The Chinese University of Hong Kong
Computer Science and Engineering Department

-

Final Year Project (LYU 9902)

| ereless Campus
o oy

;':*: 2 W Report version 3.1

Supervisor: Prof LYU, Rung Tsong Michael

Marker: Prof CAl, Leizhen

By Wong Ho Yin, Starsky 97544174
Wong Kwok Hung, Marti 97570894

Date: 1/12/99

Page 1

LY U 9902 Digital Schoal

Table of Contents

Page
1.Introduction 4
1.1Project Overview 4
1.2 Programming platform 5
1.3 Project Architecture 5
2. System level of our project 6
2.1 Overview of the system level of our project 6
2.2 DirectX library 6
2.2.1 What is DirectX? 6
2.2.2 Our own class of library 6
2.2.3 The prototype of our Direct Draw class 7
2.2.4 Description of Direct Draw function 7
2.2.5 Class "Sprite" 10
2.2.5.1 Introduction to spt files 10
2.2.5.2 The prototype of Class Sprite 11
2.2.6 Class "Frame" 11
2.2.6.1 Frame splitting 12
2.2.6.2 Algorithm 12
2.2.6.3The prototype of our Class Frame 12
2.2.7 Class "Region” 13
2.2.7.1 The prototype of our Class Region 13
2.2.8 Attachment of other Frame Attributes 13
2.2.9 An example of using a Spt file to represent an interactive 14
object 16
2.2.10 Our Direct Sound Class 16
2.2.10.1 The prototype of our Direct Sound Class 16
2.2.10.2 Mixer problem in Direct Sound 18
2.3 DirectShow Library 18
2.3.1 What is DirectShow? 18
2.3.2 DirectShow Architecture 19
2.3.3 What we had done on DirectShow library? 20
2.4 WinSock library 20
2.4.1 What is WinSock? 21
2.4.2 The Sockets Programming Paradigm under Windows 22
2.4.3 Why use WinSock? 23
2.4.4 Blocking and event-Driven Application 23
2.4.5 Function prototype of WinSock library? 23
2.4.6 Description of WinSock library 24
2.5 The Server 24
2.5.1 Overview 24
2.5.2 The simple broadcast server 25
2.5.3 Problems of the simple broadcast server 25
2.5.4 The Improved server 27
2.5.5 The Improved server Architecture 27
2.5.6 Message structure 29

2.5.7 The client list

Page 2

LY U 9902 Digital Schoal

3. Collaborative Environment(CE) 30
3.1 Introduction 30
3.2 Interface 32
3.2.1 Roomlist 33
3.2.2 Classmate List 34
3.2.3 Using CAL (self learning application) 35
3.2.4 Chatroom 36
3.2.5 Writeboard 37
3.2.6 Mediaroom 39
3.2.7 Voting 40
4. Role Play Collaborative Environment(RPCE) 41
4.1 Introduction 41
4.2 Walking 42
4.3 Talking 43
4.4 Whispering 44
4.5 Paging (Private Message) 44
4.6 Playing games (group learning application) 45
4.7 Using CAL (self learning application) 45
4.8 Client-Server interaction 46
4.9 Picture Compression a7
4.9.1 Overview 47
4.9.2 Our approach a7
4.9.2.1 Huffman Code 48
4.9.2.2 Disadvantages of Huffman Code 48
4.9.2.3 LZW 49
4.9.2.4 Conclusion 53
4.10 Further Improvement 54
4.11 Conclusion on CE 55
5. Personal Application 56
6. Conclusion 58
Appendix A References 59
Appendix B Progress Report 60
Appendix C Statistics of our program 62

Page 3

LY U 9902 Digital Schoal

1. Introduction

1.1 Project Overview

Our aim of doing the project is to enhance the learning experiences among,
students in team projects and allow students to perform joint work even they are
physically apart.

In our project, we have implemented the whole system, system level and
application level or programming.

In system level, there are a server and some libraries.

The server works as a central unit of the whole system. It controls every
message to pass through the system and controls the usage of resource inside
the system. The whole system cannot work without it.

The client programs are used by the students. They can invoke one or more
activities (chat room, voting, write board or media sharing) in it. The instance of
each activity runs locally at each participant's site and the response of each user
is distributed to all the participants.

The client program is for received the response from the user and send it to the
server. After server received their response, it will calculate the new state of the
user and distribute it to all of the users within the system.

The libraries help us to develop a highly interactive network application. The
libraries include Winsock, Direct X and Direct Show library . Based on them, we
have designed and built the system which is suitable for future world. We have
tried to develop the software in 2 approaches. The first one’s interface is more
efficient and clear and the second one’s is more user friendly and simple. Finally,
we have compared these 2 approaches and give a conclusion.

Page 4

LY U 9902 Digital Schoal

1.2 Programming Platform

All of the programs are written in Microsoft Visual C++.

For the server program, it needs to run on Microsoft Windows 95/98/NT platform
with Winsock support.

For the client program, it needs to run on Microsoft Windows 95/98 platform with
DirectX version 5.0 or above support.

1.3 Project Architecture

This project Digital School is mainly divided into two parts.

The first part is the server, which mainly responsible for central control of the
whole system. The second part is the client program, which also called “Digital
School”. The client is mainly response for display for the learning material and
interactive activities.

Basically, our work includes implementing the libraries, building the server, and
building the client program.

For those libraries we had created, they will be talked in details at Chapter 2.1 to
Chapter 2.4 in this report.

For the server we had built, they will be talked in details at Chapter 2.5 in this
report.

For the client program we had built, detail will be talk in Chapter 3, 4 and 5 in this
report. Here is the architecture overview:

Communication Toals:
CAL Chatroom, Private message, Write board,
Mediaroom, Voting, Tak, Whisper, Page
Application
Level
Collaborative Environment
Server Di
Direct X slr:ed System
Winsock Library L b:)w Level
Library ay

fig 1.1 Architecture Overview

Page 5

LY U 9902 Digital Schoal

2. System level of our project

2.1 Overview of the system level of our project

There are four main parts to help us to construct our project:
1. DirectX library

2. DirectShow library

3. WinSock library

4. The Server

Basically, our project is based on some libraries we had built. These libraries are
the DirectX library, DirectShow library and WinSock library. The DirectX library is
mainly responsible for the graphic display. The DirectShow library is mainly
responsible for video display. The WinSock library is mainly response for
sending and receiving data in the network.

Also, there is a server running at the background to support our project.

2.2 DirectX library

2.2.1 What is DirectX?

In order to write a fancy and interactive application for our project, we have
built our own graphical libraries and audio libraries. DirectX is a Microsoft
Windows® API such that it can provide display of images in 2D/3D and
playback sound files on Windows.

2.2.2 Our own class of library
Since the APIs provided by Direct Draw are so confused and complicated,
we have constructed our Class of Direct Draw to encapsulate the details of

the function calls. With this Class, we can create and access the objects of
Direct Draw easily.

Page 6

LY U 9902 Digital Schoal

Page 7

2.2.3 The prototype of our Direct Draw class (written in pseudo-code)
Class DD {
Public:
DDsStartup();
CreateDesktopW indow(Window_handler, Direct_X_object); DDFullConfigure(Direct_X_Object);
DDWinConfigure(Direct_X_Object);
DDLoadPalette(Bmp_file, Palette_object);
DDLoadBitmap(Bmp_file, Surface_object);
DDSetColorKey(Surface_object, Key_color);
DDMakeOffscreenSurface();
DDCreateFlipper(Flipper_Object);
DDCreateFakeFlipper(Flipper_Object);
DDFlipping();
DDFillSurface(coordinates, color);
DDTextOut (Surface_object);
CleanUp();
Private:
Direct_X_Object DX;
Surface primary_surface, secondary_surface;
Window_handler ghwnd;

Character Mode;

2.2.4 Description of Direct Draw function:

DDStartup():

This function is used to create an instance of a DirectDraw object.

CreateDesktopWindow(Window_handler, Direct X object):

This function is use to create a window. We can also configure the
window’s attributes like width, height, style, menu name, and background by
using this function.

DDFullConfigure(Direct X _Object):
This function is used to initialize the DirectDraw object with a full screen
mode.

LYU 9902 Digital Schoal

Page 8

DDWinConfigure(Direct X Object):
This function is used to initialize the DirectDraw object with a window mode.

DDLoadPalette(Bmp_file, Palette _object):
This function is used to get the palette from a bmp file. Palette is an array,
which used to hold the actual color value from a bmp file.

Here is an example:
The picture:

The content of palette:

0000000000000 0000000D0000000000000000000000000000000 2 -
0000000000000 000000000000000000000000000000000000000
00010000100000101000010000002220002220003533000333000

0001000001 000100100001000002000202000203000303000300 3
0001000001 000100100001000002000202000203000300000300

0001000000101 000100001000002000202000203000300000300

000100000001 0000100001000000222200222203000300003000
0001000000010000100001000000000200000203000300030000

000100000001 0000100001000002000202000203000300300000
0001111100010000011110000000222000222000333003333300

0000000000000 0000000D0000000000000000000000000000000
o0o0Oo0O0OOO0ODO0ODOOO0ODO0DOOOOO000000000000000000000000000000

DDLoadBitmap(Bmp_file, Surface object):

This function is used to load a bitmap into a surface. A surface is a object
defined by Direct Draw to hold the content of a picture.

DDSetColorKey(Surface object, Key color):

This function is used to set a key color (transparency color) for a surface.

Here is an example:
Background surface:

Foreground surface:

The Chinese University
Of Hong Kong

Color Key: .

r

g 1 l'.-_'-|

Put the foreground surface

without color key:

| - e [
* The Chinese University

i Of Hong Kong

Put the foreground surface

with color key:

e I'-.'-_l

LY U 9902 Digital Schoal

Page 9

DDMakeOffscreenSurface():
This function is used to make offscreen surface (secondary surface).
Typically, we will construct at least 2 surfaces when using DirectDraw.
The primary surface and the secondary surface. Primary surface can be
considered as the memory content in the video card and is always be
shown on the screen. In the flipping process, the content of secondary
surface will be copy to the primary surface.

If we don’t use flipping, the cleanup process must be done directly to
the primary surface. Because the background surface will cover the
foreground surface when updating, the showing time of background picture
will be longer than that of foreground picture. Therefore, there will be
twinkling effect in the human eyes.

If we use flipping, the cleanup and updating process will be done
behind the primary screen. We will flip the secondary surface only when all
of the foreground surfaces are ready. So it can eliminate the twinkling
problem.

DDCreateFlipper(Flipper_Obiject):
This function is used to create a flipper instance

DDCreateFakeFlipper(Flipper_Object):

This function is used to create a fake flipper.

In window mode, flipper object is not supported, so we need to use this
function to create a fake flipper. It simulates the flipping process by using
the memory copy function. Its performance is as good as a real flipper.

DDEFlipping():
This function is used to do the Flipping. This function will know whether
we are using the fake flipper or the real flipper.

DDFillSurface(coordinates, color):
This function is used to fill a rectangle on the surface. We can use this
function to cleanup the screen if we do not have a background picture.

LY U 9902 Digital Schoal

DDTextOut (_ Surface_object):
This function is used to print text on a surface.

CleanUp():

This function is used to cleanup all Direct Draw Object.
2.2.5 Class “ Sprite”

Class Sprite is built to manipulate the *.spt files. It has included the data
structure for a spt file, the method for opening spt file and the method
for handling spt’s data.

2.2.5.1 Introduction to spt files:

In order to deal with the picture files (*.bmp) easily and efficiently.
We have defined a file type called spt file. Spt file can be used to
represent a man, a dog, a robot, or other interactive object in our
application. Each sprite file (*.spt) has its corresponding picture files
(*.bmp). The file name of the picture files (*.bmp) and the information of
the sprite will be stored in its sprite file (*.spt).
Here is an example:

h ’lll!l\

Walkl) bmp Wkl bmp Walld bmp Walkibmp Walkdbmp WilkShmp Walkébmp Walk? bmp

Fig 2.1 8 action pictures for a walking man

We have got the pictures of a walking man and want to play as
animation. So we can define a spt file for that walking man.
Here is the content of the spt file:

Sprite_name: “Walking Man”

No_of _frame: 8

Size_of_Picture: 150 x 100

Picture_filetype: bmp

Picture_filename: walk0, walk1, walk2, walk3, walk4, walk5, walké, walk7
Transparency_color: 27

Frame_rate: 25

Reserved_space_for_future_USe: ... vvvvvvvinnnn e rrrrrnnnnnnnnns

Page 10

LY U 9902 Digital Schoal

By using this kind of spt file (Our programs have a different format
of spt file, this example is used for demo only), the programmer can
write a generic animation player to play some simple animation.
Actually spt file can be used to represent some interactive object rather
than animation. There will be an example later in this chapter.

X.2.5.2 The prototype of Class Sprite: (written in pseudo-code)

class Sprite
{
public:
LoadSprite (String sprite_file);
SaveSprite (String sprite_file);
Setbmpfilename(string);
Setld (int);
InsertFrame (int, Frame);
DeleteFrame (int);
SetReserved_string (int, string);
SetReserved_integer (int, int);
String getbmpfilename();
Integer getld ();
String GetReserved_string (int);
Integer GetReserved_integer (int);
protected:
Frame frm[];
[* Frame will be introduced in the next session */
/* Frame is not private because its member Retion need to be read by some friend functions for
region calculations */
private:
String Bmp_filename;
Integer id;
Integer no_of_frame;
String Reserved_string[20];
Integer Reserved_integer[100];

2.2.6 Class “Frame”:

Class Frame is built to store the information for each action.
(Frame instance is defined as the member under Sprite.)

A Sprite may include several actions. In page 10, the example of Sprite,
the spt file is representing a walking man with 8 frames.

Page 11

LY U 9902 Digital Schoal

2.2.6.1 Frame splitting:

Because each frame has its action picture, if there are many
frames, it is so troublesome to deal with large number of picture files.
Therefore, we have written a function for frame splitting. It let us to draw
all the frame pictures in one picture file. And the method for opening a
spt file can recognize all the frames’ position automatically.

2.2.6.2 Algorithm

(Assumption: each frame is drawn within a square)
For y = 0 to height of picture
For x = 0 to width of picture
If Pixel(x, y) != background_color and Pixel(x, y) is not used
begin
[*Pixel (x, y) is the upper left corner of this frame*/
Find the upper right corner of this frame
Find the bottom left corner of this frame
Save the coordinates of this frame in a linked list
end
Next x
Next y

2.2.6.3 The prototype of our Class Frame: (written in pseudo-code)

class Frame

{

public:
Frame get_frame ();
Set_frame (Frame);

private:
String name_of_frame;
Integer no_of_region;
Region rg[];
/* Region will be introduced in the next session */
intgo; /* for animating purpose */
int wait; /* for animating purpose */
String Reserved_string[20];
Integer Reserved_integer[100];

Page 12

LY U 9902 Digital Schoal

Page 13

2.2.7 Class “Region”:

— Ears
[Hands
Il Body

Fig2.2 Define regions for different parts of body

Region is an attribute of Frame. It stores the coordinates of a rectangle
in the action picture. (Retion instance is defined as the member under
Frame.)

The 2 main purposes of region definition:

1. Because most of the pictures have an irregular shape, it is expensive to
detect the collision between them. On the other hand, if we define some
rectangular regions to represent the picture body, the collision
detection will become simple.

2. Moreover, regions can represent buttons, different parts of a body or
other interactive objects on the picture.

2.2.7.1 The prototype of our Class Region: (written in pseudo-code)

class Region

{

protected:
Integer X, y, w, h;
/* They are not private because they need to be read by some friend functions for region calculations
*
/

2.2.8 Attachment of other Frame Attributes

Actually, frames’ and regions’ positions are just some integer data
attached in the sprite file. We have also reserved some string and integer in
a Spt file for future use. These reserved data can have many meanings in
future. For example, string can represent a message, or a *.wav file name for
the sound effect. An integer can represent the frame rate, or other animating
information.

LY U 9902 Digital Schoal

2.2.9 An example of using a Spt file to represent an interactive object:

We want to create a refrigerator using a spt file. The user can open and
close the refrigerator by clicking on the side of the doors. There is a cake
inside the refrigerator. The user can eat the cake when click on it. But if the

cake has been eating once, it cannot be eat again.
The pictures for the refrigerator:

il
Trame O Frame 1 Frame 2 Frame 3

The regions defined for the frames:

u

Frame 2

Frame O Frame 1 Frame 3

Regions:

We construct the spt file using the technique of constructing a finite state

machine.
Here is the DFA for the refrigerator:

Click on Region 0.1
—_——

‘—
@ Click on Region |

* Click on Region 0

Click on Region 0.1

 ——_—

Click on Region |

Click on Region 0

(D

Fig. 2.3 DFA for the refrigerator

Page 14

LY U 9902 Digital Schoal

Here is the content of the spt file:

Sprite_name: “Refrigerator”
No_of _frame: 4

Transparency_color: 0

FrameO:
No_of_Regions: 2
Coordinates_of_regions: 20 30 20 30 20 80 20 40
When_clicking_region0_goto_frame: 1 message: “Open the refrigerator”

When_clicking_regionl_goto_frame: 1 message: “Open the refrigerator”

Framel:
No_of_Regions: 2
Coordinates_of _regions: 24 60 80 70 110 30 40 160
When_clicking_region0_goto_frame: 3 message: “Eat the cake”

When_clicking_regionl_goto_frame: 0 message: “Close the refrigerator”

Frame2:
No_of Regions: 2
Coordinates_of_regions: 20 30 20 30 20 80 20 40
When_clicking_region0_goto_frame: 3 message: “Open the refrigerator”

When_clicking_regionl_goto_frame: 3 message: “Open the refrigerator”

Frame3:
No_of_Regions: 2
Coordinates_of_regions: 24 60 80 70 110 30 40 160
When_clicking_region0_goto_frame: 3 message: “| have just eat!”

When_clicking_regionl_goto_frame: 2 message: “Close the refrigerator”

Page 15

LY U 9902 Digital Schoal

2.2.10 Our Direct Sound Class:

We have constructed our Class of Direct Sound to encapsulate the
details of the function calls. With this Class, we can create and access
the objects of Direct Sound easily.

The features of our audio library:
1. Support Wav file with different sample rate.
2. Different sounds can be overlap at the same time.

2.2.10.1 The prototype of our Direct Sound Class: (written in
pseudo-code)

class SoundBuffer
{
public:
SetupBufferFromWave(String);
/* load a wave file into sound buffer */
Play (integer);
[* play the wave, there is 2 mode of sound playing
the normal mode and loop mode.
Loop mode are usually use for background music */
Stop ();
/* stop the playing of the wave */
Static InitializeDirectSound();
/* Initialize Direct Sound, This function is static because
it function is common to all instance */
Static ShutdownDirectSound();
/* Shut down Direct Sound, This function is static because
it function is common to all instance */

private:
LPDIRECTSOUNDBUFFER soundbuffer;
I* the actual sound buffer */
Static DirectSound_Object DS;
/* Direct Sound Object */

2.2.10.2 Mixer problem in Direct Sound:

Direct Sound supports sound mixer which let different sounds to
overlap at the same time. Without mixer, when we want to play a sound
buffer, we need to wait until there is no sound playing.

We find that there is a restriction on the Mixer provided by Direct Sound.
The same sound buffer cannot be overlapped itself. For example, when
we click on a man, there will be a “hello” sound in our program. But if
we click on the man many times so frequently, the man will not respond
to say “hello” every time. It is because there isa “hello” sounds still

playing.

Page 16

LY U 9902 Digital Schoal

We have considered 3 possible solutions for the Mixer problem:
1. Create duplicate buffers for the same sound file
Advantage:
a. Itis easy to implement.
Disadvantages:
a. Itwastes a lot of memory space.
b. Don’t know how many buffers is enough. Longer sound
may need more buffers.

2. Create a constant number of buffers, load the sound file into the

buffer only when it needs to play.
Advantage:

a. It saves the memory space.

b. It leads to substantial delay of the sound, which is not

acceptable.

Disadvantages:

a. Itis difficult to implement.

3. When play a sound buffer, check whether it is being played. If yes,
stop the sound and play again from the beginning.
Advantage:
a. lItis easy to implement.

Disadvantages:
a. If the sound have a lower volume at beginning and higher

volume at the end, user may realize that there is a cropping

of sound.
b. If the sound is a human conversation, user may realize that

there is a cropping of sound.

Finally, we have use method 3 for the solving the problem.

It is because usually, only sound effect will be overlapped itself.
And Sound effect is always very short and has a higher volume at the
beginning.

Page 17

LY U 9902 Digital Schoal
2.3 DirectShow Library
2.3.1 What is DirectShow?

DirectShow is a Microsoft Windows® API such that it can provide
playback multimedia streams from local files or Internet servers, and capture
of multimedia streams from devices. Specifically, it enables playback of
video and audio content compressed in various formats, including MPEG,
Apple® QuickTime®, audio-video interleaved (AVI), and WAV, and both
Video for Windows-based capture and WDM-based (Windows Driver Model)
capture.

At the heart of the DirectShow services is a modular system of
pluggable components called “filters”, arranged in a configuration called a
“filter graph”. A component called the “filter graph manager” oversees the
connection of these filters and controls the stream's data flow. We will talk
about this later.

We are using the Microsoft Visual C++® for DirectShow development

2.3.2 DirectShow Architecture

Here is the DirectShow Architecture:

| Application |
ActiveMovie - COM Ml
Control interfaces
Filter graph manager
Source - Transfarm - Renderer
’_’ filter filter filter
Media source Media destination

Fig 2.4 DirectShow Architecture
Let’s focus on the gray part of the figure. In each DirectShow
application, there must be a software component call “filter graph manager”
to control the entire “filters”. A graph like the above gray one is called “filter
graph”. It is used to describe the data flow within the DirectShow application.
A filter graph is composed of a collection of “filters” of different types.

Page 18

LY U 9902 Digital Schoal

Most filters can be categorized into one of the following three types.

1. Source filter, which takes the data from some source, such as a file on
disk, a satellite feed, an Internet server, or a VCR, and introduces it into
the filter graph.

2. Transform filter, which takes the data, processes it, and then passes it
along.

3. Rendering filter, which renders the data, typically this is rendered to a
hardware device, but could be rendered to any location that accepts
media input (such as memory or a disk file).

For example, a filter graph whose purpose is to play back an
MPEG-compressed video from a file would use the following filters.

1. Asource filter to read the data off the disk.

2. An MPEG filter to parse the stream and split the MPEG audio and video
data streams.

A transform filter to decompress the video data.

A transform filter to decompress the audio data.

A video renderer filter to display the video data on the screen.

An audio renderer filter to send the audio to the sound card.

o gk w

The following illustration shows such a filter graph.

MPEG videa]
decornpression Yideo
transform [7| renderer
: i filter
File ar URL filter
: MPEG
rnoniker .
Ll splitter
-l filter
ilter .
MPEG audio *"'—'d':"':'
decompression f—e [EOOSrEr
filter filter

Fig 2.5 Example of the filter graph

2.3.3 What we had done on DirectShow library?

We had tried to unify all those filters into one function called
“PlayMMFile” in our project. Also, we try to add some extra functions for
those MultiMedia files which DirectShow haven’t provide to us. Here is the
function prototype of the function “PlayMMFile”:

int PlayMMFile(char * address);

Page 19

LY U 9902 Digital Schoal

Inside “PlayMMFile”, we first try to unify all different source filters. That
means we can try to open a MultiMedia file on different kind of source, such
as from hard disk or from Internet, by just one function.

Secondly, we try to unify all different transform filters inside
“PlayMMFile”. That means we can open different kinds of MultiMedia file
format, such as MP3 (audio), WAV (audio), DAT (video), MPG (video), AVI
(video), ... etc, by just one function.

Finally, we try to implement two more extra functions to those video files.
The functions are
1. To re-size the window that showing a video file
2. To pause to video or audio that are playing

As these two functions are NOT provide by DirectShow, we need to

implement it by ourselves.

2.4 WinSock library

2.4.1 What is WinSock?

WinSock is the network application-programming interface (API) for
Microsoft Windows Operating System.

For programmers, it provides generic network services; WinSock
translates those generic network services into protocol-specifics requests
and performs the necessary task. Thus, WinSock shields the programmers
from the details of low-level network protocol.

WinSock Application
|

WinSock API

VendorAPI (Protocol Stack)

Hardware AP

Physical Network

Page 20

LY U 9902 Digital Schoal

Fig 2.6 Overviews of how WinSock works
2.4.2 The Sockets Programming Paradigm under Windows

Most of the WinSock development follows the Berkeley sockets model.
With some exceptions, WinSock includes the most Berkeley sockets API.
Most WinSock function names and parameters are identical with the
Berkeley sockets library. WinSock offers additional functions that are used
to cope with 16-bit Windows system.

WinSock use a client/server approach to communicate. One application
is theoretically always available (server side) and another request services
as needed (client side).

The server “creates” a socket, name it so that it can be identified and
found by a client, and then “listens” for services requests. A client application
creates a socket, finds a server socket by name or address, and then “plugs
in” to initiate a conversation. Once a conversation is started, data can be
sent in either direction.

At application level, both server and client need to know what
messages and data expected from the other. They must use the same
protocol.

Two fundamental types of client/server application pair exits in WinSock
also: connection-oriented and connectionless application. Here is the
Overview of Connection-Oriented and Connectionless Application:

Client application

T Sand and Clhzathe
Iritialize Find B Serve Connect to ! Reeasze
Wi Sack _EFEE"EEE”“‘E‘_ petrcatyrameg || Gerer | | Fesee] d_f:';’m || win sock
WS ASEmIPO) 50 chiet() o E—— to et ;ﬁd‘% f DEE;;“&% WS ACleanup()
L 3
Connection
established
here
>
s Pooept Send and Chsethe
Irétialize Cregte 3 Socket Name the co prection Reeive =0kt Release
Wnlock M7 ety [Socket listen() recd) [] shutdown) [y un Sock
WIS ASEMpD) bind() —— =) dosesockeir) S ACleanup)

Senrer application

Page 21

Fig 2.7 Overview of Connection-Oriented Application

LY U 9902 Digital Schoal

Client application

e Send and
Initializ & Find the Sergsr : Close the Feleaze
MinSock | | I:reatel;juche‘t || et ey Hﬁm |1 socket | | WinSock
WIS AStartup) sochet() e ety o) "Z'antmc' close sockety | WS ACleanup)
L3
L
Gz Send and
Initializ & Marme the . Clase the Felease
WinSock (— I:reate'::j-:-cloe‘t — Socket Hﬁm — socket < Wi Sock
WIS AStartup) socket() bind() it dt;"a‘j closesocket) | [Wrs ACleanup()

Server application

Fig 2.8 Overview of Connectionless Application

2.4.3 Why use WinSock?
Here is some reason to explain why we choose Winsock as our network
programming API:

- Multi-protocol support

Winsock allow an application to use the familiar socket interface to achieve
simultaneous access to any number of installed transport protocols.
WinSock is no longer to use on TCP/IP only.

- Asynchronous I/O and event objects

With Win32 programming environments, WinSock can be extended to
asynchronous communication. Asynchronous I/O enables an application to
continue with other process while waiting for the I/O operation to complete.

- Quality of Service

The newest WinSock established conventions for applications to negotiate
required service levels of communication service such as bandwidth and
latency for some quality demanding application such as multimedia
communication.

As we can see, WinSock has some advantages over traditional
Berkeley socket model under Microsoft Windows®.

Page 22

LY U 9902 Digital Schoal

Page 23

2.4.4 Blocking and event-Driven Application

Blocking means that when a function is called, it stops all other
processes in the application and does not return until that function is
completed. This is not a problem in console application. However, in
Windows GUI environment, it is a great problem. Windows GUI are based
on event driven paradigm. They receive and must quickly respond to all
the events (e.g. keystroke, mouse movement ... etc.).

Luckily, the WinSock specification includes many new extensions to the
original Berkeley socket API. One of the most important extensions for
Win32 programming is the support of asynchronous mode.
Asynchronous notification is the best way to doing Win32 GUI
applications. Unlike traditional blocking operations, asynchronous
operations return immediately, no whether it fail or success. After the
operation is finished, the WinSock DLL will send a message to that calling
application, indicate the function is finished.

This helps us a lot in designing our program.

2.4.5 Function prototype of WinSock library?
Since the APIs provided by WinSock are too low-level and complicated,
we have constructed our own network library to encapsulate the details of

the function calls. Here are some prototypes of our own library:
class network

{

public:
int initial_winsock();
int connect(char * machine_ip);
int disconnect(char * machine_ip)

int send(char * data, char * machine_ip);

int receive(char * data)
int cleanup_winsock();

h

2.4.6 Description of WinSock library

1. intinitial_winsock()
This function is used to initialize the environment for running WinSock
function.

2. int connect(char * machine_ip)
This function is used to connect to a computer (of course that computer
must running a server program) which is stated in the parameter.

LY U 9902 Digital Schoal

3. int disconnect(char * machine_ip)
This function is used to disconnect to a computer (of course that
computer must running a server program) which is stated in the
parameter.

4. int send(char * data, char * machine_ip)
This function tries to send data to a particular computer that already
connected previously.

5. intreceive(char * data)
This function is tries to get data from the buffer. When a machine receive
any data from the network, it will first store the data into a buffer. Then
the OS will raise an event to tell the application that some data is inside
the buffer. When the application get this event, it should call “receive” to
get those data.

6. int cleanup_winsock()
This function is use to release resources after the program finished using
WinSock function.

2.5 The Server

Page 24

2.5.1 Overview

In order to allow different user to communicate with each other over a
network, a server is need to handle messages (data) passing to and from
each client. Moreover, a server can also allow central control of resource to
be distributed over the network.

Thus, in our project, there is a server to serve each client of our system.

At the beginning, we have tried to write a very simple server that can
provide broadcast function. However, in later stage, we find that a server
which can only provide broadcast function is inadequate. So, we try to totally
re-write the server to provide more functions for us.

We are now trying to describe that two servers we wrote in detail.

2.5.2 The simple broadcast server

The main function for this server is to allow communication between
every client programs.

We try to write a server that stors each client information (name, 1D,
network address) into list. Later, if there are some data need to send to the
clients, the server will broadcast the data to all the clients.

LY U 9902 Digital Schoal

Here is the procedure which a client want to send a message to another client:

Page 25

1. First, the client must be register to the server. If the client is already
registered and not disconnect from the server, this step can be
skipped.

2. The client will send the data to the server.

3. The server will check for all the client location from the list of clients.

4. The data is sent to all the clients (broadcast) inside the list of client.

Here is the illustration of the above procedure:

Cl; Send To Server g e — e
lent arver et all Client info.]
Send From Server database

Send From Serve, Send From Server

Client Client Client

2.5.3 Problems of the simple broadcast server

Actually, this broadcast mechanism is too simple. Here are some
disadvantages of this server:
1. Totally no security
2. No fault tolerance
3. Cannot send point-to point messages

The last problem is the main problem which leads us to construct the
improved server. If no point-to point messages can be supported, this means
that each client cannot send message to one of the particular client only. Of
course this problem can be solved at application level (by checking the client
ID at each client program), however, this will lead to waste of network
bandwidth. Thus, we try to provide point-to-point function at the server side.

2.5.4 The Improved server

As we mentioned before, the simple server we developed is too simple.
It is not enough for us to use it for our project. This causes us to develop
another server, the improved server. Here are some functions that the
improved server can provide:
1. Broadcast message
2. Point-to-point message
3. Check each register client is still alive or not
4. Encryption of each message passing to and from

LY U 9902 Digital Schoal

Page 26

Broadcast message
This function is same as that of the previous server that can provide.
When a client send this kind of message to the server, the server will then
forward the message to all the clients that had already connected to the

server.

Point-to-point message
This function is new function compared with the previous server. The
client can send a message to only one of the particular client that is already

connected to the server.

Check each register client is still alive or not

This function is new function compared with the previous server. In the
list of clients, there is a field called “time counter”. When a registered client
send an “alive message” to the server, this field will set to 0. On each
second, the value of this field of each registered client will be increase by 1.
When this value is greater or equal to 10, the server will assume client is
dead (the computer hangs, the network connection become
unavailable, ...etc). Then, the server will delete the client from the list. Thus,
each client need to send an “alive message” to the server within the 10
second period in order to let the server know it is alive. By using this
function, the server can save much resource and network bandwidth.

Encryption of each message passing to and from
This function is also new function compared with the previous server.
For every message, the message is encrypted with real time generated
encryption key. Of course, this method is not very secure in front of
professional hackers; however, this can help us to solve several problems:
1. Some messages from outside the system accidentally send into the
system
As the outside messages may not be encrypted, when the server or
clients get those messages, it will still try to decrypt it. However, after
decryption, the message will become meaningless and no action will
be take for those messages
2. Some messages from the system accidentally send to outside
If messages from the system accidentally send to outside without
encryption, others people may able to see the content of the
message. However, with this encryption, if others don’t know the
encryption key and method of encryption, they can’t view the
content of the message.

LY U 9902 Digital Schoal

2.5.5 The Improved server Architecture
The network protocol we use in our project is UDP. The reason for we

choosing UDP rather than other protocol is that:

1. Compared with TCP, it is much faster
UDP is connectionless and TCP is connection-oriented. UDP
runs faster then TCP because there is no need to setup a path
before any connection can start. Thus, less pre-connection
overhead.

2. With a closed-network, we can assume there is no packet loss
As we mentioned before, UDP is connectionless. That means
some packets may be lost during data transfer. However, within
a closed-network, we can assume no packet is loss. This can
also allow us to use UDP rather than TCP.

3. Compare with IPX/AppleTalk, it can run on Internet
One advantage of UDP is that it can also run on Internet. Thus,
our project is not limited to Local Area Network only. But of
course, if our project is really try to run on Internet, some
change is needed to handle to followings: 1) slow connection
speed, 2) large delay time and 3) possible of loss of packets.

2.5.6 Message structure

Also, not like last time, we had defined the message header of different
kind of messages passing to the server. Thus, when the server gets those
messages, it will know what action should be operated.

There are three main kinds of message will be passed between to
server and the clients. They are:

1. System message

The first byte of the message must be ASCII ‘0’ character.
2. Broadcast message

The first byte of the message must be ASCII ‘1’ character.
3. Point-to-point message

The first byte of the message must be ASCII ‘2’ character.

System Message
Several messages will be treated as system message, such as

“connect message”, “disconnect message” and “alive message” ... etc. The

Page 27

LY U 9902 Digital Schoal

Page 28

first byte of the message must be ASCII ‘0’ character.

Connect message
When the client want to connect to the server, it must send a
“connect message” to the server first. Here is the message structure:

1EBEywte 1Byte Client Password. 8 bytes Client Mame. Eange 0-73 bytes

e ol e ol
- Ll | L alle | Ll | L

CO 2 [l 2 Q\O ?

After the server gets this message, the server will check for this client
can be connect or not. There are two reasons why this client cannot be
connected: 1) the password is incorrect, 2) there are too many client
connected to the server already. If the connection is granted, than the
server will send back a “granted message” back to the client. Here is
the message structure:

1Byte 1 Evte Encryption key. 8 bytes Client ID. 4 byte
‘ —rt—t— oy
cO 5| ¢ l * S Oa

One more thing need to notice is that after this message, all messages
passing between this client and server will be encrypted with the
encryption key.

Disconnect message

When the client want to disconnect from the server, it need to send
a “disconnect message” to the server. After this, there will be no more
message send from the server to this client. Also, after sending this
message, the client is no need to wait for the server accept. Here is the
message structure:

1Byte 1 Byte Client Password. 8 bytes Client ID. 4 biyte
B e For Client 1D -
if Client D=4
Ny | ey Yt it should send “0004” to server
Y
O 2 "O in Client ID fiel d

Alive message

By default, the client will send this message to the server at every 3
seconds. This lets the server know that the client is alive. Here is the
message structure:

LY U 9902 Digital Schoal

Page 29

1Bwte 1 Byte Client Password. 8 bytes Client ID. 4 byte
B e For Client ID -
if Client ID =4
Ny | e YAt it should send “0004” to server
O 3 \O in Client ID field

Broadcast message

When the server gets this message, it will forward this message to all
the clients. The first byte of the message must be ASCII ‘1’ character. Here
is the message structure:

1Byte Client Password. 8 bytes Client ID. 4 byte Atmost 64kb. Mo 0in between. End with W0

<l> Data C'\IO?

Point-to-point message

When the server gets this message, it will forward this message to the
client that is specified at the message. The first byte of the message must
be ASCII ‘2’ character. Here is the message structure:

1Byte Client Password. B bytes Zelf ID. 4 byte Dest ID. dbyte Atmost 6dkb. No 0in between. End with 107

- P P .
-4 -t Ll Ll

¥

-
-+ Ll

c2> Data c\o)

2.5.7 The client list

As we mentioned before, the server will contain a list of client. Here is
the actual structure of the list of client. (The programming language we use
here is C)

#define MAX 500

struct {
int time_counter; /luse to check the client is alive or not
char encrypt_key[8]; /lthe encryption key for each client
char password|8]; /lthe password for each client
char client_name[80]; /lthe client name
int cleint_id,; /Ithe client ID

SOCKADDR_IN saClient; //the client network address
} client_listfMAX];

LY U 9902 Digital Schoal

3. Collaborative Environment (CE)

3.1 Introduction

In the first semester, we have built the libraries and tools for developing
multimedia network application. And have built an application called FWLE. At
the beginning, we want to integrate all the components under FWLE (see the
diagram below).

FWLE

Chatroom Writeboard Video Others

But we found that this approach is not general enough. Since FWLE is just a
CAL (computer aided learning) which specified in teaching English. It can be
considered as a single component in digital campus only. Therefore, we start to
think of a software environment which provide the basic communication tools for
teachers/students and the CALs like FWLE can be plugged into this application
environment (see the diagram below).

A software environment

FWLE Chatroom Writeboard Video | Others

We called such software environment Collaboration Environment (CE).
Our aim for building CE is to enhance the learning experiences among, learners
in team projects/discussions and allow students who are physically apart to
perform joint work.

In our CE, participants can invoke one or more activities (chat room, voting,
write board or media sharing). The instance of each activity runs locally at each
participant's site and the response of each user is distributed to all the
participants.

Page 30

LY U 9902 Digital Schoal

Our CE’s components can be divided into 2 groups — “Basic communication
tools” and “Computer Aided Learning Application” (see the diagram below).

Collaborative Environment (CE)

Basic communication tools

1. Chat Room

2. Private Message
3. Write Board

4. Voting

5. MediaRoom

Computer Aided Learning Application

Sdf Learning Application: Group Learning Application:

1. FWLE

1. Games
(Revers , Ball, Plane)

Basic communcation tools is mainly for communications and interactions
among teacher/students. It includes chatroom, private message, writeboard,
voting and mediaroom. These components will be introduced in the later

session.

Computer Aided Learning (CAL) is for students to “self learn” or to “group
learn”. FWLE is one of the self learn CAL. We have not designed group learn
CAL but we have used some games to demonstrate how can the students to

* have not implemented yet.

start a group learning application with others.

Page 31

LY U 9902 Digital Schoal

3.2 Interface
We have built a software to illustrate Collaborative environment, below is a
snapshot of its interface.

Room List Workspace Classmate List

I |

File Personal RPCE CAL Help

\ Room list: Classmate list,
—| Room1 |~ Ann
EEnglish [~ Peter
-{¥Diagram1 I~ Mary
e s
Voting 'l

S

SChinese o
—| Room2

t_@Drawing
#S0ng

Create Room

|—S)mem“

System Message

Workspace
Chatroom, voting, mediaroom and writeboard runs on workspace.

Room List
User can create or join Chatroom, voting, mediaroom and writeboard by using

room list.

Classmate List

User can send private message or start group learning CAL using classmate list.

System Message

It will print out the system/warning message from the server.

Page 32

LY U 9902 Digital Schoal

3.2.1 Roomlist
In our software, when a user want to create an activity, he need to find or
create a room to hold this activity. If other user want to access this activity, he
needs to enter the room first.
This approach has the following advantages:
1. Room can group the related activities together. It facilitates the activity
management.
2.Room creator can set a limit for the number of user in a room.
3. Room creator can monitor all the activities in his room.
4.*Room creator can set a password such that only the authorized participants
are allowed to access the room.

Interface

Room list:

=| MathsRoom
EChapl
EChap2
-4 Chap2
EHomeworkl

=| HistoryRoom

#Napoleon
#Pluto
Feeling

These activities are in the "MathsRoom".
Student must enter "MathsRoom" first
before accessing these activities.

Activities:
Chatroom
Eﬂ Voting

} These activities are in the "HistoryRoom".
_ﬁ Writeboard

Room Information

Room Hame: [ChineseFoom

User Limit. [l ﬁ Mediaroom

Cancel

g

k;‘-\ new room will be created after clicking on OK

Create Hoof

Message format for room interaction

Function From, To Format

Create Room |Client -> Admin Create_room <room_name> <user_limit>

Enter Room Client -> Admin Enter_room <room_id>

Leave Room |Client -> Admin Leave room <room_id>

Close Room Client -> Admin Close_room <room_id>

Room Admin -> Client Room_info <room_name> <room_id> <user_limit>

information <no_activity> <activity infol> <activity_info2>

<activity info3>......

Activity info

Chatroom Chatroom <title>

Voting Voting <title> <question> <choicel>...<choice5> <numberl>...<number5>

Write Board Writeboard <title>

Media Room |Mediaroom <title> <media_namel>...<media_name5> <URL1>...<URL5>
<user_limitl>...<user_limit5>

* (have not implemented yet)

Page 33

LY U 9902 Digital Schoal

3.2.2 Classmate List
A participant can send private message to classmate by clicking on the
name of him on the name list (at the right side of screen).This function is very

useful when a participant want to discuss with a person but do not want other to
know.

Interface: (Peter sends a message to Mary)

At Peter’s Side

Classmate list:

I~ Mary Click on the Mary B3
I_ Ann \

To: I—
[~ John = e
I_ Sam Hello, How ace wou®® ;I
[~ Tim
=
Send Concel |

At Mary's Side

Classmate list: therewill be a blinking
= Peter icon besides Peter's name JEEE

L Mary click the icon to see me:le,—

[~ John the message TN = _I
I_ Sam ello, How are u? -
[~ Tim

—

Reply by clicking here

Message format for private message

Function From, To Format

Send private Clientl -> Client2|Private_msg <message_id> <message>
message

Acknowledgement |Client2 -> Clientl|Private_msg_ack <message id>

Page 34

LY U 9902 Digital Schoal

3.2.2 Classmate List (Cont’d)

User can start group learning CAL using classmate list. (Since we have not
designed any group learning CAL, we just use games to illustrate how to start a
group learning CAL)

after right click on the
name, the menu for

Cla ate list: games will be shown. Classmate list:

[~ Ann = Argvers]
[~ sam I~ s:
I~ Tim i

[B3
At the Mary's side, a dialog

8% Reversi
Z will be poped up asking if
EEEERo ey acept e e

T Cameslrcdafer p—
Mary accepted the game.

o
-

Johnwant o play “seversi” with w
ill accept?

[o
|

—

Other games

3.2.3 Using CAL (self learning application)
User can start self-learning CAL by choosing the menu. Below is an example:

e LYTT Q002 Digital -qul“ - Client

File Personal EPCE CAL Help Start FWLE by

M choosmg the menu
i

Page 35

LY U 9902 Digital Schoal

3.2.4 Chatroom

Obviously, sending private message is not a efficient way for group
discussion. In our CE, user can create a Chatroom which help them to discuss
with a group of people.
Interface:

Chatroom: Maths - Homework3

Chating.... This message will be shown in the

Mary: Have u finished the homework? chatroom after cIicking on OK.
John: Don't know how to do question 4... :{
Peter: |'ve finihed it!

Mary: Would u teach me how to do g4?

Peter: Sure! i |
John: Thanks! A0
| How are you?|
ok | Camcel |

This dialog will be poped
up after clicking here.

Chat |

Message format for chatroom

Function From, To Format

Create ChatRoom |Client -> Admin |Create_chatroom <room_id> <title>

Close ChatRoom [Client -> Admin |Close_chatroom <room_id> <activity id>

ChatRoom Client -> Client |Chatroom_msg <room_id> <activity_id> <message>

Message

Page 36

LY U 9902 Digital Schoal

3.2.5 Writeboard
Sometimes, participant may need a drawing to express their idea in a

discussion. Writeboard allow them to show their drawing to others. In the past,
when a teacher have drawn something on board, he need to wait the students to
copy his drawing. In this situation, Writeboard is very useful. When teacher is
drawing on its computer, all the student can see it immediately. *Moreover,
student can save the drawing to harddisk by clicking on a button only.

Interface:

Title

L4
Writeboard: Geog - Map

 ———

~——— Drawing

WS f\'ll’

brush size brush color

Message format for writeboard

Function From, To Format

Create Writeboard |Client -> Admin |Create writeboard <room_id> <title>

Close Writeboard |Client -> Admin |Close writeboard <room_id> <activity id>

Draw Writeboard |Client -> Client |Draw_writeboard <room_id> <activity_id> <x1> <y1>
<x2> <y2> <radius> <color>

Page 37

LY U 9902 Digital Schoal

3.2.5 Writeboard (cont’d)

Bresenham Line Algorithm[2]:

Since we want to save the bandwidth, we will not send the whole bitmap to
all other participants when updating the whiteboard. We will cut the movement of
the mouse into line segments and send the coordinates of the lines only.

We use Bresenham Line Algorithm to draw the lines. Below is the pseudo

code:

Input Pair of integers X1, Y1, XN YN AX = XN - X¢,Ay = yN — V1

Output . Pairs of integers {(xi, vy}

Minimizing error lyi = (y = mx ; + b)[[(m < 1)

i.e closest to line y = mx + b ; X y fo m>1
Im|< 1 x is monotonic = X; = Xy + (i -1)

Data Structures R]]))
\m\>1 y is monotonic = yi = ygt+s8ogn (Ay)i-1)

Error measure

P, = 20y - 2AX
Pit1 = Pi + 280y = 2AX(Yi+1 — Vi)
Algorithm
Swaps 0 Ax > 0
If [m|>1 (or Ay >A x)
swap roes of (x,y),(m, 1/m)

Initialize : P =2Ay - AX y =y,
Loop for x from Xxqto Xy
Begin
Draw(Xy)
St Yoa =Y

If P <0 st y = VYgqg
dse st y = ygqq +Sgn(Ay)
Set P =P+ 24y - 24X (Y = Yod)
End
The advantage of this algorithm is that it deals with integers only (no floating

points) so that its performance is very fast.

~
-
f//
e
/"f/
e
P
/f
fig 3.1 the line

Pixel positions along the line path
plotted with Bresenham’s line

Page 38 algorithm.

LY U 9902 Digital Schoal

3.2.6 Mediaroom

Teacher can share a media file to a group of students by creating
mediaroom. Our media room supports video files (MPEG, AVI, DAT) and audio
files (MP3, WAV).

Sometimes, teacher may feel boring such that they always do the thing
repeatedly in the same lesson but in different classroom. In this situation,
teacher can record some video clips by themselves and share it to the students.
They can then spend more time on answering the question by students or
concerning the students’ response. Moreover, student can see the video clips as
many times as they want. They can be reminded if they have something missed
on the lesson.

Interface:

I edia Room

Title: [History Chopd

Tapic: Wapoleon Mowie Clip User Livnit
v 10

URL: [http:thwwr.cse.cuhk.edu hid-khwongl festl mnpg

Topic: [Audio Clip 1 User Limit

URL: [http:iiwww cse cubk edu -Khwongl hestl mp3 20 —| HistoryRoom
= History Chap 1

Tapic: [nons User Limit [History Chap 2

URL Imm l—l Ft?elln
~ZTHistory Chap 3

Topic: [none User Limit

URL [iom)7’ After click on OK,

the Media Room
T will be created.

Other participants

can access the
media room

after click here.

Tifle: |History_Chap3

Topic: II—‘Iapo]eon Mavie Clip

Ho. of weers: |0V10 Start

Topie: [Audio Clip T

start the movie clip b e
by clicking here l—f—f-@"* =

Topic: foons
No. of users: 041 Start
Topic: fnone
No. of veers: [FT Shut

Message format for mediaroom

Function From, To Format

Create Mediaroom |(Client -> Admin |Create_mediaroom <room_id> <title>
<media_namel>...<media_name5>
<URL1>...<URL5> <user_limitl>...<user_limit5>
Close Mediaroom |[Client -> Admin |Close_mediaroom <room_id> <activity id>

Play Mediafile Client -> Admin [Play mediafile <room_id> <activity id> <file_no>
Finish playing Client -> Admin [Finish_mediafile <room_id> <activity id> <file_no>

Page 39

LY U 9902 Digital Schoal

3.2.7 Voting
Sometimes, when a group of people want to make a decision, voting will be

used.
Voting is also useful when a student want to make a statistics on the

opinion/feelings of others.
In our voting, the vote holder can check the voting progress in voting history.
Voters can choose anonymous mode if they want to hide his name in the voting

history.

Interface

Title: [Homewark
Question: IDo 1. think this homework is too difficult? =| HistoryRoom
#History Chap 1
Choice 1: [Tes e
I Adter click on OK, flap
Chuice 2: F‘h the voting will

be created.

Choice 3: IDD idea

Other participant can access

Choice 4: I
o the voting by click here.
Choice 5: I 9oy
Camel _|
Title: |H0mework
Question: Do v think this homework is too diffisult?
Choices:
[Tes o
Others can check the result of voting. [~
o stics Jno idea, «
Title: [Homework I ~
CQuestion: [Dio v think this homework i too difficult? I ~
Choic Statistics —
[zes Iz ‘ Anommons:t Show Name: (% |
e o
Ino e o Fote | Ignore I
I o
|] Can vote as anonymous
0

Tatal no of Vote:|2 No. of Iznore: |1

[y | ok]

1 means the 2nd choice...

can check the history of voting
0 means the 1st choice
-1 means ignored

Message format for voting

Function From, To Format

Create Voting Client -> Admin |Create_voting <title> <question>
<choicel>...<choice5> <numberl>...<number5>
Close Mediaroom |[Client -> Admin |Close_voting <room_id> <activity id>

Vote Client -> Admin [Vote <room_id> <activity id> <choice> <name>

Page 40

LY U 9902 Digital Schoal
4. Role Play Collaborative Environment (RPCE)

4.1 Introduction

The Collaboration Environment (CE) we mentioned in the previous chapter
is a traditional menu driven application. Actually, we think that menu driven style
interface may not be suitable to all kind of students. Young student or old teacher
may feel difficult in adapt to menu driven application. Sometimes, they feel so
confused in dealing with so many buttons, windows and dialogs. Moreover,
There are student categories, which face problems in adapting to network-based
education because their learning paradigms require in-class (social) interaction
and discipline. It is estimated that at least 30% of the student population fall into
this category [1].

Therefore, we have built RPCE which try to simulate the learning
environment of the real world and help the students in this student category to
learn. The control method of RPCE is far simpler than menu driven applications.
User can control all the operation by simply pressing the arrow keys and a few
buttons only.

The application structure of RPCE is similar to CE’s (see the diagram
below).

The only difference is RPCE’s basic communication tools consists of Taking
and Private Message only.

Role Play Collaborative Environment (RPCE)

Basic communication tools Computer Aided Learning Application
1. Taking Sdf Learning Application: Group L earning Application:
2. Whispering 1. FWLE 1. Games
3. Paging (Reversi, Ball, Plane)

* have not implemented yet.

Page 41

LY U 9902 Digital School

4.2 Walking

-
4
—
-
o
o
-

Other Participants You

In RPCE, each patrticipant control a character in a 2D virtual world. He can
control his character to walk around or to interact with other participants. Each
user’s response will be distributed to others and they can see each other in their
screen.

(Screen can only show a part of the map, so when the user walk, the map
will scroll such that the character remains in the central position of the screen)

Message format for walking in the map

Function From, To Format
Client tells admin he Client -> Admin Map_walk <dx> <dy>
moves.

Admin tells client one of |Admin -> Client Map_position <client_id> <x> <y>
the client’s position.

Page 42

LY U 9902 Digital Schoal

4.3 Talking

If a participant want to talk with others, he can click on the “Talk” button
below. A dialog will then popped up for him to enter a message. After entering
the message, the participants in the same screen with him will be able to see his

message.
' .
At Peter's Side: . e Q;
At Simon's Side:
g g iR iR W Wi W
L gl Al il 'ﬁ“‘ ek el Wil wE WE w2l wE aE
— Simon 5
» iE o W S s NI S . 2 S = '*.& S5 =
iR
= Paul: How are you?" = %00 =8 W !
IHowa:rey\:u’?I .
Iphl® W WS W R S
"

- s

“Talk: dialog will'be|po ped up after
clicking on the *Talk" button. t! 2 t

Paul's message will be shown at Simon's side.

This function is called “talk” because only the participants in the same
screen will be able to “talk” with each other. It is like the real world. If 2
participants are too far apart, their voice will not be loud enough to talk with each
other.

Message format for talking in the map

Function From, To Format

Talk in the map. Client -> Admin Map_talk <message>

Admin tells client one of |Admin -> Client Map_one_talk <client_id> <message>
the client is talking

Page 43

LY U 9902 Digital Schoal

4.4 Whispering

If a participant want to talk with a specified person, he cannot use “Talk”. It is
because in “Talk”, all the people in the same screen can see his message.

By using “Whispering”, participant can choose a target in the screen to send
him a message such that only the target can see his message.

Paul's Side

o ﬁ I*ﬁ.
Simor
Him wiE

Simon's Side

NS RIS TR WO ey

Wil e W G =]
Simon

—_—T Paul: [Tellu a secret] |

g =i =@ =i =i
Paul

User can whisper by simply clicking on other participant in the screen and then choose “whisper”.

Message format for whispering in the map

Function

From, To

Format

Whispering

Client -> Client Map_whispering <message>

4.5 Paging (Private Message)

“Whispering” and “Talking” is sometimes no use when a participant want to
talk to someone but he is out of the screen. By using “Paging”, participant can
send message to a person wherever he is. Actually, the usage of “Paging” is
same as sending private message in CE (see page 34). User can page someone
by clicking his name on the classmate list at the right of the screen.

Message format for paging in the map

Function

From, To

Format

Paging

Client -> Client

Map_paging <message>

Page 44

LY U 9902 Digital Schoal

4.6 Playing games (group learning application)

User can start group learning CAL by clicking on other’s character in the
screen or clicking on other’s name on the classmate list. (Since we have not
designed any group learning CAL, we just use games to illustrate how to start a

group learning CAL)

Paul's Side . o
e After Simon accept
W WS \Reversi>~ the game.
- Plane -
ml G Bal
Simor

4.7 Using CAL (self learning application)

In RPCE, there are some objects on the map such that when the user click
on it, a specified program will run. CAL is started by using this mechanism. There

is an example below:

] T W

N =N =N @ S e)

o FWLE will start after

jnhn H 1 " " |
i R =W clicking on the "book".

Page 45

LY U 9902 Digital Schoal

4.8 Client-Server interaction

M M ap matrix, M ap Pictures,
an M ap indexing table
Picture P 9 >
Engine
Server Client
M ovement, Respond
Map
Event
Admin. State of other clients

Fig 4.1 Client-server interaction in RPCE

In our RPCE, all the map information (included the pictures) are stored in
the server. Every time when the client is logged in, they will ask server for the
map information and nothing will be stored in disk locally.

The advantage of this approach is that update of the map can be done in
the server only. Otherwise, different version of the client program may have
different map.

When the client wants to walk/talk, they will send their request to the
administrator, afterwards, the administrator will calculate the new
coordinates/state of the client and send them to all of the participants.

Map matrix Picture indexing table Pictures

09 11 09 08 09 08 09 08 09 08 09 01 08

07 10 07 06 06 06 06 06 06 07 07

131007 06 06 06 06 06 06 07 13 0 g2y 08

141007 06 06 06 06 06 06 07 14 4+ | e

07 10 07 06 06 06 06 06 06 07 07 03 [10

09 090907 0707 09 1209 12 09

00 00 0000 0003 03 000300 03 04 ! 11

e

HE WEE W W Wi W

Wl wE WE Wl = =E

il Sl AE sl = =5

= & &8 8 o

Map information includes the map matrix, picture indexing table and the pictures

Page 46

LY U 9902 Digital Schoal

4.9 Picture Compression

Page 47

4.9.1 Overview

All the pictures of the map in the Role Play Collaborative
Environment are need to send to the client from the server at each time the
client login. This can prevent inconsistency between each client’'s map, as
the map’s picture may be changed as needed. (For example, the
administrator of the system wants to set up one more classroom in the map)

If we do not compress the pictures before sending, this will leads to 2
problems:

1, Waste of bandwidth
2, Large size of data will be causes an overhead in cropping and merging
for data transfer.

Thus we apply some compression algorithm into our project.

4.9.2 Our approach

Before we start, we must first choose one of the compression skills to
apply.
There are several compression algorithm, some are
1. Lossless, which means no data loss after the compression and
decompression step, and some are
2. Lossy, which means some data loss is allow (to order to get higher
compression rate) after the compression and decompression step

After we discuss, we design to choose one of the “lossless” algorithms.
The reason is that the compression rate of these “lossless” algorithms is
already good enough for our project. Two of the “lossless” algorithms we had
try, they are:
1, Huffman Code
2, Lzw

LY U 9902 Digital Schoal

4.9.2.1 Huffman Code

A simple method that generates a kind of prefix code.

Here is the Algorithm (bottom-up approach):

1. Assume the probabilities (frequencies) of symbols used are known

2. Label each node with its correspondence probability and put all
nodes into the candidate list.

3. Pick two nodes with smallest probabilities, create a parent to
connect them and label this parent with the sum of probabilities of
these two children.

4. Put the parent node into the candidate list.

Repeat the last two steps until one node (root) left in candidate list.

6. Assign 0 and 1 to left and right branches of the tree in the candidate
list.

o1

4.9.2.2 Disadvantages of Huffman Code

Although Huffman Code is very easy to implement, however, it still has
some disadvantages.

1. Atable is needed that lists each input symbol and its corresponding
code.

2. Need to know the character frequency distribution in advance =>
need two passes over the data.

3. More seriously, it does not explore the coherence between symbols.
You cannot group a set of symbols and output one single code for
them, e.g. pattern “the” is usually used in English

For our experience, using Huffman Code for our project, the

compression is usually 1.5-2.0:1, which is not good enough. That's why we
try the others method: LZW.

Page 48

LY U 9902 Digital Schoal

4.9.2.3 LZW

Huffman code cannot encode multiple input symbols by a single
codeword. Hence, a lot of patterns (e.g. “the”, “of”, “an” in English are
regular patterns) are frequently seen. However, in LZW, we can build a
dictionary of all frequently seen patterns and encode them with the table
index. Let see the example:

Assume an input source with only two symbols “a” and “b”. S ={a, b}.
Let’s further assume the input data streamis“aaababbaaaaababa
abaabaaabaab” The initial LZW tree contains root, a-descendant
and b-descendant.

LZW LZW
a b
ENCODER SIDE: ENCODER SIDE:

a

aaababbaaaaababaabaabaaabaab ababbaaaaababaabaabaaabaab
1 output: 0,
Step 1 Step 2
LZW LZW

ENCODER SIDE: ENCODER SIDE:

aabbaaaaababaabaabaaabaab aaabaaaaababaabaabaaabaab

output: 0, 2, output: 0, 2,1,

Step 3 Step 4

Page 49

LY U 9902 Digital Schoal

LZW

ENCODER SIDE:

aaabbaaaaababaabaabaaabaab

LZW

ENCODER SIDE:

aaabaaaaaababaabaabaaabaab

output: 0, 2,1, 0, output: 0, 2,1, 0, 1
Step 5 Step 6
LZW LZW (2)
ENCODER SIDE: ENCODER SIDE:

aaababaaababaabaabaaabaab

output: 0,2,1,0 1, 4

aaababbaababaabaabaaabaab

output: 0, 2,1, 0, 1,4, 2

Step 7

Step 8

Thus, by using this method, the output will finally become “0, 2, 1, 0, 1, 4, 2,

3,5...°

Note the output only contains codewords, no symbol is send in
uncompressed form. Let’'s see how can we decode. This will be a little bit tricky.
Again we start with a LZW tree containing 3 nodes. Let’s us a string variable
“Last string” to memorize the last decoded string.

Page 50

LY U 9902 Digital Schoal

For decompression,

LZW

DECODER SIDE:

input: 0,2,1,0,1,4,2,3,5

output:

LZW

DECODER SIDE:

input: 0,2,1,0,1,4,2,3,5

output: @ Laststring =a

Step 1

Step 2

LZW

DECODER SIDE:

What! Where is node 2?7

Don't panic

The first symbol of the string represented by “2”
must be a, otherwise we should receive “1”.
Moreover, this first a must also serve as the

this new node. So the string must be aa

output a Last string = a

There can be only one situation it does not exist

input: 0,2, 1,0,1,4,2,3,5 ‘look-ahead” symbol when the encoder construct

LZW

DECODER SIDE:

Then we receive 1, so the encoded string is b.
The encoder must try to look for last string+b
014235 before. So we can insert node 3.

¥

output: @

input: 0, 2,

Laststring=aa

Step 3

Step 4

LZW

DECODER SIDE:

input: 0,2,1,0,1,4,2,3,5

output 2 a ab al Last string = b

LZW

DECODER SIDE:

input:0,2, 1,0, 1,4,2,3,5

output: 2 @ a Last string = a

Step 5

Page 51

Step 6

LY U 9902 Digital Schoal

LZW

DECODER SIDE:

input: 0,2,1,0,1,4,2,3,5

Laststring=ba

oputaaababbaala

LZW

DECODER SIDE:

input: 0,2, 1,0, 1,4,2,3,5

Laststring= a a

ouputaaababbalaaalab

Step 7

Step 8

And, here is the algorithm outline of the LZW method (encoder):

it fimt byte, /1
store in STRING

o

i

¥

i 2
t neact bagta,
[e

iz
STRING4+CHAR
in tabla?

for STRING

o ot the cods

4 STRING = 7
STRING + CHAR

|

add snty in fabls for [
STR [NG +CHAR

v

STRIMG = CHAR

Page 52

for STRING

/ oot the coda 2

LY U 9902 Digital Schoal

Here is the algorithm outline of the LZW method (decoder):

it firet coda, 1
ztore in OZODB

output tranzlation 2
of QOB

3

store in MO

/u:puf et -:chd.e 3

b

3

STRIMG = 5 STRING = ¥
tia nslation of OO DB tranzlation of MCOODEB
STRIMG = =
STR ING +CHAR

‘L 8
/ cnagna t STRING/
v

CHAR = the first |&
chatacter in STRIMNG

v

add entry in fable for |10
oCoDE + CHAR

¥

OOODE = NCODE

4.9.2.4 Conclusion
For LZW, we can usually get the compression ratio to about 3-4:1

Finally, we choose LZW as our final algorithm to help us to compress
those pictures.

Page 53

LY U 9902 Digital Schoal
4.10 Further Improvement

Compared to Menu Driven Collaborative Environment, Role Play
Collaborative Environment is far more user friendly. The communication method
in RPCE is similar to the actual world. Young students or Old teacher will find it is
easy to understand/ use the communication methods.

On the other hand, since RPCE is our new idea, it still has so many
weakpoints: The communication method in RPCE is weaker than the Menu
Driven one. It does not support voting, writeboard and media room. It is because
such tools are too complicated to be operated by a simple interface. Moreover,
the communication method in RPCE is not so efficient such that most of the
functions require the target in the same screen as user.

We have thought about some ideas to improve our RPCE. One of them is
the “paging” function. By choosing the target from the name list, the participant
can send message to anyone wherever he is.

Another improvement can be made is that the whole map can be reduced
into a smaller one and shown at the side of the screen. In this small map, each
character will become a small dot. It can help the students to search each other
and explore the map. The teacher can also monitor the activity of all the students
by looking at this small map.

In Menu Driven Collaborative Environment, student can create rooms to
hold the activity. In RPCE, it is also possible to let participants to create their own
area such that when others enter their area, they should follow the instructions
set by the area owner.

Finally, we have tried to integrate the RPCE into the Menu Driven one in our
final product. But it is not so success. The components of RPCE has so few
interactions with that of Menu Driven one’s and it is like running 2 different
applications together. Anyway, we think it is a good trial and worth to be
continued explored in future.

Page 54

LY U 9902 Digital Schoal

4.11 Conclusion on CE

Compared to Menu Driven Collaborative Environment, Role Play
Collaborative Environment is far more user friendly. The communication method
in RPCE is similar to the actual world. Young students or Old teacher will find it is
easy to understand/ use the communication methods.

On the other hand, RPCE is not suitable for the students who require
complicated discussion/interaction. It is suitable for the group the students with
simple discussion or interactions only. Therefore, RPCE is more likely to be used
in kindergarten or primary school while the Menu Driven CE is used in secondary
school and university.

Page 55

LY U 9902 Digital Schoal

5. Personal Application

Personal Scheduler (Month) Personal Scheduler (Week)
Mar, 2000, M M Mar, 2000. P’i‘ NB_X‘I
Sun___ Mon Tue Wed Thu Fri Sat Sun___ Mon__ Tue Wed Thu Fri Sat
i 2 g [4 [20 21 22 23 24 25
5 3 7 g g 10 11
iH 13 i g 6= [17 id [
19 20 21 22 T 25 ﬂ
7 P
26 7 28 29 3/1 31
/]| o |
These boxes represents Events Edit or delete the
event by click on it

Titk: [Meeting
Date [77 Mont [Ve [mm Tame [T

- Deseiiption
| [Prepae the documents

The tick means finished event I Fanished

Debte | O] | Cemel |

In our final product, other than the communication tools and CALSs, we have also
tried to build some applications for teacher/student's personal use.

Personal scheduler (PS)

We have built a personal scheduler that helps the user to schedule their time.
The interface of PS is like a calendar. User can add event on the calendar by clicking
on a day in the calendar. User can input the event description, the event time and set
the color of the event in the calendar (the event will be represented as a color box in
the calendar). When the user has finished the event, he can mark a "tick" on the
event box. This function can help users to remember their assignments' deadline,
meetings, and datings.

The main difference between our PS and that in palm pilots is that the event in
our PS can be divided into 2 classes: the personal event and the school event.
Similar to palm pilots, the personal events are inputted and accessed by the owners
only. On the other hand, the school events are inputted/edited by school teachers or
tutors. If the school event is a homework or project. It will be marked finished when it
is handed-in. (Unfortunately, we do not have enough time to implemented "school
event" in our final products.)

Page 56

LYU 9902 Digital Schoal

Booking System (BS) (Have not implemented)

Lunch box booking menu

Name: | | Class: | |

Std. ID] | Pwd: | |
Choice: Quarntity:

The student can book the textbook, uniform or lunch box using this system.

Library System (LS) (Have not implemented)

It is same as the Library System in CUHK.

Actually, the personal applications mentioned here are not the new and creative
idea. Therefore, we have put most of the effort on Collaborative System and leaving
most of the personal applications incomplete. Anyway, we just want to integrate make
a complete school application but we do not have enough time.

Page 57

LY U 9902 Digital Schoal

6. Conclusion

In this project, we hope to demonstrate a kind of new learning environment which is
suitable to future world. It shows a way for students to learn, communicate and
perform joint discussion at different place all over the world.

We can conclude this year work into the following points.

1. We have developed the libraries for socket programming.

2.We have developed the libraries for handling the multi media stulff.

3. We have developed a server.

4.We have developed a CAL called FWLE for studying English

5. Based on the libraries and tools we built, we have developed a system called
Collaborative Environment (CE) which allow students who are physically apart
to perform joint work. And FWLE becomes a component of CE.

6. We have further extended CE into called Role-Play Collaborative Environment
(RPCE) of which the interface is simple, more easy to understand and more
suitable for young students.

7. Finally, we have compared the CE (menu driven) and RPCE and give a
conclusion.

Due to time limitation, some of our idea cannot be implemented. However, we think it
is easy to integrate other kind of CAL tools into our system. As our system the whole
system is developed by us, it is so flexible to change or plug in new add-ons.

We think that our project is worth to be extended. For example, many CALs can be
written for our system. RPCE also have some many possible extensions, such as
design more communication methods or build the map in 3D. Finally, we hope that
our project can contribute to the education in future.

Page 58

LY U 9902 Digital Schoal

Appendix A References

[1] Mladen A. Vouk, Donald L. Bitzer and Richard L. Klevans, “Work flow and
End-User Quality of Service Issues in Web-Based Education”, Department
of Computer Science, North Carolina State University, Raleigh, NC 27695, USA

[2] Donald Hearn, M.Pauline Baker “Computer Graphics 2" Edition” Prentice Hall

[3] Ralph Davis. Win32 Network programming: Windows 95 and Windows NT
network programming using MFC. Addison-Wesley, c1996.

[4] Bob Quinn, Dave Shute. Windows sockets network programming. Addison
Wesley Pub. Co., c1996.

[5] Stevens. TCP/IP lllustrated Volume 1: The Protocols. Addison Wesley. Feb
1998.

[6] Pat Bonner. Network programming with Windows Sockets. Upper Saddle
River, NJ : Prentice Hall PTR, c1996.

[7] Martin Heller. Advanced Win32 programming. New York: Wiley, c1993.

[8] MSDN Online: http://msdn.microsoft.com/default.asp

[9] Microsoft DirectX: http://www.microsoft.com/directx/

Page 59

LY U 9902 Digital Schoal

Appendix B Progress Report

Date Description
June, 99. Evaluating among different OS
(WIinNT, Win95/98, WinCE and Linux)
June, 99. Evaluating among different programming

language (Visual C++, Java)

gtart at June, 99

Studying Direct X

start at June, 99 Studying Winsock
12" 14" July, 99 Trying to setup aintranet
5™ July, 99 Trying the Wireless Devices
14" July, 99
Thefirst testing program - WinTalk, released
25" July, 99 The second testing program — “Apple Chess’, released
10" Aug, 99

The third testing program — “Revers” (Actuglly
it isanewer version of Apples Chess), released

1™ - 30" Aug, 99

Build our Direct Draw library (graphical library)

’

1% - 14™ Sep, 99
Using our Direct Draw library to write the forth testing program — “Plane’
15" Sep, 99 Start to build our Direct Sound library (audio library)
22" Sep, 99 Add the audio library to “Plane’.
6" Oct, 99
Write a new game “Ball”, to test combining Winsock and Direct Draw
together.
9" Oct, 99 Add the Winsock to “ Plane”

1™ - 16™ Oct, 99

Studying Multi Client for WinSock

18" —20™ Oct, 99

Design the structure of Chat Room —WinChat and a generic server for chat
room.

21" — 26" Oct, 99

Write a Chat Room - WinChat using WinSock

24™ Oct —15™ Nov, 99

Construct the scenario editor and preparing the spt file for FNLE

12" — 20" Nov, 99

Write the scenario reader for FWLE

Page 60

LY U 9902 Digital Schoal

Appendix B Progress Report (cont’d)

Date

Description

37-10" Jan, 00

Rebuild the Server

917" Jan, 00

Devedop the Direct Show Library

19" —30™ Jan, 00

4 o= =
ﬂ\M T

Integrate chatroom, writeboard and voting into FWLE

4" Feb, 00

i

ififigit

1

Design the Callaborative Environment

6" —13™ Feb, 00

Finish the basic interface of Collaborative Environment

20™ — 24™ Feb, 00

LT
T

Integrate Private Message into CE

5"_6" Mar, 00

Integrate Chatroom into CE

12139 Mar, 00

bk mpe heabooeier

Integrate Writeboard into CE

12" 15" Mar, 00

Integrate Mediaroom into CE

S —
17" -20" Mar, 00 |
5 e 1o
Integrate Voting into CE
27" Mar, 00
ey 1 g Eee
=
Design the Role Play Collaborative Environment
3% Apr, 00 Draw the map’s picture
7"—-8™ Apr, 00 Implement the LZW compression algorithm
Apr, 00 Implement the walking
Apr, 00 Integrate Talk, Whisper and Paging
Apr, 00 Integrate FWLE and the games into RPCE and MDCE

Page 61

LY U 9902 Digital Schoal

Appendix C Satistics of our program

Number of lines

Component in the source code
(approximate)

Libraries 14,000
FWLE 8,500
Server 3,500
CE — Shell 2,200
CE — Chatroom 300
CE — Writeboard 700
CE - Voting 700
CE — Private Message 400
CE —Mediaroom 1,200
RPCE — Shell 2,500
RPCE — Talk, Whisper 700

Total 34,700

Page 62

