
Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Department of Computer Science and Engineering

The Chinese University of Hong Kong

2006 – 2007 Final Year Project Semester 1 Report

LYU 0604

Virtual Dart – an Augmented Reality Game on Mobile Device

Supervisor

Professor Michael R. Lyu

Lai Chung Sum

Siu Ho Tung

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Abstract

Augmented reality (AR) deals with the combination of real world and computer

generated data. At present, most AR research is concerned with the use of live video

imagery which is digitally processed and "augmented" by the addition of computer

generated graphics. Advanced research includes the use of motion tracking data, and the

construction of controlled environments containing any number of sensors and actuators.

In this report, we are going to describe the motivation, background information and

problem encountered by our group when participating in the final year project. The

objective of this project is to make use of camera reside in a mobile phone as well as the

existing Motion Tracking Engine to implement a mobile game called “Virtual Dart”.

In the following sections, we would first introduce the idea of our final year project.

Following is the introduction of Symbian OS (Nokia based S60 2nd & 3rd Edition), one of the

popular Operating System used in modern Smart Phone. After that, we would present our

program interface as well as our design and implementation concept. We would also like to

discuss some algorithms which explored throughout the whole progress of our Final Year

Project.

This report would include some experiment results which demonstrate our evaluation

towards the available algorithms. In this report, we will use game and application

interchangeably.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Abstract...2
Chapter 1..5
Introduction ..5

1.1 Background Information and Motivation ..6
1.2 Programming Capability Issue ..8
1.3 Project Objective...9
1.4 Project Equipment ..9

Chapter 2..10
Symbian Operating System Overview...10

2.1 Basic Architecture of Symbian Operating System ... 11
2.2 Development Environment ..13
2.3 Limitation of Symbian Phone ...15
2.4 Features Different in Symbian OS Series 60 2nd and 3rd Edition16
2.5 Porting Existing Program to Series 60 3rd Edition...19
2.6 Why Symbian ...20
2.7 Conclusion ..20

Chapter 3..21
mVOTE Engine...21

3.1 What is mVOTE? ..22
3.2 Block Matching Algorithm ..22

Chapter 4..25
Program Design and Implementation ..25

4.1 User Interface ..26
4.2 Program Design...30
4.3 Algorithm Comparison ...35
4.4 How to do feature recognition?...36
4.5 Motion Tracking during the Application ..37

Chapter 5..38
Feature Selection Improvement ..38

5.1 Introduction ...39
5.2 Harris Corner Detector ..39
5.3 Fast Corner Detector ..43
5.4 Select Feature from Corner List...47

Chapter 6..51
Project Progress, Difficulties and Future Work ..51

6.1 Project Progress ..52
6.2 Difficulties We Face during Project ..52
6.3 Future Work ..53

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Chapter 7..55
References ..55
Appendix I ...56
Feature Selection ..56

AI.1 Pictures under Normal Lighting Condition ..57
AI.2 Pictures under Insufficient Light Condition...64
AI.3 Analysis...68

Appendix II ...73
Parameter Adjustment for Fast Corner Algorithm ...73

AII.1 Experiment Result...74
AII.2 Analysis ...80

Appendix III...81
Accuracy of Feature Blocks Finding for Algorithm 1..81

AIII.1 Experiment Result ...82
AIII.2 Analysis..85

Appendix IV ..87
Accuracy of Feature Blocks Finding for Algorithm 2..87

AIV.1 Experiment Result ..88
AIV.2 Analysis ..93
AIV.3 Miscellaneous ..94

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Chapter 1

Introduction

This chapter would briefly describe Augmented Reality (AR) and how existing mobile game

achieve Augmented Reality. Our project objective and project equipment information can also be

found here.

 1.1 Background Information and Motivation

 1.2 Programming Capability Issue

 1.3 Project Objective

 1.4 Project Equipment

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

1.1 Background Information and Motivation

Mobile phones with built-in digital cameras and music players have become very popular

and common nowadays because of their portability and handiness. Because of its popularity,

there are so many mobile games evolved both written in J2ME as well as proprietary

Development Platform. Some mobile games are similar to the typical or traditional games

which can be found in handheld gaming device, for instance, NDS, Game Boy, PSP, etc (Fig

1.1). While some other games employed the use of augmented reality in order to make the

game more exciting, realistic and interesting (Fig 1.2).

 Fig 1.1 Fig 1.2

To achieve augmented reality in mobile game, the most popular and easily observable

method would be the use of cameras resides in the mobile phone plus the use of computer

generated graphics for dynamic environmental interaction. An example would be “Agent V”

From Nokia 3230 Mobile Phone (Fig 1.3).

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

 Fig 1.3

Another new and recent idea for achieving augmented reality in game would be using some

motion or vibration sensors for movement in a game. Nokia 5500 “GrooveLab”

demonstrated one of the uses of motion sensors for augmented reality. (Fig 1.4)

Fig 1.4

Since our FYP focuses on the use of phone camera for augmented reality, there comes a

question - Is it possible to add some more features to the existing games which make good

use of phone camera as a mean for augmented reality? This is the motivation of our FYP

project.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

As the computation power as well as the image and video capture quality improve, real time

video capture for motion tracking is no longer impossible. Many existing games utilized

motion tracking as an additional and innovation for user input (mainly for direction

movement). However, the existing games process no memory function to remember the

associate of the external environment and the internal computer generated graphics. Our

main objective of this Final Year Project is to demonstrate how games can process memory

to “remember” its external environment for interaction base on existing motion tracking

technique.

1.2 Programming Capability Issue

A few years before, users may feel panic to develop programs for mobile phones because

they lack supports from the vendors and at that moment, the processing power of a mobile

phone is very limited. Now, things become better, there are panties of Development

Platform for programmers to choose from, including, J2ME, Embedded C++ (For Windows

Mobile Platform), Symbian C++ (For Symbian Platform), etc. Although programmers could

write mobile phone program base on J2ME, it does not provide phone-specific API to access

the camera. On the other hand, Symbian OS makes programming on camera-phone possible.

Mobile phones which use Symbian as the Operating System (or so called Smart Phone) allow

programmers to access most of the functions provided by the phones, including camera and

image manipulation functions.

As Symbian OS is supported by a large number of vendors (e.g. Nokia, Sony Ericsson,

Panasonic, Samsung, Siemens, etc) and provides an open platform for developers to work

on, it is not difficult to imagine that Symbian OS would become one of the major Operating

System for mobile phones in the foreseeable future. Our FYP project will base on Symbian

OS as our target platform due to its programming capability.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

1.3 Project Objective

The objective of our Final Year Project is NOT to develop a game. Instead our objective is to

develop a way to demonstrate how a program can process memory to “remember” its

external environment for interaction of Augmented Reality.

The game is just a demonstration of our proposed methodology for Augmented Reality. In

such a way, we do not limit ourselves to just implementing a game but have a high level of

abstraction. In addition, using such approach would not limit the possibility of our

methodology to be applied to develop other mobile applications besides mobile games.

1.4 Project Equipment

Our project involves two Symbian mobile phones, Nokia N90 (Symbian OS v8.1a, Series 60

2nd Edition, Feature Pack 3) as well as Nokia N80 (Symbian OS v9.1, Series 60 3rd Edition).

As the emulator provided by Nokia SDK does not similar camera function, we use the Mobile

Phones as our testing and development platform directly for our project.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Chapter 2

Symbian Operating System Overview

This chapter would briefly describe the basic architecture of the Symbian Operating System. This

chapter also outlines the differences between the Series 60 2nd Edition and 3rd Edition of the

Symbian Operating System.

 2.1 Basic Architecture of Symbian Operating System

 2.2 Development Environment

 2.3 Limitation of Symbian Phone

 2.4 Features Different in Symbian OS Series 60 2nd and 3rd Edition

 2.5 Porting Existing Program to Series 60 3rd Edition

 2.6 Why Symbian

 2.7 Conclusion

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

2.1 Basic Architecture of Symbian Operating System

By the end of March 2005, shipments of Symbian OS phones exceeded an average of two

million per month, and cumulative shipments since Symbian’s formation reached 32 million

phones. Also at that time, there were more than 4500 commercially available, third-party

applications for Symbian OS phones. Year on year, phone shipments have been virtually

doubling – and that trend appears likely to continue, or even increase, for the foreseeable

future. (Adopted from Developing Software for Symbian OS – An Introduction to Creating Smartphone Applications in C++)

These figures suggest that Symbian OS is approaching maturity as the preferred Operating

System for high- and mid-range mobile phones, and that it offers an ideal platform to

developers, on which they can create new and imaginative applications.

The architecture of Symbian OS v8.1 and v9.1 are described in the following diagrams

respectively.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

The main focus of this chapter is to illustrate how Symbian OS provides support on image

processing in the phone and how the capability change across different Series 60 Platform.

Symbian use its own implementation of the C++ language called Symbian C++, optimized

for handheld devices with limited memory. Programmers access the recourses, for instance,

files, music players, camera, etc via the APIs provided by Nokia SDK.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

2.2 Development Environment

Generally, our development environment is under Microsoft Visual Studio .Net 2003 with

SDK provided by Nokia. The development tools can be formulated like this:

There are emulators provided along with the Nokia SDK which is a Windows application that

simulate a Smartphone entirely in software – complete with simulated buttons and display.

This allows developers to run and debug Symbian OS software on the PC as opposed to

running on a real device. However, there is a major drawback for the emulators. The fact is

that emulators for Series 60 2nd Edition Feature Pack 3 as well as Series 60 3rd Edition do not

provide camera simulation function. This explains why our project did not use much of the

emulators. In other words, the emulators provide little assistant for us.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

To install a program on a Symbian-based phone, it must be compiled into the Symbian OS

installation (.sis) file format. Developers write package control (.pkg) files that define the

files to be put in the SIS installation file. (Adopted from Symbian Developer Library)

From Symbian OS v9.1 (Operating System for Nokia N80), it requires that SIS files are

authenticated when they are installed, so that malicious code cannot be installed to the

phone. This means that the SIS file must be digitally signed. This action accounts for one of

the reasons why Symbian OS v9.1 is not binary compatible with those previous versions.

The diagram below shows the key files and tools used in the process of creating a SIS file for

Symbian OS v9.1.

The makesis tool uses the package file to create an unsigned SIS file. The signsis tool can then be used to sign the SIS file with a

certificate to create a signed SIS file that can be installed. The createsis tool is a wrapper around these two tools, which allows the whole

process to be done in one step. If the program is being signed by the developer, rather than being signed through Symbian Signed, then

createsis can also create the certificate to use. (Adopted from Symbian Developer Library)

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

2.3 Limitation of Symbian Phone

Since we are programming on handheld devices which has limited resources (limited

amount of memory and limited amount of CPU speed, as shown in figure 2.3), these make

programming on the Symbian phone a very difficult task.

 Nokia N80 Specification Nokia N90 Specification

Operating System Symbian v9.1

(Nokia Series 60 3rd Edition)

Symbian v8.1a

(Nokia Series 60 2nd Edition,

Feature Pack 3)

CPU Speed 220MHz 220MHz

Memory Internal Memory: 40MB

External Memory: miniSD (up to

2GB)

Internal Memory: 31MB

External Memory: RS-MMC (up to

1GB)

Display Size 352 x 416 pixels (256K Colors) 352 x 416 pixels (256K Colors)

Since computation performance is an important factor in making a realistic augmented

reality game. If we take too long time for the calculation of motion tracking, the frame rate

will fall off. When ever possible, we would use the following operation to enhance the

performance:

1. Bit shifting operations (<< and >>)

2. Integer add, subtract, and Boolean operations (&, | and ^)

3. Integer multiplication (*)

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

We would reduce the use of floating point computation as much as possible. It is because

the current mobile phones do not equipped with a floating point arithmetic unit. As a result,

floating point operation would slow the whole process down.

2.4 Features Different in Symbian OS Series 60 2nd and 3rd Edition

S60 3rd Edition is based on a new version of Symbian OS (v9.1). As motioned before, this

new platform edition introduces a full binary break between S60 2nd and 3rd Editions, which

means that applications need to be compiled using the new tools provided in the S60 3rd

Edition in order to run on S60 devices based on the new platform edition. S60 3rd Edition

also improves application security and confidentiality of user data by introducing platform

security and different application capability levels. Below shows a diagram indicating the

break point of the S60 2nd and 3rd Edition:

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

The following diagram shows the Nokia platform development:

ince Nokia Series 60 3rd Edition (Symbian OS v9.1) brought a large impact to the

Most deprecated APIs will be removed
ew S60 3rd Edition compilation tools cause a full binary break between S60 2nd and 3rd Editions. Because

n cannot be maintained anymore, most deprecated APIs will also

plications is not supported anymore. All applications
d-coding to a specific screen resolution cannot be done anymore).

 Its main
pplications), Data Caging (secure storage of data),

EABI), which causes a full binary break.
60 3rd Edition are listed under Section SC breaks caused

S

development of mobile application, here are some improvements made by S60 3rd Edition:

(Adopted from S60 Platform: Source and Binary Compatibility v1.6 by Nokia)

N
backward compatibility with S60 2nd Editio
be removed from S60 3rd Edition, while a number of new replacement APIs will be introduced. Most
deprecated APIs will be removed from S60 3rd Edition.

Compatibility mode removed

 S60 3rd Edition the compatibility mode for legacy apIn
are expected to be scalable (har

Platform security and new application architecture

he biggest change in Symbian OS v9.1 and in S60 3rd Edition is the platform security concept.T
building blocks are Capabilities (set of privileges to a
Secure Interprocess Communication (IPC), and memory management. Platform security also requires a
number of changes to the application architecture. The Server application concept is introduced to enable
former embedded and embedder applications to run in different processes.
Data caging and introduction of the Server application require changes to Document Handler: Instead of file
names, file handles are passed. Recognizers, notifiers, and converter plug-ins are implemented as ECOM
plug-ins.
The installer has been completely rewritten to perform the additional checks (capabilities and certificates) that
the platform security mandates. The installation file format has been changed from SIS to SISX (note,
however, that the actual file extension is still .sis).

New compiler and tool chain - full binary break

60 3rd Edition introduces new compilation tools (RVCT, GCC S
Therefore all other compatibility issues caused by S

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

he wrapper for the Nokia Camera API (Camera Server) is removed. The Symbian Onboard Camera API
 deprecated API.

KA2 is the only kernel version supported by Symbian from Symbian OS v9.1 onwards. The compatibility
nly focused on the need to rewrite device drivers, but otherwise a very limited

by S60 3rd Edition.

Nokia Camera API
T
(ECam) replaces this

Real-time kernel (EKA2)
E
impacts of EKA2 are mai
amount of source code breaks.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

2.5 Porting Existing Program to Series 60 3rd Edition

Since our target platform involve both Series 60 2nd Edition (Nokia N90 with Feature Pack 3)

and Series 60 3rd Edition (Nokia N80). From time to time, we have to perform lots of code

conversion between these two platforms for testing and debugging purpose. Here shows a

high level description on how porting an existing program or library to S60 3rd Edition

Platform can be achieved:

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

2.6 Why Symbian

As mentioned previously, programmers can choose J2ME as their development platform

besides Symbian. J2ME is cross-platform because there is a virtual machine to interpret the

byte code of the program. However, J2ME does not provide any API for accessing the device

camera, which makes our objective impossible to achieve. In addition to the API problem,

J2ME does have one drawback. Though it is cross platform, it uses Virtual Machine to

interpret the code, and execution in interpretation mode is much slower than that execution

of pre-compiled code.

This explains why our project favors the use of Symbian C++ instead of J2ME because of

camera utilization as well as speed performance.

2.7 Conclusion

This chapter introduced the basic features of Symbian OS as well as the differences between

2nd and 3rd Edition Platform. This chapter also raises an importance consideration in our

project design, that is, speed or computational time.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Chapter 3

mVOTE Engine

This chapter would briefly describe function of mVOTE engine which is created by former team.

The mVOTE engine provides the function of motion tracking and feature selection of our project.

 4.1 What is mVOTE

 4.2 Block Matching Algorithm

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

3.1 What is mVOTE?

The Mobile Video Object Tracking Engine (mVOTETM) is software SDK for developer to

create mobile application using the mobile phone on-board camera as input device. By

tracking the video object in the picture capture by the camera, mVOTETM can convert the

corresponding movement of the camera into translational movement and degree of rotation.

The mVOTETM enable the developer to create new digital entertainment experience for the

mobile user. (Adopted from mVOTE homepage, http://www.viewtech.org/html/mvote_tm_.html)

The Functions provided mVOTE engine:

1. Translational Motion Tracking

2. Rotational Motion Tracking

3. Feature Selection

3.2 Block Matching Algorithm

Block Matching Algorithm is the core of the mVOTE engine. The block matching algorithm is

a kind of motion tracking algorithm, the basic idea of block matching algorithm is divide the

search window into blocks with equal size. In each block, it tries to find out which block in

the search window is most similar to the feature block that we want to match.

http://www.viewtech.org/html/mvote_tm_.html

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

How to measure the similarity between two blocks

The common way of measure the similarity is calculate the intensity difference two images.

The two common ways to do calculation are:

1. Sum Absolute Difference (SAD):

SAD is the summation of the absolute intensity difference between two N by N images X

and Y. The equation is the following:

∑∑
= =

−=
N

i

N

j

jiYjiXyxSAD
1 1

|),(),(|),(

2. Sum Square Difference (SSD):

SSD is the summation of the square of the intensity difference two N by N images X and

Y. The equation is the following:

() ()[]∑∑
= =

−=
N

i

N

j
jiYjiXyxSSD

1 1

2,,),(

Our ancestor choose SSD instead of SAD because it can enhance the performance of

other part of the block matching algorithm.

How to find out the most similar block in search window

There are three major classes of method to find out the most similar block in search window.

1. The Exhaustive Search Algorithm (ESA)

It is the brute force algorithm, it search all possible values and find the minimum value.

It is the slowest one but it is one of the most accurate methods in finding the minimum

value in the search window.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

]

2. Fast Search Algorithm

It is base on the assumption that the matching error will increase monotonically when it

is moving away from the correct matching block. So it only tests on a subset of all

possible value in the search window. It has a very critical disadvantage that it will be

trapped by the local minimum not the global one. So we won’t choose it as searching

algorithm.

3. Fast Exhaustive Search Algorithm

The Fast Exhaustive Search Algorithm is trying to reduce the number of value need to

calculate by some simple test method. There are three methods proposed by our

ascender:

i. The Successive Elimination Algorithm (SEA)

Apply the Minkowski inequality to eliminate the invalid block

ii. PPNM (Progressive Partial Norm Matching)

Apply the Minkowski inequality to eliminate the invalid block before calculate

the Cost Function.

iii. Partial Distortion Elimination (PDE)

The idea of PDE Algorithm is shorten the time to calculating the SSD. If the

Partial SSD (PSSD) is greater than the current minimum value of SSD, the

remaining part of calculation of SSD on that block is useless and can be

stopped. There is the definition of kth PSSD:

() ()[∑∑
= =

−=
k

i

N

j

jiYjiXPSSD
1 1

2,, Where k = 1, 2, 3,….,N

There are other methods use in the MVOTE engine, such as Adaptive Search and Spiral Scan,

but we haven’t used them in other part of our project. So we don’t mention them in here.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Chapter 4

Program Design and Implementation

This chapter would briefly describe design and implementation of our program

 4.1 User Interface

 4.2 Program Design

 4.3 Algorithm Comparison

 4.4 How to do Feature Recognition

 4.5 Motion Tracking during the Game

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

4.1 User Interface

This project was mainly tested and debugged on Symbian phone namely Nokia N80 and N90

mobile phones. We develop the augmented reality game on top of the existing Motion

Tracking (MVOTE) Engine which is developed by our ancestor (LYU0404) with some

modification.

The program makes use of the suggested Symbian OS application framework comprising the

Application, Application Document, Application UI and Application View (or Application

Container) classes.

After starting the program up, user may see the below Graphical User Interface:

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

User may press the option button for option selection:

The “Start ->” menu items show two more options, they are, “Take a Sn@pshot”, “Yo! Start

Playing”

“Take a Sn@pshot” menu item provides a way for users to select a region where dart board

is intended to be put.

When “Take a Sn@pshot” is selected, users may see an interface similar to the following

diagram:

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Users may see a selection box

in white color. The selection box

is the region indicating the

location where users would like

to put a dart board in. The

users may move the location of

the selection box by controlling

the joystick of the mobile

phone.

After the selection procedure, users may press the “enter” key in the joystick for dartboard

mapping.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

The users may move the mobile phone (i.e. camera) for dart block movement.

“Yo! Start Playing” is in fact directly perform dartboard mapping part and by pass the

selection procedure process instead.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

4.2 Program Design

The program consists of these files:

File Description

AR3rdapplication.h

AR3rdapplication.cpp

An Application that creates a new blank

document and defines the application UID.

AR3rddcoument.h

AR3rddocument.cpp

A Document object that represents the data

model and is used to construct the App Ui.

AR3rdappui.h

AR3rdappui.cpp

This class defines the User Interface as well

as ways to handle input key commands and

commands from menu options.

AR3rdAppContainer.h

AR3rdAppContainer.cpp

A container (or an Application View) object

which displays data on the screen.

MVOTE.h

MVOTE.cpp

Motion Tacking Engine

fast.h

fast.cpp

Fast Corner Algorithm

AR3rd.rss This describes the menus and string

resources of the application.

AR3rd.mmp It specifies the properties of a project in a

platform and compiler independent way.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Program Flow

There are two ways to start our program, the first one is ask user to select the area to put

the dart board and other is load the saved features from the memory.

The following flow chart shows the flow of our program:

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

For “Take a Sn@pshot” mode:

1. The program will ask user to select the area to put dart board.

2. After the selection, the feature selection algorithm selects three features from the area.

3. If it can find three features, the program will save the three features and proceed to

next step. If it cannot find three features, it will ask the user to select other area or not.

If the answer is “Yes”, it will back to step 1, otherwise it will back to mode selection

state.

4. It will do the block matching algorithm on the whole screen, in order to get the most

matching points for the three features in the screen.

5. We can start playing the game by keep motion tracking on the three matching points on

the screen.

For “Yo! Start Playing” mode:

1. The program loads the stored features from the memory.

2. It runs the block matching algorithm on the whole screen, in order to get the most

matching points for the three feature in the screen.

3. After finding the points, we can start playing the game.

This is our initial approach to do our program but we find out that the accuracy of this

approach is not very high, for more detail please refer to the Appendix III for the our

experimental result of the using this approach.

In order to solve the accuracy problem, we have proposed another approach to this problem.

The following is the flow chart of our new approach:

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

For “Take a Sn@pshot” mode:

1. The program will ask user to select the area to put dart board.

2. After the selection, the feature selection algorithm selects three features from the area.

3. If it can find three features, the program will save the selection area and proceed to

next step. If it cannot find three features, it will ask the user to select other area or not.

If the answer is “Yes”, it will back to step 1, otherwise it will back to mode selection

state.

4. It will do the block matching algorithm on the whole screen, in order to get the most

matching point of the selection area in the screen.

5. It does the feature selection algorithm on the area selection from the block matching

algorithm to get the three points for motion tracking.

6. We can start playing the game by keep motion tracking on the three matching points on

the screen.

For “Yo! Start Playing” mode:

1. The program loads the stored selected area from the memory.

2. It runs the block matching algorithm on the whole screen, in order to get the most

matching point of the selection area in the screen.

3. It does the feature selection algorithm on the area selection from the block matching

algorithm to get the three points for motion tracking.

4. After finding the points, we can start playing the game.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

4.3 Algorithm Comparison

The main difference between the new approach and initial approach is instead of storing

three features, now we store the whole selection area into the memory. We think that the

inaccurate result may due to the size of feature block is not large enough to store enough

information to identify feature block from other candidate block when doing block matching.

There are two reasons why we choose to store the selection area, not the three features.

The first one is the selection area is the most descriptive block in the Selection area, so it

can reduce the chance of mismatching. The second reason is larger the block using in block

matching algorithm, the number of candidate block will be decrease. So it can increase the

efficiency of the block matching algorithm.

You may wonder why we run the feature selection algorithm two times in our proposed

approach. The first time running is for the testing purpose, it is running to test for the

selection area contain enough feature to do our algorithm. The second time running is for

selection purpose, it will select three feature points for playing the game. So, it is different

objective for two times running for the algorithm.

The whole experimental result of our new algorithm is in the Appendix IV, please refer it for

more detail.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

4.4 How to do feature recognition?

We divide the search window into blocks. We use the saved features as the feature block

and use whole screen as Seach Window to find the most matching block in the screen.

Feature Recognition uses the Fast Exhaustive Search Algorithm as searching method and

SSD as the Cost Function to calculate the similarity between reference block and candidate

block. The block matching algorithm is sped up by using SEA to remove invalid candidate

blocks, and then use PPNM to do second filter on candidate blocks and finally use PDE to

remove invalid candidates block during the calculation of cost function.

Although our algorithm apply many techniques to increase the speed of algorithm, but it is

still very slow because it searches the whole screen to find the most matching block. So we

need to find other ways to improve the performance of it.

We had tried to use a smaller image to do block matching, hope that it can increase the

speed of the matching. After the running of the algorithm, we scale the image up to the full

screen for display to user. It can increase the speed of algorithm because the search window

size is such smaller than the original. It is very time consuming to scale up the image, so we

reject this method.

We plan to find other methods or algorithms to speed up the block matching in the next

semester.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

4.5 Motion Tracking during the Application

During the game, we need to keep motion tracking on three feature points during our

application. Using two feature points is enough to locate an object in the 2D screen, the

introduction of third feature point is using as backup purpose.

We use the first two feature points to locate the dart board first. We put the dart board at

the mid-point of two points. If one of the feature points fails, we use the third feature point

to replace the failure point. If more than one feature points fail at the same time, our

program will stop playing the game and switch back to Selection Mode to ask user to select

other area to place the dart board.

Conditions for Feature Points Fail

There are two conditions for a feature point to regard as failure:

1. The feature point is at the edge region of the screen.

If the feature point is at the edge region of screen, the feature point may be out of

screen at next motion. So we need to reject it to keep our program running correctly.

2. The distance between two feature points are too short.

If the two feature points are too closed, the features represent by the feature points

may be overlapped. The overlapped features may affect the accuracy of motion

tracking algorithm. In this condition, we need to reject both feature points.

The time need to switch back to game mode from selection mode is very high, so we try to

decrease the chance of causing a feature point fail during the motion tracking.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Chapter 5

Feature Selection Improvement

In this chapter, we describe how we improve the existing feature selection algorithm. Feature

selection is the one of the major function of our program, it would affect the efficient and

performance of our project.

 5.1 Introduction

 5.2 Harris Corner Detector

 5.3 Fast Corner Detector

 5.4 Select Feature from Corner List

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604
5.1 Introduction

The feature is very important in the blocking matching part of our program because a

“Good” feature can increase the efficiency of block matching algorithm as it can reduce the

invalid candidate in early state of computation.

There are two conditions of a “Good” Feature:

1. It should be descriptive enough to identify the feature from the environment, i.e. the

“Good” feature should not be too small. It can increase the accuracy of the block

matching algorithm.

2. It should have a large internal intensity different, i.e. the “Good” feature should c a

corner. It can record the correct direction of the movement, so it can increase the block

matching accuracy.

As we mention above corner is a requirement of a good feature, a corner detector to detect

the possible corners from the picture is very useful in the Feature Selection Algorithm.

5.2 Harris Corner Detector

The basic idea of the Harris Corner Detector is calculate the intensity change in shifting all

directions. In the “flat” region, there is no great change of intensity in all the direction. In the

“edge” region, there is no considerable change of intensity across the edge direction. At the

“corner” region, there is a significant change of intensity in all direction movement.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

No significant change of intensity in flat region

No sharp change of intensity across the edge direction only

Intensity change significantly in all direction

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

The change of intensity of a shift [u, v] can be calculated by the following equation:

2

,
)],(),()[,(),(yxIvyuxIyxwyxE

yx
−++= ∑

Where:

E(u, v): Total intensity change over the window

W(x, y): window function, it can be discrete (e.g. 1 inside the window, 0 outside the

window) or continuous (e.g. a Gaussian distribution).

I(x, y): the Intensity of image at position (x, y).

If the shift [u, v] is small, it has a bilinear approximation:

[] ⎥
⎦

⎤
⎢
⎣

⎡
=

v
u

MvuyxE ,),(

Where:

M is a 2×2 matrix computed from image derivatives

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑ 2

2

,
),(

yyx

yxx

yx III
III

yxwM

By evaluating the eigenvalues λ1, λ2 of M, we can identify the region is flat, edge or corner.

In the flat region, both the λ1 and λ2 are small and E remains constant in all the direction. In

the corner region, one of λ1 or λ2 is large, the other one is small and E has a large when it

is not crossing the edge direction. In the corner region, both the λ1 and λ2 are large and E

has very significant increase in all the directions.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

The calculation of eigenvalues is computationally expansive because it involves calculation

of square root. The following equation is used to calculate the eigenvalues of 2×2 matrix.

() () ⎥⎦
⎤

⎢⎣
⎡ −+±+= 2

2211211222112,1 4
2
1 aaaaaaλ

So Harris suggests a Corner Response Function R to calculate it:

()2det traceMkMR −=

21

21det
λλ

λλ
+=

=
traceM

M

Where:

k is a empirical constant, typical values of k is range from 0.04 to 0.15.

R only depends on the eigenvalues of M and it is less computationally expansive than

calculate the eigenvalues, so it can be use for detecting the corner. For a “flat” region, the

absolute value of R is small. For “edge” region, R is negative and it has a large magnitude.

For “corner” region, R is a very large value.

Although calculation of R is less expensive than calculation of eigenvalues, it is still very

expensive for our platform, Symbian OS, which has no floating point unit.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

5.3 Fast Corner Detector

It is suggest by Edward Rosten at his paper Machine learning for high-speed corner

detection, May 2006.

There is a class of corner detector which examines a small patch of image to see it “look” like

a corner or not. In this class of corner detector, it doesn’t need a noise reduction step, such

as Gaussian Filter, so it is less computation less than other corner detector. The FAST corner

detector is inside this class of corner detector.

The main conception of FAST corner detector is considering the Bresenham circle of radius r

around the candidate point which called nucleus. If the intensities of n continuous pixels on

the circle are larger than nucleus by values barrier or smaller than nucleus by values barrier,

the nucleus is a potential corner.

The Bresenham circle of radius 3 around the pixel p

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

The typical value for r is 3 that mean it will have 16 pixels on the circumference. The

minimum value of n should be 9 to ensure that it will not detect the edge instead of corner.

The value of barrier is directly related to the sensitivity of the corner detector. If value of

barrier is too small, the detector will be too sensitive, it may cause misclassification. On the

other hand, if the value of barrier is too large, the detector may not be able to detect any

corner. To get the suitable value of barrier, we had done an experiment of using different

values of barrier on the same image on our Symbian testing platform, the full result of the

experiment you can reference to Appendix II. After the experiment, we choose 25 as barrier

value because it can detect a certain number of corners at many different environments.

The some of experimental results of the FAST corner detector on the Nokia N90

The FAST corner detector is very computation efficient, because it only does subtraction and

comparison for the whole process detecting corner. The following experimental results are

extracting from the Edward Rosten’s Paper:

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

The above result was done on PC. If the same experiment does on the Symbian platform,

we believe that the different between the FAST corner detector and another corner detector

will be much larger as Symbian doesn’t have a floating unit.

Non-maximal Suppression

Non Maximal Suppression used as an intermediate step in mainly computer vision algorithm.

Non-maximal Suppression mean that find out the local maxima of a pixel p around certain

neighborhood. For the corner detectors, the non-maximal suppression means select all the

corners with the local maximum of corner response function within a neighborhood.

FAST corner detector doesn’t define a corner response function, so we cannot apply the

non-maximal suppression directly to filter the selected corners. Edward Rosten suggest a

Score Function V, each selected corner should calculate V and use non-maximal suppression

to remove corners which have corner with higher V within its neighborhood. There is the

definition of Score Function V:

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−−= ∑∑

∈∈ darkbright Sx
px

Sx
px barrierIIbarrierIIV ,max

Where:

x are points of the Bresenham circle

{ }barrierIIxS pxbright +≥= |

{ }barrierIIxS pxdark −<= |

We had done an experiment to show the different between using Non-maximal Suppression

and not using Non-maximal Suppression. You can see the result from below:

In our project, we define the size of neighborhood to be one, that mean it will check

whether the adjacent points has a higher V or not.

Although the FAST corner detector is not robust under high noise environment, it is much

faster than the other corner detectors. In the high noise environment, our motion tracking

engine, MVOTE, is not accurate at all. There is no problem of us to use FAST corner detector

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

as a part of our Feature Selection algorithm.

5.4 Select Feature from Corner List

The corner detector will produce a list of detected corners, it may contain more than number

of features that we want. So we need a corner selection step to choose number of features

that we want from the corner list.

In our project, we need keep track on three feature points during the application. We also

set a constrain to these three points that they cannot be too close to each other because if

the two points are too close, the features represent by each point may to overlapped, it will

affect the accuracy of the motion tracking.

Our method is dividing the selection area into two equal parts vertically and run the corner

detector on each part of the sub-area. After running the corner detectors, we will get two

lists of detected corners in each sub area and the corners are in the raster scanning order.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

There is the pseudocode for select feature from corner list algorithm:

Feature1 = list1[first]

Feature2 = list2[first]

While (list1.length > 1 And list2.length >1)

Do

 fromOne = False

 If (fromOne)

Begin

 If (list1.length > 1)

 Begin

 Temp = list1[last]

 End

 fromOne = false

end

Else

begin

 If (list2.length > 1)

 Begin

 Temp = list2[last]

 End

 fromOne = true

end

If (DistanceTest(temp, Feature1) AND DistanceTest(temp, Feature2))

Begin

 Feature3 = temp

 Break While Loop

end

End

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

If we cannot find the third point for feature or either one of the list is empty at the beginning,

we will reject the selection area and report to user that I cannot find any feature.

Fig a Fig b

Fig a. the selection area (marked by blue square) is rejected by our algorithm because left

part of the area doesn’t contain any corners.

Fig b. the selection area can pick the three points, two from the left half and one from the

right part, for the features in motion tracking.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Chapter 6

Project Progress, Difficulties and Future Work

This chapter would briefly describes progress of our project, difficulties we faces during the

project and what will we do in the future

 6.1 Project Progress

 6.2 Difficulties We Face during Project

 6.3 Future Work

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

6.1 Project Progress

There is progress of out Final Year Project:

September 2006 1. Decide platform of FYP

2. Study the Symbian C++ Programming

3. Study the Algorithm use in mVOTE engine

4. Familiar with the development platform of Symbian

October 2006 1. Write simple Symbian program

2. Write the Symbian Testing platform

3. Study basic idea of Image Processing

4. Study some corners detector algorithm

5. Study the possibility of Z motion detection

November 2006 1. Implement the initial approach of feature recognition

2. Implement the FAST corner detector algorithm into

Symbian Platform.

3. Implement our proposed approach of feature

recognition

4. Prepare FYP presentation and demonstration

5. Write FYP report.

6.2 Difficulties We Face during Project

There are four major difficulties we fast during our FYP.

1. Before doing our final year project, we have no knowledge about image processing.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

So it is very difficult for us at the start of the project. In order to understand how

the mVOTE work, we have spent a lot of time to studying the image processing

algorithms.

2. Nokia only provide the camera plug-in for Nokia 6600 which is S60 1st Edition

(Symbian OS v7.0s). As we target on the S60 3rd Edition (Symbian OS V9.1) and

S60 2nd Edition FP3, we cannot use emulator for debugging and testing. We need

to test our program on the Symbian phone directly. The debugging is much more

difficult and time consuming than debugging on the emulator on PC.

3. There is no floating point unit in processor of mobile phone. It decreases the speed

calculation and it also limits our choice to different kind of algorithm.

4. The security measure in S60 3rd Edition (Symbian OS V9.1). One of the features of

S60 3rd Edition is the enhancement of security issue. The new security measure

restricts the access of system resources. There are not enough documents about

the how security works, we need to spend a lot of time to figure out what happen

when we are debugging.

6.3 Future Work

1. Increase the speed of Feature Recognition

As we mention before, the speed of feature recognition is not fast. We want to

increase the speed of the feature recognition by using some method to reduce the

search window. We may also find other algorithm to do the feature recognition.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

2. Allow user to load saved featured

It our current mechanism, we will overwrite the previous saved features when the

user saved another feature. We want to allow user to select the name of the saved

feature and select which feature he want to use in the game.

3. Add physical calculation engine

As we are doing the augment reality game, we want to simulate the physical

environment as much as possible. We want to add the effect of physical effect, like

free falling, projectile motion, etc. So we can have a more reality game.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Chapter 7

References

1. Harris, C., Stephens, M.: “A combined corner and edge detector.” In: Alvey Vision Conference.

(1988) 147-151

2. Edward Rosten and Tom Drummond: “Fusing points and lines for high performance

tracking.” In: IEEE International Conference on Computer Vision (2005) 1508-1511

3. Edward Rosten and Tom Drummond: “Machine learning for high-speed corner detection” In

European Conference on Computer Vision (2006) 430-443

4. R. Jin, Y. Qi, A. Hauptmann: "A Probabilistic Model for Camera Zoom Detection",

Proceedings of ICPR 2002 Quebec, August 2002.

5. Po-Hung Chen, Hung-Ming Chen, Kuo-Liang Yeh, Mon-Chau Shie and Feipei Lai,

“BITCEM: An Adaptive Block Motion Estimation Based on Center of Mass Object Tracking

via Binary Transform,” 2001 IEEE Int'l Symp. on Intelligent Signal Processing and

Communication Systems, Nashville, Tenn., USA, Nov. 2001

6. Noguchi, Y., Furukawa, J., Kiya, H.: “A fast full search block matching algorithm for

MPEG-4 video”, Image Processing, 1999. ICIP 99. Proceedings. 1999 International

Conference, 1999

7. Steve Babin, Richard Harrison, Phil Northam and William Carnegie: “Developing Software

for Symbian OS - An Introduction to Creating Smartphone Applications in C++”, Wiley

2005

8. Jo Stichbury, “Symbian OS Explained – Effective C++ Programming for Smartphones”,

Wiley 2004

9. David A. Forsyth, Jean Ponce: “Computer Vision: A Modern Approach” Prentice Hall, 2002

10. Forum Nokia: “S60 2nd Edition: Getting Started with C++ Application Development”, 2004

11. Forum Nokia: “S60 Platform: Porting from 2nd to 3rd Edition”, 2006

12. Forum Nokia: “S60 Platform: Scalable Screen-Drawing How-To”, 2006

13. Forum Nokia: “S60 Platform: Scalable UI Support”, 2006

14. Forum Nokia: “S60 Platform: Source and Binary Compatibility”, 2006

15. Jani Vaarala, Nokia: “OpenGL ES development on Serires 60 and Symbian”,

16. http://www.viewtech.org/html/mvote_tm_.html

17. http://www.symbian.com/Developer/techlib/v70sdocs/doc_source/index.html

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Appendix I

Feature Selection

Appendix I describes the experiment conducted for testing the feature selection method used in

the existing Motion Tracking Engine as well as the Fast Corner Detection Algorithm. This

appendix also contains an analysis to determine which algorithm outperforms another one.

 AI.1 Pictures under Normal Lighting Condition

 AI.2 Pictures under Insufficient Light Condition

 AI.3 Analysis

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

AI.1 Pictures under Normal Lighting Condition

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

AI.2 Pictures under Insufficient Light Condition

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Feature Selection in MVOTE Engine Feature Selection in Fast Corner

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

AI.3 Analysis

Why Feature Selection?

Using block matching algorithm for the motion tracking is a major component in our

program. One may ask about which block should be chosen in the video frame for block

matching. To answer this question, we must know very well our objective in order to acquire

a better and more accurate result.

Features should be selected as descriptive as possible

The chosen block should facilitate the block matching algorithm and increase the accuracy

of the algorithm

Feature extraction should be robust enough

In order to facilitate the objective, corner detection is used as feature selection in motion

tacking. Formally, a corner can be defined as the intersection of two edges. A corner can

also be defined as a point for which there are two dominant and different edge directions in

a local neighborhood of the point.

An interest point is a point in an image which has a well-defined position and can be robustly

detected. This means that an interest point can be a corner. There are many corner

detection algorithms, for instance, Moravec Corner Detection Algorithm, Harris Corner

Detection Algorithm, etc.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

To strike a balance between having fast computational speed and reasonably accurate

feature selection, former FYP team members (LYU0404) who developed the mVOTE Motion

Tacking Engine used Laplacian mask to calculate the intensity different between the current

block with its neighbors for feature selection. The Laplacian of an image highlights regions

of rapid intensity change and is therefore often used for edge detection originally.

- Gray level discontinuity large output

- Flat background zero output

The Laplacian L(x,y) of an image having pixel intensity values L(x,y) is given by:

2

2

2

2

),(
y
I

x
IyxL

∂
∂

+
∂
∂

=

Since the input image is represented as a set of discrete pixels, we have to find a discrete

convolution mask that can approximate the second derivatives in the definition of the

Laplacian. Three commonly used small masks are shown below:

The former FYP team would divide a frame into small rectangular blocks. Sum all the pixels

value for each block, denoted as Lxy, and store it in a 2D array (Intensity of the block). After

that, they calculate the variance of each block which represents the complexity of the block.

Apply Laplacian Mask for the 2D array. Finally, they select the block which has the largest Lxy

and large variance as feature block

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

For instance, if we apply the following Laplacian Mask to the given image, we would obtain

the following result:

-1 -1 -1

-1 8 -1

-1 -1 -1

Laplacian Mask

14 25 68 60 66

16 67 20 16 95

4 29 8 21 99

68 62 66 127 113

120 33 37 121 67

2 65 61 109 60

Output Image

 -227

Given Image

-1 x 68 + -1 x 62 + -1 x 66 + -1 x 120 + 8 x 33 + -1 x 37 + -1 x 2 + -1 x 65 + -1 x 61

= -227

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Since the Fast Corner Algorithm is introduced in the previous chapter, this Appendix I would

not go through it again.

What the result tells?

From the above experiment result, it is observed that under normal lighting condition, both

algorithm works fine. With careful examination, we can see that the existing Motion Tracking

Engine does not work at optimum. Most of the time, this algorithm would select some flat

region as the feature. By “flat region”, we mean the region where the intensity level is similar

or the same. The selected area in the following diagram shows the flat region.

In contrast, the Fast Corner algorithm works better than the existing algorithm. It is because

in most of the case it can find a “corner” at which point, there exists a large intensity change.

In some case, Fast Corner did not find any corner and thus the error message was

displayed.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

On the other hand, under the insufficient lighting condition, there are many noises in the

photos. The existing algorithm finds some features but those so called “features” are not the

good one. It is hard to imagine using those features to carry out motion tracking would

produce a fair result. For Fast Corner algorithm, it finds nothing under insufficient lighting

condition. It is good news for us, because under such environment, users can hardly play

the game well due to the performance degradation of Motion Tracking as noises in the photo

increase. Fast Corner said “No” to such unfavorable environment.

In our project, we only focus on the existing feature selection algorithm of Motion Tracking

and the Fast Corner but not other corner detection algorithm, like Harris Corner. We ignore

the use of Harris Corner for corner detection (for selecting feature) because this corner

detection involved the use of computing determent of matrix which is a pretty high

involvement for the Mobile Phones especially for those which equip no floating point unit.

In short, we prefer to use Fast Corner as our feature selection algorithm. The reasons are:

1. Such corner detection involved no intensive arithmetic computation.

2. It built a decision tree to determine if a certain point is likely to be a real corner.

3. It is easy to implement and make modification

4. It produces better result than the existing one

5. It rejects noisy photos

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Appendix II

Parameter Adjustment for Fast Corner Algorithm

Appendix II describes the experiment conducted for testing how the corner detection algorithm

would be affected by adjusting its parameter – barrier. This experiment also shows the different

result obtained when running Fast Corner Algorithm with accessory function non-maximal

suppression or without it. The use of this parameter and the non-maximal suppression is

mentioned in the previous chapter.

 AII.1 Experiment Result

 AII.2 Analysis

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

AII.1 Experiment Result

This section would show how different value of the parameter affects the number of corner

found by the Fast Corner Detection Algorithm. The corner(s) would be marked as “+” in Red

Color in the graphs shown below. The parameter value would be displayed in Green Color in

form of “Th: z” where z is the parameter value used by Fast Corner Algorithm. The default

parameter value is 20 in the original Fast Corner Algorithm.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

AII.2 Analysis

The above graphs show the different in term of corner selection versus value change in the

parameter, barrier, in the algorithm. The results obtained on the left column are those using

Fast Corner algorithm without the use of Non-maximal Suppression technique. While

running Fast Corner algorithm with Non-maximal Suppression technique would produce

results for the right column. In general, it is observed that the number of corner detected

decrease with the increase of the parameter value. In other words, when the parameter

value is high, the algorithm imposes stricter requirements for a certain pixel to become a

corner. The quality of corner selection would be higher if we increase the parameter value.

In addition, performing Non-maximal suppression would produce fewer corners than the

one with no Non-maximal suppression; this has been explained in the previous chapter.

In some cases, as illustrated in the above graphs with parameter value 34 and 37, the

number of corner detected using 37 as the parameter value is more than that obtained from

value 34. To explain this, we believe it is due to our small mechanical vibration during the

photo taking process and sometimes the lighting condition and noises also affect the

performance but these conditions may not be obvious to human eyes.

If we set a higher value for the parameter, we may end up with having a higher probability

that the users selected region where there is not enough features for game playing. If we

set its value too low, we may obtain a set of poor quality corner which affect the accuracy

when carrying out motion tracking. To strike a balance of it, we set the parameter value as

25. To make our program more robust, we decided to perform Non-maximal suppression.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Appendix III

Accuracy of Feature Blocks Finding for Algorithm 1

Appendix III describes the experiment conducted for testing how the saved block is discovered

back in the video frame.

 AIII.1 Experiment Result

 AIII.2 Analysis

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

AIII.1 Experiment Result

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

AIII.2 Analysis

The above 6 sets of photos show the result of block matching using our initial algorithm. The

markers in blue color of the left hard side are the feature (corner) selected by the Fast

Corner Algorithm (Those corners would be saved in the memory card for future usage). The

markers in red color of the right hand side demonstrate the matched corner after running

the existing MVOTE Engine. In the ideal case, both the red and blue markers should be

overlapping. This means that the matched corner is exactly same as the corner found by the

Fast Corner algorithm. In other words, the accuracy is 100%.

However, as you may observe from the above photos. The matching accuracy is very bad. In

nearly all the cases, the matched corner deviate much from the saved one. In this algorithm,

our first step would be using Fast Corner algorithm to seek out 3 key features from the user

selected region. Since the Fast Corner just only return a set of Corner co-ordinate, we then

produce feature blocks in the following way:

1. The corner (feature) is set to be the center of the feature block.

2. Extends 12 pixels from the corner (i.e. center of the feature block) in Up, Down, Left,

Right four directions.

This process would produce 3 25x25 pixels features blocks. These blocks would be saved in

the mobile phone for future matching usage. (To allow the program to process memory of

external environment)

During the initialization of game playing, the program would load the saved feature blocks.

It would try to match those blocks with the current video frame taken from the mobile phone

camera.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Suppose originally we have taken the following picture and the red marker indicate the point

(corner) proposed by Fast Corner Algorithm. We would extract a 25x25 pixel feature block

with the proposed corner being the center and save it into the memory card.

Suppose after some time, we have to find the feature block back from the video frame (on

the right hand side). The blue markers indicate the possible regions where the feature block

would be mapped to. The save feature block would be mapped to those region because they

have the same Sum Square Difference which are the minimum. This also explains why this

initial algorithm would not work well. It is because the save feature blocks are just 25 by 25

pixels which is not informative enough. When matching on the video frame, there maybe so

many blocks with similar Sum Square Different with the saved one. Since our algorithm

takes the block with minimum Sum Square Different, it may easily select a wrong one

mistakenly. As we observe this disaster, we modify this algorithm and lead the second

algorithm with the experiment results in the Appendix IV.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Appendix IV

Accuracy of Feature Blocks Finding for Algorithm 2

Appendix III describes the experiment conducted for testing how the saved block is discovered

back in the video frame.

 AIV.1 Experiment Result

 AIV.2 Analysis

 AIV.3 Miscellaneous

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

AIV.1 Experiment Result

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

AIV.2 Analysis

There are two boxes appear in the above graphs. There is a box in white color which

indicates the location where the users were intended to put the dart board. There is another

box in red color showing the location where the block matching algorithm find the best

matched image. In other words, the region of the Red color box indicates the location where

dart board would actually be put. There are also two lines of messages on the top right

corner region. The “X Diff:” message indicates the difference in x axis between the upper

left corner of the Red box and the upper left corner of the White box. The “Y Diff:” message

is defined in a similar way as the “X Diff:” but in y direction.

The most ideal case would be having both “X Diff:” and “Y Diff:” value as 0. This means that

the matched block is exactly same as the one selected by users. In addition, having a low “X

Diff” and “Y Diff” values would indicate a higher accuracy of block matched. In short, have a

low “X Diff” and “Y Diff” values means having a higher probability that actual dart board

would be put in the users selected region.

In the above experiment, we took totally 10 set of sample photos. Each set consists of 3 trial

runs. It is observed that each run would produce a slightly different result though human

eyes may not be able to tell the difference. The different may come from a small vibration

during image capturing or maybe due to a small change in light intensity. In general, as the

experiment shown, our proposed algorithm works fine.

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

However, the major disadvantage of our approach is the performance degradation. In the

current situation, we make use of the existing block matching algorithm in the MVOTE

Engine. We amended the MVOTE Engine such that the block matching would be performed

on the whole video frame in a brute force manner. This leads to a performance issue. To

perform the block matching, the whole screen would be divided into several blocks. Sum

Square Different (SSD) would be calculated for each block. The one with minimum SSD

value would be declared as the matched block. As the computation is quite intensive, it

affects our program’s performance negatively. To improve this area, the previous chapter

has mentioned some future works for performance gain.

AIV.3 Miscellaneous

Department of Computer Science and Engineering The Chinese University of Hong Kong
2006 – 2007 Final Year Project Semester 1 Report LYU0604

The above 3 sets of photos shows our motion tracking result using our Algorithm 2. The left

columns show the points (corners) returned by the Fast Corner Algorithm. The points in the

right columns show the matched point after some horizontal movement. As you can see, in

our approach, there are 2 points matched quite well for every set of photos. Comparing this

with our experiment results from Appendix III, the results here perform much better.

