
Page 1

Acknowledgment

We would like to thank our supervisor, Prof. Michael R. Lyu, for his guide

and patience in this project. Without his support and suggestions, we could

not learn all these in our final year project.

We would also like to thank to our department ACO, Tony Wu, who has

given us great help in our project.

LYU 9902 Digital School

Page 2

Table of Contents

 Page

1. Introduction
1.1 Project Overview
1.2 Programming platform
1.3 Project Architecture

4
4
5
5

2. System level of our project
2.1 Overview of the system level of our project
2.2 DirectX library
 2.2.1 What is DirectX?
 2.2.2 Our own class of library
 2.2.3 The prototype of our Direct Draw class
 2.2.4 Description of Direct Draw function
 2.2.5 Class "Sprite"
 2.2.5.1 Introduction to spt files
 2.2.5.2 The prototype of Class Sprite
 2.2.6 Class "Frame"
 2.2.6.1 Frame splitting
 2.2.6.2 Algorithm
 2.2.6.3The prototype of our Class Frame
 2.2.7 Class "Region"
 2.2.7.1 The prototype of our Class Region
 2.2.8 Attachment of other Frame Attributes
 2.2.9 An example of using a Spt file to represent an interactive
object
 2.2.10 Our Direct Sound Class
 2.2.10.1 The prototype of our Direct Sound Class
 2.2.10.2 Mixer problem in Direct Sound
2.3 DirectShow Library
 2.3.1 What is DirectShow?
 2.3.2 DirectShow Architecture
 2.3.3 What we had done on DirectShow library?
2.4 WinSock library
 2.4.1 What is WinSock?
 2.4.2 The Sockets Programming Paradigm under Windows
 2.4.3 Why use WinSock?
 2.4.4 Blocking and event-Driven Application
 2.4.5 Function prototype of WinSock library?
 2.4.6 Description of WinSock library
2.5 The Server
 2.5.1 Overview
 2.5.2 The simple broadcast server
 2.5.3 Problems of the simple broadcast server
 2.5.4 The Improved server
 2.5.5 The Improved server Architecture
 2.5.6 Message structure
 2.5.7 The client list

6
6
6
6
6
7
7
10
10
11
11
12
12
12
13
13
13
14
16
16
16
18
18
18
19
20
20
21
22
23
23
23
24
24
24
25
25
27
27
29

LYU 9902 Digital School

Page 3

3. Collaborative Environment(CE)
3.1 Introduction
3.2 Interface
 3.2.1 Roomlist
 3.2.2 Classmate List
 3.2.3 Using CAL (self learning application)
 3.2.4 Chatroom
 3.2.5 Writeboard
 3.2.6 Mediaroom
 3.2.7 Voting

30
30
32
33
34
35
36
37
39
40

4. Role Play Collaborative Environment(RPCE)
4.1 Introduction
4.2 Walking
4.3 Talking
4.4 Whispering
4.5 Paging (Private Message)
4.6 Playing games (group learning application)
4.7 Using CAL (self learning application)
4.8 Client-Server interaction
4.9 Picture Compression
 4.9.1 Overview
 4.9.2 Our approach
 4.9.2.1 Huffman Code
 4.9.2.2 Disadvantages of Huffman Code
 4.9.2.3 LZW
 4.9.2.4 Conclusion
4.10 Further Improvement
4.11 Conclusion on CE

41
41
42
43
44
44
45
45
46
47
47
47
48
48
49
53
54
55

5. Personal Application 56
6. Conclusion 58
Appendix A References 59
Appendix B Progress Report 60
Appendix C Statistics of our program 62

LYU 9902 Digital School

Page 4

1. Introduction

1.1 Project Overview

Our aim of doing the project is to enhance the learning experiences among,

students in team projects and allow students to perform joint work even they are

physically apart.

In our project, we have implemented the whole system, system level and

application level or programming.

In system level, there are a server and some libraries.

The server works as a central unit of the whole system. It controls every

message to pass through the system and controls the usage of resource inside

the system. The whole system cannot work without it.

The client programs are used by the students. They can invoke one or more

activities (chat room, voting, write board or media sharing) in it. The instance of

each activity runs locally at each participant's site and the response of each user

is distributed to all the participants.

The client program is for received the response from the user and send it to the

server. After server received their response, it will calculate the new state of the

user and distribute it to all of the users within the system.

The libraries help us to develop a highly interactive network application. The

libraries include Winsock, Direct X and Direct Show library . Based on them, we

have designed and built the system which is suitable for future world. We have

tried to develop the software in 2 approaches. The first one’s interface is more

efficient and clear and the second one’s is more user friendly and simple. Finally,

we have compared these 2 approaches and give a conclusion.

LYU 9902 Digital School

Page 5

1.2 Programming Platform

All of the programs are written in Microsoft Visual C++.

For the server program, it needs to run on Microsoft Windows 95/98/NT platform

with Winsock support.

For the client program, it needs to run on Microsoft Windows 95/98 platform with

DirectX version 5.0 or above support.

1.3 Project Architecture

This project Digital School is mainly divided into two parts.

The first part is the server, which mainly responsible for central control of the

whole system. The second part is the client program, which also called “Digital

School”. The client is mainly response for display for the learning material and

interactive activities.

Basically, our work includes implementing the libraries, building the server, and

building the client program.

For those libraries we had created, they will be talked in details at Chapter 2.1 to

Chapter 2.4 in this report.

For the server we had built, they will be talked in details at Chapter 2.5 in this

report.

For the client program we had built, detail will be talk in Chapter 3, 4 and 5 in this

report. Here is the architecture overview:

Direct X
Library

Direct
Show

Library
Winsock
Library

Server

Collaborative Environment

CAL
Communication Tools:

Chatroom, Private message, Write board,
Media room, Voting, Talk, Whisper, Page

Application
Level

System
Level

 fig 1.1 Architecture Overview

LYU 9902 Digital School

Page 6

2. System level of our project

2.1 Overview of the system level of our project

 There are four main parts to help us to construct our project:

1. DirectX library

2. DirectShow library

3. WinSock library

4. The Server

Basically, our project is based on some libraries we had built. These libraries are

the DirectX library, DirectShow library and WinSock library. The DirectX library is

mainly responsible for the graphic display. The DirectShow library is mainly

responsible for video display. The WinSock library is mainly response for

sending and receiving data in the network.

Also, there is a server running at the background to support our project.

2.2 DirectX library

2.2.1 What is DirectX?

In order to write a fancy and interactive application for our project, we have

built our own graphical libraries and audio libraries. DirectX is a Microsoft

Windows® API such that it can provide display of images in 2D/3D and

playback sound files on Windows.

 2.2.2 Our own class of library

Since the APIs provided by Direct Draw are so confused and complicated,

we have constructed our Class of Direct Draw to encapsulate the details of

the function calls. With this Class, we can create and access the objects of

Direct Draw easily.

LYU 9902 Digital School

Page 7

2.2.3 The prototype of our Direct Draw class (written in pseudo-code)

Class DD {

Public:

DDStartup();

CreateDesktopWindow(Window_handler, Direct_X_object); DDFullConfigure(Direct_X_Object);

DDWinConfigure(Direct_X_Object);

DDLoadPalette(Bmp_file, Palette_object);

DDLoadBitmap(Bmp_file, Surface_object);

DDSetColorKey(Surface_object, Key_color);

DDMakeOffscreenSurface();

DDCreateFlipper(Flipper_Object);

DDCreateFakeFlipper(Flipper_Object);

DDFlipping();

DDFillSurface(coordinates, color);

DDTextOut (Surface_object);

CleanUp();

Private:

 Direct_X_Object DX;

Surface primary_surface, secondary_surface;

Window_handler ghwnd;

Character Mode;

};

2.2.4 Description of Direct Draw function:

DDStartup():

This function is used to create an instance of a DirectDraw object.

CreateDesktopWindow(Window_handler, Direct_X_object):

This function is use to create a window. We can also configure the

window’s attributes like width, height, style, menu name, and background by

using this function.

DDFullConfigure(Direct_X_Object):

This function is used to initialize the DirectDraw object with a full screen

mode.

LYU 9902 Digital School

Page 8

DDWinConfigure(Direct_X_Object):
This function is used to initialize the DirectDraw object with a window mode.

DDLoadPalette(Bmp_file, Palette_object):
This function is used to get the palette from a bmp file. Palette is an array,
which used to hold the actual color value from a bmp file.

Here is an example:

 The picture:

 The content of the bmp file:

DDLoadBitmap(Bmp_file, Surface_object):
This function is used to load a bitmap into a surface. A surface is a object
defined by Direct Draw to hold the content of a picture.
DDSetColorKey(Surface_object, Key_color):
This function is used to set a key color (transparency color) for a surface.

Here is an example:

 Background surface:

 The content of palette:

 Foreground surface:

 Color Key:

Put the foreground surface

without color key:

Put the foreground surface

with color key:

LYU 9902 Digital School

Page 9

DDMakeOffscreenSurface():

This function is used to make offscreen surface (secondary surface).

Typically, we will construct at least 2 surfaces when using DirectDraw.

The primary surface and the secondary surface. Primary surface can be

considered as the memory content in the video card and is always be

shown on the screen. In the flipping process, the content of secondary

surface will be copy to the primary surface.

If we don’t use flipping, the cleanup process must be done directly to

the primary surface. Because the background surface will cover the
foreground surface when updating, the showing time of background picture
will be longer than that of foreground picture. Therefore, there will be
twinkling effect in the human eyes.

If we use flipping, the cleanup and updating process will be done

behind the primary screen. We will flip the secondary surface only when all
of the foreground surfaces are ready. So it can eliminate the twinkling
problem.

DDCreateFlipper(Flipper_Object):
This function is used to create a flipper instance

DDCreateFakeFlipper(Flipper_Object):

This function is used to create a fake flipper.
In window mode, flipper object is not supported, so we need to use this

function to create a fake flipper. It simulates the flipping process by using
the memory copy function. Its performance is as good as a real flipper.

DDFlipping():

This function is used to do the Flipping. This function will know whether
we are using the fake flipper or the real flipper.

DDFillSurface(coordinates, color):

This function is used to fill a rectangle on the surface. We can use this
function to cleanup the screen if we do not have a background picture.

LYU 9902 Digital School

Page 10

DDTextOut (Surface_object):

This function is used to print text on a surface.

CleanUp():

This function is used to cleanup all Direct Draw Object.

2.2.5 Class “ Sprite”

Class Sprite is built to manipulate the *.spt files. It has included the data

structure for a spt file, the method for opening spt file and the method

for handling spt’s data.

2.2.5.1 Introduction to spt files:

In order to deal with the picture files (*.bmp) easily and efficiently.

We have defined a file type called spt file. Spt file can be used to

represent a man, a dog, a robot, or other interactive object in our

application. Each sprite file (*.spt) has its corresponding picture files

(*.bmp). The file name of the picture files (*.bmp) and the information of

the sprite will be stored in its sprite file (*.spt).

Here is an example:

Fig 2.1 8 action pictures for a walking man

We have got the pictures of a walking man and want to play as

animation. So we can define a spt file for that walking man.

Here is the content of the spt file:

Sprite_name: “Walking Man”

No_of_frame: 8

Size_of_Picture: 150 x 100

Picture_filetype: bmp

Picture_filename: walk0, walk1, walk2, walk3, walk4, walk5, walk6, walk7

Transparency_color: 27

Frame_rate: 25

Reserved_space_for_future_use: ……………………………

LYU 9902 Digital School

Page 11

By using this kind of spt file (Our programs have a different format

of spt file, this example is used for demo only), the programmer can

write a generic animation player to play some simple animation.

Actually spt file can be used to represent some interactive object rather

than animation. There will be an example later in this chapter.

X.2.5.2 The prototype of Class Sprite: (written in pseudo-code)

class Sprite

{

public:

 LoadSprite (String sprite_file);

 SaveSprite (String sprite_file);

 Setbmpfilename(string);

 SetId (int);

 InsertFrame (int, Frame);

 DeleteFrame (int);

 SetReserved_string (int, string);

 SetReserved_integer (int, int);

String getbmpfilename();

 Integer getId ();

 String GetReserved_string (int);

 Integer GetReserved_integer (int);

protected:

Frame frm[];

/* Frame will be introduced in the next session */

/* Frame is not private because its member Retion need to be read by some friend functions for

region calculations */

private:

 String Bmp_filename;

Integer id;

Integer no_of_frame;

String Reserved_string[20];

Integer Reserved_integer[100];

};

2.2.6 Class “ Frame” :

Class Frame is built to store the information for each action.

(Frame instance is defined as the member under Sprite.)

A Sprite may include several actions. In page 10, the example of Sprite,

the spt file is representing a walking man with 8 frames.

LYU 9902 Digital School

Page 12

2.2.6.1 Frame splitting:

Because each frame has its action picture, if there are many

frames, it is so troublesome to deal with large number of picture files.

Therefore, we have written a function for frame splitting. It let us to draw

all the frame pictures in one picture file. And the method for opening a

spt file can recognize all the frames’ position automatically.

2.2.6.2 Algorithm
(Assumption: each frame is drawn within a square)
For y = 0 to height of picture

For x = 0 to width of picture
 If Pixel(x, y) != background_color and Pixel(x, y) is not used
 begin

 /*Pixel (x, y) is the upper left corner of this frame*/
 Find the upper right corner of this frame

Find the bottom left corner of this frame
Save the coordinates of this frame in a linked list

 end
 Next x

 Next y

2.2.6.3 The prototype of our Class Frame: (written in pseudo-code)

class Frame

{

public:

 Frame get_frame ();

 Set_frame (Frame);

private:

String name_of_frame;

Integer no_of_region;

Region rg[];

/* Region will be introduced in the next session */

int go; /* for animating purpose */

int wait; /* for animating purpose */

String Reserved_string[20];

Integer Reserved_integer[100];

};

LYU 9902 Digital School

Page 13

2.2.7 Class “ Region” :

 Fig2.2 Define regions for different parts of body

Region is an attribute of Frame. It stores the coordinates of a rectangle

in the action picture. (Retion instance is defined as the member under

Frame.)

The 2 main purposes of region definition:

1. Because most of the pictures have an irregular shape, it is expensive to

detect the collision between them. On the other hand, if we define some

rectangular regions to represent the picture body, the collision

detection will become simple.

2. Moreover, regions can represent buttons, different parts of a body or

other interactive objects on the picture.

2.2.7.1 The prototype of our Class Region: (written in pseudo-code)
class Region

{

protected:

Integer x, y, w, h;

/* They are not private because they need to be read by some friend functions for region calculations

*/

};

2.2.8 Attachment of other Frame Attributes

Actually, frames’ and regions’ positions are just some integer data

attached in the sprite file. We have also reserved some string and integer in

a Spt file for future use. These reserved data can have many meanings in

future. For example, string can represent a message, or a *.wav file name for

the sound effect. An integer can represent the frame rate, or other animating

information.

LYU 9902 Digital School

Page 14

2.2.9 An example of using a Spt file to represent an interactive object:

We want to create a refrigerator using a spt file. The user can open and

close the refrigerator by clicking on the side of the doors. There is a cake

inside the refrigerator. The user can eat the cake when click on it. But if the

cake has been eating once, it cannot be eat again.

 The pictures for the refrigerator:

 The regions defined for the frames:

We construct the spt file using the technique of constructing a finite state

machine.

 Here is the DFA for the refrigerator:

 Fig. 2.3 DFA for the refrigerator

LYU 9902 Digital School

Page 15

Here is the content of the spt file:

Sprite_name: “Refrigerator”

No_of_frame: 4

Transparency_color: 0

Frame0:

No_of_Regions: 2

Coordinates_of_regions: 20 30 20 30 20 80 20 40

When_clicking_region0_goto_frame: 1 message: “Open the refrigerator”

When_clicking_region1_goto_frame: 1 message: “Open the refrigerator”

Frame1:

No_of_Regions: 2

Coordinates_of_regions: 24 60 80 70 110 30 40 160

When_clicking_region0_goto_frame: 3 message: “Eat the cake”

When_clicking_region1_goto_frame: 0 message: “Close the refrigerator”

Frame2:

No_of_Regions: 2

Coordinates_of_regions: 20 30 20 30 20 80 20 40

When_clicking_region0_goto_frame: 3 message: “Open the refrigerator”

When_clicking_region1_goto_frame: 3 message: “Open the refrigerator”

Frame3:

No_of_Regions: 2

Coordinates_of_regions: 24 60 80 70 110 30 40 160

When_clicking_region0_goto_frame: 3 message: “I have just eat!”

When_clicking_region1_goto_frame: 2 message: “Close the refrigerator”

LYU 9902 Digital School

Page 16

2.2.10 Our Direct Sound Class:

We have constructed our Class of Direct Sound to encapsulate the

details of the function calls. With this Class, we can create and access

the objects of Direct Sound easily.

The features of our audio library:

1. Support Wav file with different sample rate.

2. Different sounds can be overlap at the same time.

2.2.10.1 The prototype of our Direct Sound Class: (written in

pseudo-code)

class SoundBuffer

{

public:

 SetupBufferFromWave(String);

 /* load a wave file into sound buffer */

 Play (integer);

 /* play the wave, there is 2 mode of sound playing

 the normal mode and loop mode.

 Loop mode are usually use for background music */

 Stop ();

 /* stop the playing of the wave */

 Static InitializeDirectSound();

/* Initialize Direct Sound, This function is static because

it function is common to all instance */

 Static ShutdownDirectSound();

/* Shut down Direct Sound, This function is static because

it function is common to all instance */

 private:

 LPDIRECTSOUNDBUFFER soundbuffer;

 /* the actual sound buffer */

 Static DirectSound_Object DS;

 /* Direct Sound Object */

};

2.2.10.2 Mixer problem in Direct Sound:

Direct Sound supports sound mixer which let different sounds to

overlap at the same time. Without mixer, when we want to play a sound

buffer, we need to wait until there is no sound playing.

We find that there is a restriction on the Mixer provided by Direct Sound.

The same sound buffer cannot be overlapped itself. For example, when

we click on a man, there will be a “hello” sound in our program. But if

we click on the man many times so frequently, the man will not respond

to say “hello” every time. It is because there is a “hello” sounds still

playing.

LYU 9902 Digital School

Page 17

We have considered 3 possible solutions for the Mixer problem:

1. Create duplicate buffers for the same sound file

Advantage:

 a. It is easy to implement.

 Disadvantages:

 a. It wastes a lot of memory space.

b. Don’t know how many buffers is enough. Longer sound

may need more buffers.

2. Create a constant number of buffers, load the sound file into the

buffer only when it needs to play.

 Advantage:

a. It saves the memory space.

b. It leads to substantial delay of the sound, which is not

acceptable.

Disadvantages:

a. It is difficult to implement.

3. When play a sound buffer, check whether it is being played. If yes,

stop the sound and play again from the beginning.

 Advantage:

 a. It is easy to implement.

Disadvantages:

a. If the sound have a lower volume at beginning and higher

volume at the end, user may realize that there is a cropping

of sound.

b. If the sound is a human conversation, user may realize that

there is a cropping of sound.

Finally, we have use method 3 for the solving the problem.

It is because usually, only sound effect will be overlapped itself.

And Sound effect is always very short and has a higher volume at the

beginning.

LYU 9902 Digital School

Page 18

2.3 DirectShow Library

 2.3.1 What is DirectShow?

DirectShow is a Microsoft Windows® API such that it can provide

playback multimedia streams from local files or Internet servers, and capture

of multimedia streams from devices. Specifically, it enables playback of

video and audio content compressed in various formats, including MPEG,

Apple® QuickTime®, audio-video interleaved (AVI), and WAV, and both

Video for Windows-based capture and WDM-based (Windows Driver Model)

capture.

At the heart of the DirectShow services is a modular system of

pluggable components called “filters”, arranged in a configuration called a

“filter graph”. A component called the “filter graph manager” oversees the

connection of these filters and controls the stream's data flow. We will talk

about this later.

 We are using the Microsoft Visual C++® for DirectShow development

 2.3.2 DirectShow Architecture

 Here is the DirectShow Architecture:

 Fig 2.4 DirectShow Architecture

Let’s focus on the gray part of the figure. In each DirectShow

application, there must be a software component call “filter graph manager”

to control the entire “filters”. A graph like the above gray one is called “filter

graph”. It is used to describe the data flow within the DirectShow application.

A filter graph is composed of a collection of “filters” of different types.

LYU 9902 Digital School

Page 19

Most filters can be categorized into one of the following three types.

1. Source filter, which takes the data from some source, such as a file on

disk, a satellite feed, an Internet server, or a VCR, and introduces it into

the filter graph.

2. Transform filter, which takes the data, processes it, and then passes it

along.

3. Rendering filter, which renders the data, typically this is rendered to a

hardware device, but could be rendered to any location that accepts

media input (such as memory or a disk file).

For example, a filter graph whose purpose is to play back an

MPEG-compressed video from a file would use the following filters.

1. A source filter to read the data off the disk.

2. An MPEG filter to parse the stream and split the MPEG audio and video

data streams.

3. A transform filter to decompress the video data.

4. A transform filter to decompress the audio data.

5. A video renderer filter to display the video data on the screen.

6. An audio renderer filter to send the audio to the sound card.

The following illustration shows such a filter graph.

 Fig 2.5 Example of the filter graph

2.3.3 What we had done on DirectShow library?

We had tried to unify all those filters into one function called

“PlayMMFile” in our project. Also, we try to add some extra functions for

those MultiMedia files which DirectShow haven’t provide to us. Here is the

function prototype of the function “PlayMMFile”:

 int PlayMMFile(char * address);

LYU 9902 Digital School

Page 20

Inside “PlayMMFile”, we first try to unify all different source filters. That

means we can try to open a MultiMedia file on different kind of source, such

as from hard disk or from Internet, by just one function.

Secondly, we try to unify all different transform filters inside

“PlayMMFile”. That means we can open different kinds of MultiMedia file

format, such as MP3 (audio), WAV (audio), DAT (video), MPG (video), AVI

(video), … etc, by just one function.

Finally, we try to implement two more extra functions to those video files.

The functions are

1. To re-size the window that showing a video file

2. To pause to video or audio that are playing

As these two functions are NOT provide by DirectShow, we need to

implement it by ourselves.

2.4 WinSock library

2.4.1 What is WinSock?

WinSock is the network application-programming interface (API) for

Microsoft Windows Operating System.

For programmers, it provides generic network services; WinSock

translates those generic network services into protocol-specifics requests

and performs the necessary task. Thus, WinSock shields the programmers

from the details of low-level network protocol.

WinSock Application

WinSock API

VendorAPI (Protocol Stack)

Hardware API

Physical Network

LYU 9902 Digital School

Page 21

Fig 2.6 Overviews of how WinSock works

2.4.2 The Sockets Programming Paradigm under Windows

Most of the WinSock development follows the Berkeley sockets model.

With some exceptions, WinSock includes the most Berkeley sockets API.

Most WinSock function names and parameters are identical with the

Berkeley sockets library. WinSock offers additional functions that are used

to cope with 16-bit Windows system.

WinSock use a client/server approach to communicate. One application

is theoretically always available (server side) and another request services

as needed (client side).

The server “creates” a socket, name it so that it can be identified and

found by a client, and then “listens” for services requests. A client application

creates a socket, finds a server socket by name or address, and then “plugs

in” to initiate a conversation. Once a conversation is started, data can be

sent in either direction.

At application level, both server and client need to know what

messages and data expected from the other. They must use the same

protocol.

Two fundamental types of client/server application pair exits in WinSock

also: connection-oriented and connectionless application. Here is the

Overview of Connection-Oriented and Connectionless Application:

Fig 2.7 Overview of Connection-Oriented Application

LYU 9902 Digital School

Page 22

 Fig 2.8 Overview of Connectionless Application

2.4.3 Why use WinSock?

Here is some reason to explain why we choose Winsock as our network

programming API:

- Multi-protocol support

Winsock allow an application to use the familiar socket interface to achieve

simultaneous access to any number of installed transport protocols.

WinSock is no longer to use on TCP/IP only.

- Asynchronous I/O and event objects

With Win32 programming environments, WinSock can be extended to

asynchronous communication. Asynchronous I/O enables an application to

continue with other process while waiting for the I/O operation to complete.

- Quality of Service

The newest WinSock established conventions for applications to negotiate

required service levels of communication service such as bandwidth and

latency for some quality demanding application such as multimedia

communication.

As we can see, WinSock has some advantages over traditional

Berkeley socket model under Microsoft Windows®.

LYU 9902 Digital School

Page 23

2.4.4 Blocking and event–Driven Application

Blocking means that when a function is called, it stops all other

processes in the application and does not return until that function is

completed. This is not a problem in console application. However, in

Windows GUI environment, it is a great problem. Windows GUI are based

on event driven paradigm. They receive and must quickly respond to all

the events (e.g. keystroke, mouse movement … etc.).

Luckily, the WinSock specification includes many new extensions to the

original Berkeley socket API. One of the most important extensions for

Win32 programming is the support of asynchronous mode.

Asynchronous notification is the best way to doing Win32 GUI

applications. Unlike traditional blocking operations, asynchronous

operations return immediately, no whether it fail or success. After the

operation is finished, the WinSock DLL will send a message to that calling

application, indicate the function is finished.

This helps us a lot in designing our program.

2.4.5 Function prototype of WinSock library?

Since the APIs provided by WinSock are too low-level and complicated,

we have constructed our own network library to encapsulate the details of

the function calls. Here are some prototypes of our own library:
class network
{
public:

int initial_winsock();
int connect(char * machine_ip);
int disconnect(char * machine_ip)
int send(char * data, char * machine_ip);
int receive(char * data)
int cleanup_winsock();

};

2.4.6 Description of WinSock library

1. int initial_winsock()

This function is used to initialize the environment for running WinSock

function.

2. int connect(char * machine_ip)

This function is used to connect to a computer (of course that computer

must running a server program) which is stated in the parameter.

LYU 9902 Digital School

Page 24

3. int disconnect(char * machine_ip)

This function is used to disconnect to a computer (of course that

computer must running a server program) which is stated in the

parameter.

4. int send(char * data, char * machine_ip)

This function tries to send data to a particular computer that already

connected previously.

5. int receive(char * data)

This function is tries to get data from the buffer. When a machine receive

any data from the network, it will first store the data into a buffer. Then

the OS will raise an event to tell the application that some data is inside

the buffer. When the application get this event, it should call “receive” to

get those data.

6. int cleanup_winsock()

This function is use to release resources after the program finished using

WinSock function.

2.5 The Server

 2.5.1 Overview

In order to allow different user to communicate with each other over a

network, a server is need to handle messages (data) passing to and from

each client. Moreover, a server can also allow central control of resource to

be distributed over the network.

Thus, in our project, there is a server to serve each client of our system.

At the beginning, we have tried to write a very simple server that can

provide broadcast function. However, in later stage, we find that a server

which can only provide broadcast function is inadequate. So, we try to totally

re-write the server to provide more functions for us.

We are now trying to describe that two servers we wrote in detail.

 2.5.2 The simple broadcast server

The main function for this server is to allow communication between

every client programs.

We try to write a server that stors each client information (name, ID,

network address) into list. Later, if there are some data need to send to the

clients, the server will broadcast the data to all the clients.

LYU 9902 Digital School

Page 25

Here is the procedure which a client want to send a message to another client:

1. First, the client must be register to the server. If the client is already

registered and not disconnect from the server, this step can be

skipped.

2. The client will send the data to the server.

3. The server will check for all the client location from the list of clients.

4. The data is sent to all the clients (broadcast) inside the list of client.

Here is the illustration of the above procedure:

2.5.3 Problems of the simple broadcast server

Actually, this broadcast mechanism is too simple. Here are some

disadvantages of this server:
1. Totally no security
2. No fault tolerance
3. Cannot send point-to point messages

The last problem is the main problem which leads us to construct the
improved server. If no point-to point messages can be supported, this means
that each client cannot send message to one of the particular client only. Of
course this problem can be solved at application level (by checking the client
ID at each client program), however, this will lead to waste of network
bandwidth. Thus, we try to provide point-to-point function at the server side.

2.5.4 The Improved server

As we mentioned before, the simple server we developed is too simple.
It is not enough for us to use it for our project. This causes us to develop
another server, the improved server. Here are some functions that the
improved server can provide:
1. Broadcast message
2. Point-to-point message
3. Check each register client is still alive or not
4. Encryption of each message passing to and from

LYU 9902 Digital School

Page 26

Broadcast message

This function is same as that of the previous server that can provide.
When a client send this kind of message to the server, the server will then
forward the message to all the clients that had already connected to the
server.

Point-to-point message

This function is new function compared with the previous server. The
client can send a message to only one of the particular client that is already
connected to the server.

Check each register client is still alive or not
This function is new function compared with the previous server. In the

list of clients, there is a field called “time counter”. When a registered client
send an “alive message” to the server, this field will set to 0. On each
second, the value of this field of each registered client will be increase by 1.
When this value is greater or equal to 10, the server will assume client is
dead (the computer hangs, the network connection become
unavailable, …etc). Then, the server will delete the client from the list. Thus,
each client need to send an “alive message” to the server within the 10
second period in order to let the server know it is alive. By using this
function, the server can save much resource and network bandwidth.

Encryption of each message passing to and from

This function is also new function compared with the previous server.
For every message, the message is encrypted with real time generated
encryption key. Of course, this method is not very secure in front of
professional hackers; however, this can help us to solve several problems:
1. Some messages from outside the system accidentally send into the

system
As the outside messages may not be encrypted, when the server or
clients get those messages, it will still try to decrypt it. However, after
decryption, the message will become meaningless and no action will
be take for those messages

2. Some messages from the system accidentally send to outside
If messages from the system accidentally send to outside without
encryption, others people may able to see the content of the
message. However, with this encryption, if others don’t know the
encryption key and method of encryption, they can’t view the
content of the message.

LYU 9902 Digital School

Page 27

2.5.5 The Improved server Architecture

The network protocol we use in our project is UDP. The reason for we

choosing UDP rather than other protocol is that:

1. Compared with TCP, it is much faster

UDP is connectionless and TCP is connection-oriented. UDP

runs faster then TCP because there is no need to setup a path

before any connection can start. Thus, less pre-connection

overhead.

2. With a closed-network, we can assume there is no packet loss

As we mentioned before, UDP is connectionless. That means

some packets may be lost during data transfer. However, within

a closed-network, we can assume no packet is loss. This can

also allow us to use UDP rather than TCP.

3. Compare with IPX/AppleTalk, it can run on Internet

One advantage of UDP is that it can also run on Internet. Thus,

our project is not limited to Local Area Network only. But of

course, if our project is really try to run on Internet, some

change is needed to handle to followings: 1) slow connection

speed, 2) large delay time and 3) possible of loss of packets.

 2.5.6 Message structure

Also, not like last time, we had defined the message header of different

kind of messages passing to the server. Thus, when the server gets those

messages, it will know what action should be operated.

There are three main kinds of message will be passed between to

server and the clients. They are:

1. System message

The first byte of the message must be ASCII ‘0’ character.

2. Broadcast message

The first byte of the message must be ASCII ‘1’ character.

3. Point-to-point message

The first byte of the message must be ASCII ‘2’ character.

System Message

Several messages will be treated as system message, such as

“connect message”, “disconnect message” and “alive message” … etc. The

LYU 9902 Digital School

Page 28

first byte of the message must be ASCII ‘0’ character.

Connect message

When the client want to connect to the server, it must send a

“connect message” to the server first. Here is the message structure:

After the server gets this message, the server will check for this client

can be connect or not. There are two reasons why this client cannot be

connected: 1) the password is incorrect, 2) there are too many client

connected to the server already. If the connection is granted, than the

server will send back a “granted message” back to the client. Here is

the message structure:

One more thing need to notice is that after this message, all messages

passing between this client and server will be encrypted with the

encryption key.

Disconnect message

When the client want to disconnect from the server, it need to send

a “disconnect message” to the server. After this, there will be no more

message send from the server to this client. Also, after sending this

message, the client is no need to wait for the server accept. Here is the

message structure:

Alive message

By default, the client will send this message to the server at every 3

seconds. This lets the server know that the client is alive. Here is the

message structure:

LYU 9902 Digital School

Page 29

Broadcast message

When the server gets this message, it will forward this message to all

the clients. The first byte of the message must be ASCII ‘1’ character. Here

is the message structure:

Point-to-point message

When the server gets this message, it will forward this message to the

client that is specified at the message. The first byte of the message must

be ASCII ‘2’ character. Here is the message structure:

2.5.7 The client list

As we mentioned before, the server will contain a list of client. Here is

the actual structure of the list of client. (The programming language we use

here is C)

 #define MAX 500

struct {

 int time_counter; //use to check the client is alive or not

 char encrypt_key[8]; //the encryption key for each client

 char password[8]; //the password for each client

 char client_name[80]; //the client name

 int cleint_id; //the client ID

 SOCKADDR_IN saClient; //the client network address

} client_list[MAX];

LYU 9902 Digital School

Page 30

3. Collaborative Environment (CE)

3.1 Introduction
In the first semester, we have built the libraries and tools for developing

multimedia network application. And have built an application called FWLE. At

the beginning, we want to integrate all the components under FWLE (see the

diagram below).

FWLE

Chatroom Writeboard Video ……. Others

…….

But we found that this approach is not general enough. Since FWLE is just a

CAL (computer aided learning) which specified in teaching English. It can be

considered as a single component in digital campus only. Therefore, we start to

think of a software environment which provide the basic communication tools for

teachers/students and the CALs like FWLE can be plugged into this application

environment (see the diagram below).

FWLE Chatroom Writeboard Video ……. Others

……

A software environment

We called such software environment Collaboration Environment (CE).

Our aim for building CE is to enhance the learning experiences among, learners

in team projects/discussions and allow students who are physically apart to

perform joint work.

In our CE, participants can invoke one or more activities (chat room, voting,

write board or media sharing). The instance of each activity runs locally at each

participant's site and the response of each user is distributed to all the

participants.

LYU 9902 Digital School

Page 31

Our CE’s components can be divided into 2 groups – “Basic communication

tools” and “Computer Aided Learning Application” (see the diagram below).

Collaborative Environment (CE)

Basic communication tools Computer Aided Learning Application

1. Chat Room
2. Private Message
3. Write Board

4. Voting
5. Media Room

Self Learning Application:
1. FWLE

Group Learning Application:
1. Games
(Reversi , Ball , Plane)

* have not implemented yet.

Basic communcation tools is mainly for communications and interactions

among teacher/students. It includes chatroom, private message, writeboard,

voting and mediaroom. These components will be introduced in the later

session.

Computer Aided Learning (CAL) is for students to “self learn” or to “group

learn”. FWLE is one of the self learn CAL. We have not designed group learn

CAL but we have used some games to demonstrate how can the students to

start a group learning application with others.

LYU 9902 Digital School

Page 32

3.2 Interface
We have built a software to illustrate Collaborative environment, below is a

snapshot of its interface.

Workspace

Chatroom, voting, mediaroom and writeboard runs on workspace.

Room List

User can create or join Chatroom, voting, mediaroom and writeboard by using

room list.

Classmate List

User can send private message or start group learning CAL using classmate list.

System Message

It will print out the system/warning message from the server.

LYU 9902 Digital School

Page 33

3.2.1 Roomlist
In our software, when a user want to create an activity, he need to find or

create a room to hold this activity. If other user want to access this activity, he

needs to enter the room first.

This approach has the following advantages:

1. Room can group the related activities together. It facilitates the activity

management.

2. Room creator can set a limit for the number of user in a room.

3. Room creator can monitor all the activities in his room.

4. *Room creator can set a password such that only the authorized participants

are allowed to access the room.

Interface

Message format for room interaction
Function From, To Format
Create Room Client -> Admin Create_room <room_name> <user_limit>
Enter Room Client -> Admin Enter_room <room_id>
Leave Room Client -> Admin Leave_room <room_id>
Close Room Client -> Admin Close_room <room_id>
Room
information

Admin -> Client Room_info <room_name> <room_id> <user_limit>
<no_activity> <activity_info1> <activity_info2>
<activity_info3>……

Activity_info
Chatroom Chatroom <title>
Voting Voting <title> <question> <choice1>…<choice5> <number1>…<number5>
Write Board Writeboard <title>
Media Room Mediaroom <title> <media_name1>…<media_name5> <URL1>…<URL5>

<user_limit1>…<user_limit5>

* (have not implemented yet)

LYU 9902 Digital School

Page 34

3.2.2 Classmate List
A participant can send private message to classmate by clicking on the

name of him on the name list (at the right side of screen).This function is very

useful when a participant want to discuss with a person but do not want other to

know.

 Interface: (Peter sends a message to Mary)

Message format for private message
Function From, To Format
Send private
message

Client1 -> Client2 Private_msg <message_id> <message>

Acknowledgement Client2 -> Client1 Private_msg_ack <message_id>

LYU 9902 Digital School

Page 35

3.2.2 Classmate List (Cont’d)
User can start group learning CAL using classmate list. (Since we have not

designed any group learning CAL, we just use games to illustrate how to start a

group learning CAL)

3.2.3 Using CAL (self learning application)
User can start self-learning CAL by choosing the menu. Below is an example:

Other games

LYU 9902 Digital School

Page 36

3.2.4 Chatroom
Obviously, sending private message is not a efficient way for group

discussion. In our CE, user can create a Chatroom which help them to discuss

with a group of people.

Interface:

Message format for chatroom
Function From, To Format
Create ChatRoom Client -> Admin Create_chatroom <room_id> <title>
Close ChatRoom Client -> Admin Close_chatroom <room_id> <activity_id>
ChatRoom
Message

Client -> Client Chatroom_msg <room_id> <activity_id> <message>

LYU 9902 Digital School

Page 37

3.2.5 Writeboard

Sometimes, participant may need a drawing to express their idea in a

discussion. Writeboard allow them to show their drawing to others. In the past,

when a teacher have drawn something on board, he need to wait the students to

copy his drawing. In this situation, Writeboard is very useful. When teacher is

drawing on its computer, all the student can see it immediately. *Moreover,

student can save the drawing to harddisk by clicking on a button only.

 Interface:

Message format for writeboard
Function From, To Format
Create Writeboard Client -> Admin Create_writeboard <room_id> <title>
Close Writeboard Client -> Admin Close_writeboard <room_id> <activity_id>
Draw Writeboard Client -> Client Draw_writeboard <room_id> <activity_id> <x1> <y1>

<x2> <y2> <radius> <color>

LYU 9902 Digital School

Page 38

3.2.5 Writeboard (cont’d)

Bresenham Line Algorithm[2]:

Since we want to save the bandwidth, we will not send the whole bitmap to

all other participants when updating the whiteboard. We will cut the movement of

the mouse into line segments and send the coordinates of the lines only.

We use Bresenham Line Algorithm to draw the lines. Below is the pseudo

code:

The advantage of this algorithm is that it deals with integers only (no floating

points) so that its performance is very fast.

 fig 3.1 the line

Pixel positions along the line path

plotted with Bresenham’s line

algorithm.

(){ }

End

)(22Set

)sign(set else

set 0 If

Set

)Draw(

Begin

 to fromfor Loop

 2 :Initialize

)1(,)(of roles swap

)
��

(or 1 If

0; so Swaps

:Algorithm

)(22

22

measureError

)1)((sign monotonic is 1

)1(monotonic is 1
:Structures Data

1for ; line closest to i.e.

)1()(error Minimizing

, integers of Pairs :Output

,xx ,,, integers ofPair :Input

1

1

11

1

1

1

11N11

old

old

old

old

N

iiii

i

i

ii

ii

NNN

yy
�

x
�

yPP

yyy

yyP

yy

x,y

xxx

y yxyP

/mm , x , y

xym

x

yyxyPP

xyP

iyyyym

ixxxm

myxbmxy

mbmxyy

yx

yyyxyxyx

−−+=
∆+=

=<
=

=∆−∆=

>>
>∆

−∆−∆+=
∆−∆=

�

�

−∆+=�>

−+=�≤

>+=
≤+=−

−=∆−=∆

++

�

LYU 9902 Digital School

Page 39

3.2.6 Mediaroom

Teacher can share a media file to a group of students by creating

mediaroom. Our media room supports video files (MPEG, AVI, DAT) and audio

files (MP3, WAV).

Sometimes, teacher may feel boring such that they always do the thing

repeatedly in the same lesson but in different classroom. In this situation,

teacher can record some video clips by themselves and share it to the students.

They can then spend more time on answering the question by students or

concerning the students’ response. Moreover, student can see the video clips as

many times as they want. They can be reminded if they have something missed

on the lesson.

 Interface:

Message format for mediaroom
Function From, To Format
Create Mediaroom Client -> Admin Create_mediaroom <room_id> <title>

<media_name1>…<media_name5>
<URL1>…<URL5> <user_limit1>…<user_limit5>

Close Mediaroom Client -> Admin Close_mediaroom <room_id> <activity_id>
Play Mediafile Client -> Admin Play_mediafile <room_id> <activity_id> <file_no>
Finish playing Client -> Admin Finish_mediafile <room_id> <activity_id> <file_no>

LYU 9902 Digital School

Page 40

3.2.7 Voting

Sometimes, when a group of people want to make a decision, voting will be

used.

Voting is also useful when a student want to make a statistics on the

opinion/feelings of others.

In our voting, the vote holder can check the voting progress in voting history.

Voters can choose anonymous mode if they want to hide his name in the voting

history.

 Interface

Message format for voting
Function From, To Format
Create Voting Client -> Admin Create_voting <title> <question>

<choice1>…<choice5> <number1>…<number5>
Close Mediaroom Client -> Admin Close_voting <room_id> <activity_id>
Vote Client -> Admin Vote <room_id> <activity_id> <choice> <name>

LYU 9902 Digital School

Page 41

4. Role Play Collaborative Environment (RPCE)

4.1 Introduction

The Collaboration Environment (CE) we mentioned in the previous chapter

is a traditional menu driven application. Actually, we think that menu driven style

interface may not be suitable to all kind of students. Young student or old teacher

may feel difficult in adapt to menu driven application. Sometimes, they feel so

confused in dealing with so many buttons, windows and dialogs. Moreover,

There are student categories, which face problems in adapting to network-based

education because their learning paradigms require in-class (social) interaction

and discipline. It is estimated that at least 30% of the student population fall into

this category [1].

Therefore, we have built RPCE which try to simulate the learning

environment of the real world and help the students in this student category to

learn. The control method of RPCE is far simpler than menu driven applications.

User can control all the operation by simply pressing the arrow keys and a few

buttons only.

The application structure of RPCE is similar to CE’s (see the diagram

below).

The only difference is RPCE’s basic communication tools consists of Taking

and Private Message only.

Role Play Collaborative Environment (RPCE)

Basic communication tools Computer Aided Learning Application

1. Talking
2. Whispering

Self Learning Application:
1. FWLE

Group Learning Application:
1. Games
(Reversi , Ball, Plane)

* have not implemented yet.

3. Paging

LYU 9902 Digital School

Page 42

4.2 Walking

In RPCE, each participant control a character in a 2D virtual world. He can

control his character to walk around or to interact with other participants. Each

user’s response will be distributed to others and they can see each other in their

screen.

(Screen can only show a part of the map, so when the user walk, the map

will scroll such that the character remains in the central position of the screen)

Message format for walking in the map
Function From, To Format
Client tells admin he
moves.

Client -> Admin Map_walk <dx> <dy>

Admin tells client one of
the client’s position.

Admin -> Client Map_position <client_id> <x> <y>

LYU 9902 Digital School

Page 43

4.3 Talking
If a participant want to talk with others, he can click on the “Talk” button

below. A dialog will then popped up for him to enter a message. After entering

the message, the participants in the same screen with him will be able to see his

message.

This function is called “talk” because only the participants in the same

screen will be able to “talk” with each other. It is like the real world. If 2

participants are too far apart, their voice will not be loud enough to talk with each

other.

Message format for talking in the map
Function From, To Format
Talk in the map. Client -> Admin Map_talk <message>
Admin tells client one of
the client is talking

Admin -> Client Map_one_talk <client_id> <message>

LYU 9902 Digital School

Page 44

4.4 Whispering
If a participant want to talk with a specified person, he cannot use “Talk”. It is

because in “Talk”, all the people in the same screen can see his message.

By using “Whispering”, participant can choose a target in the screen to send

him a message such that only the target can see his message.

User can whisper by simply clicking on other participant in the screen and then choose “whisper”.

Message format for whispering in the map
Function From, To Format
Whispering Client -> Client Map_whispering <message>

4.5 Paging (Private Message)

“Whispering” and “Talking” is sometimes no use when a participant want to

talk to someone but he is out of the screen. By using “Paging”, participant can

send message to a person wherever he is. Actually, the usage of “Paging” is

same as sending private message in CE (see page 34). User can page someone

by clicking his name on the classmate list at the right of the screen.

Message format for paging in the map
Function From, To Format
Paging Client -> Client Map_paging <message>

LYU 9902 Digital School

Page 45

4.6 Playing games (group learning application)
User can start group learning CAL by clicking on other’s character in the

screen or clicking on other’s name on the classmate list. (Since we have not

designed any group learning CAL, we just use games to illustrate how to start a

group learning CAL)

4.7 Using CAL (self learning application)
In RPCE, there are some objects on the map such that when the user click

on it, a specified program will run. CAL is started by using this mechanism. There

is an example below:

LYU 9902 Digital School

Page 46

4.8 Client-Server interaction

 Fig 4.1 Client-server interaction in RPCE

In our RPCE, all the map information (included the pictures) are stored in

the server. Every time when the client is logged in, they will ask server for the

map information and nothing will be stored in disk locally.

The advantage of this approach is that update of the map can be done in

the server only. Otherwise, different version of the client program may have

different map.

When the client wants to walk/talk, they will send their request to the

administrator, afterwards, the administrator will calculate the new

coordinates/state of the client and send them to all of the participants.

Map information includes the map matrix, picture indexing table and the pictures

09 11 09 08 09 08 09 08 09 08 09
07 10 07 06 06 06 06 06 06 07 07
13 10 07 06 06 06 06 06 06 07 13
14 10 07 06 06 06 06 06 06 07 14
07 10 07 06 06 06 06 06 06 07 07
09 09 09 07 07 07 09 12 09 12 09
00 00 00 00 00 03 03 00 03 00 03

Map matrix Picture indexing table Pictures

+ +

Cli entServer

M ap
Picture
Engine

M ap
Event

A dmi n.

M ap matrix, M ap Pictures,
M ap indexing table

M ovement, Respond

State of other cl ients

LYU 9902 Digital School

Page 47

4.9 Picture Compression

4.9.1 Overview

All the pictures of the map in the Role Play Collaborative

Environment are need to send to the client from the server at each time the

client login. This can prevent inconsistency between each client’s map, as

the map’s picture may be changed as needed. (For example, the

administrator of the system wants to set up one more classroom in the map)

If we do not compress the pictures before sending, this will leads to 2

problems:

1, Waste of bandwidth

2, Large size of data will be causes an overhead in cropping and merging

for data transfer.

 Thus we apply some compression algorithm into our project.

4.9.2 Our approach

Before we start, we must first choose one of the compression skills to

apply.

There are several compression algorithm, some are

1. Lossless, which means no data loss after the compression and

decompression step, and some are

2. Lossy, which means some data loss is allow (to order to get higher

compression rate) after the compression and decompression step

 After we discuss, we design to choose one of the “lossless” algorithms.

The reason is that the compression rate of these “lossless” algorithms is

already good enough for our project. Two of the “lossless” algorithms we had

try, they are:

 1, Huffman Code

 2, LZW

LYU 9902 Digital School

Page 48

 4.9.2.1 Huffman Code

 A simple method that generates a kind of prefix code.

Here is the Algorithm (bottom-up approach):

1. Assume the probabilities (frequencies) of symbols used are known

2. Label each node with its correspondence probability and put all

nodes into the candidate list.

3. Pick two nodes with smallest probabilities, create a parent to

connect them and label this parent with the sum of probabilities of

these two children.

4. Put the parent node into the candidate list.

5. Repeat the last two steps until one node (root) left in candidate list.

6. Assign 0 and 1 to left and right branches of the tree in the candidate

list.

4.9.2.2 Disadvantages of Huffman Code

Although Huffman Code is very easy to implement, however, it still has

some disadvantages.

1. A table is needed that lists each input symbol and its corresponding

code.

2. Need to know the character frequency distribution in advance =>

need two passes over the data.

3. More seriously, it does not explore the coherence between symbols.

You cannot group a set of symbols and output one single code for

them, e.g. pattern “the” is usually used in English

For our experience, using Huffman Code for our project, the

compression is usually 1.5–2.0:1, which is not good enough. That’s why we

try the others method: LZW.

LYU 9902 Digital School

Page 49

4.9.2.3 LZW

Huffman code cannot encode multiple input symbols by a single

codeword. Hence, a lot of patterns (e.g. “the”, “of”, “an” in English are

regular patterns) are frequently seen. However, in LZW, we can build a

dictionary of all frequently seen patterns and encode them with the table

index. Let see the example:

Assume an input source with only two symbols “a” and “b”. S = {a, b}.

Let’s further assume the input data stream is “a a a b a b b a a a a a b a b a

a b a a b a a a b a a b”. The initial LZW tree contains root, a-descendant

and b-descendant.

 Step 1 Step 2

 Step 3 Step 4

LYU 9902 Digital School

Page 50

Step 5 Step 6

Step 7 Step 8

Thus, by using this method, the output will finally become “0, 2, 1, 0, 1, 4, 2,

3, 5 … “

Note the output only contains codewords, no symbol is send in

uncompressed form. Let’s see how can we decode. This will be a little bit tricky.

Again we start with a LZW tree containing 3 nodes. Let’s us a string variable

“Last string” to memorize the last decoded string.

LYU 9902 Digital School

Page 51

For decompression,

Step 1 Step 2

Step 3 Step 4

Step 5 Step 6

LYU 9902 Digital School

Page 52

Step 7 Step 8

And, here is the algorithm outline of the LZW method (encoder):

LYU 9902 Digital School

Page 53

Here is the algorithm outline of the LZW method (decoder):

 4.9.2.4 Conclusion

For LZW, we can usually get the compression ratio to about 3-4:1

Finally, we choose LZW as our final algorithm to help us to compress

those pictures.

LYU 9902 Digital School

Page 54

4.10 Further Improvement

Compared to Menu Driven Collaborative Environment, Role Play

Collaborative Environment is far more user friendly. The communication method

in RPCE is similar to the actual world. Young students or Old teacher will find it is

easy to understand/ use the communication methods.

On the other hand, since RPCE is our new idea, it still has so many

weakpoints: The communication method in RPCE is weaker than the Menu

Driven one. It does not support voting, writeboard and media room. It is because

such tools are too complicated to be operated by a simple interface. Moreover,

the communication method in RPCE is not so efficient such that most of the

functions require the target in the same screen as user.

We have thought about some ideas to improve our RPCE. One of them is

the “paging” function. By choosing the target from the name list, the participant

can send message to anyone wherever he is.

Another improvement can be made is that the whole map can be reduced

into a smaller one and shown at the side of the screen. In this small map, each

character will become a small dot. It can help the students to search each other

and explore the map. The teacher can also monitor the activity of all the students

by looking at this small map.

In Menu Driven Collaborative Environment, student can create rooms to

hold the activity. In RPCE, it is also possible to let participants to create their own

area such that when others enter their area, they should follow the instructions

set by the area owner.

Finally, we have tried to integrate the RPCE into the Menu Driven one in our

final product. But it is not so success. The components of RPCE has so few

interactions with that of Menu Driven one’s and it is like running 2 different

applications together. Anyway, we think it is a good trial and worth to be

continued explored in future.

LYU 9902 Digital School

Page 55

4.11 Conclusion on CE

Compared to Menu Driven Collaborative Environment, Role Play

Collaborative Environment is far more user friendly. The communication method

in RPCE is similar to the actual world. Young students or Old teacher will find it is

easy to understand/ use the communication methods.

On the other hand, RPCE is not suitable for the students who require

complicated discussion/interaction. It is suitable for the group the students with

simple discussion or interactions only. Therefore, RPCE is more likely to be used

in kindergarten or primary school while the Menu Driven CE is used in secondary

school and university.

LYU 9902 Digital School

Page 56

5. Personal Application

In our final product, other than the communication tools and CALs, we have also

tried to build some applications for teacher/student's personal use.

Personal scheduler (PS)

We have built a personal scheduler that helps the user to schedule their time.

The interface of PS is like a calendar. User can add event on the calendar by clicking

on a day in the calendar. User can input the event description, the event time and set

the color of the event in the calendar (the event will be represented as a color box in

the calendar). When the user has finished the event, he can mark a "tick" on the

event box. This function can help users to remember their assignments' deadline,

meetings, and datings.

The main difference between our PS and that in palm pilots is that the event in

our PS can be divided into 2 classes: the personal event and the school event.

Similar to palm pilots, the personal events are inputted and accessed by the owners

only. On the other hand, the school events are inputted/edited by school teachers or

tutors. If the school event is a homework or project. It will be marked finished when it

is handed-in. (Unfortunately, we do not have enough time to implemented "school

event" in our final products.)

LYU 9902 Digital School

Page 57

Booking System (BS) (Have not implemented)

 The student can book the textbook, uniform or lunch box using this system.

Library System (LS) (Have not implemented)

It is same as the Library System in CUHK.

Actually, the personal applications mentioned here are not the new and creative

idea. Therefore, we have put most of the effort on Collaborative System and leaving

most of the personal applications incomplete. Anyway, we just want to integrate make

a complete school application but we do not have enough time.

6.

Lunch box booking menu

Name: Class:

Post form

Choice: Quantity:

Std. ID: Pwd:

LYU 9902 Digital School

Page 58

6. Conclusion

In this project, we hope to demonstrate a kind of new learning environment which is

suitable to future world. It shows a way for students to learn, communicate and

perform joint discussion at different place all over the world.

We can conclude this year work into the following points.

1. We have developed the libraries for socket programming.

2. We have developed the libraries for handling the multi media stuff.

3. We have developed a server.

4. We have developed a CAL called FWLE for studying English

5. Based on the libraries and tools we built, we have developed a system called

Collaborative Environment (CE) which allow students who are physically apart

to perform joint work. And FWLE becomes a component of CE.

6. We have further extended CE into called Role-Play Collaborative Environment

(RPCE) of which the interface is simple, more easy to understand and more

suitable for young students.

7. Finally, we have compared the CE (menu driven) and RPCE and give a

conclusion.

Due to time limitation, some of our idea cannot be implemented. However, we think it

is easy to integrate other kind of CAL tools into our system. As our system the whole

system is developed by us, it is so flexible to change or plug in new add-ons.

We think that our project is worth to be extended. For example, many CALs can be

written for our system. RPCE also have some many possible extensions, such as

design more communication methods or build the map in 3D. Finally, we hope that

our project can contribute to the education in future.

LYU 9902 Digital School

Page 59

Appendix A References

[1] Mladen A. Vouk, Donald L. Bitzer and Richard L. Klevans, “Work flow and

End-User Quality of Service Issues in Web-Based Education”, Department

of Computer Science, North Carolina State University, Raleigh, NC 27695, USA

[2] Donald Hearn, M.Pauline Baker “Computer Graphics 2nd Edition” Prentice Hall

[3] Ralph Davis. Win32 Network programming: Windows 95 and Windows NT

network programming using MFC. Addison-Wesley, c1996.

[4] Bob Quinn, Dave Shute. Windows sockets network programming. Addison

Wesley Pub. Co., c1996.

[5] Stevens. TCP/IP Illustrated Volume 1: The Protocols. Addison Wesley. Feb

1998.

[6] Pat Bonner. Network programming with Windows Sockets. Upper Saddle

River, NJ : Prentice Hall PTR, c1996.

[7] Martin Heller. Advanced Win32 programming. New York: Wiley, c1993.

[8] MSDN Online: http://msdn.microsoft.com/default.asp

[9] Microsoft DirectX: http://www.microsoft.com/directx/

LYU 9902 Digital School

Page 60

Appendix B Progress Repor t

Date Descr iption

June, 99. Evaluating among different OS
(WinNT, Win95/98, WinCE and Linux)

June, 99. Evaluating among different programming
language (Visual C++, Java)

start at June, 99 Studying Direct X
start at June, 99 Studying Winsock
12nd –14th July, 99 Trying to setup a intranet
15th July, 99 Trying the Wireless Devices

14th July, 99

The first testing program - WinTalk, released

25th July, 99 The second testing program – “Apple Chess” , released

10th Aug, 99

The third testing program – “Reversi” (Actually
it is a newer version of Apples Chess), released

11th - 30th Aug, 99 Build our Direct Draw library (graphical library)

1st - 14th Sep, 99

Using our Direct Draw library to write the forth testing program – “Plane”
15th Sep, 99 Start to build our Direct Sound library (audio library)
22nd Sep, 99 Add the audio library to “Plane” .

6th Oct, 99

Write a new game “Ball” , to test combining Winsock and Direct Draw
together.

9th Oct, 99 Add the Winsock to “Plane”
11th - 16th Oct, 99 Studying Multi Client for WinSock
18th – 20th Oct, 99 Design the structure of Chat Room – WinChat and a generic server for chat

room.

21th – 26th Oct, 99

Write a Chat Room - WinChat using WinSock

24th Oct –15th Nov, 99 Construct the scenario editor and preparing the spt file for FWLE

12th – 20th Nov, 99

Write the scenario reader for FWLE

LYU 9902 Digital School

Page 61

Appendix B Progress Repor t (cont’d)

Date Descr iption

3rd – 10th Jan, 00 Rebuild the Server
9th-17th Jan, 00 Develop the Direct Show Library
19th – 30th Jan, 00

Integrate chatroom, writeboard and voting into FWLE

4th Feb, 00

Design the Collaborative Environment

6th – 13th Feb, 00 Finish the basic interface of Collaborative Environment
20th – 24th Feb, 00

Integrate Private Message into CE

5th – 6th Mar, 00

Integrate Chatroom into CE

12nd-13rd Mar, 00

Integrate Writeboard into CE

12nd –15th Mar, 00

Integrate Mediaroom into CE

17th – 20th Mar, 00

Integrate Voting into CE

27th Mar, 00

Design the Role Play Collaborative Environment

3rd Apr, 00 Draw the map’s picture
7th – 8th Apr, 00 Implement the LZW compression algorithm
Apr, 00 Implement the walking
Apr, 00 Integrate Talk, Whisper and Paging
Apr, 00 Integrate FWLE and the games into RPCE and MDCE

LYU 9902 Digital School

Page 62

Appendix C Statistics of our program

Component
Number of lines

in the source code
(approximate)

Libraries 14,000

FWLE 8,500

Server 3,500

CE – Shell 2,200

CE – Chatroom 300

CE – Writeboard 700

CE – Voting 700

CE – Private Message 400

CE – Media room 1,200

RPCE – Shell 2,500

RPCE – Talk, Whisper 700

Total 34,700

