
Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 1 -

Department of Computer Science and Engineering

The Chinese University of Hong Kong

2006 – 2007 Final Year Project Final Report

LYU 0604

Virtual Dart – an Augmented Reality Game on Mobile Device

Supervisor

Professor Michael R. Lyu

Prepared By:

Siu Ho Tung
19 April 2007

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 2 -

Abstract

In this report, we are going to describe the motivation, background information and

problem encountered by our group when participating in the final year project. The

objective of this project is to make use of camera reside in a mobile phone as well as the

existing Motion Tracking Engine to implement a mobile game called “Virtual Dart”.

In the following sections, we would first introduce the idea of our final year project.

Following is the introduction of Symbian OS (Nokia based S60 2nd & 3rd Edition), one of the

popular Operating System used in modern Smart Phone. After that, we would present our

program interface as well as our design and implementation concept. We would also like to

discuss some algorithms which explored throughout the whole progress of our Final Year

Project.

This report would include some experiment results which demonstrate our evaluation

towards the available algorithms. In this report, we will use game and application

interchangeably.

Any information appeared in semester 1 but may not be applicable in semester 2

would be marked as “Review” for just report completion purpose.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 3 -

Abstract.. - 2 -
Chapter 1... - 5 -
Introduction ... - 5 -

1.1 Background Information and Motivation ... - 6 -
1.2 Programming Capability Issue ... - 8 -
1.3 Project Objective.. - 9 -
1.4 Project Equipment ... - 9 -

Chapter 2... - 10 -
Symbian Operating System Overview.. - 10 -

2.1 Basic Architecture of Symbian Operating System .. - 11 -
2.2 Development Environment ... - 13 -
2.3 Limitation of Symbian Phone .. - 15 -
2.4 Features Different in Symbian OS Series 60 2nd and 3rd Edition - 16 -
2.5 Porting Existing Program to Series 60 3rd Edition.. - 19 -
2.6 Why Symbian .. - 20 -
2.7 Conclusion ... - 20 -

Chapter 3... - 21 -
mVOTE Engine.. - 21 -

3.1 What is mVOTE? ... - 22 -
3.2 Block Matching Algorithm ... - 22 -

Chapter 4... - 25 -
Program Design and Implementation ... - 25 -

4.1 User Interface ... - 26 -
4.2 Program Assumption ... - 31 -
4.3 Projectile Motion Calculation .. - 33 -
4.4 Program Design.. - 36 -
4.5 Programming Trick ... - 39 -
4.6 Conceptual Program Prototype ... - 46 -
4.7 Feature Recognition in Semester 1 VS LED Recognition in Semester 2?............ - 50 -

Chapter 5... - 51 -
Object (LED) Recognition .. - 51 -

5.1 Introduction .. - 52 -
5.2 Harris Corner Detector in Semester 1 (Review) .. - 52 -
5.3 Fast Corner Detector in Semester 1 (Review) .. - 56 -
5.4 Select Feature from Corner List in Semester 1 (Review) .. - 60 -
5.5 Object Recognition Methods.. - 62 -
5.6 Feature Filter .. - 64 -
5.7 LED Recognition.. - 67 -

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 4 -

5.8 Motion Tracking Improvement.. - 70 -
Chapter 6... - 72 -
Project Progress, Difficulties and Future Work ... - 72 -

6.1 Project Progress ... - 73 -
6.2 Difficulties we face in the project .. - 74 -
6.3 Contribution of Work.. - 78 -

Chapter 7... - 80 -
Acknowledgement ... - 80 -
Chapter 8... - 81 -
References ... - 81 -
Appendix I .. - 83 -
Feature Selection (REVIEW).. - 83 -

AI.2 Pictures under Normal Lighting Condition ... - 85 -
AI.3 Pictures under Insufficient Light Condition.. - 92 -
AI.4 Analysis.. - 96 -

Appendix II .. - 101 -
Parameter Adjustment for Fast Corner Algorithm (REVIEW)..................................... - 101 -

AII.1 Experiment Result.. - 102 -
AII.2 Analysis .. - 108 -

Appendix III.. - 109 -
LED Recognition Result and Discussion .. - 109 -

AIII.1 Experimental Result of Feature Filter .. - 110 -
AIII.2 Analysis on the Feature Filters.. - 118 -
AIII.3 Experimental Result of LED Recognition .. - 119 -
AIII.4 Analysis on LED Recognition ... - 124 -

Appendix IV ... - 125 -
Projectile Motion .. - 125 -

AIV.1 Experiment Result and Analysis .. - 126 -
Appendix V ... - 132 -
Color Model ... - 132 -

AV.1 Introduction.. - 133 -
AV.2 RGB Color Model .. - 133 -
AV.3 HSV Color Model... - 134 -
AV.4 Transformation between RGB and HSV ... - 134 -

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 5 -

Chapter 1

Introduction

This chapter briefly describes Augmented Reality (AR) and how existing mobile game achieve

Augmented Reality. Our project objective and project equipment information can also be found

here.

 1.1 Background Information and Motivation

 1.2 Programming Capability Issue

 1.3 Project Objective

 1.4 Project Equipment

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 6 -

1.1 Background Information and Motivation

Mobile phones with built-in digital cameras and music players have become very popular

and common nowadays because of their portability and handiness. Because of its popularity,

there are so many mobile games evolved both written in J2ME as well as proprietary

Development Platform. Some mobile games are similar to the typical or traditional games

which can be found in handheld gaming device, for instance, NDS, Game Boy, PSP, etc (Fig

1.1). While some other games employed the use of augmented reality in order to make the

game more exciting, realistic and interesting (Fig 1.2).

 Fig 1.1 Fig 1.2

To achieve augmented reality in mobile game, the most popular and easily observable

method would be the use of cameras resides in the mobile phone plus the use of computer

generated graphics for dynamic environmental interaction. An example would be “Agent V”

from Nokia 3230 mobile phone (Fig 1.3).

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 7 -

 Fig 1.3

Another new and recent idea for achieving augmented reality in game would be using some

motion or vibration sensors for movement in a game. Nokia 5500 “GrooveLab”

demonstrated one of the uses of motion sensors for augmented reality. (Fig 1.4)

Fig 1.4

Since our FYP focuses on the use of phone camera for augmented reality, there comes a

question - Is it possible to add some more features to the existing games which make good

use of phone camera as a mean for augmented reality? This is the motivation of our FYP

project.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 8 -

As the computation power as well as the image and video capture quality improve, real time

video capture for motion tracking is no longer impossible. Many existing games utilized

motion tracking as an additional and innovation for user input (mainly for direction

movement). However, the existing games process no memory function to remember the

associate of the external environment and the internal computer generated graphics. Our

main objective of this Final Year Project is to demonstrate how games can process memory

to “remember” its external environment for interaction base on existing motion tracking

technique.

1.2 Programming Capability Issue

Few years age, users may feel panic to develop programs for mobile phones because they

lacked supports from the vendors and at that moment, the processing power of a mobile

phone was very limited. Now, things become better, there are panties of Development

Platform for programmers to choose from, including, J2ME, Embedded C++ (For Windows

Mobile Platform), Symbian C++ (For Symbian Platform), etc. Although programmers could

write mobile phone program base on J2ME, it does not provide phone-specific API to access

the camera. On the other hand, Symbian OS makes programming on camera-phone possible.

Mobile phones which use Symbian as the Operating System (or so called Smart Phone) allow

programmers to access most of the functions provided by the phones, including camera and

image manipulation functions.

As Symbian OS is supported by a large number of vendors (e.g. Nokia, Sony Ericsson,

Panasonic, Samsung, Siemens, etc) and provides an open platform for developers to work

on, it is not difficult to imagine that Symbian OS would become one of the major Operating

System for mobile phones in the foreseeable future. Our FYP project will base on Symbian

OS as our target platform due to its programming capability.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 9 -

1.3 Project Objective

The objective of our Final Year Project is not only to develop a game, but also to develop a

way to demonstrate how a program can process memory to “remember” its external

environment for interaction of Augmented Reality. To be more specific, we would like to

show how a program can “remember” the Light Emitting Display (LED) in its external

environment.

The game is a demonstration of our proposed methodology for Augmented Reality. In such

a way, we do not limit ourselves to just implementing a game but have a higher level of

abstraction. In addition, using such approach would not limit the possibility of our

methodology to be applied to develop other mobile applications besides mobile games.

1.4 Project Equipment

Our project involves two Symbian mobile phones, Nokia N90 (Symbian OS v8.1a, Series 60

2nd Edition, Feature Pack 3) as well as Nokia N80 (Symbian OS v9.1, Series 60 3rd Edition).

As the emulator provided by Nokia SDK does not simulate camera function, we would like to

use the mobile phones as our testing and development platform directly for our project. The

Nokia N90 was used as our prototype and algorithm testing platform, while Nokia N80 was

the real platform for us to implement the desired program.

Keith Lai
改左野

Keith Lai
Added

Keith Lai
Removed something

Keith Lai
corrected

Keith Lai
added

Keith Lai
Added

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 10 -

Chapter 2

Symbian Operating System Overview

This chapter would briefly describe the basic architecture of the Symbian Operating System. This

chapter also outlines the differences between the Series 60 2nd Edition and 3rd Edition of the

Symbian Operating System.

 2.1 Basic Architecture of Symbian Operating System

 2.2 Development Environment

 2.3 Limitation of Symbian Phone

 2.4 Features Different in Symbian OS Series 60 2nd and 3rd Edition

 2.5 Porting Existing Program to Series 60 3rd Edition

 2.6 Why Symbian

 2.7 Conclusion

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 11 -

2.1 Basic Architecture of Symbian Operating System

By the end of March 2005, shipments of Symbian OS phones exceeded an average of two

million per month, and cumulative shipments since Symbian’s formation reached 32 million

phones. Also at that time, there were more than 4500 commercially available, third-party

applications for Symbian OS phones. Year on year, phone shipments have been virtually

doubling – and that trend appears likely to continue, or even increase, for the foreseeable

future. (Adopted from Developing Software for Symbian OS – An Introduction to Creating Smartphone Applications in C++)

These figures suggest that Symbian OS is approaching maturity as the preferred Operating

System for high and mid-range mobile phones, and that it offers an ideal platform to

developers, on which they can create new and imaginative applications.

The architecture of Symbian OS v8.1 and v9.1 are described in the following diagrams

respectively.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 12 -

The main focus of this chapter is to illustrate how Symbian OS provides support on image

processing in the phone and how the capability change across different Series 60 Platform.

Symbian use its own implementation of the C++ language called Symbian C++, optimized

for handheld devices with limited memory. Programmers access the recourses, for instance,

files, music players, camera, etc via the APIs provided by Nokia SDK.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 13 -

2.2 Development Environment

Generally, our development environment is under Microsoft Visual Studio .Net 2003 with

Nokia Symbian S60 SDK. The development tools can be formulated like this:

There are emulators provided along with the Nokia SDK which is a Windows application that

simulate a Smartphone entirely in software – complete with simulated buttons and display.

This allows developers to run and debug Symbian OS software on the PC as opposed to

running on a real device. However, there is a major drawback for the emulators. The fact is

that emulators for Series 60 2nd Edition Feature Pack 3 as well as Series 60 3rd Edition do not

provide camera simulation function. This explains why our project did not use much of the

emulators. In other words, the emulators provide little assistant for us. We decided to

develop program directly in the Symbian phone.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 14 -

To install a program on a Symbian-based phone, it must be compiled into the Symbian OS

installation (.sis) file format. Developers write package control (.pkg) files that define the

files to be put in the SIS installation file. (Adopted from Symbian Developer Library)

From Symbian OS v9.1 (Operating System for Nokia N80), it requires that SIS files are

authenticated when they are installed, so that malicious code cannot be installed to the

phone. This means that the SIS file must be digitally signed. This action accounts for one of

the reasons why Symbian OS v9.1 is not binary compatible with those previous versions.

The diagram below shows the key files and tools used in the process of creating a SIS file for

Symbian OS v9.1.

The makesis tool uses the package file to create an unsigned SIS file. The signsis tool can then be used to sign the SIS file with a

certificate to create a signed SIS file that can be installed. The createsis tool is a wrapper around these two tools, which allows the whole

process to be done in one step. If the program is being signed by the developer, rather than being signed through Symbian Signed, then

createsis can also create the certificate to use. (Adopted from Symbian Developer Library)

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 15 -

2.3 Limitation of Symbian Phone

Since we are programming on handheld devices which has limited resources (limited

amount of memory and limited amount of CPU speed), these make programming on the

Symbian phone a difficult task.

 Nokia N80 Specification Nokia N90 Specification

Operating System Symbian v9.1

(Nokia Series 60 3rd Edition)

Symbian v8.1a

(Nokia Series 60 2nd Edition,

Feature Pack 3)

CPU Speed 220MHz 220MHz

Memory Internal Memory: 40MB

External Memory: miniSD (up to

2GB)

Internal Memory: 31MB

External Memory: RS-MMC (up to

1GB)

Display Size 352 x 416 pixels (256K Colors) 352 x 416 pixels (256K Colors)

Since computation performance is an important factor in making a realistic augmented

reality game. If the program takes too long time for the calculation of motion tracking, the

frame rate will fall off. When ever possible, we would use the following operation to enhance

the performance:

1. Bit shifting operations (<< and >>)

2. Integer add, subtract, and Boolean operations (&, | and ^)

3. Integer multiplication (*)

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 16 -

We would reduce the use of floating point computation as much as possible. It is because

the current mobile phones do not equipped with a floating point arithmetic unit. As a result,

floating point operation would slow the whole process down.

2.4 Features Different in Symbian OS Series 60 2nd and 3rd Edition

S60 3rd Edition is based on a new version of Symbian OS (v9.1). As motioned before, this

new platform edition introduces a full binary break between S60 2nd and 3rd Editions, which

means that applications need to be compiled using the new tools provided in the S60 3rd

Edition in order to run on S60 devices based on the new platform edition. S60 3rd Edition

also improves application security and confidentiality of user data by introducing platform

security and different application capability levels. Below shows a diagram indicating the

break point of the S60 2nd and 3rd Edition:

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 17 -

The following diagram shows the Nokia platform development:

ince Nokia Series 60 3rd Edition (Symbian OS v9.1) brought a large impact to the

Most deprecated APIs will be removed
ew S60 3rd Edition compilation tools cause a full binary break between S60 2nd and 3rd Editions. Because

n cannot be maintained anymore, most deprecated APIs will also

plications is not supported anymore. All applications
d-coding to a specific screen resolution cannot be done anymore).

 Its main
pplications), Data Caging (secure storage of data),

EABI), which causes a full binary break.
herefore all other compatibility issues caused by S60 3rd Edition are listed under Section SC breaks caused

S

development of mobile application, here are some improvements made by S60 3rd Edition:

(Adopted from S60 Platform: Source and Binary Compatibility v1.6 by Nokia)

N
backward compatibility with S60 2nd Editio
be removed from S60 3rd Edition, while a number of new replacement APIs will be introduced. Most
deprecated APIs will be removed from S60 3rd Edition.

Compatibility mode removed

 S60 3rd Edition the compatibility mode for legacy apIn
are expected to be scalable (har

Platform security and new application architecture

he biggest change in Symbian OS v9.1 and in S60 3rd Edition is the platform security concept.T
building blocks are Capabilities (set of privileges to a
Secure Interprocess Communication (IPC), and memory management. Platform security also requires a
number of changes to the application architecture. The Server application concept is introduced to enable
former embedded and embedder applications to run in different processes.
Data caging and introduction of the Server application require changes to Document Handler: Instead of file
names, file handles are passed. Recognizers, notifiers, and converter plug-ins are implemented as ECOM
plug-ins.
The installer has been completely rewritten to perform the additional checks (capabilities and certificates) that
the platform security mandates. The installation file format has been changed from SIS to SISX (note,
however, that the actual file extension is still .sis).

New compiler and tool chain - full binary break

60 3rd Edition introduces new compilation tools (RVCT, GCC S
T

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 18 -

 Nokia Camera API (Camera Server) is removed. The Symbian Onboard Camera API
Cam) replaces this deprecated API.

rted by Symbian from Symbian OS v9.1 onwards. The compatibility
pacts of EKA2 are mainly focused on the need to rewrite device drivers, but otherwise a very limited

aks.

by S60 3rd Edition.

Nokia Camera API
The wrapper for the
(E

Real-time kernel (EKA2)
EKA2 is the only kernel version suppo
im
amount of source code bre

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 19 -

2.5 Porting Existing Program to Series 60 3rd Edition

Since our target platform involve both Series 60 2nd Edition (Nokia N90 with Feature Pack 3)

and Series 60 3rd Edition (Nokia N80). From time to time, we have to perform lots of code

conversion between these two platforms for testing and debugging purpose. Here shows a

high level description on how porting an existing program or library to S60 3rd Edition

Platform can be achieved:

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 20 -

2.6 Why Symbian

As mentioned previously, programmers can choose J2ME as their development platform

besides Symbian. J2ME is cross-platform because there is a virtual machine to interpret the

byte code of the program. However, J2ME does not provide any API for accessing the device

camera, which makes our objective impossible to achieve. In addition to the API problem,

J2ME does have one more drawback. Though it is cross platform, it uses Virtual Machine to

interpret the code, and execution in interpretation mode is much slower than that execution

of pre-compiled code.

This explains why our project favors the use of Symbian C++ instead of J2ME because of

camera utilization as well as speed performance.

2.7 Conclusion

This chapter introduced the basic features of Symbian OS as well as the differences between

2nd and 3rd Edition Platform. This chapter also raises an importance consideration in our

project design, that is, speed or computational time.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 21 -

Chapter 3

mVOTE Engine

This chapter briefly describes functions of mVOTE engine which is created by our former FYP

team. The mVOTE engine provides the function of motion tracking and feature selection.

 4.1 What is mVOTE

 4.2 Block Matching Algorithm

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 22 -

3.1 What is mVOTE?

The Mobile Video Object Tracking Engine (mVOTETM) is a SDK for developer to create

mobile application using the mobile phone on-board camera as input device. By tracking the

video object in the picture capture by the camera, mVOTETM can convert the corresponding

movement of the camera into translational movement and degree of rotation. The mVOTETM

enable the developer to create new digital entertainment experience for the mobile user.

(Adopted from mVOTE homepage, http://www.viewtech.org/html/mvote_tm_.html)

The Functions provided mVOTE engine:

1. Translational Motion Tracking

2. Rotational Motion Tracking

3. Feature Selection

3.2 Block Matching Algorithm

Block Matching Algorithm is the core of the mVOTE engine. The block matching algorithm is

a kind of motion tracking algorithm, the basic idea of block matching algorithm is to divide

the search window into blocks with equal size. For each block, the algorithm tries to find out

which block in the search window would have a highest similarity to the feature block that

we want to match.

Keith Lai
Modified

http://www.viewtech.org/html/mvote_tm_.html

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 23 -

How to measure the similarity between two blocks

The common way of measuring the similarity is to calculate the intensity different between

two images. The two common ways to do calculation are:

1. Sum Absolute Difference (SAD):

SAD is the summation of the absolute intensity difference between two N by N images X

and Y. The equation is the following:

∑∑
= =

−=
N

i

N

j

jiYjiXyxSAD
1 1

|),(),(|),(

2. Sum Square Difference (SSD):

SSD is the summation of the square of the intensity difference two N by N images X and

Y. The equation is the following:

() ()[]∑∑
= =

−=
N

i

N

j
jiYjiXyxSSD

1 1

2,,),(

Our ancestor chose SSD instead of SAD because it can enhance the performance of

other part of the block matching algorithm.

How to find out the most similar block in search window

There are three major classes of method to find out the most similar block in search window.

1. The Exhaustive Search Algorithm (ESA)

It is the brute force algorithm, it search all possible values and find the minimum value.

It is the slowest one but it is one of the most accurate methods in finding the minimum

value in the search window.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 24 -

]

2. Fast Search Algorithm

It is based on the assumption that the matching error will increase monotonically when

it is moving away from the correct matching block. So it only tests on a subset of all

possible value in the search window. It has a very critical disadvantage that it will be

trapped by the local minimum not the global one. So we won’t choose it as searching

algorithm.

3. Fast Exhaustive Search Algorithm

The Fast Exhaustive Search Algorithm is trying to reduce the number of value need to

calculate by some simple test method. There are three methods proposed by our

ascender:

i. The Successive Elimination Algorithm (SEA)

Apply the Minkowski inequality to eliminate the invalid block

ii. PPNM (Progressive Partial Norm Matching)

Apply the Minkowski inequality to eliminate the invalid block before calculate

the Cost Function.

iii. Partial Distortion Elimination (PDE)

The idea of PDE Algorithm is shorten the time to calculating the SSD. If the

Partial SSD (PSSD) is greater than the current minimum value of SSD, the

remaining part of calculation of SSD on that block is useless and can be

stopped. There is the definition of kth PSSD:

() ()[∑∑
= =

−=
k

i

N

j
jiYjiXPSSD

1 1

2,, Where k = 1, 2, 3,….,N

There are other methods use in the MVOTE engine, such as Adaptive Search and Spiral Scan,

but we haven’t used them in other part of our project. So we don’t mention them in here.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 25 -

Chapter 4

Program Design and Implementation

This chapter would briefly describe the design and implementation of our program

 4.1 User Interface

 4.2 Program Assumption

 4.3 Projectile Motion Calculation

 4.4 Program Design

 4.5 Programming Trick

 4.6 Conceptual Program Prototype

 4.7 Feature Recognition in Semester 1 VS LED Recognition in Semester 2

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 26 -

4.1 User Interface

This project was mainly tested and debugged on Symbian phone namely Nokia N80 and N90

mobile phones. We develop the game with the help of existing Motion Tracking (mVOTE)

Engine (with some modification) which is developed by our ancestor (LYU0404).

The program makes use of the suggested Symbian OS application framework comprising the

Application, Application Document, Application UI and Application View (or Application

Container) classes. In addition, we added a game engine, motion tracking engine, projectile

calculation modules.

After starting the program up, user may see the below Graphical User Interface:

There is an indicating bar on the right hand side of the screen. The bar is used to show the

digital zooming factor. Users may move up or down of the joystick in order to control the

degree of digital zooming. If the marker is located on the bottom of the bar, then there

would not be any digital zooming. The zoom function helps to convince the users to locate

the LED.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 27 -

User may press the option button for option selection:

Users can choose to use either “Red” or “Green” LED by alter the setting under the “Which

LED?” menu. In the default mode, the game is set as single player mode. Users may switch

to 2 players mode by changing the setting provided in the main menu. The 2 players mode

do not support blue tooth connections. This game also provides 2 score modes (Useful only

when the game is in 2 players mode). One is “Min. Score Mode” and another one is “Max.

Score Mode”. In “Min. Score Mode”, the users who score less would win the game. “Max.

Score Mode” is defined similarly.

After adjusting the zooming factor, users may press the “left arrow” or “right arrow” key in

the joystick to start playing the game. A

successful recognition of the green LED

would direct the user to screen similar to

the photo on the right.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 28 -

may observe the following screen.

However, if the environment is too noisy or the program cannot locate the LED, then uers

Each user has 2 round to play the game, and there would be 3 chances for users to throw

the dart. The score information would be displayed on the upper right corner of the screen.

The user may change to throwing angle by pressing “up arrow” and “down arrow” key in the

joystick. The default value of the vertical angle would be 7o. However, users are allowed to

change any value between 0o and 15o.

In addition, there is a gradient red to green indicating bar locate on the right hand side of

the screen. This indicating bar acted as the energy level of the dart throwing. If the marker

is located in the most upper region, the dart would be thrown at its maximum velocity.

Similarly, if the marker is located at the bottom of the indicating bar, then the dart would be

thrown at its minimum velocity. The marker would move back and fore with time.

Users can move the mobile phone (i.e. the camera) to locate the best position that suits

them most.

To throw a dart, simply press the “enter” key in

the joystick of the phone. There would be a dart

throwing animation shown on the screen.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 29 -

After the player threw all the darts, the score would be displayed to the users.

If the game is in “2 Players” mode, the turn would be go to player 2 after player 1 confirmed

his/her score. Assume Player 2 also finished his/her turn. Another score dialog for player 2

would be displayed.

Finally, the result would also be displayed. (Suppose the game is in “Max. Score Mode”

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 30 -

animation is in progress). The following screen would be d

his screen shows the assumed dart throwing environment. Assume the dart board is

cated on the top right hand side of the screen, the projectile shows the hitting position at

Users can press “5” when playing the game (But not at the time when the dart throwing

isplayed.

T

lo

different energy level. (The assumptions can be found later in this chapter)

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 31 -

4.2 Program Assumption

Wikipedia stated the following:

“A regulation (Dart) board is 18 inches (45.72 cm) in diameter, and is divided into 20 sections.
Each section is lined with thin metal wire. The numbers indicating the various scoring sections of
the board are normally made of wire, especially on...”

Therefore, we chose our dart board to be 0.4572 Meter in diameter for the game. Official

dart rules call for the center of the bullseye to be placed 5 feet 8 inches (173 cm) from the

ground, and 7 feet 9 1/2 inches (237 cm) from the player. This is not the distance measured

from the wall, but from the face of the dart board.

Clearly, according to these regulations, we are assuming our player is located at 2.73 meter

in front of the dart board. Also, the dart board center is located above the ground by 1.73

meter. We further assume the distance between the dart which is held by the player’s hand

and the ground is about 1.6 meter.

The angle theta indicates the vertical angle between the horizontal line and the dart

throwing direction.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 32 -

However, how can we model the above data for our game? To answer the question, we use

the following definition:

64 pixels = 45.72 cm

64 pixels = 0.4572 m

1 pixel = 0.0071435 m

With this definition, we can easily calculate the distance between the dart board center and

the ground, distance between the player and the dart board. The calculated values were list

on the above figure.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 33 -

4.3 Projectile Motion Calculation

The core of our game makes use of projectile motion. We assumed there would be air

resistance in our model. To begin with, let’s take a look at simple projectile motion without

any air resistance first.

Simple Projectile Motion with No Air Resistance

The basic problem is projectile motion, such as a cannon shell, neglecting air resistance. For

planar motion with two dimensions, vertical and horizontal, let the horizontal be denoted by

x and the vertical by y. If we first ignore air resistance, the equations of motion just follow

Newton's second law. (Eq. 1)

0)(
2

2

=
dt

txd , and

g
dt

tyd
−=2

2)(

where g is the acceleration due to gravity. Rather than approximate the second derivative,

which requires us to evaluate three consecutive points, let us resort to coupled first order

equations. Since the first derivative of position is velocity and the first derivative of velocity

is acceleration, we may write Equation 1 as following: (Eq. 2)

xV
dt
dx

= 0=
dt

dVx

yV
dt
dy

= g
dt

dVy −=

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 34 -

where vx and vy are the horizontal and vertical components of the velocity, respectively. The

recursion relations for these four equations are as follows (Eq. 3)

tVxx ixii ∆+=+ ,1 ixix VV ,1, =+

tVyy iyii ∆+=+ ,1 tgVV iyiy ∆−=+ ,1,

where we have approximated the first derivative with a divided difference and solved

algebraically for the quantity after a time step t∆ . Now given initial values for x, y, vx, and vy

or equivalently the initial velocity and launch angle, we can use Equation 3 to calculate

values of position and velocity at later times. By choosing t∆ sufficiently small, we should

be able to calculate the motion such that the truncated terms are of negligible size in

comparison to first order terms.

Simple Projectile Motion with Air Resistance

In order to include the effects of air resistance, we introduce a "drag force", B2, which is

always opposed to the velocity vector. Adding this term to Equation 3, we obtain the

equations of motion in component form (Eq. 4)

tVxx ixii ∆+=+ ,1 t
m

VVB
VV ixi

ixix ∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅⋅
−=+

,2
,1,

 tVyy iyii ∆+=+ ,1 t
m

VVB
tgVV iyi

iyiy ∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅⋅
−∆−=+

,2
,1,

where vi is the magnitude of the velocity and not a component

() ()2,
2

, iyixi VVV +=

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 35 -

The coefficient B2 can be estimated by experimental means, such as a wind tunnel. However,

we can also arrive at an approximation by making the simple estimate that the work done by

the drag force should be proportional to the mass of air moved by the cross-sectional area of

the projectile, which in turn must be proportional to the density of air, ρ . However, the

calculation is rather complex and not suitable for our mobile phone platform. As a result, we

simply set the value of B2 as 0.003.

The initial velocities of x and y are:

Vx,0 = Initial Velocity * cos(θ) Vy,0 = Initial Velocity * sin(θ)

Where the initial velocity is determined by the energy indicating bar of the game, θ is the

vertical angle of the dart which is shown in the figure in section 4.2.

In addition, we assume that the weight of a dart is about 20 gram. We further restrict the

program to have 8ms-2 minimum initial velocity and 18ms-2 as the maximum initial velocity.

Users are allowed to adjust the vertical dart angle from 0o to 15o degree in upward direction.

For further details, please refer to Appendix IV.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 36 -

4.4 Program Design

The program consists of these core files:

File Description
AR3rdapplication.h
AR3rdapplication.cpp

An Application that creates a new blank
document and defines the application UID.

AR3rddcoument.h
AR3rddocument.cpp

A Document object that represents the data
model and is used to construct the App Ui.

AR3rdappui.h
AR3rdappui.cpp

This class defines the User Interface as well
as ways to handle input key commands and
commands from menu options.

AR3rdAppContainer.h
AR3rdAppContainer.cpp

A container (or an Application View) object
which displays data on the screen.

MVOTE.h
MVOTE.cpp

Motion Tacking Engine

GameEng.h
GameEng.cpp

The game engine. It handle the flow of the
game.

Projectile.h
Projectile.cpp

It handles the projectile calculation. It
simulates the projectile for the real world

Score.h
Score.cpp

It handles the calculation of the game score.

Animator.h
Animator.cpp

It handles the animation of the dart throw.

AR3rd.rss This describes the menus and string
resources of the application.

AR3rd.mmp It specifies the properties of a project in a
platform and compiler independent way.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 37 -

Program Flow

The following flow chart shows the flow of the game:

At the very beginning, users have to selection appropriate zoom factor before he or she can

actually play the name. The zoom factor selection function is to help the users to locate the

LED. The LED may be located far from the users. As a result, have a digital zoom function

would convince them.

Assume the users focus on the appropriate LED, the users may then play the game by

pressing corresponding key on the mobile phone.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 38 -

After that, our program would perform an image processing to recognize any LED in the

scene. If the program can detect any LED in the scene, then I would begin to execute codes

for game playing part; otherwise, the program would alert the users that LED was not found

and ask the users to selection some other better environment.

Once the program can recognize the LED, the program would performance initialization on

the game engine as well as graphics display modules. The program would also track on the

location of the LED by using motion tracking provided by mVOTE engine. It accepts input

from the users for exiting the game.

In fact, in the start game playing module, it also accepts input from users to determine when

the dart should be fired to throw. I also handle the animation as well as communicate

constantly to the game engine module. This module also provides a dart throw preview

function.

The flow of the game is similar to the description appeared in section 4.1

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 39 -

4.5 Programming Trick

Since our target platform is Symbian Operating System (to be more specific, our target is

Nokia N80), we have to optimize our source code a bit in order to have a more efficient

program. Here, we would like to demonstrate some examples for allowing efficient

execution.

In our projectile motional calculating module, we have to make use of sin and cos functions.

The sin and cos functions are needed because of the calculation of initial x and velocity

respectively. However, these functions may involve quite a number of internal computations

which may slow our program down. As a result, we decided to write our own sin and cos

functions, which hard code the values. Since the possible allowed vertical angle is between 0

and 15. Therefore, we may implement the function in the following way.

float Sin(int aAngle)

{

 switch(aAngle)

 {

 case(0): return 0.0; break;

 case(1): return 0.01745240644; break;

 case(2): return 0.03489949670; break;

 case(3): return 0.05233595624; break;

 ...

 case(12): return 0.20791169082; break;

 case(13): return 0.22495105434; break;

 case(14): return 0.24192189560; break;

 case(15): return 0.25881904510; break;

 default: return 0.0; break;

 }

}

The cos function can be implemented in a similar way.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 40 -

float Cos(int aAngle)

{

 switch(aAngle)

 {

 case(0): return 1.0; break;

 case(1): return 0.99984769516; break;

 case(2): return 0.99939082702; break;

 case(3): return 0.99862953475; break;

 ...

 case(12): return 0.97814760073; break;

 case(13): return 0.97437006479; break;

 case(14): return 0.97029572628; break;

 case(15): return 0.96592582629; break;

 default: return 1.0; break;

 }

}

By implementing the above functions, the program simply knows the sin or cos value of a

given angle (in degree) without the need of calculation. Thus, the computational power is

saved.

On the other hand, in the process of computing the projectile motion, the program needs to

perform square root function from time to time. And square root function is much more

complex and expensive than the sin and cos functions. Clearly, we have to find some other

ways to approximate its value. Luckily, we found a very magic function – reciprocal square

root.

The function can be used to compute the reciprocal of the square root, i.e. 2
1−

x , was written

by Greg Walsh, and implemented into the game Quake III by Gary Tarolli. As an

approximation, it produced a relative error of less than 4%.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 41 -

The first thing that pops out is the use of the number 0x5f3759df in this function, which

calculates the inverse square root of a float and why does this function actually work?

float Q_rsqrt(float number)

{

 long i;

 float x2, y;

 const float threehalfs = 1.5F;

 x2 = number * 0.5F;

 y = number;

 i = * (long *) &y; // evil floating point bit level hacking
 i = 0x5f3759df - (i >> 1); // Would it work?

 y = * (float *) &i;

 y = y * (threehalfs - (x2 * y * y)); // 1st iteration

 // y = y * (threehalfs - (x2 * y * y)); // 2nd iteration, this can be removed

 #ifndef Q3_VM

 #ifdef __linux__

 assert(!isnan(y));

 #endif

 #endif
 return y;

}

According to an article in Code Maestro, not only does this function work, on some CPU

Carmack's Q_rsqrt runs up to 4 times faster than (float)(1.0/sqrt(x), eventhough sqrt() is

usually implemented using the FSQRT assembley instruction. So, how can we obtain the

function that we want most – square root?

http://www.codemaestro.com/

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 42 -

float SquareRootFloat(float number) {

 long i;

 float x, y;

 const float f = 1.5F;

 x = number * 0.5F;

 y = number;

 i = * (long *) &y;

 i = 0x5f3759df - (i >> 1);

 y = * (float *) &i;

 y = y * (f - (x * y * y)); //1st iteration

 y = y * (f - (x * y * y)); //2nd iteration

 return number * y;

}

The only difference between the reciprocal of the square root and square root function is in

the return value – instead of returning y, return number*y as the square root.

The code above implemented the well known Newton Approximation of roots. As in most

other iterative approximation calculations, The Newton approximation is supposed to be ran

in iterations. Each iteration enhances the accuracy until enough iterations have been made

for reaching the desired accuracy. The general idea behind Newton's approximation is that

whenever we have a guess y for the value of the square root of a number x, we can perform

a simple manipulation to get a better guess (one closer to the actual square root) by

averaging y with x/y. The really interesting aspect of this function is the magic constant

0x5f3759df, used to calculate the initial guess, in :

i = 0x5f3759df - (i >> 1);

Hence, dividing the input by 2 and subtracting it from the magic constant. This constant

works almost perfectly - Only one iteration is required for a low relative error of 10-3.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 43 -

We did perform a simple experiment to see the accuracy of the new square root function.

We wrote a simple C program to perform the experiment. The experiment included the

calculation the square root of randomly generated for 40 iterations. The left hand side of the

result was by the new suggested square root function, the result shown on the right hand

side was by the standard C library.

From the above diagram, the fast square root was performed only once Newton method. We

can see that the result is fairly accurate.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 44 -

From the above diagram, the fast square root was performed twice the Newton method. We

can see that the result is much better than the previous one.

In addition, we wrote another program to test their performance. We found out that the

performance of the fast square root function is much better than the sqrt function found in

standard C library.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 45 -

In short, we used single Newton iteration to implement our fast square root function. It is

because the accuracy is acceptable for our game and the performance is excellent.

In fact, we also performed some other optimization to our program code. For instance,

instead of writing count * 2 + 1 for positive number, we implemented in a better way,

(count << 1) | 0x1. Furthermore, we tried to avoid division operation as much as possible.

We tried to replace division operations with multiplication operations. For example, in

section 4.2, the recurring equation of x velocity is t
m

VVB
VV ixi

ixix ∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅⋅
−=+

,2
,1, . It is

observed that this equation requires the use of division. In order to optimize this statement,

we can declare a constant, m’, and stores the value of 1/m at compile time. The equation

would become () tmVVBVV ixiixix ∆⋅⋅⋅−=+
'

,2,1, . We can observe that the equation of Vx,i+1 is

very similar to Vy,i+1, we can further reduce the number of multiplication operations in the

following way.

() tmVBCommon i ∆⋅⋅= '
2

()ixixix VCommonVV ,,1, ⋅−=+

()iyiyiy VCommontgVV ,,1, ⋅−∆−=+

In general, we would like to use shift bits and logical operations whenever possible. Reduce

the number of division operations is also one of our aims. We have to find ways in order to

use multiplication operations to replace the slow division operations. Sometimes, the

functions were declared as inline in order to avoid too much overhead caused by function

call.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 46 -

4.6 Conceptual Program Prototype

Besides building the Virtual Reality mobile game, we also developed another mobile phone

application (we call it as Conceptual Prototype) to demonstrate our objectives and concepts.

Here, we would like to mention once again our objectives. The objective of our Final Year

Project is not only to develop a game, but also to develop a way to demonstrate how a

program can process memory to “remember” its external environment for interaction of

Augmented Reality.

We used Nokia 6600 Mobile Phone to implement our conceptual prototype. Though this

mobile phone is out dated and does not equipped with relatively powerful processor, it is

enough to demonstrate our concept. In this prototype program, we would like to illustrate

the use of our proposed LED recognition technique. (For the technical details, please read

chapter 5)

Keith Lai
改左野

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 47 -

In our setting, there would be a computer with Bluetooth device acts as a server, and a

mobile phone (Nokia 6600) acts as a client. The server is responsible for receiving signals

and commands from the client. The client is responsible for detecting any LED in its

environment with the use of build in camera. The client sends signals to the server

whenever it detected there is/are LED(s). Though this settings and concepts are simple, we

can make use of this concept in a number of areas.

For example, this concept can be extended to transport monitoring system. To day, there are

many cameras installed at different major roads in Hong Kong for monitoring the traffic

condition in nearly real time. The system can retrieve image data from the camera and then

recognize the brightness of the environment. According to the data, the system can

determine if the environment is bright enough and thus control the lighting conditions to

facilitate a better driving condition.

In our setting, the client has to first establish a Bluetooth connection with the server before

the detection can begin. In order to allow incoming connection to the server, the server has

to enable a serial port for client’s incoming connection. The diagram below shows the

method to enable incoming connection in the server side.

After that, the mobile phone client can connect to the server

via Bluetooth. The figure on the right hand side demonstrates

the method to establish a Bluetooth connection.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 48 -

After that we may start the detection program in the client

side, similar to the way shown on the right hand side.

In our conceptual program model, we divided the detection

into two parts. The program would only detect at most 2

green LEDs. One should be located on the left hand side and

another one should be located on the right hand side of the

camera. If the program can detect both LEDs, it would draw

boxes to select the LEDs to indicate that the program can

detect the present of LEDs in the environment. The program

would then send signals to the server. In this conceptual program, the server would emulate

the received LEDs pattern and reflect the result on to the LEDs in the keyboard. For example,

if the client detected there are two LEDs as shown in the

above diagram. The server would control the LEDs of the

keyboard and emulate the received result which is shown on

the left hand side diagram.

Similarly, if the client can only detect one LED, the server would simulate the result.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 49 -

The previous two sets of figures show the result of the detection of LED done by mobile

client and the simulated result done in the server side.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 50 -

4.7 Feature Recognition in Semester 1 VS LED Recognition in Semester 2?

In semester 1, we did not use any LED recognition technique, we used feature recognition

instead. In the feature recognition technique, we divided the search window into blocks. We

use the saved features as the feature block and use whole screen as Search Window to find

the most matching block in the screen.

Feature Recognition used the Fast Exhaustive Search Algorithm as searching method and

SSD as the Cost Function mentioned in the previous semester to calculate the similarity

between reference block and candidate block. The algorithm was speed up by using SEA to

remove invalid candidate blocks, and then use PPNM to do second filter on candidate blocks

and finally use PDE to remove invalid candidates block during the calculation of cost

function.

Although the new feature algorithm in semester 1 applied many techniques to increase the

speed of algorithm, but it was still very slow because it searched the whole screen to find

the most matching features. (Please read Appendix I and II to review the experimental

results for the feature recognition part done in semester one)

Due to the fact that the feature recognition was very slow and performance inefficient, we

talked to the lab technician. He suggested us to work on recognition of some simpler things

such as LED or Bar Code. Finally, we decided to work on recognition of LED because we

thought that LED can be found more easily at home or office area. The technical details

would be discussed in Chapter 5.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 51 -

Chapter 5

Object (LED) Recognition

In this chapter, we describe how we can recognize the LEDs. The recognition part is a very

important function in our program; it would affect the efficiency and performance of our program.

 5.1 Introduction

 5.2 Harris Corner Detector in Semester 1 (Review)

 5.3 Fast Corner Detector in Semester 1 (Review)

 5.4 Select Feature from Corner List in Semester 1 (Review)

 5.5 Object Recognition Methods

 5.6 Feature Filter

 5.7 LED Recognition

 5.8 Motion Tracking Improvement

We were using random features in the semester 1 for feature recognition, but
we use specific feature – LED in semester 2 to solve the performance problems.
Information in Section 5.1 to 5.4 is the review of the works we had done in the
first semester. Please go to Section 5.5 onward for the works we have done in
this semester 2.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 52 -

5.1 Introduction

The feature is very important in the blocking matching part of our program because a

“Good” feature can increase the efficiency of block matching algorithm as it can reduce the

invalid candidate in early state of computation. (Please refer to Appendix I for the meaning of a feature)

There are two conditions of a “Good” Feature:

1. It should be descriptive enough to identify the feature from the environment, i.e. the

“Good” feature should not be too small. It can increase the accuracy of the block

matching algorithm.

2. It should have a large internal intensity different, i.e. the “Good” feature should contain

a corner. It can record the correct direction of the movement, so it can increase the

block matching accuracy.

As we mentioned above, corner is a requirement of a good feature, a corner detector to

detect the possible corners from the picture is very useful in the Feature Selection Algorithm.

5.2 Harris Corner Detector in Semester 1 (Review)

The basic idea of the Harris Corner Detector is calculate the intensity change in shifting all

directions. In the “flat” region, there is no great change of intensity in all the direction. In the

“edge” region, there is no considerable change of intensity across the edge direction. At the

“corner” region, there is a significant change of intensity in all direction movement.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 53 -

No significant change of intensity in flat region

No sharp change of intensity across the edge direction only

Intensity change significantly in all direction

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 54 -

The change of intensity of a shift [u, v] can be calculated by the following equation:

2

,
)],(),()[,(),(yxIvyuxIyxwyxE

yx
−++= ∑

Where:

E(u, v): Total intensity change over the window

W(x, y): window function, it can be discrete (e.g. 1 inside the window, 0 outside the window)

or continuous (e.g. a Gaussian distribution).

I(x, y): the Intensity of image at position (x, y).

If the shift [u, v] is small, it has a bilinear approximation:

[] ⎥
⎦

⎤
⎢
⎣

⎡
=

v
u

MvuyxE ,),(

Where:

M is a 2×2 matrix computed from image derivatives

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑ 2

2

,
),(

yyx

yxx

yx III
III

yxwM

By evaluating the eigenvalues λ1, λ2 of M, we can identify the region is flat, edge or corner.

In the flat region, both the λ1 and λ2 are small and E remains constant in all the direction. In

the corner region, one of λ1 or λ2 is large, the other one is small and E has a large when it

is not crossing the edge direction. In the corner region, both the λ1 and λ2 are large and E

has very significant increase in all the directions.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 55 -

The calculation of eigenvalues is computationally expansive because it involves calculation

of square root. The following equation is used to calculate the eigenvalues of 2×2 matrix.

() () ⎥⎦
⎤

⎢⎣
⎡ −+±+= 2

2211211222112,1 4
2
1 aaaaaaλ

So Harris suggests a Corner Response Function R to calculate it:

()2det traceMkMR −=

21

21det
λλ

λλ
+=

=
traceM

M

Where:

k is an empirical constant, typical value of k is range from 0.04 to 0.15.

R only depends on the eigenvalues of M and it is less computationally expansive than

calculate the eigenvalues, so it can be use for detecting the corner. For a “flat” region, the

absolute value of R is small. For “edge” region, R is negative and it has a large magnitude.

For “corner” region, R is a very large value.

Although calculation of R is less expensive than calculation of eigenvalues, it is still very

expensive for our platform, Symbian OS, which has no floating point unit.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 56 -

5.3 Fast Corner Detector in Semester 1 (Review)

This algorithm is suggested by Edward Rosten in his paper Machine learning for high-speed

corner detection, May 2006. [3]

There is a class of corner detector which examines a small patch of image to see if it “looks”

like a corner or not. In this class of corner detector, it doesn’t need a noise reduction step,

such as Gaussian Filter, so it is less computation less than other corner detector. The FAST

corner detector is inside this class of corner detector.

The main concept of FAST corner detector is considering the Bresenham circle of radius r

around the candidate point which called nucleus. If the intensities of n continuous pixels on

the circle are larger than nucleus by values barrier or smaller than nucleus by values barrier,

the nucleus is a potential corner.

The Bresenham circle of radius 3 around the pixel p

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 57 -

The typical value for r is 3 that mean it will have 16 pixels on the circumference. The

minimum value of n should be 9 to ensure that it will not detect the edge instead of corner.

The value of barrier is directly related to the sensitivity of the corner detector. If the value of

barrier is too small, the detector will be too sensitive, it may cause misclassification. On the

other hand, if the value of barrier is too large, the detector may not be able to detect any

corner. To get the suitable value of barrier, we had done an experiment of using different

values of barrier on the same image on our Symbian testing platform, the full result of the

experiment you can reference to Appendix II. After the experiment, we choose 25 as barrier

value because it can detect a certain number of corners at many different environments.

Some of experimental results of the FAST corner detector on the Nokia N90

The FAST corner detector is very computation efficient, because it only does subtraction and

comparison for the whole process detecting corner. The following experimental results are

extracting from the Edward Rosten’s Paper:

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 58 -

The above result was done on PC. If the same experiment does on the Symbian platform,

we believe that the different between the FAST corner detector and another corner detector

will be much larger as Symbian doesn’t have a floating unit.

Non-maximal Suppression

Non Maximal Suppression is used as an intermediate step in mainly computer vision

algorithm. Non-maximal Suppression means that finding out the local maxima of a pixel p

around certain neighborhood. For the corner detectors, the non-maximal suppression

means select all the corners with the local maximum of corner response function within a

neighborhood.

FAST corner detector doesn’t define a corner response function, so we cannot apply the

non-maximal suppression directly to filter the selected corners. Edward Rosten suggest a

Score Function V, each selected corner should calculate V and use non-maximal suppression

to remove corners which have corner with higher V within its neighborhood. There is the

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 59 -

definition of Score Function V:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−−= ∑∑

∈∈ darkbright Sx
px

Sx
px barrierIIbarrierIIV ,max

Where:

x are points of the Bresenham circle

{ }barrierIIxS pxbright +≥= |

{ }barrierIIxS pxdark −<= |

We have done an experiment to show the different between using Non-maximal

Suppression and not using Non-maximal Suppression. You can see the result from below

(Detailed information can be found in Appendix II):

In our project, we define the size of neighborhood to be one, that mean it will check

whether the adjacent points has a higher V or not.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 60 -

Although the FAST corner detector is not robust under high noise environment, it is much

faster than the other corner detectors. In the high noise environment, our motion tracking

engine, mVOTE, is not accurate at all. There is no problem of us to use FAST corner detector

as a part of our Feature Selection algorithm.

5.4 Select Feature from Corner List in Semester 1 (Review)

The corner detector will produce a list of detected corners, it may contain more than number

of features that we want. So we need a corner selection step to choose number of features

that we want from the corner list.

In our project, we need to keep track on three feature points during the application. We also

set a constrain to these three points that they cannot be too close to each other because if

the two points are too close, the features represent by each point may to overlapped, it will

affect the accuracy of the motion tracking.

Our method is dividing the selection area into two equal parts vertically and run the corner

detector on each part of the sub-areas. After running the corner detectors, we will get two

lists of detected corners in each sub area and the corners are in the raster scanning order.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 61 -

There is the pseudocode for select feature from corner list algorithm:

Feature1 = list1[first]

Feature2 = list2[first]

While (list1.length > 1 And list2.length >1)

Do

 fromOne = False

 If (fromOne)

Begin

 If (list1.length > 1)

 Begin

 Temp = list1[last]

 End

 fromOne = false

End

Else

Begin

 If (list2.length > 1)

 Begin

 Temp = list2[last]

 End

 fromOne = true

End

If (DistanceTest(temp, Feature1) AND DistanceTest(temp, Feature2))

Begin

 Feature3 = temp

 Break While Loop

End

End

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 62 -

If we cannot find the third point for feature or either one of the list is empty at the beginning,

we will reject the selection area and report to user that the program cannot find any feature.

Fig a Fig b

Fig a. the selection area (marked by blue square) is rejected by our algorithm because left

part of the area doesn’t contain any corners.

Fig b. the selection area can pick the three points, two from the left half and one from the

right part, for the features in motion tracking.

5.5 Object Recognition Methods

Due to the limited computational power and storage of mobile phone, it is very difficult to

improve the current feature recognition algorithm. We had studied the Object Recognition

methods to see it can improve the performance of the feature recognition or not.

There are many different kinds of Object Recognition method. There are three major steps

in the Object Recognition:

1. Model Acquisition

Object Recognition algorithm needs a model for object to be recognized. The

model can be provided by the user or learned from the sample inputs images by

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 63 -

using learning theory.

2. Retrieval

There are three main tasks in this step:

i. Localize the interested objects in the input image(s).

ii. Identify or classify the interested objects.

iii. Provide the relevant information (for example position, direction and size of

the objects) of the interested objects.

3. Action

From the information gather in second step, perform the relevant actions.

By using object recognition methods, you need to know what kind of object you want to

recognize first. But the goal of our FYP is letting user to select an area, program will find out

the possible features in the selected area and start playing the game. That mean it is using

random feature instead of specific objects, so it cannot use the object recognition method

directly. We decide to use object recognition to enhance the performance of the feature

recognition. So, we need to decide use what object we need to recognize.

We have set a rule for selecting the objects for recognition, the object should be common in

many different environments. So the user can play the game at anytime and anywhere. We

decide to use green/red LEDs as the target objects of the object recognition because LEDs

are common in the indoor environments, such as home, office and school. Also, LEDs can be

easily separated from the background environment, so we can use this property to design

specialize algorithm for it.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 64 -

5.6 Feature Filter

The objective of the filter is separate the target objects – green/red LED from the

surrounding environment, so that it can improve the performance and efficiency of the

feature recognition algorithm. The principle of the feature filter is if the pixel cannot pass

through filter condition, then it will change to black color. Otherwise, the pixel remains

unchanged. We use green LED as target object to illustrate our idea.

The left hand side picture is the input image of the feature filter and the right hand side is

the output of the ideal feature filter.

Feature Filter by using HSV Color model

The target object is green LED, so the fist idea is can we use the brightness value of HSV

model to separate the LED from the surrounding. The first filter considers only the

brightness value of each pixel. The filter condition is brightness value greater than 0.9.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 65 -

From the result, you can see that the bright region such as the LCD monitor, our target

green LED and the reflect light on the keyboard are selected. We do not consider the color in

the filtration. So, we can add Hue consideration in the filter. The following figure show the

result of filter after adding Hue consideration, only pixel with Hue value within 60 to 100 can

pass through the filter:

You can see that only one green LED on the keyboard is selected and there are some noises

left in the monitor region.

We find out that HSV filter cannot completely separate the target from the surrounding

environment. Also, image got from the camera on the mobile phone is in Bitmap format

which is using RGB color model. The conversion from RGB to HSV invoke floating point

operation, the conversion speed is very fast. This is another problem of the HSV filter.

Feature Filter by using RGB Color model

The target object is green LED, so we can set only the pixel with the large G value can pass

through the filter. Here shows the result of filter using G value greater than 230.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 66 -

You can see that many regions are selected, such as green LEDs, the white region of LCD

Display.

We can add constraint to the other color channel, for example the blue value and red value

need to smaller than certain value. We have done a series of experiment; we choose the G

value need to greater than 230 and the B value need to smaller than 204. There is the result

image:

You can see that all threes LEDs are separated and with only a little amount noise left. So we

choose this filter as the filter we need of the program.

We can use similar technique to build feature filter for the red LED. We can set a lower

bound for R and upper bound for G to build the feature filter.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 67 -

5.7 LED Recognition

After passing the feature filter, we get the filtered image which most pixels are black and

only the selected regions remain unchanged. The next step is telling the motion tracking

algorithm where does it need to track. The motion tracking algorithm is using block

matching method, so we only need to find out a block which contain the target object.

Only the non-black pixels are the area we want. So we can claim that if the block contains

more than threshold of non-black pixels, then it is the block which contains the target object.

We set threshold to be 25 for the following. The following is the pseudocode and the result

of the feature selection algorithm:

Array of Block SelectedBlock = NULL

For each Block in the search range

 Count = 0

 For each pixel in the block

 IF needTest(pixel)

 IF pixel is not black

 Count = Count + 1

 ELSE

 Go to Next block

 IF Count > LightPixelThreshold

 SET needTest for all pixels in the Block be False

 Add Block to SelectedBlock

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 68 -

From the result you can see that the algorithm can only select the block with light region at

the lower right corner. It is because we are using raster scan method to examine the block.

It is not a good feature for motion tracking because it may lose easily during the motion

tracking. It also selects more than one feature block from the same object. The speed of this

algorithm is not fast because examine every pixel in the image.

To solve the shifting problem and increase the performance, we only examine the center

region of the block. The center region is a concentric block with the half size of the original

block. We also add a distance check mechanism to prevent two selected blocks is too close

to each other. We only need two features for playing the game, so we can stop the

algorithms after finding two features. Here is the pseudocode and the result of the improved

feature selection algorithm:

FeatureCount = 0

SelectedBlock1, SelectedBlock2 = NULL

For each Block in the search range

 Count = 0

 For each pixel in the center region

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 69 -

 IF needTest (pixel)

 IF pixel is not black

 Count = Count + 1

 ELSE

 Go to Next center region

 IF Count > LightPixelThreshold

 IF FeatureCount = 1

 IF Distance (SelectedBlock1, Block) > DISTANCEBOUND

 SelectedBlock2= Block

 EXIT

 ELSE

 SET needTest for all pixels in the Block be False

 SelectedBlock1= Block

 FeatureCount = 1

You can see that the result of improved feature selection algorithm is much better. Also the

speed of the recognition is faster.

Due to the concern of the performance of the motion tracking, we reduce the motion

tracking points from two down to one. It is because reducing the number of tracking points

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 70 -

can reduce the load of the motion tracking part of the program, so we can have more

resource for the front end. We only need one feature now, so we can remove some part of

the feature selection algorithm to reduce the time spend and memory usage of it. The

pseudocode of the finalized version of feature selection algorithm:

SelectedBlock = NULL

For each Block in the search range

 Count = 0

 For each pixel in the center region

 IF pixel is not black

 Count = Count + 1

 IF Count > LightPixelThreshold

 SelectedBlock = Block

 EXIT

5.8 Motion Tracking Improvement

The motion tacking part is still using the function provided in the mVOTE engine. We find

out that the region surrounding our target object, LEDs, are flat region. A flat region is a

region that the pixels in the region which has almost the same color. The motion tracking

algorithm cannot work well in flat region because the blocks inside the flat region are very

similar, mVOTE cannot identify them. So we need to do a detector to detect the algorithm is

tracking the target object or not.

We pass the tracking block and the eight surrounding blocks to the feature filter. After

passing filter, we do the block matching. If the block sum of the matching block is zero, then

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 71 -

we do the LED selection in the filtered region. The block with block sum is zero mean all the

pixels in the block is black that imply motion tracking algorithm is lose tracking of the target

object. So we need to relocate the feature for the motion tracking again. Why choose eight

surrounding blocks? We find out that in many cases that the feature is within the eight

surrounding blocks when it is lose tracking.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 72 -

Chapter 6

Project Progress, Difficulties and Future Work

This chapter would briefly describes progress of our project, difficulties we faced during the

project and what we are going to do in the future

 6.1 Project Progress

 6.2 Difficulties we face in the project

 6.3 Future Work

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 73 -

6.1 Project Progress

There is progress of out Final Year Project:

September 2006 1. Decide platform of FYP
2. Study the Symbian C++ Programming
3. Study the Algorithm use in mVOTE engine
4. Familiar with the development platform of Symbian

October 2006 1. Write simple Symbian program
2. Write the Symbian Testing platform
3. Study basic idea of Image Processing
4. Study some corners detector algorithm
5. Study the possibility of Z motion detection

November 2006 1. Implement the initial approach of feature recognition
2. Implement the FAST corner detector algorithm into

Symbian Platform.
3. Implement our proposed approach of feature

recognition
4. Prepare FYP presentation and demonstration
5. Write FYP report.

December 2006 1. Try to improve the feature recognition
January 2007 1. Study the possibility of hierarchical search method.

2. Study the MPEG encoding scheme.
February 2007 1. Implement Feature Filter.

2. Study projectile motion
3. Implement Game Engine

March 2007 1. Implement LED Recognition
2. Study Active Object of Symbian
3. Draw 3D of the dart
4. Study Bluetooth programming
5. Enhance the Motion Tracking

April 2007 1. Integration of Game engine and LED recognition
2. Fine tuning the program
3. Build the Conceptual Program Prototype
4. Write FYP Final Report
5. Present final presentation

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 74 -

6.2 Difficulties we face in the project

To me, there are a number of difficulties when doing this project.

1. Before this final year project, we do not have background in image processing. It turned

out that we had to put a lot of efforts in packing up these kinds of technique. In addition,

we had to put concentration on the mVOTE Engine before we can actually modify it for

motion tracking which suit our needs. As mVOTE Engine used quite a number of

algorithms suggested in different papers. We had to read through the papers to enhance

our understanding. We also found some other papers to improve the speed of

recognition.

2. On the other hand we used Nokia N80 and N90 as our target platform. However, Nokia

only provide the camera plug-in for Nokia 6600 which is S60 1st Edition (Symbian OS

v7.0s). Therefore, we cannot use emulator for debugging and testing. We need to test

our program on the target phone directly. As a result, every time, we had to transfer the

executable code to the target phone and the following step was installation and testing.

The whole process is thus much longer and inconvenient. In semester two, we built

some C# program with the use of webcam to facilitate the development of the image

filter for LED recognition as well as bitmap color removal process. After the algorithms

are implemented and tuned in PC, we then transfer them to our target platform and

perform further fine tuning and amendment.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 75 -

3. Since we prepared our algorithm in PC computers using webcam. We found out that the

image color captured by the webcam is different from that of mobile phone. We also

found that among the provided mobile phones, the image color captured by these phone

were largely different. We found out that the camera provided by Nokia N80 is not really

in a good condition. Most of the time, the degree of color distortion is quite high and

affect our LED recognition result. While Nokia N90 had a better image color quality and

relive us from the above problems. As a result, we had to perform fine tuning on Nokia

N80 from time to time to minimize the effect.

4. From this project, we also found out that developers have to put much more time in the

graphics part for game development than in the core function of the game. For example,

in our game, the dart throw would be displayed in term of animation. However, to build

an animation, we have to collect a large amount of image data about the dart itself. It is

because during different stages of dart throw, the dart would be in different angles of

posture. To make the animation more realistic, we have to find ways to generate the

dart images for each degree posture. In order to generate a set of such images, we

decided to use Maya to build a dart 3D model for image generation.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 76 -

And we had to render an

image for every degree of

rotation. The right hand side

shows an example of

rendering. The rendering

process is time consuming

and we had to manually alter

the degree of rotation from

frame to frame for rendering.

From my point of view, this

process is very time intensive

and just for the user fanciness.

5. Another difficulty is about creating “thread” in Symbian OS. During the animation, the

program has to animate the dart throw as well as accepts information from our LED

recognition module. The obverse solution would be to create “thread” in order to let the two

“processes” run in parallel. However, there is not “thread” in Symbian OS. Instead, it uses so

called “Active Object” and its concept is quite difficult to understand. Therefore, we had to

spend a bit time in handling this issue.

6. Another difficulty is about the documentation support part. In building Symbian program,

we had to consult the Nokia S60 documentation for reference. That document outlined the

use of different functions, libraries, data types, etc. However, we have encountered that the

required libraries (list on the document) were included in our project. However, the compiler

cannot properly link the libraries to our program which caused compilation errors. It turned

out that we search for the solution for over hours and finally discovered that we had to

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 77 -

include more libraries which were not documented in the Nokia S60 documentation. We also

found a very interesting phenomenon that the Nokia S60 documentation included some

classes and functions which were not yet implemented. However, the document itself did not

mention this and we had to seek for help from some other forums.

7. Another difficulty is about debugging. We mentioned previously, we did not really have an

emulator to debug our program. In other words, we cannot set any break points or watches

to debug our program in IDE in real time. From time to time, we did have to write a lot of

code to “print” the debug messages onto the screen for debugging. Though this method was

time consuming, inefficient and troublesome, still that was the only way for our debug.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 78 -

6.3 Contribution of Work

Semester 1

Before the start of the project, I have no idea about image processing and Symbian C++. So

I and my partner had spent a lot of time to study the image processing, Symbian C++ and

the working principle of the mVOTE engine.

After the background study, I change my focus to improve the functionality and the

performance of the mVOTE engine. I had studied the many corner detector algorithms, such

as Harris Corner, Difference of Gaussian (DoG), Laplacican of Gaussian (LoG), in order to

enhance the feature selection of the mVOTE engine. After a discussion with my partner, we

decide to use FAST corner detector to enhance the feature selection. I had also studied the

possibility of adding Z-Motion detection to the mVOTE engine. After reading some papers, I

find out it is not feasible to implement Z-Motion detection because many algorithms related

to it involve a lot of floating point calculation.

At the middle of the semester, I and my partner want to build an algorithm to recognize a

scene in the captured image. So we develop the feature recognition algorithm. The result of

the feature recognition is poor. In many case, it uses about 30 seconds to re-cognize the

feature defined before. The speed of algorithm is unsatisfactory, and it is the major focus of

our works in semester 2.

Semester 2

At the start of Semester 2, I and my partner had read some paper about hierarchical search

for block matching. After the experiment, we find out the performance is much worse than

before. It is because the scaling step takes a lot of time. We had also tried other method to

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 79 -

improve the accuracy and speed but the result is not very significant.

We talked to the lab technician about our difficulties. He suggested it may not be possible to

have significant improvement before the end of semester because the problem is not easy.

He also suggested us to do recognition on the more specific things such as bar code or LED.

We decided to use LED as target object because it is common in many indoor environment.

After this, we decided our work focus. My partner is more familiar with Symbian

programming than me, so he worked on the game engine and I work for the LED

recognition. First I developed the feature filter and LED recognition on Window platform

by using Web Camera as input device. After completion of window version, I transferred

the program to Nokia N90 for testing on Symbian platform. Finally, I transferred it to

Nokia N80 and integrate with the game engine developed by my partner.

Conclusion

Through out this project, I have learnt a lot of techniques of developing application on

Symbian platform. I also learn much knowledge about image processing. After the project, I

know that game development is not easy as I thought before. It requires a lot of time and

effort to develop the graphics of the game. Programming on Symbian platform is a very

special experience for me because I do not have any experience on developing application

on a platform with a lot of hardware limitation.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 80 -

Chapter 7

Acknowledgement

We would like to thank Professor Michael Rung-tsong Lyu

from Department of Computer Science and Engineering,

CUHK as well as Mr. Edward Yau who is the Chief of Staff

for Development and Applied Technology Development,

ViewLab for providing resources and valuable advices in this

Final Year Project.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 81 -

Chapter 8

References
1. Harris, C., Stephens, M.: “A combined corner and edge detector.” In: Alvey Vision

Conference. (1988) 147-151
2. Kuo-Liang Yeh, Wen-Hsien Fang, Mon-Chau Shie, Fei-pei Lai: “BITCEM: Adaptive

Fast Block Motion Estimation via Binary transform Center of Mass Object Tracking” 康

寧學報 (1993)
3. Deepak Turaga, Mohamed Alkanhal: “Search Algorithms for Block-Matching in Motion

Estimation” 1998
4. Pedro F. Felzenszwalb, Daniel P. Huttenlocher: “Pictorial Structure for Object

Recognition” International Journal of Computer Vision (2004)
5. David. G. Lowe: “Object Recognition from Local Scale-invariant features” Computer

Vision (1999)
6. Edward Rosten and Tom Drummond: “Fusing points and lines for high performance

tracking.” In: IEEE International Conference on Computer Vision (2005) 1508-1511
7. Edward Rosten and Tom Drummond: “Machine learning for high-speed corner

detection” In European Conference on Computer Vision (2006) 430-443
8. R. Jin, Y. Qi, A. Hauptmann: "A Probabilistic Model for Camera Zoom Detection",

Proceedings of ICPR 2002 Quebec, August 2002.
9. Po-Hung Chen, Hung-Ming Chen, Kuo-Liang Yeh, Mon-Chau Shie and Feipei Lai,

“BITCEM: An Adaptive Block Motion Estimation Based on Center of Mass Object
Tracking via Binary Transform,” 2001 IEEE Int'l Symp. on Intelligent Signal Processing
and Communication Systems, Nashville, Tenn., USA, Nov. 2001

10. Noguchi, Y., Furukawa, J., Kiya, H.: “A fast full search block matching algorithm for
MPEG-4 video”, Image Processing, 1999. ICIP 99. Proceedings. 1999 International
Conference, 1999

11. J. Verestoy and D. Chetverikov, ‘Tracking Feature Points: A New Algorithm’, Proc. of
14th International Conf. on Pattern Recognition, pp. 1436-1438, Australia, 1998

12. Steve Babin,: “Developing Software for Symbian OS - An Introduction to Creating
Smartphone Applications in C++”, Wiley 2005

13. Jo Stichbury, “Symbian OS Explained – Effective C++ Programming for Smartphones”,
Wiley 2004

14. Meghna Singh, “Robust Tracking and Human Activity Recognitio”, 2004

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 82 -

15. David A. Forsyth, Jean Ponce: “Computer Vision: A Modern Approach” Prentice Hall,
2002

16. Forum Nokia: “S60 2nd Edition: Getting Started with C++ Application Development”,
2004

17. Forum Nokia: “S60 Platform: Porting from 2nd to 3rd Edition”, 2006
18. Forum Nokia: “S60 Platform: Scalable Screen-Drawing How-To”, 2006
19. Forum Nokia: “S60 Platform: Scalable UI Support”, 2006
20. Forum Nokia: “S60 Platform: Source and Binary Compatibility”, 2006
21. Forum Nokia: ”Image Conversion Library”, 2004
22. Jani Vaarala, Nokia: “OpenGL ES development on Serires 60 and Symbian”
23. http://www.viewtech.org/html/mvote_tm_.html
24. http://www.symbian.com/Developer/techlib/v70sdocs/doc_source/index.html
25. http://www.phy.davidson.edu/StuHome/jocampbell/projectile/projectile.htm
26. http://physics.gmu.edu/~amin/phys251/Topics/NumAnalysis/Odes/projectileMotion.ht

ml
27. http://en.wikipedia.org/wiki/RGB_color_model
28. http://en.wikipedia.org/wiki/HSV_color_space

http://www.viewtech.org/html/mvote_tm_.html
http://www.symbian.com/Developer/techlib/v70sdocs/doc_source/index.html
http://www.phy.davidson.edu/StuHome/jocampbell/projectile/projectile.htm
http://physics.gmu.edu/~amin/phys251/Topics/NumAnalysis/Odes/projectileMotion.html
http://physics.gmu.edu/~amin/phys251/Topics/NumAnalysis/Odes/projectileMotion.html
http://en.wikipedia.org/wiki/RGB_color_model
http://en.wikipedia.org/wiki/HSV_color_space

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 83 -

Appendix I

Feature Selection (REVIEW)

Appendix I describes the experiment conducted in semester 1 for testing the feature selection

method used in the existing Motion Tracking Engine as well as the Fast Corner Detection

Algorithm. This appendix also contains an analysis to determine which algorithm outperforms

another one.

 AI.1 What is a feature?

 AI.2 Pictures under Normal Lighting Condition

 AI.3 Pictures under Insufficient Light Condition

 AI.4 Analysis

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 84 -

AI.1 What is a feature?

A foremost and fundamental question to be answered at this point would be, “What is a

feature?” Features are sections of an image that are easily highlighted for the purpose of

detection and tracking. Verestoy et al. [7] have defined features as local regions of interest.

Features can be selected based on some measure of texture, edge sharpness, color and

corners.

An example of a good feature would have a high contrast in relation to its immediate
surroundings.

X

The above red marker shows the point which is a good feature because it has a high

contrast to its immediate surroundings. In other words, it has a high intensity different.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 85 -

AI.2 Pictures under Normal Lighting Condition

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 86 -

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 87 -

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 88 -

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 89 -

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 90 -

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 91 -

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 92 -

AI.3 Pictures under Insufficient Light Condition

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 93 -

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 94 -

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 95 -

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 96 -

AI.4 Analysis

Why Feature Selection?

Using block matching algorithm for the motion tracking is a major component in our

program. One may ask about which block should be chosen in the video frame for block

matching. To answer this question, we must know very well our objective in order to acquire

a better and more accurate result.

1. Features should be selected as descriptive as possible

2. The chosen block should facilitate the block matching algorithm and increase the

accuracy of the algorithm

3. Feature extraction should be robust enough

In order to facilitate the objective, corner detection is used as feature selection in motion

tacking. Formally, a corner can be defined as the intersection of two edges. A corner can

also be defined as a point for which there are two dominant and different edge directions in

a local neighborhood of the point.

An interest point is a point in an image which has a well-defined position and can be robustly

detected. This means that an interest point can be a corner. There are many corner

detection algorithms, for instance, Moravec Corner Detection Algorithm, Harris Corner

Detection Algorithm, etc.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 97 -

To strike a balance between having fast computational speed and reasonably accurate

feature selection, former FYP team members (LYU0404) who developed the mVOTE Motion

Tacking Engine Feature Selection function used Laplacian mask to calculate the intensity

different between the current block with its neighbors for feature selection. The Laplacian of

an image highlights regions of rapid intensity change and is therefore often used for edge

detection originally.

- Gray level discontinuity large output

- Flat background zero output

The Laplacian L(x,y) of an image having pixel intensity values L(x,y) is given by:

2

2

2

2

),(
y

I
x

IyxL
∂
∂

+
∂
∂

=

Since the input image is represented as a set of discrete pixels, we have to find a discrete

convolution mask that can approximate the second derivatives in the definition of the

Laplacian. Three commonly used small masks are shown below:

The former FYP team would divide a frame into small rectangular blocks. Sum all the pixels

value for each block, denoted as Lxy, and store it in a 2D array (Intensity of the block). After

that, they calculate the variance of each block which represents the complexity of the block.

Apply Laplacian Mask for the 2D array. Finally, they select the block which has the largest Lxy

and large variance as feature block

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 98 -

For instance, if we apply the following Laplacian Mask to the given image, we would obtain

the following result:

-1 -1 -1

-1 8 -1

-1 -1 -1

Laplacian Mask

14 25 68 60 66

16 67 20 16 95

4 29 8 21 99

68 62 66 127 113

120 33 37 121 67

2 65 61 109 60

Output Image

 -227

Given Image

-1 x 68 + -1 x 62 + -1 x 66 + -1 x 120 + 8 x 33 + -1 x 37 + -1 x 2 + -1 x 65 + -1 x 61

= -227

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 99 -

Since the Fast Corner Algorithm is introduced in the previous chapter, this Appendix I would

not go through it again.

What the result tells?

From the above experiment result, it is observed that under normal lighting condition, both

algorithm works fine. With careful examination, we can see that the existing Motion Tracking

Engine’s Feature Selection does not work at optimum. Occasionally, this algorithm would

select some flat region as a feature. By “flat region”, we mean the region where the intensity

level is similar or the same. The selected area in the following diagram shows the flat region.

In contrast, the Fast Corner algorithm works better than the existing algorithm. It is because

in most of the case it can find a “corner” at which point, there exists a large intensity change.

In some case, Fast Corner did not find any corner and thus the error message was

displayed.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 100 -

On the other hand, under the insufficient lighting condition, there are many noises in the

photos. The existing algorithm finds some features but those so called “features” are not the

good one. It is hard to imagine using those features to carry out motion tracking would

produce a fair result. For Fast Corner algorithm, it finds nothing under insufficient lighting

condition. It is good news for us, because under such environment, users can hardly play

the game well due to the performance degradation of motion tracking as noises in the photo

increase. Fast Corner said “No” to such unfavorable environment.

In our project, we only focus on the existing feature selection algorithm of Motion Tracking

and the Fast Corner but not other corner detection algorithm, like Harris Corner. We ignore

the use of Harris Corner for corner detection (for selecting feature) because this corner

detection involved the use of computing determent of matrix which is a pretty high

involvement for the Mobile Phones especially for those which equip no floating point unit.

In short, we prefer to use Fast Corner as our feature selection algorithm. The reasons are:

1. Such corner detection involved no intensive arithmetic computation.

2. It built a decision tree to determine if a certain point is likely to be a real corner.

3. It is easy to implement and make modification

4. It produces better result than the existing one

5. It rejects noisy photos

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 101 -

Appendix II

Parameter Adjustment for Fast Corner Algorithm

(REVIEW)

Appendix II describes the experiment conducted in semester 1 for testing how the corner

detection algorithm would be affected by adjusting its parameter – barrier. This experiment also

shows the different result obtained when running Fast Corner Algorithm with accessory function

non-maximal suppression or without it. The use of this parameter and the non-maximal

suppression is mentioned in the previous chapter.

 AII.1 Experiment Result

 AII.2 Analysis

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 102 -

AII.1 Experiment Result

This section would show how different value of the parameter affects the number of corner

found by the Fast Corner Detection Algorithm. The corner(s) would be marked as “+” in Red

Color in the graphs shown below. The parameter value would be displayed in Green Color in

form of “Th: z” where z is the parameter value used by Fast Corner Algorithm. The default

parameter value is 20 in the original Fast Corner Algorithm.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 103 -

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 104 -

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 105 -

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 106 -

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 107 -

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 108 -

AII.2 Analysis

The above graphs show the different in term of corner selection versus value change in the

parameter, barrier, in the algorithm. The results obtained on the left column are those using

Fast Corner algorithm without the use of Non-maximal Suppression technique. While

running Fast Corner algorithm with Non-maximal Suppression technique would produce

results for the right column. In general, it is observed that the number of corner detected

decrease with the increase of the parameter value. In other words, when the parameter

value is high, the algorithm imposes stricter requirements for a certain pixel to become a

corner. The quality of corner selection would be higher if we increase the parameter value.

In addition, performing Non-maximal suppression would produce fewer corners than the

one with no Non-maximal suppression; this has been explained in the previous chapter.

In some cases, as illustrated in the above graphs with parameter value 34 and 37, the

number of corner detected using 37 as the parameter value is more than that obtained from

value 34. To explain this, we believe it is due to our small mechanical vibration during the

photo taking process and sometimes the lighting condition and noises also affect the

performance but these conditions may not be obvious to human eyes.

If we set a higher value for the parameter, we may end up with having a higher probability

that the users selected region where there is not enough features for game playing. If we

set its value too low, we may obtain a set of poor quality corner which affect the accuracy

when carrying out motion tracking. To strike a balance of it, we set the parameter value as

25. To make our program more robust, we decided to perform Non-maximal suppression.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 109 -

Appendix III

LED Recognition Result and Discussion

Appendix III describes experimental results of feature filter and LED recognition and a brief

discussion of it.

 AIII.1 Experimental Result of Feature Filter

 AIII.2 Analysis on the Feature Filter

 AIII.3 Experimental Result of LED Recognition

 AIII.4 Analysis on LED Recognition

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 110 -

AIII.1 Experimental Result of Feature Filter

Experimental Result of Feature Filter for green LED

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 111 -

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 112 -

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 113 -

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 114 -

Experimental Result of Feature Filter for red LED

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 115 -

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 116 -

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 117 -

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 118 -

AIII.2 Analysis on the Feature Filters

The left hand side image is the input of the feature filter and the right hand side is the

output of the filter. From the result, you can see that the filter select the light regions (the

light source and objects which can reflect light from the light source) of the image. In many

cases, the feature filter can filter out the correct color but sometime it filter wrong colors, for

example the yellow color can pass through the green feature filter. This problem can be

solved by adding new constraint to the filter. For example, to solve yellow color can pass

through the green feature filter; we can add an upper bound for the R value.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 119 -

AIII.3 Experimental Result of LED Recognition

Experimental Result of First Version of LED Recognition

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 120 -

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 121 -

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 122 -

Experimental Result of Second Version of LED Recognition

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 123 -

The finalized version of LED recognition algorithm is a simplified version of second version

of LED Recognition. So we do not provide the experimental result of it.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 124 -

AIII.4 Analysis on LED Recognition

From results you can see that if the size of target object is similar to the block size, the result

of LED recognition look like the best result of recognition. So, in order to get the best result

of playing the game, the user should keep the size of target image similar to the block size.

We have measured that if the distance between the camera and target object is about

8.5cm, the target image is similar size with the block.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 125 -

Appendix IV

Projectile Motion

Appendix IV describes the experiment conducted in semester 2 for evaluating projectile motion

data.

 AIV.1 Experiment Result and Analysis

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 126 -

AIV.1 Experiment Result and Analysis

In this experiment, we aimed to find out the appropriate velocity as well as appropriate
vertical angle for users to play the game. We found a web page which offers a java applet to
evaluate the project motion with parameters velocity, angle and mass.

Though the applet offered by that we site could not allow us to alter the mass less than 1.0
KG, it helped us to visualize and estimate the project motion effect under differ parameters
setting.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 127 -

In fact, we performed data analysis in Excel also to find out the possible velocity and vertical
angle. In Excel, we calculated the displacement in x and y direction at different time interval
under different angle and velocity setting with mass equals to 0.02KG. We plotted some of
the graphs for visualization proposes.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 128 -

Projectile Motion with Init. Velocity = 8m/s

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6

X Displacement (in Meter)

Y
 D

is
pl

ac
em

en
t (

in
 M

et
er

)

Angle = 0
Angle = 1
Angle = 2
Angle = 3
Angle = 4
Angle = 5
Angle = 6
Angle = 7
Angle = 8
Angle = 9
Angle = 10
Angle = 15
Angle = 20
Angle = 25
Angle = 30
Angle = 35
Angle = 40
Angle = 45
Angle = 50

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 129 -

Projectile Motion with Init. Velocity = 10m/s

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8

X Displacement (in Meter)

Y
 D

is
pl

ac
em

en
t (

in
 M

et
er

)

Angle = 0
Angle = 1
Angle = 2
Angle = 3
Angle = 4
Angle = 5
Angle = 6
Angle = 7
Angle = 8
Angle = 9
Angle = 10
Angle = 15
Angle = 20
Angle = 30
Angle = 35
Angle = 40
Angle = 45
Angle = 50
Angle = 25

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 130 -

Projectile Motion with Init. Velocity = 12m/s

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 2 4 6 8

X Displacement (in Meter)

Y
 D

is
pl

ac
em

en
t (

in
 M

et
er

)

Angle = 0
Angle = 5
Angle = 10
Angle = 15
Angle = 20
Angle = 25
Angle = 30
Angle = 35
Angle = 40
Angle = 45
Angle = 50

Projectile Motion with Init. Velocity = 14m/s

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 2 4 6 8 10

X Displacement (in Meter)

Y
 D

is
pl

ac
em

en
t (

in
 M

et
er

)

Angle = 0
Angle = 5
Angle = 10
Angle = 15
Angle = 20
Angle = 25
Angle = 30
Angle = 35
Angle = 40
Angle = 45
Angle = 50

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 131 -

Projectile Motion with Init. Velocity = 16m/s

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10

X Displacement (in Meter)

Y
 D

is
pl

ac
em

en
t (

in
 M

et
er

)

Angle = 0
Angle = 5
Angle = 10
Angle = 15
Angle = 20
Angle = 25

We turned out to choose 8ms-1 and 18ms-1 to be our minimum and maximum velocity
respectively. In addition, the vertical angle would be set from 0o to 15o. In other words, in
the energy bar of the game, the pure red color would offer 18ms-1 initial velocity. Similarly,
the pure green color would offer 8ms-1 initial velocity. If the user chose the pure green
energy level, most probably, we dart would not have enough energy to reach the dart board.
On the other hand, if the users chose the maximum energy level, the dart may have too
much energy and thus throw over the dart board and cannot hit it.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 132 -

Appendix V

Color Model

Appendix V describes some general color model.

 AV.1 Introduction

 AV.2 RGB Color Model

 AV.3 HSV Color Model

 AV.4 Transformation between RGB and HSV

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 133 -

AV.1 Introduction

Color model is a mathematical way to describe colors as a tuple of numbers, each number

represent a color component. For example, RGB color model is commonly used in the CRT

and LCD displays; YIQ/YUV color model used in the television broadcasting; HSV color

model is commonly found in the many computer graphics applications; CYMK uses in the

printing process and publish industry.

AV.2 RGB Color Model

RGB is the short-hand of the three primary colors used in the color model. RGB color model

is an additive model which uses red, green and blue as three primary colors. By mixing

different amount of the three primary colors, it can reproduce other colors. It simulates the

effect of mixing different amount of 3 primary color lights to form other color. Due to the

physical properties of CRT and LCD, RGB color model is very common use in the CRT or LCD

display. The figure at the right hand

side show the basic principle of mixing

color of RGB color model.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 134 -

AV.3 HSV Color Model

HSV is abbreviation of the three components Hue, Saturation and Value of the color model.

Hue represents color type, ranged from 0 to 360. Saturation is purity of the color range from

0 – 100%. Higher value of saturation, the color will be more pure; lower value of saturation,

it will increase the “grayness” of the color. Value, also called as brightness, represents the

brightness of the color. The following figure shows the basic principle of HSV color model:

AV.4 Transformation between RGB and HSV

We can do a non-linear transformation to convert a color in RGB model to HSV model or

from HSV to RGB.

a) From RGB to HSV

First normalize the (R, G, B) value, than let MAX be the maximum and Min be the

minimum of these value. Then

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Final Report LYU0604 – Siu Ho Tung

- 135 -

b) From HSV to RGB

If S = 0, R = G= B = V, otherwise calculate the following equations:

()
()

()()SffVt
SfVq

SVp

HHf

HH

i

i

×−−×=
×−×=

−×=

−=

⎥⎦
⎥

⎢⎣
⎢=

11
1
1

60

6mod
60

If Hi = 0, then R = V, G = t, B = p.

If Hi = 1, then R = q, G = V, B = p.

If Hi = 2, then R = p, G = V, B = t.

If Hi = 3, then R = p, G = q, B = V.

If Hi = 4, then R = t, G = p, B = V.

If Hi = 5, then R = V, G = p, B = q.

