users at two different PC can talk to each other. One assumption is that

one of the users needs to know the others PC host address. It is built base on

Microsoft Foundation Class (MFC) using Visual C++ compiler.

5.2 The aim of this wr iting this program:

1. Try to use Visual C ++ and Microsoft Foundation Class (MFC).

This is the first time we try to use Visual C++ to compile a program write in

MFC.

2. Try to use Winsock.

The structure of WinTalk is simple and it has so few of codes. So we can focus

on how to use WinSock on real programming.

3. Try to use Asynchronous mode of communication with event-dr iven

programming paradigm

This program is so simple that this can allow use to experience the asynchronous

mode of communication with event-driven programming paradigm more clearly.

LYU 9902 Wireless Campus

Page 41

5.3 The pseudo-code of WinTalk:
Mai n()

 {
 I ni t i al i ze Wi nSock

 Ask user t he ot her user I P addr ess

Connect t o t he ot her s i de

Wai t unt i l Connect ed

Loop

{

 di spat ch t he event ;

f or event “ someone hi t a key on keyboar d”

get t he key st r oke f r om keyboar d

 Send t he key st r oke t o t he ot her user

f or event “ someone send a key by net wor k”

r ecei ve t he key st r oke f r om net wor k

 di spl ay t he key st r oke on user scr een

} unt i l (someone qui t)

 Shut Down Wi nSock

 }

5.4 Outcome

1. We have to use Visual C++ to compile program wr itten in MFC.

2. We have successfully implement communication program using WinSock.

3. We can understand more about asynchronous mode of communication with

event-dr iven programming paradigm.

LYU 9902 Wireless Campus

Page 42

6. Reversi (Program 2)

 Fig 6.1 Snapshot

6.1 Introduction

Reversi is a simple chess program under Window OS. It works like the

“Othello” chess we play. It rules is very simple. A player picks black and the

other picks white. Black always plays first. When it is your turn to play, you

can place a disc of your color onto one of the empty squares on the board,

provided that your move MUST be able to flip at least one of your

opponent's discs. At the same time, you must flip ALL your opponent's discs

between the disc you just put and the remaining one on the board. And that

flipping goes in eight directions, horizontally, vertically and diagonally. It

builds base on Microsoft Foundation Class (MFC) using Visual C++

compiler.

6.2 The aim of this wr iting this program:

1. Try to get more experience with Visual C ++ and MFC

2. Try to use MFC to display bitmap (bmp) files

MFC has internally support how to display a bitmap file. We need to try it out

because most of application we develop need to display bmp files

LYU 9902 Wireless Campus

Page 43

6.3 The pseudo-code of Reversi:
Mai n()

 {
 I ni t i al i ze Wi nSock

 Ask user t he ot her user I P addr ess

Connect t o t he ot her s i de

Wai t unt i l Connect ed

Loop

{

 di spat ch t he event ;

f or event “ someone pl ace a chess of keyboar d”

 check wi t h t he r ul e t hat t he move i s l egal or not ;

 i f (not l egal move)

 i gnor e t he move;

 el se

get posi t i on of t he move

 Send t he posi t i on t o t he ot her user

f or event “ someone send a posi t i on of a chess by net wor k”

r ecei ve t he posi t i on of t he chess f r om net wor k;

 updat e t he user scr een usi ng MFC;

} unt i l (someone qui t or someone wi n)

 Shut Down Wi nSock

 }

6.4 Outcome

1. We get more experience in Visual C++ to compile program wr itten in MFC.

2. We have successfully display bitmap file using MFC.

3. However, one problem we found is that the performance of using MFC to display

bitmap is extremely poor. There is a substantial delay with displaying bmp.

Moreover, the user will see a twinkling effect when our program updating the

screen. So, We need to try another approach to display bitmap file using Visual

C++.

LYU 9902 Wireless Campus

Page 44

7. Plane (Program 3)

 Fig 7.1 Snapshot

7.1 Introduction

Plane is a flight shooting game which supports 2 players mode.

Player can use the keyboard to do the following operations on his plane.

 1. Turn Left 2. Turn Right 3. Move Forward

 4. Move Backward 5.Turn on the Shield 6. Fire

Rules of the game:

1. When a plane is being shoot, its life will decrease.

2. The red bars at the top of the screen are showing the life power.

3. When the life power becomes empty, the plane will explose and dead.

4. The player will win if all his enemies dead.

5. Some Letter (food) will be appears on the screen randomly. A plane can be

equipped by “eating” those Letters (food).

7.2 The aim of this wr iting this program:

1. Try to use our Graphical and Audio Libraries.

2. Try to use Winsock, Direct Draw and Direct Sound together in the same

program

3. Try to implement the synchronous connection (1 to 1).

LYU 9902 Wireless Campus

Page 45

7.3 The pseudo-code of Plane:

Mai n()

 {

 I ni t i al i ze Wi nSock

 I ni t i al i ze Di r ect Dr aw

 I ni t i al i ze Di r ect Sound

 Ask Pl ayer t he opponent ’ s I P addr ess

Connect t o t he ot her s i de

Wai t unt i l Connect ed

I f I am pl ayer one

{ Gener at e t he r andom seed usi ng t i mer

 Send t he r andom seed t o opponent }

Loop

{

 Get t he key st r oke f r om keyboar d

 Send t he key st r oke t o t he opponent

 get t he key st r oke f r om t he opponent

 f or i = 1 t o no_of _pl ayer s

 i f pl ayer i i s pr essi ng Up

 { accel er at e t he pl ane i }

 i f pl ayer i i s pr essi ng Down

 { decel er at e t he pl ane i }

 i f pl ayer i i s pr essi ng Lef t

 { r ot at e pl ane i ant i - c l ockwi se }

 i f pl ayer i i s pr essi ng Ri ght

 { r ot at e pl ane i c l ockwi se }

 i f pl ayer i i s pr essi ng Fi r e

 { cr eat e a Fi r e obj ect }

 i f pl ayer i i s pr essi ng Shi el d and shi el d_no > 0

 { cr eat e a Shi el d, Shi el d_no- - }

 next i

 Gener at e t he Food on t he scr een r andoml y

Cal cul at e t he new posi t i on and new speed of Pl anes usi ng Physi cs Laws

Cal cul at e t he new posi t i on and new speed of Fi r es usi ng Physi cs Laws

Cal cul at e t he new posi t i on and new speed of Foods usi ng Physi cs Laws

 f or i , j = (1, 1) t o (no_of _pl ayer s, no_of _pl ayer s)

 i f pl ane i col l i de wi t h pl ane j and i ! =j

 { cacul at e t he new pos i t i on and speed of pl ane i , j

 decr ease t he l i f e power of pl ane i , j

 pl ay t he col l i s i on sound ef f ect }

 next i , j

LYU 9902 Wireless Campus

Page 46

7.3 The pseudo-code of Plane: (Cont’d)

f or i , j = (1, 1) t o (no_of _pl ayer s, no_of _f i r e)

 i f pl ane i col l i de wi t h f i r e j

 { cacul at e t he new pos i t i on and speed of pl ane i

 decr ease t he l i f e power of pl ane I

 dest r uct f i r e j

 pl ay t he cr ash sound ef f ect }

 next i , j

 f or i , j = (1, 1) t o (no_of _pl ayer s, no_of _f ood)

 i f pl ane i col l i de wi t h f ood j

 {

 change pl ane i ’ s at t r i but e / * equi p t he pl ane * /

 dest r uct f ood j

 pl ay t he eat i ng sound ef f ect }

 next i , j

 Cl ean up t he of f scr een buf f er wi t h space backgr ound

 Dr aw t he pl anes on t he of f scr een buf f er

 Dr aw t he f i r es on t he of f scr een buf f er

 Dr aw t he f i r es on t he of f scr een buf f er

 Fl i ppi ng / * Updat e t he scr een by t he of f scr een buf f er * /

} unt i l (someone qui t)

 Shut Down Di r ect Sound

 Shut Down Di r ect Dr aw

 Shut Down Wi nSock

 }

LYU 9902 Wireless Campus

Page 47

7.4 Algor ithm Analysis:

1. Compress the data before sending

Our program has tried to compress the information as small as possible before
sending to the other side. It can reduce the time for data transfer which is the
bottleneck for frame rate. We use One byte (keystroke character) to represent the
key stroke of a player.
Here is an example of a keystroke character:

 Fig7.2 An example of keystroke character

In this example, the player is pressing the “Up” button, “Right” button and
“Fire” button.

2. Sharing of random seed
When 2 computers have the same value of random seed, they will generate the

same sequence of random numbers. So we can just send the keystroke of the

player to the other side.

After receiving the keystroke, our program can treat the other side player as a

local player. It simplfies the structure of our program.

If 2 computers do not have the same random seed, our program will need to send

the coordinates, states of all objects to the other side of computer. All the

calculations of interaction also need to do centrally using one computer. It will

make the structure of our program complex and increase the burden of data

transfer.

LYU 9902 Wireless Campus

Page 48

7.4 Algor ithm Analysis: (Cont’d)

3. Asynchronous connection

In Plane, we have implement the 1 to 1 synchronous connection.
The potential problems of using synchronous connection:

1. We realized that the quality requirement for synchronous connection is very

high. If the bandwidth is not high enough. The frame rate of both side will
become very low. It just like watching a movie in slow motion. In future, we
need to implement the multi-client connection and transfer of video data. It is
not possible for us to use synchronous mode to connect all the clients.

2. Also, if some client is at the other side of the earth, even the connection speed
is as fast as light, there will be still several 10 ms of delay in data transfer.

3. Moreover, in a synchronous mode. All the client will suffer if the connection
of one client has problem.

Therefore, we must use asynchronous mode connection in our future program.
We have considered some possible features for asynchronous connection:

a. Estimation the movement of the other side before receive the data.

For example, we are writing a program for virtual chat room. In the program,
there is a 3-D room and we can walk through this room. We can see other
user’s message and movement.
If we update other user’s position only when receiving their data. Their
movement will be not smooth and strange. If our program can interpolate their
intermediate position using their previous speed and position, the problem can
be solved.

b. Store the message in a message queue if the other side is not ready

For example, we are writing a write board program. The program supports
multi-clients. Clients can draw something on the write board and all clients
share the same write board.
When the client is drawing, the coordinates of the pixel will be sent to the
server. But if the server is busy at that moment. The client program will need
to store the coordinates of the pixel in a queue until the server is ready to
receive the data.
The potential problem of using message queue:
Obviously, this program may have a concurrency problem if client can draw
different colors. And the solution for concurrency problem may need to
deadlock. Anyway, we cannot discuss it deeply because we have not
implemented message queue yet.

LYU 9902 Wireless Campus

Page 49

 Fig 7.3 The frames of a plane
7.5 Outcome

1. We have discovered some problems in the structure of our Graphical and Audio

libraries and have improved them.

2. We have successfully used Graphical and Audio libraries in the same program.

3. We have experienced the performance of Direct Draw and Direct Sound. For

example, the maximum frame rate of the game can be higher than 70 Hz using a

Pentinum II computer. Actually, their performance is far enough for our

application.

4. At the beginning, we failed to use WinSock and Direct X libraries together. It is

because there are some bugs in the initialization of the WinSock and Direct X

object. Since there are too many lines of code in Plane and the structure of

program is so complex, we faced problems in finding the bugs. Therefore, we

decide to write the 4th testing program – Ball.

Ball’s structure is far simpler than Plane. Therefore, we can focus on finding the

reason why we failed to combining the libraries.

Finally, we succeed to use WinSock and Direct X l ibraries together in Ball and

Plane.

5. Spt file is actually a text file. There are about 40 frames in a plane’s spt file. It is

so exhausting to input all the frame’s information by using a text editor. So we

have built a Frame Engine to manipulate the data of frames.

We will have a introduction on the Frame Engine at Chapter ?.

 Fig.7.4 Snapshot of the frame engine for Plane

LYU 9902 Wireless Campus

Page 50

8. Ball (Program 4)

 Fig 8.1 Snapshot

8.1 Introduction

Ball is a 2 players’ game. It is very simple. Each player can control a bar. The bar can

only move left or right. There is a ball in the middle of the screen. It will rebound

when hitting the bar. If a player fails to rebound the ball, he will lose.

8.2 The aim of this wr iting this program:

1. Try to use Winsock, Direct Draw and Direct Sound together in the same

program.

The structure of Ball is simple and it has so few of codes. So we can focus on how

to combine those libraries together.

2. Try to implement the synchronous connection (1 to 1).

3. Evaluate the synchronous connection in the wire and wireless network Because

the graphics used in Ball is simple and small, the bottleneck of the frame rate is the

latency of the network. So we can evaluate the latency of the network connection

by counting the frame rate.

LYU 9902 Wireless Campus

Page 51

8.3 The pseudo-code of Ball:

Mai n()

 {

 I ni t i al i ze Wi nSock

 I ni t i al i ze Di r ect Dr aw

 Ask Pl ayer t he opponent ’ s I P addr ess

Connect t o t he ot her s i de

Wai t unt i l Connect ed

Loop

{

get t he key st r oke f r om keyboar d

Send t he key st r oke t o t he opponent

get t he key st r oke f r om t he opponent

Cal cul at e t he new posi t i on of t he Bal l

f or i = 1 t o 2

 i f pl ayer i i s pr essi ng Lef t and bar [i] . x > 0

 { bar [i] . x - = bar _speed }

 i f pl ayer i i s pr essi ng Ri ght and bar [i] . x < scr een_wi dt h

 { bar [i] . x += bar _speed }

 i f bar [i] hi t t he bal l

 { cacul at e t he new speed of t he bal l }

next i

 i f bal l . y > bot t om_t hr eshol d

 {

pl ayer [2] . l ose ++

i ni t i al i ze and r est ar t t he game

 }

 i f bal l . y < t op_t hr eshol d

 {

pl ayer [1] . l ose ++

i ni t i al i ze and r est ar t t he game

 }

 Cl ean up t he of f scr een buf f er

 Dr aw t he bar s on t he of f scr een buf f er

 Dr aw t he bal l on t he of f scr een buf f er

 Fl i ppi ng / * Updat e t he scr een by t he of f scr een buf f er * /

} unt i l (someone qui t)

 Shut Down Di r ect Dr aw

 Shut Down Wi nSock

 }

8.4 Outcome

1. We have successfully used WinSock, Direct Draw and Direct Sound libraries in

the same program.

2. We have successfully implement the synchronous connection.

3. We have evaluated the the synchronous connection in wire and wireless

network. (See page ? for the result of evaluation)

LYU 9902 Wireless Campus

Page 52

9. ChatRoom (Program 5)

 Fig 9.1 Snapshot

9.1 Introduction

“ChatRoom” is the first multi-client program we try to write. The whole system has

two components, the server program and the client program. The server program is a

gener ic server . It will broadcast a message it receives to all clients, which has

registered in this server. The clients will show up the message received from server in

front of user screen.

The system is mainly use of create a Chat Room over a Wireless LAN.

9.2 The aim of this wr iting this program:

1. Try to use wr ite a multi-client program

All the testing programs we wrote before are only one to one programs. That means

only two users can be involved. Of course, this can’t be accepted. Thus, we want to

try to write program in “multi-client” mode.

2. Try to write a gener ic server

The server programs we write before is all specific server programs. That means

when the goal of the program is change, we need to re-write the server again. We

try to write a generic server to handle this job more easily.

LYU 9902 Wireless Campus

Page 53

3. Try to design a protocol for a application

For the generic server to work probably, we need to design a new protocol to

communicate between to client and the server. Also, if a standard protocol is

defined, several extensions can be achieved. Those extensions may be encryption

can be applied, our people can write program to communicate with the server.

9.3 The new protocol and the gener ic server

In our system, when client want to use the services provide by the server, it need to

register to the server first. A message “Client want to close” (send as raw bit stream

of data over the network) is send from the client to the server. When the server get

this message, it will check the client cab be register on this server or not. If the client

has the authority to register, a message “ You can connect.” follow by 4 bytes of

connect_ID is send back to client. The connect_ID is and identity of client in the

server.

For normal message (string), the client need to append its connect_ID that the back of

the message. This is used for the server to know which client is sending. If no

connect_ID is appended, server will ignore this message. Otherwise, it will broadcast

Similarly, if the client want to disconnect, it also needs to send a message “ Client

want to close” with 4-byte connect_ID append at the back of the message. This

message is needed because the server need to know which client is going to

dis-connect.

Advantage of this approach

1. The server can control which client can be register on this server. Thus, the

control flows is on the server side.

2. If protocol is standardizing later, the program can be extension very easily by

using the same protocol.

Disadvantage of this approach

1. The protocol is too simple! It will easily hack by the hackers. We will try to

improve it by applying some encryption on it.

LYU 9902 Wireless Campus

Page 54

9.4 The pseudo-code of ChatRoom-Client Program

Mai n()

 {

 I ni t i al i ze Wi nSock

 Ask user f or t he ser ver I P addr ess

Connect t o t he ser ver

Regi st er t o t he ser ver

Wai t unt i l ser ver r epl y

Loop i f (r egi st er succef ul l y)

{

 di spat ch event ;

 f or event (user i nput a st r i ng)

 change t he st r i ng t o message t he ser ver under st and;

 send t he message t o ser ver ;

 f or event (r ecei ve somet hi ng f r om ser ver)

 updat e user scr een;

} unt i l (c l i ent qui t or ser ver qui t)

 Shut Down Wi nSock

 }

9.5 The pseudo-code of ChatRoom-Server Program

Mai n()

 {

 I ni t i al i ze Wi nSock

Set a socket t o accept c l i ent connect

Loop

{

 di pat ch message;

 i f message i s (c l i ent want t o connect)

 t r y t o check t he cl i ent can connect or not

 i f can connect

 t el l t he cl i ent r egi st er successf ul l y;

 el se

 t el l t he cl i ent r egi st er f ai l

i f message i s (c l i ent want t o di sconnect)

 r emove cl i ent i nf or mat i on f r om t he cl i ent l i st st or e i n ser ver ;

 t el l t he cl i ent i t can di sconnect ;

 i f message i s (st r i ng f r om cl ei nt)

 send t o st r i ng t o al l c l i ent whi ch had r egsi t er on t hi s ser ver ;

} unt i l (ser ver qui t)

t el l al l t he cl i ent t o di sconnect ;

 Shut Down Wi nSock

 }

LYU 9902 Wireless Campus

Page 55

9.6 Outcome

1. We have successfully used multi-client program.

2. We have successfully design a protocol for our application. Although it is just a

very simple protocol, it is enough for us to use right use. Later, we will try to

improve it in server fields (i.e. uses encryption on the message, minimize the

bandwidth it used, etc.)

3. We have successfully written a gener ic server. We can re-use it later in our

integrated system – “ Fun with Learning English” .

LYU 9902 Wireless Campus

Page 56

10. Fun with Learning English (FWLE)

 Fig 10.1 Snapshot

10.1 Introduction

Fun with Learning English (FWLE) is a CAL for wireless environment. Its target is
primary school student and its aim is to provide a funny and wireless learning
environment.
There is 2 modes running FWLE, the online mode and offline mode.
In online mode, we assume teacher and student use FWLE in the classroom. At
teacher will use the server program and student will use the client program.
Some features in online mode:

1. Chat Room

Teachers and students can talk and exchange information through this chat room.
2. Voting (not finished)

The teacher can post a voting topic to the students. After student’s reply, the
server will calculate the statistics of the result and send to all people. The same
technique can be applied to MC question.

3. Write board (not finished)
Teachers and students can draw on a write board. This “white board” may be
writable or read-only by others. Teachers can explain some idea by drawing the
picture through the write board. The student can save the write board at any
moment.

4. Scenario Reader
Student can use Scenario Reader to open the scenario files which are prepared
by teachers. A scenario is a teaching material which consists of many interactive
objects. Student can learn by interacting with the objects. Student can also
interact with teacher/students through the object of Scenario. We will have an
example scenario later in this chapter.

In offline mode, only scenario reader is support.

LYU 9902 Wireless Campus

Page 57

10.2 Inter face of Fun with Learning English

Fig. 10.2 Interface of Fun with Learning English

Switching Buttons:

 Connect :

This button is reserved for future use. It is for network connection purpose.

 Scenario:

This button is reserved for future use. It is switching to scenario mode from

the write board mode.

 Writeboard:

This button is reserved for future use. It is switching to write board mode

from the scenario mode.

Voting:

This button is reserved for future use. It is for posting/replying a voting

request.

LYU 9902 Wireless Campus

Page 58

10.3 Demonstration of a Scenar io

We have create one scenario , called “Home”, for FWLE.

Student can learn vocabulary, pronunciation, verb and preposition in this scenario:

1. Vocabulary

When the cursor is pointing on an

object, its name will be shown.

2. Pronunciation

When u click on the object, a

command menu will be pulled out.

You can hear the pronunciation of the

object by clicking “Pronounce it” .

3. Verb

If u click on “Use It” , you can use the object. A message will shown

stating what action u have done on that object.

You can also use other objects in the scenario.

LYU 9902 Wireless Campus

Page 59

10.3 Demonstration of a Scenar io (Cont’d)

4. Preposition

If u click on “ Locate It” , a message will be shown to state the location of the

object. Student can learn how to use preposition to describe the location of the

object by reading this message.

If u click on “Move It” , you can drag the object to other place. After placing the

object, a message will be shown to state where the object has been put on/in.

The message stating the location is generated at real time. After placing the

object in the new position, you can ask for its location again.

You can also move other objects in the scenario.

LYU 9902 Wireless Campus

Page 60

10.4 The aim of this wr iting this program:

1. We want to integrate all of the techniques we learnt in this semester to write an

educational application for wireless environment. Here is the list of the integrated

components:

A. Direct Draw

B. Direct Sound

C. WinSock

D. Use spt files to represent objects

E. Use of Frame Engine

F. ChatRoom

G. Use of Gener ic Server

H. Asynchronous connection

2. We try to design a software which is suitable for future world.

We have set some goals for FWLE

A. Fancy and User fr iendly inter face

B. Suitable for a wireless environment

C. Use of Multi-media

D. Allow teacher to design some Interactive Teaching mater ial

E. Provide a good Interaction between teacher and students

F. Maximize the potential use of our software

LYU 9902 Wireless Campus

Page 61

10.5 The pseudo-code of FWLE:

Mai n()

 {

 I ni t i al i ze Wi nSock

 I ni t i al i ze Di r ect Dr aw

 Ask Pl ayer t he opponent ’ s I P addr ess

Connect t o t he ot her s i de

Wai t unt i l Connect ed

I ni t i al i ze_scenar i o

Loop

{

Cl ean up t he of f scr een buf f er

get t he st at e of mouse

 I f c l i ck on scenar i o but t on

 Swi t ch t o scenar i o mode

 I f c l i ck on wr i t e boar d but t on

 Swi t ch t o wr i t e boar d mode

/ * I f c l i ck on vot i ng but t on * /

/ * cal l conf i gur e_vot i ng() * /

I f i t i s scenar i o mode

cal l Scenar i o_Reader ()

 I f i t i s wr i t e boar d mode

 / * cal l wr i t e_boar d () * /

/ * Vot i ng, wr i t e boar d i s not f i ni shed * /

 Fl i ppi ng / * Updat e t he scr een by t he of f scr een buf f er * /

} unt i l (user qui t)

 Shut Down Di r ect Dr aw

 Shut Down Wi nSock

 }

Pr ocedur e Scenar i o_Reader ()

 {

get t he st at e of mouse

 check i f t he cur sor i s poi nt i ng an obj ect

 i f menu i s showi ng and not movi ng an obj ect

{

i f c l i cki ng on “ Pr onounce” i t

pl ay t he wav f i l e of t he poi nt i ng_obj ect

i f c l i cki ng on “ use” i t and t he obj ect i s usabl e

change t he st at e of t he poi nt i ng_obj ect and pr i nt out t he use message

i f c l i cki ng on “ l ocat e” i t

pr i nt out posi t i on_of (poi nt i ng_obj ect)

 i f c l i cki ng on “ move” i t

 set t he poi nt i ng_obj ect as a movi ng obj ect

 }

LYU 9902 Wireless Campus

Page 62

10.5 The pseudo-code of FWLE: (Cont’d)

 i f movi ng an obj ect

 {

 check i f t he obj ect can be pl ace i n t he cur r ent posi t i on

 i f cannot pl ace

 pr i nt t ext “ Cannot pl ace her e”

 i f can pl ace and use has cl i ck t he mouse

 {

 updat e t he posi t i on of movi ng obj ect

 c l ear t he movi ng f l ag

 }

}

i f menu i s not shown and not movi ng an obj ect

show t he menu i f c l i ck on an obj ect

Dr aw t he obj ect on t he scr een

}

10.6 Algor ithm

1. Animating the object:
In FWLE, there will be animation on some object.
We have attached 2 attributes called “wait_time” and “wait_goto” in the spt file
for animating the object. Each frame has its wait and goto value. “Wait_goto”
specifies which frame will go in the animation . Wait_time specifies the time to
wait before jump to next frame.

2. Make the object “usable” :

In FWLE, some objects will change its state when being used.
We have attached 2 attributes called “use_goto” and “use_message” in the spt file
for “use” function. Each frame has its “use_goto” and “use_message”. “Use_goto”
specified which frame will go when being used. “Use_message” describes the
“use” action.

LYU 9902 Wireless Campus

Page 63

10.6 Algor ithm (Cont’d)

 Here is an example:

Fig 10.3 DFA of Television in FWLE

Content in the spt file:
 Fr ame 0 Fr ame 1 Fr ame 2

Wai t _got o 0 2 1

Wai t _t i me 0 ms 10 ms 10 ms

Use_got o 0 1 1

Use_message “ Tur n on t he TV” “ Tur n of f t he TV” “ Tur n of f t he TV”

3. “Position Tree” :

In FWLE, objects can be put onto or into other object.
We have defined a data structure called position tree to implement “on” and “ in”
relations between objects.

Here is an example:

 Fig 10.4 Some objects in the scenario Fig 10.5 The position tree for fig 10.4

LYU 9902 Wireless Campus

Page 64

10.6 Algor ithm (Cont’d)

4. “Position Plane” and “bottom point”

In FWLE, when objects is being moved, we use position plane and bottom point
to detect whether the object can be placed at the current position.

Here is an example:

The football can be put on the chair only if its bottom point hits the position

plane of chair. Actually, a position plane is a region with on/in flag and a

capacity. The on/in flag stating whether the plane is a “on” or “ in” relation.

An object is not allowed to put on a plane with capacity larger than its

volume.

5 Generate the position message in real time

In FWLE, we can ask for the position of objects. FWLE can detect the “on” ,

“ in” , “on the left of” , “on the right of” , “between”, “ in front of” , “behind”

relation. “on” and “ in” relation is detected by searching the position tree.

The other relations are detected by comparing the slope of the position

difference with the objects on/in the same position plane.

Here is a pseudo-code of procedure for detecting “on the left of” :

On_t he_l ef t _of (i nt det ect i ng)

{

 f or i = al l obj ect s on/ i n t he same pl ane wi t h obj ect [det ect i ng]

i f (obj ect [i] . x > obj ect [det ect i ng] and

 (x_di f f er ence(i , det ect i ng) / y_di f f er ence(i , det ect i ng)) > 3)

obj ect [det ect i ng] i s on t he l ef t of obj ect [i]

 next i

 I f no obj ect f i nd, r et ur n nul l

 El se r et ur n t he obj ect wi t h c l osest di st ance.

 }

The algorithm for “on the right of” , “between” , “ in front of” , “behind” is similar.

LYU 9902 Wireless Campus

Page 65

10.7 Outcome

We successfully integrate all the following components into FWLE.

A. Direct Draw

B. Direct Sound

C. WinSock

D. Use spt files to represent objects

E. ChatRoom

F. Use of Gener ic Server

G. Asynchronous connection

We have written a object editor (OE) for creating FWLE’s objects. Our aim for

writing the OE is to provide a convenient way for teacher to create the scenario.

We can editor all of the attribute of an object using OE.

Actually, OE is modified from the frame engine of plane. At this stage, OE is not

so user friendly. We are going to improve it in future.

 Fig 10.6 Snapshot of object editor

Actually, FWLE is not finished yet. The voting and writing board are just at the

early stage. Moreover, we have founded some possible extensions to FWLE. It

will be discussed in the next chapter.

LYU 9902 Wireless Campus

Page 66

11. Our Future Plan

Of course, our FYP project is still not finished. Up to this state, we have some

ideas about what is our next move. Although we may not reach all the following

goals in next semester, here is some extension we hope to try:

1. Try to integrate Video Streaming Function into FWLE.

If our FWLE can have Video Streaming Function, we can try to use our FWLE to

create a new style of learning – students can have lessons outside the classroom.

Imagine a geography lesson which needs to study rock that can be carried out at

the beach. Also, for medical students, they can see their teacher doing an

operation more clearly if there is a camera zooming the operation and all of them

carry a thin client device outside the room.

2. Try to implement our FWLE to work with a database server.

Up to now, our FWLE have just a few object. So, we can still manipulate it by

programming. However, if the number of objects in our FWLE system increases,

to say, the whole physics experiment book of secondary school, then our coding

can’t cannot handle all objects well. Thus, we hope to implement our FWLE

system with a database server.

3. Try to extent our project to other thin client devices such as PDA and HPC.

For now, the client program we develop is mainly executing on a notebook

running Win98. However, if a thinner client such as Palm Pilot or HPC running

WinCE, is used, the user can carry the machine more conveniently. Thus, we also

hope that we can extent our system to those thin clients to see whether those

environments are more suitable for the new learning style.

LYU 9902 Wireless Campus

Page 67

References

1. MSDN Online: http://msdn.microsoft.com/default.asp

2. WaveLAN: http://www.wavelan.com/products/

3. Microsoft DirectX: http://www.microsoft.com/directx/

4. Ralph Davis. Win32 Network programming: Windows 95 and Windows NT

network programming using MFC. Addison-Wesley, c1996.

5. Bob Quinn, Dave Shute. Windows sockets network programming. Addison

Wesley Pub. Co., c1996.

6. Stevens. TCP/IP I llustrated Volume 1: The Protocols. Addison Wesley. Feb

1998.

7. Pat Bonner. Network programming with Windows Sockets. Upper Saddle

River, NJ : Prentice Hall PTR, c1996.

8. Martin Heller. Advanced Win32 programming. New York: Wiley, c1993.

9. R. Yavatkar, D. Hoffman, Y. Bernet, and F. Baker. SBM(Subnet Bandwidth

Manager): A proposal for Admission Control over IEEE 802-style networks.

Internet Draft

LYU 9902 Wireless Campus

Page 68

Appendix A. Statistics of programs

Component

Number of files

Number of pictures
drawn

Number of
lines in the
source code

DirectDraw Library

6

0

1435

Class Sprite 2 0 296

Class Frame

2

0

247

DirectSound
Library

2

0

348

WinSock Library

2

0

576

WinTalk

8

0

1372

Reversi

8

7

1864

Plane

24

50

2426

Ball

24

1

840

Chat Room

8

0

3125

Generic Server

1

0

756

FWLE

26

42

8650

Total 113 100 24261

LYU 9902 Wireless Campus

Page 69

Appendix B.Progress Report
Date Descr iption

June, 99. Evaluating among different OS
(WinNT, Win95/98, WinCE and Linux)

June, 99. Evaluating among different programming
language (Visual C++, Java)

start at June, 99 Studying Direct X
start at June, 99 Studying Winsock
12nd –14th July, 99 Trying to setup a intranet
15th July, 99 Trying the Wireless Devices

14th July, 99

The first testing program - WinTalk, released

25th July, 99 The second testing program – “Apple Chess” , released

10th Aug, 99

The third testing program – “Reversi” (Actually
it is a newer version of Apples Chess), released

11th - 30th Aug, 99 Build our Direct Draw library (graphical library)

1st - 14th Sep, 99

Using our Direct Draw library to write the forth testing program – “Plane”
15th Sep, 99 Start to build our Direct Sound library (audio library)
22nd Sep, 99 Add the audio library to “Plane” .

6th Oct, 99

Write a new game “Ball” , to test combining Winsock and Direct Draw
together.

9th Oct, 99 Add the Winsock to “Plane”
11th - 16th Oct, 99 Studying Multi Client for WinSock
18th – 20th Oct, 99 Design the structure of Chat Room – WinChat and a generic server for chat

room.

21th – 26th Oct, 99

Write a Chat Room - WinChat using WinSock

24th Oct –15th Nov, 99 Construct the scenario editor and preparing the spt file for FWLE

12th – 20th Nov, 99

Write the scenario reader for FWLE

