
Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Department of Computer Science and Engineering

The Chinese University of Hong Kong

2004/2005 Final Year Project

Final Report

LYU 0404

Mobile Motion Tracking using Onboard Camera

Supervisor

Professor Michael R. Lyu

Lam Man Kit
Wong Yuk Man

LYU0404: Mobile Motion Tracking using Onboard Camera Page 1

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Abstract

 This report describes the motivation, background information, algorithms related
to our project, experiments done and applications/games developed by our group
when participating in the final year project. The objective of our project is to use
camera phone as an innovative input method for different applications on Symbian.

 Firstly, we will introduce the idea of our final year project – using motion
tracking as an innovative input method. Following is the introduction of Symbian
OS, the major operating system used in mobile phone nowadays, which focus on
image manipulations in Symbian phone. Next we will talk about the two testing
platforms on PC and Symbian that we have developed. After that, we will discuss
the common algorithms used in motion tracking and our proposed algorithms.
These motion tracking algorithms will play an important role in our project. After
that, feature selection algorithms will be discussed.

Since we aim to develop a real-time motion tracking application on the mobile
phone, both the speed and precision of algorithms are very important. The report
will include experimental results that we have done to evaluate the performance of
different algorithms. Moreover, we performed investigations and experiments to
find all possible ways so as to improve the accuracy and speed of the motion tracking.

Then we will describe the applications and games that we have developed and

discuss what other possible applications can be developed using our motion tracking
algorithm.

Finally, we will provide an API documentation of our motion tracking engine in

the appendix.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 2

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Content

Abstract...2
Chapter 1: Introduction ..8

1.1 Motivation..8
1.2 Programming Capability of Symbian-based Mobile Phone9
1.3 Project Objective..9
1.4 Project Equipment..10

Chapter 2: Symbian Operating System ... 11
2.1 Development Environment ..12
2.2 Testing environment...13
2.3 Limitations in Symbian phone ...13
2.4 Overview of Symbian Graphics Architecture ..14

2.4.1 Video Capturing ..14
2.5 Why Programming in Symbian ...16
2.6 Conclusion ...17

Chapter3: OpenCV Testing Platform on Window..18
3.1 OpenCV Library ..18
3.2 OpenCV Testing Platform..18
3.3 Static Frames Motion Tracking..21
3.4 Real-Time Motion Tracking...24

3.4.1 Design and Implementation ..24
3.4.2 Difficulties on Real-time tracking ..25
3.4.3 Evaluate the Performance of Real-Time Motion Tracking.........................26
3.4.4 Relationship with Real-Time Camera Motion Tracking.............................27

3.5 Feature Selection..28
Chapter 4: Testing Platform on Symbian ..29

4.1 Introduction..29
4.2 User Interface...29
4.3 Design and Implementation ...31

4.3.1 Class Structure ..31
4.3.2 Reserving Camera...33
4.3.3 Releasing Camera ...35
4.3.4 Reset Contrast, Brightness and Exposure Mode of camera........................35
4.3.5 Running the Block Matching Algorithm...37

Chapter 5: Translational Motion Tracking...39
5.1 Characterization of the motion...39
5.2 Block-Matching Motion tracking ..40

LYU0404: Mobile Motion Tracking using Onboard Camera Page 3

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5.2.1 Principle of Block-Matching Motion Tracking ..40
5.2.2 Cost Functions ..42
5.2.3 The Exhaustive Search Algorithm (SEA) ...44
5.2.4 Fast Motion tracking Algorithms ..45
5.2.4.1 Three-Step Search Algorithm...46
5.2.4.2 Time Complexity ...47
5.2.4.3 Problem of fast searching algorithms ..48
5.2.4.4 Conclusion ...49
5.2.5 Fast Exhaustive Search Algorithm..49
5.2.5.1 The Successive Elimination Algorithm (SEA) ..49
5.2.5.2 PPNM (Progressive Partial Norm Matching) ..50

5.3 Fast Calculation of Block Sum ..51
5.3.1 Objective ...51
5.3.2 Methodology...52
5.3.3 Advantage to SEA and PPNM ..54
5.3.4 Disadvantage...54

5.4 Summary ..55
5.5 The Motion tracking Hypothesis ...55

5.5.1 The Motion tracking Assumptions..55
5.5.2 Proximity Translation..56
5.5.3 Intensity Stability ..56
5.5.4 Linear Motion Hypothesis ..57

5.6 Optical Flow...58
5.6.1 Overview of Optical Flow ..58
5.6.2 Motion Fields ..58
5.6.3 Difference between Optical Flow and Motion Field59
5.6.4 Optical flow computation ...60
5.6.5 Comparison between optical flow and block-matching..............................64
5.6.6 Conclusion ..65

5.7 Partial Distortion Elimination ..65
5.7.1 Methodology...66
5.7.2 Result ..67
5.7.3 Possible Improvement...67

5.8 Adaptive Search Window...68
5.8.1 Methodology...69
5.8.2 Comparison with conventional method ..70
5.8.3 Constraint of each method ..73
5.8.4 Analysis...74

LYU0404: Mobile Motion Tracking using Onboard Camera Page 4

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5.8.5 Conclusion ..74
5.9 Spiral Scan Method..75

5.9.1 Raster Scan method...75
5.9.2 Analysis...75
5.9.3 Spiral Scan Method...76
5.9.4 Result ..76

5.10 Motion Tracking Algorithm Development...77
5.11 Improvement of performance by SSD matching criteria79

Chapter 6: Rotational Motion Tracking ..84
6.1 Observation…..84
6.2 Motivation…..85
6.3 Two-block approach...85
6.4 Another possible approach...86
6.5 Reducing error by using level ..87
6.6 Reference slope and non-reference slope method ...88
6.7 Adaptive window method on rotation tracking engine90
6.8 Enhancement on rotation tracking engine..92
6.9 Design and Implementation of the Engine...93

Chapter 7: Feature Selection ..95
7.1 Implementation ..95
7.2 Laplacian Operator...97
7.3 Experimental Result...98
7.4 Conclusion ...101

Chapter 8: Enhanced Feature Selection ..102
8.1Objective ...102
8.2 Higher Sampling Rate..104
8.3 Searching in Spiral Way...105
8.4 Code Efficiently ...106
8.5 Condition to be a good reference background image106

8.5.1 Requirement..107
8.5.2 Possible reference image...108

8.6 Conclusion ...109
Chapter 9: Applications Development ... 110

9.1 Development procedure ...110
9.2 Example Applications .. 111

9.2.1 Pong Game..112
9.3 Other Possible Application ..113

9.3.1 Camera Mouse ..113

LYU0404: Mobile Motion Tracking using Onboard Camera Page 5

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Chapter 10: Virtual Mouse Application... 114
10.1 Brief Description of the Virtual Mouse Application......................................114
10.2 Advantage of Motion Input over Conventional Input Method114
10.3 The Server ..116
10.4 The Client...116
10.5 Bluetooth Wireless Communication ..117
10.6 Running the Server ..117
10.7 Design and Implementation of Server ...118
10.8 Running the Client ...120
10.9 Design and Implementation of Client ..121

Chapter 11: Games Development ...123
11.1 Programming Games for Series 60 ..123
11.2 Series 60 Specific Considerations..124

11.2.1 Memory...124
11.2.2 Processors ...125
11.2.3 Fixed Point Mathematics ..125

11.3 Structure of Game and Game Loop ...125
11.4 Input Device...128
11.5 Advance Graphic Programming...129

11.5.1 Double Buffering ..129
11.5.2 Direct Screen Access...130

11.6 Conclusion ...133
Chapter 12: Car Racing Game ...134

12.1 Overview of the Game ...134
12.2 Sprite ..137
12.3 Collision Detection ..138

12.3.1 Basic Collision Detection ...138
12.3.2 Advance Collision Detection ..139

12.4 Conclusion ...143
Chapter 13: Skiing Game..144

13.1 Overview..144
13.2 Structure of the Skiing Game...146

Chapter 14: Experimental Result...147
14.1 Computation load of SSD and SAD ..147
14.2 Improvement of ESA by SEA/PPNM..149
14.3 Enhancement of SEA/PPNM by PDE ...149
14.4 Enhancement by Spiral Scan Method..151
14.5 Enhancement by Adaptive Spiral Method ...152

LYU0404: Mobile Motion Tracking using Onboard Camera Page 6

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

14.6 Performance of the Translational Tracking Engine on Symbian154
14.7 Performance of the Rotational Tracking Engine..157

Chapter 14: Project Schedule ...160
Chapter 16: Contribution of Work ..162

16.1 Introduction..162
16.2 Preparation of Work ...162
16.2 The Algorithm Part ..163
16.3 The Testing Platform Part ..164
16.4 The Application Part ..164
16.5 Conclusion ...165

Chapter 17: Conclusion...165
Chapter 18: Acknowledgement...166
Chapter 19: Reference...166
Appendix 1: API Documentation..171

Class CVideoEngine ..171

LYU0404: Mobile Motion Tracking using Onboard Camera Page 7

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Chapter 1: Introduction

1.1 Motivation

Nowadays, it seems as though everyone has a mobile phone. As models
with integrated CCD cameras are getting more and more popular, camera-phones
have become popular networked personal image capture devices. It not only
acts as a digital camera, but also provides constant wireless connectivity that
allows them to exchange photo or video they captured with their friends. 3G
phones even use their capabilities to make video calls as their selling point.
However, other than taking pictures and capturing video, is it possible to add
more values to the camera and make full use of it? This is the motivation of our
FYP project.

As camera resolution improves and computation power increases,
camera-phones can do more interesting things than just taking pictures and
sending them out over mobile phone network. Programmable camera-phones

LYU0404: Mobile Motion Tracking using Onboard Camera Page 8

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

can actually perform image processing tasks on the device itself. With the
real-time video captured by the onboard camera, we can use this information to
track the motion of the phone. The result of motion tracking can then be used
as an additional and innovative mean of user input, and this is our main objective
of the FYP project.

1.2 Programming Capability of Symbian-based Mobile
Phone

In the past, normal users were difficult to develop programs on their mobile

phones. Even though users could write J2ME programs on mobile phones,
J2ME does not provide phone-specific API to access the camera. Nowadays,
Symbian OS makes programming on camera-phone possible. Symbian-based
mobile phones allow user programs to access most of the functions provided by
the phones, including the camera functions and image manipulation functions.
Some 3G phones are also Symbian-based. They also allow users to develop
programs on them. As Symbian OS will be the major operating system for
mobile devices in the foreseeing future and its programming capability, our FYP
project will use Symbian as our target platform.

Our applications will be useful for any 2G, 2.5G or 3G Symbian-based
mobile phones.

1.3 Project Objective

The goal of our FYP project is to implement a real-time motion-tracking
algorithm in Symbian-based mobile phones and use the tracking result as an
innovative mean of user input like mouse and keyboard input. The aim of
motion-tracking is not to track objects behind the camera but to track the
movement of the camera, or the equivalence - the phone. This new mean of
user input can give user a convenient way to operate the phone and any
wireless-connected devices. For example, the phone can be used as a virtual
computer mouse that allow user to control the cursor in desktop computer as if
he/she is using a wireless optical mouse. Other than using the buttons or the
joystick on the mobile phone as input method, users have one more choice -
“motion input”, provided that the phone is programmable and camera-integrated.
Users can also pre-define some gestures so that moving the phone in certain
ways will trigger some events, such as making a phone call to the others. It

LYU0404: Mobile Motion Tracking using Onboard Camera Page 9

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

saves time pressing buttons to dial the phone. A more interesting application is
to use it as the input method for games. For example, in a racing motorcycle
game, tilting the phone can be used to control the motorcycle to tilt left or tilt
right while moving the phone vertically can control the speed of the motorcycle.
Using motion input is so fun and exciting that users can interact with the game.

Besides implementing a real-time motion-tracking algorithm, we planned to
build an engine which provides motion-tracking functionality in Symbian OS.
This engine is built using the motion-tracking algorithm and feature selection
algorithm. It aims to provide a convenient way for developers to develop
applications or games using phone’s movement as the input method. To
illustrate the usefulness of the engine and the idea of motion input, we develop
some applications and games using the engine.

1.4 Project Equipment

Our project involves a Symbian mobile phone, Nokia 6600, which is
equipped with Symbian OS 7.0 Series 60. Since the development cycle in
Symbian mobile phone is quite long, we have decided to implement the real-time
motion-tracking algorithm on PCs using web camera. Therefore, our project
also involves web camera, Logitech QuickCam Pro 4000, as the video capturing
device for the PCs.

Apart from Symbian based camera-phone, any other mobile devices that are

programmable and camera-integrated are also the target platforms of our project.
Some of the Pocket PCs, for example, are camera-integrated and are all
programmable. It is also possible to develop interesting applications or games
on these platforms.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 10

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Chapter 2: Symbian Operating System

 Symbian OS is the global industry standard operating system for smartphones.
It is structured like many desktop operating systems, with pre-emptive multitasking,
multithreading and memory protection.

Because of its robust multi-tasking kernel, communications protocols (e.g.
WAP and Bluetooth), data management, advanced graphics support (support of
direct-access and common hardware accelerator), Symbian OS has become the major
operating system for current generation of mobile phones.

In short, the functionalities of Symbian phone are summarized in the following

diagram:

Figure 2.1 Symbian 7.0 architecture

The main focus of this chapter is to illustrate how Symbian OS provides support
on image process in the phones and how we can write our program for Symbian OS
effectively.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 11

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

2.1 Development Environment

C++ is the native programming language of the Symbian. Symbian use its
own implementation of the C++ language, optimized for small devices with
memory constraints. The public C++ APIs allow access to variety of
application engines, such as graphics, and camera.

Generally, the development environment is under Microsoft Visual C++

with application wizard in the SDK provided by Nokia. The development cycle
can be summarized as follow:

Figure 2.2 Development cycle of Symbian program

Besides source code, MMP file, which is a metadata to describe the source
code and resources used (e.g. bitmaps and icons), is also supplied. Through
C++ compiler, app binary (for general application) or dll binary (for building
library) is then generated. Using emulator, application can be tested. After a
complete testing, the source code and MMP file are compiled through cross

LYU0404: Mobile Motion Tracking using Onboard Camera Page 12

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

compiler, possibly ARM instruction compiler, to generate the binary code. All
the necessary files, including bitmaps, images, icons and data file, would be
grouped together through software packaging. The resulting sis file should be
transferred to actual handset using any communication technologies, like
Bluetooth and infra-red.

2.2 Testing environment

Although the SDK provides us the emulator for testing, we cannot rely on it.
It is because we need to make use of the camera and test by moving the camera,
so we mainly use MFC and OpenCV (will be discuss later) for testing and use
the Symbian emulator for fine tuning the alogrithm only.

2.3 Limitations in Symbian phone

Since we are programming on handheld devices which has limited resources
(limited amount of memory and limited amount of CPU speed, as shown in
figure 2.3), these make programming on the Symbian phone a very difficult task.

Nokia 6600 Technical Specs

Operating System: Symbian OS 7.0s

Memory
Heap size: 3 MB

Shared Memory for Storage: 6 MB + MMC

CPU 100 MHz

Figure 2.3 Specification of Nokia 6600

Speed is an important factor in making our real-time motion tracking. If

we take too long time for the calculation of motion tracking, the frame rate will
fall off, undermining the illusion of smooth movement. To get the fastest
possible code we should only use, in order of preference:

1. Integer shift operations (<< and >>)
2. Integer add, subtract, and Boolean operations (&, | and ^)
3. Integer multiplication (*)

LYU0404: Mobile Motion Tracking using Onboard Camera Page 13

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

In other words, in speed-critical code we must represent all quantities
(coordinates, angles, and so on) by integer types such as TInt, favor shift
operations over multiplies, and avoid division entirely. We should not use
floating point operation because Symbian phones do not have floating point unit.
The speed constraint limits the use of optical flow algorithm (will be discuss
later) for motion tracking.

2.4 Overview of Symbian Graphics Architecture

The multimedia architecture of Symbian has been designed and optimized
for mobile devices. The architecture provides an environment that is akin to a
desktop computing environment. With relative ease, the different components
can be used for numerous tasks, ranging from drawing simple shape primitives to
playing ring tones.

Figure 2.4 A 3D Game Engine Example (From Forum Nokia)

2.4.1 Video Capturing

Symbian OS provides camera API for developer to access the camera
hardware. The camera hardware is controlled by the CCamera object
which provides a simple method to control the camera.

Before we can capture the video with the camera, we need to create an

instance of CCamera – this is achieved by calling the NewL() function:

LYU0404: Mobile Motion Tracking using Onboard Camera Page 14

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

 iCamera = CCamera::NewL(aObserver, 0);

Once we have created an instance of the camera, the camera device
must be reserved and power on.

iCamera Reserve();
iCamera PowerOn();

Afterward, we need to specify the required image format and set the

parameters for frame sizes, buffer sizes.

Finally, we can use the view finder to transfer frames from the camera
directly to the display memory. We can then access the pixel values in the
memory. The procedure for transferring video to images using view finder
is shown below.

// Starts transfer of view finder data to the memory
iCamera->StartViewFinderBitmapsL(imageSize);

After the transfer of view finder data to the memory is completed, the

function ViewFinderFrameReady() will be called. A reference
(CFsBitmap &) to the view finder frame will pass as an argument to the
function. We can implement our motion tracking algorithm inside
ViewFinderFrameReady() function.

2.4.2 Image Manipulation

CfsBitmap is the class provided by the graphic architecture. By using
this class, we can access the pixels of the image easily and perform some
operations such as rotation, scaling, etc. However, using this class to
manipulate the bitmap is not efficient way. It is because calling the
functions provided by this class involved context switching. Thus the total
overhead is large when you access the pixel values of the whole bitmap by
the function call GetPixel(). In our application, our major concern is the
speed, so we must think of other way to manipulate the bitmap instead of
using the library provided by the architecture.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 15

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

In order to access the pixel value effectively, we can access the bitmap
array directly instead of using function calls. We can use a pointer to point
to the bitmap array, and access the pixel value by de-referencing the pointer.
Firstly, we need to find out the starting address of the actual bitmap:

TInt data_start = (TInt)iBitmap->DataAddress();

After getting the starting address, we declare an unsigned integer

pointer to point to that location:

 TUint16 *ptr = (TUint16 *) data_start;

If we want to access the pixel value at location (x,y), we increment the
pointer so that we can access the value at (x,y):

 ptr += width of bitmap*y+x;

Since the display mode of the view finder is 64k-colour displays, that
means for the RGB values, 5 bits are allocated to red, 6 bits to green and 5
bits to blue. Therefore, we need to do bit masking to retain the R,G, B
values:

 //retain the RGB value

Red = (*ptr >>11) & 0x001f;
 Green = (*ptr >> 5) & 0x003f;

Blue = *ptr & 0x001f;

By using this method for accessing the pixel values, we prevent the
large overhead caused by context switching and thus our application can run
faster.

2.5 Why Programming in Symbian

Apart from Symbian, there is another solution, J2ME, which is a
cross-platform language. By using J2ME, we can develop applications for any
kind of mobile devices, provided that they have the Java Virtual Machine
installed.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 16

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

It seems attractive to develop a cross-platform application by using J2ME.
However, J2ME doesn’t provide API for accessing onboard camera, and speed
of java program is slow. In our project, we need to use the onboard camera to
capture video and our major concern is the speed of the application. Therefore,
at this stage, J2ME would not be our consideration.

2.6 Conclusion

This chapter briefly introduced the features of Symbian OS. The measures

to tackle speed problem are also emphasized here. That is to use integer
operations rather than floating point operations and access the bitmap array
directly, instead of calling functions.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 17

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Chapter3: OpenCV Testing Platform on Window

3.1 OpenCV Library

OpenCV means Open Source Computer Vision Library. It is a collection
of C functions and few C++ classes that implement many algorithms of Image
Processing and Computer Vision. The library has also implemented algorithms
for motion tracking; however, those algorithms use optical flow technique which
is not useful to our project. OpenCV library is a high level API that consists of
many useful data types and functions to manage the image window and video
window. There are a few fundamental types OpenCV operates on, and several
helper data types that are introduced to make OpenCV API more simple and
uniform. The fundamental data types include array-like types: IplImage (IPL
image), CvMat (matrix), mixed types: CvHistogram (multi-dimensional
histogram). Helper data types include: CvPoint (2d point), CvSize (width and
height), IplConvKernel (convolution kernel), etc.

Our project made use of some of these useful data types and functions to

facilitate us to build a testing platform on window.

3.2 OpenCV Testing Platform

Figure 3.1 Snapshot of our OpenCV Testing Platform

LYU0404: Mobile Motion Tracking using Onboard Camera Page 18

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Since the development cycle in Symbian is long, we decided to implement

the algorithm in window environment first. In order to test the performance of
our algorithms, we have written a GUI program using Window MFC and
OpenCV library. The program serves mainly two functions: 1) It determines
the motion vector of a pair of static frame with one of it is the shifted version of
another; 2) It captures frames using web camera and real-time tracks the motion
of a moving object.

Figure 3.1 show a snapshot of our program’s interface. There are two

“image path” input fields so that a pair of static image can be specified easily.
The middle part consists of many input text fields that allow users to tune the
block matching parameters of the algorithm in order to find the parameters that
yield better result. The meaning of each label is listed in the following table:

Labels’ Meaning

W X-coordinate of the left top corner of the matching block
H Y-coordinate of the left top corner of the matching block
BW 1/2 Width of matching block
BH 1/2 Height of matching block
Dx 1/2 Width of search window
Dy 1/2 Height of search window
Step Sampling rate during matching block. Step = 1 means all pixels in

a matching block is involved in calculating SAD. Step = 3 means
one out of three pixels in a matching block is involved in calculating
SAD and so on.

Mea. Specifying which algorithm to be used.
Mea. = 0 – ESA SAD Algorithm
Mea. = 1 – ESA+PDE SAD Algorithm
Mea. = 2 – Spiral ESA SAD Algorithm
Mea. = 3 – Spiral ESA+PDE SAD Algorithm
Mea. = 4 – SEA+PPNM SAD Algorithm
Mea. = 5 – SEA+PPNM+PDE SAD Algorithm
Mea. = 6 – Spiral SEA+PPNM+PDE SAD Algorithm
Mea. = 7 – Adaptive Spiral SEA+PPNM+PDE SAD Algorithm

Delay Number of time to run the algorithm before timer is stopped.
Delay = 5 means the chosen algorithm is run 5 times so that the

LYU0404: Mobile Motion Tracking using Onboard Camera Page 19

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

“time used” recorded is the time required to run the algorithm 5
times. Running the algorithm more than 1 time reduces the effect
of inaccuracy of timer.

Learn Learning rate of adaptive search window.]0.1,5.0[∈Learn

FTx X-coordinate of the left top corner of the feature selection window
FTy Y-coordinate of the left top corner of the feature selection window

Buttons’ Function

… Open up a file explorer. Allow users to choose the image used for
static frames motion tracking

Open
Image

New a window and display the corresponding image on the window

Guide Read the block matching parameters. Display a red square on
image 1 denoting the previous block’s location and a green square
on image 2 denoting the search window’s location

Select
Feature

Run the feature selection algorithm and select the highest rated
feature block

Process Do static frames motion tracking by running the specified block
matching algorithm on image 1 and image 2

Feature New a window and display the video instantly captured by the web
camera. Frames of the video are passed to the feature selection
algorithm. Highest rated block is displayed on the window and
are denoted by orange square

Run New a window and display the video instantly captured by the web
camera. A feature block is first found by the feature selection
algorithm. Then do real-time motion tracking. The feature block
is tracked using the specified block matching algorithm.

Clear During the Run and Process of our algorithm, block matching result
will be printed out in text format inside the Output Text Area.
Press the Clear button can clear up the text area.

OK /
Cancel

Close the application

 Screenshot of Process window will be shown in the section “Static Frames
Motion Tracking”, screenshot of Run window will be shown in the section “Real-time
Motion Tracking” while screenshot of Feature window will be shown in the last
section of this chapter.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 20

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

3.3 Static Frames Motion Tracking

3.3.1 Design and Implementation

With OpenCV library, loading images and accessing pixel of images
becomes easier. Here is the flow chart of the OpenCV program for static
frames motion tracking.

Images cvLoadImage(image1)
Block Matching

cvLoadImage(image2)

3.3.2 Testing our algorithms

r program is to allow us to determine the
accu

The first main function of ou
racy of our implemented algorithms and time required to run them.

Since the shifted images fed into the program is manually shifted using
software, we know how much has the image shifted and thus the true
motion vector is known. The algorithms that produce a motion vector
close to this true motion vector is believed to have high accuracy, otherwise,
they have low accuracy. Determining the accuracy of the algorithm also
facilitates us to debug the program since some of the algorithms are
supposed to have the same accuracy as others. For example, the SEA,
PPNM and PDE algorithms should all have the same accuracy as the
Exhaustive Search algorithm (ESA). If ESA have determined the
optimum motion vector asV

v
, the SEA, PPNM and PDE algorithm should

all produce the same result, with optimum motion vectorV
v

; otherwise, there
must be some bugs in the program. The time used to run each of the
algorithms to determine the motion vector of a fixed previous block is also

cvRectangle()
cvvShowImage()

Motion Vector

Draw square
on image
indicating
matching block

Display the image
frame on window

cvvNamedWindow()Create a new
window

Function to Load Image

LYU0404: Mobile Motion Tracking using Onboard Camera Page 21

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

shown to compare the speed of each algorithm. Since the speed of
algorithm such as the SEA algorithm, depends on the image complexity of
the matching block inside the search window, different locations of the
previous block and different input images with different levels of noise are
needed to obtain a representative computation time requirement for an
algorithm.

The following is an example of a pair of input image.

Figure 3.2 Input Image 1 and previous block marked as red square

Figure 3.2 shows the input image1, while Figure 3.3 shows the input
imag

e2. Image2 is the shifted version of Image1. In our algorithm,
previous block is located at Image1 while current matching block is located
at Image2 inside the search window. The previous block is marked by a
red square in Image1 and the search window is marked by a green square in
Image2. The figure below shows the result of block matching.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 22

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Figure 3.3 Input Image 2 and search window marked as green square

Figure 3.4 Block Matching Result, the best matched marked as blue square

In Figure 3.4, the blue square is the optimum block found by our
algorithm in Image2. This block of image is the closest block to the
previous block in Image1. Since the motion vector is hard to be
guessed from Figure 3.4, another window showing solely the motion
vector is displayed. The wider end of the arrow represents the

LYU0404: Mobile Motion Tracking using Onboard Camera Page 23

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

location of the optimum block while the narrower end represents the
location of the previous block.

Figure 3.5 Motion Vector, pointing toward top right direction

3.4 Real-Time Motion Tracking

3.4.1 Design and Implementation

With OpenCV library, capturing video from web camera or video file
and accessing frames of the video becomes easier. Here is the flow chart
of the OpenCV program for real-time motion tracking part.

Video streamcvCaptureFromCAM(0) /
cvCaptureFromFile (Path)

cvQueryFrame()

Feature Selection &
Block Matching

Image frame

cvRectangle()
cvvShowImage()

Create a new
window

cvvNamedWindow()

Image frameDraw square
on image
indicating
matching block

Motion Vector

Display the image
frame on window

LYU0404: Mobile Motion Tracking using Onboard Camera Page 24

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

3.4.2 Difficulties on Real-time tracking

Since our goal is to real-time track the phone’s motion, it is better to
test real-time motion tracking first in PC using the implemented algorithm.
Real-time motion tracking has many things different from static frames
motion tracking.

Firstly, the noise in a real-time frame is larger than that in a captured

frame. This noise is called photon noise. It is due to the statistical
variance of photons hitting a pixel. For a large number of photon hits per
second N the standard deviation is N . For a smaller number of photon
hits per second, the standard deviation is larger. Since in real-time
tracking exposure time of the CCD camera is short, smaller number of
photon hits per second results. Thus the signal to noise ratio of real-time
frame is lower. Noise in frames is not desirable because it produces
unexpected impact on the SAD of each matching block. Block with
minimum SAD may not be the true optimum block due to the noise.

Secondly, the same object in two consecutive frames may not have the

same geometric shape. It may be geometrically distorted when the camera
moves laterally or rotates. Geometric distortion problem is difficult to be
solved, especially in real-time tracking. The impact of this problem can be
reduced if time between frames is short so that geometric shape of the same
object in the consecutive frame does not have big difference. Therefore,
our algorithms should run as fast as possible.

Figure below is a sequence of images, showing how object is tracked

and displayed in the “Capturing” window.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 25

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

3.4.3 Evaluate the Performance of Real-Time Motion Tracking

 In order to compare the results of different algorithms fairly, input
video must be the same. Therefore, we need to use a web camera to
capture a video first and use this video as a generic input to all algorithms.

The performance of the real-time motion tracking can be evaluated by

observing how tight the matching block is stuck to the object. As the
object moves, the matching block should keep sticking onto the object.
Fail to do so mean either the accuracy of the algorithm is low or the speed
of the algorithm is slow, or both.

The speed of the algorithm can be evaluated by observing the lagging

level of the capturing video. Since new frame is captured only after the
block matching algorithm is finished, speed of the algorithm affect the
frame rate of the video. As faster algorithm finishes earlier, higher frame
rate and lower lagging level result. Observation may sometimes be a

LYU0404: Mobile Motion Tracking using Onboard Camera Page 26

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

subjective measure. A more accurate method is to count how many times
an algorithm has been called within a specified time limit. If an algorithm
is called very frequently, it means its speed is high.

3.4.4 Relationship with Real-Time Camera Motion Tracking

The goal of our project is to implement an algorithm for tracking the
motion of the camera (or say the phone). We have implemented many and
have tested them on our testing platform. The way we evaluate the
performance of the motion tracking algorithm is through tracking the
motion of an object appears in the video. The reasons why we evaluate by
tracking through moving the object instead of moving the camera are:

Firstly, results of evaluation of both methods are the same. It is

because moving an object to the right in front of a web camera is just the
same as moving the camera to the left with the object fixed. Their
movements are relative to each other. Thus, moving camera can easily be
emulated by moving the tracking object. There are no differences to use
which method.

Secondly, since in testing phase we use web camera to test our

algorithm, it is not convenient to move the wire-connected camera
deliberately. After the algorithms are deployed into the Symbian phone, it
would be more convenient to test the algorithm by moving the camera.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 27

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

3.5 Feature Selection

Figure 3.6 Feature Window

The function of Feature window is solely to verify if the feature selection

algorithm is run correctly and the feature block selected by the algorithm is
desirable.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 28

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Chapter 4: Testing Platform on Symbian

4.1 Introduction

After the final algorithm was implemented and tested in window OpenCV
testing platform, we finally built a platform (“MotionTrack” application) on
Symbian and implemented our algorithms on it so that we can further test the
performance of our algorithms on Symbian phone. Other applications can also
be built on top of this program and access the motion tracking result directly.

4.2 User Interface

The application makes use of the standard Symbian OS application
framework comprising the Application, Document, UI and View classes.

At the start up of the application, the following screen is displayed:

Initial application display

LYU0404: Mobile Motion Tracking using Onboard Camera Page 29

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

The Options menu displays two choices:

The Options menu

 Select Algorithm to choose which algorithm to use for tracking the
object’s movement.

 Select Reset to run the feature selection algorithm immediately and
choose the highest rated feature block inside the feature selection
window.

When Algorithm item is selected from the Options menu the

application will show block matching algorithm choices of MotionTrack
program as follows:

The Algorithm menu

 Full Spiral: Exhaustive Search Algorithm with Spiral Scanning
method.

 Partial Spiral: Partial Distortion Elimination Algorithm with Spiral
Scanning method.

 Adaptive Sea: Our final algorithm. The Adaptive Spiral SEA PPNM

LYU0404: Mobile Motion Tracking using Onboard Camera Page 30

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

PDE algorithm.
 Sea: SEA PPNM PDE algorithm with Spiral Scan method.

4.3 Design and Implementation

 The program consists of these files:

File Description
MotionTrack.cpp The DLL entry point
MotionTrackApplication.cpp
MotionTrackApplication.h

An Application that creates a new blank
document and defines the application UID.

MotionTrackDocument.cpp
MotionTrackDocument.h

A Document object that represents the data
model and is used to construct the App Ui.

MotionTrackAppUi.cpp
MotionTrackAppUi.h

An App Ui (Application User interface) object
that handles the commands generated from
menu options.

MotionTrackAppView.cpp
MotionTrackAppView.h

An App View (Application View) object that
displays data on the screen.

MotionTrack.rss A resource file. This describes the menus and
string resources of the application.

MotionTrackVideoEng.cpp
MotionTrackVideoEng.h

An implementation of MCameraObserver
Class, which must be implemented if the
application needs to use the Camera function.

4.3.1 Class Structure

The camera API interface diagram for our MotionTrack application is
shown below:

The required asynchronous virtual methods of the CCamera class are

implemented in the MotionTrack classes.

ECam
(Implementation

Class)

CCamera
(Interface Class)

CMotionTrack
(application)

LYU0404: Mobile Motion Tracking using Onboard Camera Page 31

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

 A class diagram for the MotionTrack application is shown below:

CBase

CCoeAppUiBase

CApaApplication CApaDocument CoeAppUi CCoeControl

AppDllUid() CreateAppUiL() HandleCommandL() Draw()

CEikApplication CapaDocument:CEikDocument CEikAppUi

CreateDocumentL() CreateAppUiL() HandleCommandL()

CAknApplication CAknDocument CAknAppUi

CMotionTrackApplication CMotionTrackDocument

CreateAppUiL() AppDllUid()

CreateDocumentL()

MCameraObserver
CMotionTrackAppUi CMotionTrackAppView

ReserveComplete()
HandleCommandL()

PowerOnComplete()

ViewFinderFrameReady()

ImageReady()
CVideoEngine

FrameBufferReady()

HandleCommandL()

Feature()

Draw()

BlockMatching()

ChangeAlgorithm()

ResetSettings()

LYU0404: Mobile Motion Tracking using Onboard Camera Page 32

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

This diagram shows the classes implemented by MotionTrack
appli

4.3.2 Reserving Camera

 can use the camera, it must reserve the
appli

The UML sequence diagram below shows how the camera reservation

is ma

cation, and which files implement those classes. All the classes are
derived from CBase. CBase has a number of useful features: it initialises
all member data to zero, it has a virtual destructor, and it implements
support for the Symbian OS cleanup stack.

Before the application
cation. The camera reservation includes two phases. First it must

reserve, after the reservation is succeeded, the camera power must be
switched on.

de.

framework CMotionTrackAppUI CMotionTrackAppView CVideoEng CCamera

1. ConstructL()

2. Reserve()

3. ReserveCompleted()

4. PowerOn()

5. PowerOnCompleted(aError)

6. StartViewFinder-

)

7. ViewFinderFrameReady(CFbsBitmap)

BitmapsL(ImageSize

8. DrawImage(CFbsBitmap)

9. Draw() Loop until application is closed

LYU0404: Mobile Motion Tracking using Onboard Camera Page 33

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Function Description

1
AppUi calls the ConstructL method of the class CMotionTrack

CVideoEngine.

2

he CVideoEngine sends the asynchronous reserve request to the T
camera. If the camera is not yet reserved, the camera reserve
session identification is stored.

3

he client will give the reservation answer to the overloaded Camera T
API method ReserveComplete. In the case of success reservation,
the error code is KerrNone. In the other cases the error code is
KerrNoMemory or KerrInUse.

4
ext the CVideoEngine sends the asynchronous power on request to N

the camera.

5

 the power on request was successful, the answer KErrNone arrives

ully performed, the

If
to the PowerOnComplete method. In the other cases the error code
is KErrNoMemory or KerrInUse.
If both reservation and power on are successf
camera is reserved for the application.

6
he CVideoEngine sends the asynchronous start viewfinder request T

StartViewFinderBitmapsL to the camera.

7

 the start command was successful, the camera API sends an If
asynchronous answer to the ViewFinderFrameReady function every
time bitmap frame captured by the camera is ready. If the start
command was fail, the camera API sends the error code
KErrNotSupported, KErrNotReady or KErrNoMemory.

8
he camera client draws the captured image onto the display with the T

AppView method DrawImage.

9
he framework updates the final display when the draw functions of T

the AppUi are complete.

7 - 9
This loop will continue until the user/application sends the
viewfinder the stop command.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 34

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

4.3.3

, application must release the camera. The
camera release has two phases: First the cam

w shows the function how the camera

release is done.

 Releasing Camera

After finished using it
era power must be switched off,

and then the camera can be released.

The UML sequence diagram belo

CVideoEng CCamera

2. Release()

1. PowerOff()

Function Description

1
The AppUi sends the
camera.

synchronous power off request to the

2
The AppUi sends the synchronous release request to the
camera.

4.3.4 Reset Contrast, Brightness and Exposure Mode of camera

are all “Auto”.

The camera default settings for contrast, brightness and exposure mode
 That means the contrast, brightness and exposure level of

the image frame may change from time to time. If either the contrast,
brightness or exposure level of the previous video frame and the video
current frame are different, the motion tracking algorithm will have
significant error. Therefore, we need to fix all these levels and fortunately,
most Symbian phones do support this function, e.g. Nokia 6600.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 35

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

 Function Description

1 method. This creates the App UI object and returns a
The framework calls the Document object's CreateAppUiL

pointer to it.

2
The AppUi uses the ResetSettings method of the class
CVideoEngine to restore the default settings of the camera.

3
The ResetSettings method uses the SetBrightnessL method of
the class CCamera to fix the brightness of the image to
certain value.

4
The ResetSettings method uses the SetContrastL method of
the class CCamera to fix the contrast of the image to certain
value.

5
The ResetSettings method uses the SetExposureL method of
the class CCamera to fix the exposure mode to certain value.

CMotionTrackAppUI CVideoEng CCamera

1. CreateAppUiL()

2. ResetSettings()

Framework

3. SetBrightnessL(Tint)

4. SetContrastL(Tint)

5. SetExposureL(Tint)

May have KErrNotSupport

error for some Symbian

phones

LYU0404: Mobile Motion Tracking using Onboard Camera Page 36

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

4.3.5 Running the Block Matching Algorithm

framework CMotionTrackAppUI CMotionTrackAppView CVideoEng

3. ViewFinderFrameReady(CFbsBitmap)

7. Draw()

Loop until application is closed

1. HandleCommandL(TInt)

2. ChangeAlgorithm(TInt)

4. Feature(CFbsBitmap, TPoint)

5. BlockMatching()

6. DrawImage(CFbsBitmap)

Called when first start /

tracking object out of range

LYU0404: Mobile Motion Tracking using Onboard Camera Page 37

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Function Description

1
The user selects the Algorithm Name item from the Algorithm
menu. The aCommand command arrives through
HandleCommandL to CMotionTrackAppUi module.

2
calls the ChangeAlgorithm method of class The App Ui

CVideoEngine to specify which block matching algorithm to
use for motion tracking.

3
o the The camera API sends an asynchronous answer t

ViewFinderFrameReady function every time bitmap frame
captured by the camera is ready.

4

If motion tracking is the first time to start or the currently

alls out of the range that can

tracking object can’t be tracked anymore, the CVideoEngine
run the feature selection algorithm by calling Feature method.
Object can’t be tracked when it f
be captured by the camera

5
The CVideoEngine run the Block Matching algorithm to track
the motion of feature block found by the feature selection
algorithm.

6
e captured image onto the display with the The camera client draws th

AppView method DrawImage.

7
The framework updates the final display when the draw functio
the AppUi a

ns of
re complete.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 38

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Chapter 5: Translational Motion Tracking

Motion tracking is the process of determining the values of motion vector.
Given a set of images in time which are similar but not identical, motion tracking
identify the motion that has occurred (in 2D) between different images. Motion
tracking techniques are classified into four main groups [17]:

1. gradient techniques
2. pel-recursive techniques
3. block matching techniques
4. frequency-domain techniques

Gradient techniques are typically used for analysis of image sequences.
Pel-recursive techniques are applied in image sequence coding. Frequency-domain
techniques are based on the relationship between transformed coefficient of shifted
image, and they are not widely used for image sequence coding. Finally, block
matching techniques, based on the minimizations of a specified cost functions, are the
most widely used in coding application.
 For motion tracking, gradient techniques (which will be discussed later) and
block-matching techniques are commonly used. In our project, we use the
block-matching techniques for motion tracking.

5.1 Characterization of the motion

Before discussing in more details motion tracking techniques, the notion of
motion should be clarified in the framework of image sequence processing.

Formulation in terms of either instantaneous velocity or displacement is

possible. The instantaneous velocity v of a pixel and its displacement d are
related by a constant ∆t which correspond to the temporal sampling interval.
Consequently, in this case these two quantities are interchangeable. We adapt
the formulation in term of displacement and thus when we talk about motion
vector, we refer to displacement.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 39

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5.2 Block-Matching Motion tracking

These algorithms estimate the amount of motion on a block by block basis,

i.e. for each block in the previous frame, a block from the current frame is found,
that is said to match this block based on a certain criterion.

Current Frame

Motion Vector

5.2.1

T
block
second
second
of the
directi

LYU0404: Mobile M
Previous Frame

Figure 5.1 Block matching

Principle of Block-Matching Motion Tracking

he image is divided into small rectangular blocks. For a selected
in the image, it tries to find a similar block with same size in the
 image. It searches some neighborhood of some given points in the
 image. The assumption is that motion in the frame will cause most

 pixels within a block to move a consistent distance in a consistent
on.

otion Tracking using Onboard Camera Page 40

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Current Frame Previous Frame

(dx,dy)

The motion vector which

corresponds to the best match

Comparison of

blocks

Figure 5.2 Motion tracking: a block is compared against the blocks in the search

area in the current frame.
The motion vector corresponding to the best match is returned.

The basic technique used for block-matching is a search. It is subject

to a tradeoff between accuracy and efficiency. The search space is defined
by the search range parameter, generally referred to as W, as illustrated in
Figure 5.3

One pixel

Figure 5.3 The search area in block-matching motion tracking techniques
The red grid is the center pixel of the block

LYU0404: Mobile Motion Tracking using Onboard Camera Page 41

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

The value W represents the distance between center block, and the
edge of the search space. W defines the numbers of evaluations of the cost
functions that would occur in only one direction. In the rest of the report,
we will refer to the number of calculations of the cost function as the
number of weights.

Thus, the search space can be defined in terms of W as (2W+1) x

(2W+1). For example, the search ranges parameter of W = 6 would
produce (12+1)2 = 169 weights. Each of these weights would be the result
of the application of a cost function, and the best one is chosen. The
location of the weight chosen as the best match is the motion vector.

The complexity of the motion tracking techniques can then be defined
by the three main characteristics: (1) search algorithm, (2) cost function,
and (3) search range parameter W.

For search algorithm, many fast algorithms have been developed that

they gain their efficiency by looking at only a fraction of the weights (will
be discussed later).

For the cost function, there are a number of cost functions to evaluate

the "goodness" of a match and some of them are:

1. Mean Absolute Difference
2. Mean Squared Difference
3. Pel Difference Classification (PDC)

Some of these criteria are simple to evaluate, while others are more

involved. Different kinds of block-matching algorithms use different
criteria for comparison of blocks. The block-matching algorithms obtain
the motion vector by minimizing the cost functions.

5.2.2 Cost Functions

The cost function is a mapping from pixel block differences to the real
numbers. In other words, cost functions are used to estimate the
differences or similarities between any two given blocks. The smaller the
values returned by the cost functions, the more similar the two pixel blocks

LYU0404: Mobile Motion Tracking using Onboard Camera Page 42

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

are to each other. Theses cost functions have the second largest effect on
the complexity of motion tracking. The more intensive the function, the
longer the search will take. Different cost functions have different
accuracy and time complexity.

The Mean Absolute Difference (MAD)

|),(),(|1),(
2/

2/

2/

2/
dyjdxiGjiF

MN
dydxMAD

n

ni

m

mj
++−= ∑ ∑

−= −=

Where:

F(i,j) is the (MxN) block in the previous frame

G(I,j) is the reference (MxN) block in current frame and

(dx, dy) is the search location motion vector

The MAD is commonly used because of its simplicity.

The Mean Squared Difference (MSD)

2
2/

2/

2/

2/
)],(),([1),(dyjdxiGjiF

MN
dydxMSD

n

ni

m

mj
++−= ∑ ∑

−= −=

The multiplications of MSD are much more computationally intense
than MAD. However, the square on the difference term causes the
function to be more complex and accurate than MAD.

The Pixel Difference Classification (PDC)

In order to reduce the computational complexity of MSD, MAD, and

CCF functions, Gharavi and Mills have proposed a simple block matching
criterion, called Pixel Difference Classification [18]. The PDC functions
is defines as:

∑∑=
i j

jidydxTdydxPDC),,,(),(

LYU0404: Mobile Motion Tracking using Onboard Camera Page 43

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

for (dx,dy) = {-W,W}.

Then, T(dx, dy, i, j) is the binary = 1 if tdyjdxiGjiF ≤++−),(),(
 = 0 otherwise

where t is the predefined threshold value.

In this way, each pixel in a block is classified as either a matching
pixel (T=1), or a mismatching pixel (T=0). The block that maximizes the
PDC function is selected as the best matched block.

5.2.3 The Exhaustive Search Algorithm (SEA)

The most obvious searching algorithm for finding the best possible
weights in the search area is the exhaustive search, or full search. All
possible displacements in the search area are evaluated using the
block-matching cost function. Therefore, no specialized algorithm is
required. It is just a two-dimensional search.

W

Figure 5.4 The exhaustive search evaluates the cost function in all locations

in the search area

The advantage of the exhaustive search is that if we evaluate all the
possible position in the search area, we can be guaranteed that we will find
the absolute minimum.

The number of search locations to be evaluated by the exhaustive

search is directly proportional to the square of the search range W. The
total number of search locations in the search area = (2W+1)2. Therefore

LYU0404: Mobile Motion Tracking using Onboard Camera Page 44

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

the exhaustive search algorithm has complexity of O(W2). As we can see,
the size of W is very important to the speed of the exhaustive search
algorithm.

Although, this algorithm in terms of accuracy and the simplicity of the

algorithm, it is very computationally intensive. Fast exhaustive search
algorithms were developed that they achieve the same quality but with less
computationally intensive. They are The Successive Elimination
Algorithm (SEA) proposed by W.Li and E.Salari [11] and Progressive
Partial Norm Matching (PPNM). Fast exhaustive search algorithm will be
discussed in detail in Section 5.2.5

5.2.4 Fast Motion tracking Algorithms

The complexity of motion tracking is affected by the search algorithm
and the complexity of the selected cost function. Apart from the
exhaustive search algorithm which evaluates all the possible locations in a
search area, there exists fast motion tracking algorithms. In the case of
fast motion tracking, only a subset of all the possible locations is evaluated.

All fast searching algorithms are based on an assumption that the

matching error monotonically increases as the search position moves away
from the optimal motion vector. That means the further we move away
from the best position, the worst the match, and thus the higher the weight
returned by the cost function. Hence, we would expect that a bowl would
form around the minimum, as shown in figure 5.5 [19]

Figure 5.5 Weights generated by the cost function increase monotonically
from the global minimum

If we assume that the inside of the bowl is a very smooth surface, we

will reach the minimum weight by following the direction of decreasing

LYU0404: Mobile Motion Tracking using Onboard Camera Page 45

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

weights. From everyday experience, we know that if we place a marble at
the edge of a bowl, it will roll to the center. In the same way, if we look
for a minimum weight adjacent to our starting position and then the
minimum weight adjacent to that, we will in effect be directing our marble
to the center of the bowl. In other words if we follow the direction of
decreasing weights, we will eventually find the minimum weight. It is that
assumption, that of a smooth bowl, which is the defining characteristic of
the fast search algorithms. Regardless of their implementation, all of the
fast search algorithms try to find the minimum position of the bowl by
following the gradient downward.

Fast Search algorithms:

1. Three-Step Search algorithm
2. Diamond Search algorithm
3. Conjugate Direction Search

5.2.4.1 Three-Step Search Algorithm

The three-step search has been proposed by Koga et al [20] and
implemented by Lee et al. [21]. An example of the three-step search
algorithm is shown in figure 5.6.

Step 1

The Three-Step Search begins by calculating the weight at the center of

the search area. This is then set to the best match so far. A starting step
size is defined as the search range divided by two: W/2. Using this step
size, the 8 positions surrounding the center are searched: (0, W/2), (0,-W/2),
(W/2, 0), (-W/2, 0), (W/2, W/2), (W/2,-W/2), (-W/2, W/2), and (-W/2,-W/2).
The cost function of these eight locations is computed, and the resulting
weights are compared to each other. The location with the lowest weight
is chosen as best match and this location will become the center position of
the next step. In the example of Figure 3.1, the current best location is
(-4,-4).

LYU0404: Mobile Motion Tracking using Onboard Camera Page 46

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Figure 5.6 An example of the three-step search algorithm

Step 2

The step size is further divided by 2. The cost function is applied to
the new eight surrounding locations around the current best match in the
horizontal, vertical, and diagonal directions. Again, among these 9 points
(the new eight and the current best match), the location which give the
lowest value of cost function is chosen. In the example of Figure 3.1, the
new best location from step 2 becomes (-6,4).

Step 3

The process of calculating the eight positions around the current best
location continues until the step size = 1. In the example of Figure 3.1, the
last step gives the best location (-7,5), which is the obtained motion vector.

5.2.4.2 Time Complexity

As the three-step search algorithm continuously divides the step size
by two, and in each iteration, 8 points are calculated, the total complexity
for the search is O(8logW). That is O(logW).

LYU0404: Mobile Motion Tracking using Onboard Camera Page 47

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5.2.4.3 Problem of fast searching algorithms

Since all fast-search algorithms based on the assumption “The weight
function in both the x and y directions increases monotonically as we move
away from the minimum weight in the search area.”. However, this
assumption is difficult to be valid. Consider the bowl example in figure
5.5, if the “bowl” is not smooth and it contains local minimum. Then the
fast-search algorithm will not found a global minimal, instead it can only
obtain a local minimal.

Apart from this, the choice of origin of the searching window will also
affect the accuracy. If the origin is contained within the walls of the
“bowl”, then by taking one step at a time, we should reach the center of the
bowl, even if it is somewhat uneven. However, if the origin is located at
the rim of the bowl, then the global minimum will not be found as
illustrated in figure 5.6.

 Correct Weight never
found. Local Minimum
found instead.

Figure 5.6 Bowl with extended rim illustrating the problem of selecting a
wrong origin

LYU0404: Mobile Motion Tracking using Onboard Camera Page 48

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5.2.4.4 Conclusion

In our project, we want to motion tracking to be as accurate as possible,
so we decided not to use the fast-search algorithms.

5.2.5 Fast Exhaustive Search Algorithm

Since we want the motion tracking to be very accurate, we decided to

use the exhaustive search. However, apart from accuracy, the speed is also
our major concern, so there is a need to improve the speed of Exhaustive
Search. W.Li and E.Salari have proposed a fast exhaustive search
algorithm. That is the SEA algorithm.

5.2.5.1 The Successive Elimination Algorithm (SEA)

Before we talk about the principle of SEA, we need to define some

terms first. The sum of absolute difference (SAD) is the most widely used
matching criteria; the SAD of two NxN blocks X and Y is defined as

∑∑
= =

−=
N

i

N

j
jiYjiXyxSAD

1 1
|),(),(|),(

The SEA proposed in [11] adopted the well-known Minkowski

inequality:

 (2) |)(||)(||)()(| 22112121 yxyxyyxx −+−≤+−+

To derive the following inequality:

 = == = 1 11 1 i ji j

=≤−∑∑∑∑),(|),(),(| YXSADjiYjiX
N NN N

|),(||||||||||| jiYXYX −≤−

Where:

X: reference block in previous frame
Y: candidate block in current frame

 ||X|| = ∑∑
= =

N

i

N

j
jiX

1 1
),(

LYU0404: Mobile Motion Tracking using Onboard Camera Page 49

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

That means if the difference between the block sum (summing all
pixels value inside a block) of candidate Z and the block sum of reference
block X is greater than the minimum SAD(X,Y), block Z must not be the
best match, since its SAD must be greater than the minimum SAD(X,Y)
based on the inequality (3).

As the calculation of block sum requires only N2-1 additions and 1

subtraction for a NxN block while calculation of SAD requires N2-1
additions and N2 subtraction. Thus, calculating the block sum difference is
much faster than calculating the SAD.

Then, by calculating the block sum difference first, we can eliminate

many candidates block before the calculation of SAD. Therefore, the
speed of the block matching algorithm is increased.

5.2.5.2 PPNM (Progressive Partial Norm Matching)

After the SEA has been proposed, another algorithm is proposed to
improve the speed of exhaustive search algorithm. That is the PPNM
which is commonly used in video coding standard H.264.

The concept of PPNM is very similar to SEA. PPNM also makes use

of the Minkowski inequality to derive a matching criterion. The criterion
further eliminates invalid candidate blocks before calculating the SAD of
the blocks.

 Based on the Minkowski inequality,

2121

22112121)()()()(||||||||

AAAAfrom

YXYXYYXXYX

+≤+

−+−≤+−+=−

1xN Norm
orm1x4 N

M M MxN
Nor

M

 N N N

Figure 5.7 Different sizes of sub-blocks

LYU0404: Mobile Motion Tracking using Onboard Camera Page 50

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

From the above inequality, we can derive the following inequality,

),(
min

4141 YXSADYXYX xx =−>− ∑∑

In the example of Figure 5.7 , PPNM calculates the sum of difference
of the 1xN norms between two block X and Z. If the sum is larger than the
minimum SAD(X,Y), the SAD(X,Z) must be greater than the SAD(X,Y).

PPNM further eliminates the invalid candidate blocks with the expense

of higher computation load than SEA.

In conclusion, by using the following inequality, many invalid
candidate blocks are eliminated. Besides, there exists fast method for
calculation of block sum (which will be discussed later).Thus further
increases the speed of the exhaustive search.

44344214444 34444 2144 344 21
SADPNSA

jiYXYXYXjiYX),(),(2211

SEA

−≤−+−≤−

5.3 Fast Calculation of Block Sum

5.3.1 Objective

In SEA algorithm, we need to calculate the block sum in the current
frame in order to compute this matching criterion.

),(|),(),(|
1 11 1

YXSADjiYjiX
N

i

N

j

N

i

N

j

>−∑∑∑∑
= == =

∑∑
= =

N

i

N

j
jiY

1 1
),(term is the sum of pixel values in the previous block.

Since there is just one previous block, this block sum can be reused every
time the matching criterion is computed.

∑∑
= =

N

i

N

j
jiX

1 1
),(term is the sum of pixel values in a block in the current

frame. The simplest way to calculate this term is that for each block, we

LYU0404: Mobile Motion Tracking using Onboard Camera Page 51

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

calculate the sum of pixel values inside that block. This method is
simplest yet inefficient. Since blocks inside the search window are
overlapping to each other, sum of the overlapped pixels is redundant and
wasting time. There is a better way to calculate the sum without adding
the pixels redundantly.

5.3.2 Methodology

Figure 5.8

Consider Figure 5.8. There are two blocks, the first block has pixel

1-9, and the second block is the neighbor of the first block, it has pixel 4-12.
The two blocks are overlapping with pixel 4-9 common to each other.
First block sum is calculated by adding pixel 1-9. Second block sum can
be calculated by adding pixel 4-12, but it is actually redundant to add pixel
4-9 as the sum of these pixels have already be calculated in the first block
sum. This sum process involves 8 addition operations. A more efficient
method is to make use of the first block sum. First block sum is the sum
of pixel 1-9. If we subtract pixel 1-3 from the first block sum and add
pixel 10-12 to it, we yield the second block involving only 6 addition and
subtraction operations. Again, subtracting pixel 1-3 one by one is not
efficient enough since sum of pixel 1-3 has also been calculated in first
block sum. To further reduce the operation required, we can store the
pixels in column with the expense of using larger memory storage. The
increase in speed is best observed when the block size is large, so we use a
larger block size as an example.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 52

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Figure 5.9

Consider Figure 5.9. The summation of the column i of pixels are
stored in the first column and the sum is denoted by Norm[i] where i = [0,8].
To calculate norm[0] to norm[5], 29 addition and subtraction operations are
required. First block sum can be calculated by adding norm[0] to norm[4],
involving 4 more additions. Second block sum can be calculated by
adding norm[5] and subtracting norm[0] from the first block sum, involving
2 more addition and subtraction operations only. In total, calculation of
the first 2 block sum involves 35 addition and subtraction operations. If
simplest method is used, 58 (= 29 x 2) addition and subtraction operations
are needed. Thus the fast method requires 23 operations less.
Calculation of the remaining block sums in the same row follows the same
step as that in calculating the second block sum. To calculate the block
sum of the second row, the sum we have calculated in the first row can also
be used.

Figure 5.10

Consider Figure 5.10. To calculate the second row block sum, each
norm is added one pixel below and one pixel above that column. Then the
process used to calculate first row block sum is repeated in the second row,
then third row, until all block sums are calculated.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 53

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5.3.3 Advantage to SEA and PPNM

As discussed above, fast calculation method involves less computation
operations than the simplest method. Thus the computation time required
to calculate block sum is reduced and it greatly improve the speed of SEA
algorithm.

Apart from improving the speed of SEA algorithm, it can also greatly

improve the speed of PPNM algorithm. In PPNM algorithm, the following
matching criterion is needed to be computed.

),(|),(),(|
11 1

YXSADjiYjiX
N

j

N

i

N

j

>−∑∑ ∑
== =

∑
=

N

j
jiY

1
),(term, again, need to be calculated once and then reuse every

time the matching criterion is computed.

∑
=

N

j
jiX

1
),(term is the sum of pixel values in one of the column in a

block. This sum is exactly the norm of the block we calculated during the
fast calculation of block sum. Therefore, if we keep the norm value in

form of a 2D array, we can use that value as the term and thus

less computation is required to compute the sum of pixel values in that
column again.

∑
=

N

j
jiX

1
),(

5.3.4 Disadvantage

The only disadvantage of fast calculation of block sum method is that
it increases the memory storage requirement. To facilitate the SEA
algorithm, a (DY+DY+1) x (DX+DX+1) large block sum array is required.
To facilitate the PPNM algorithm, another (DY+DY+1) x
(DX+DX+BW+BW+1) large norm array is required. However, this
increase in memory storage requirement is not significant when the search
window size and the block size are both small.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 54

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5.4 Summary

The SEA and PPNM form a decision tree that eliminates about 50%-70% of
invalid candidate blocks. The speed of the exhaustive full search is increased
by nearly 3 times!

updateupdate

….

SAD SAD SAD

….

SAD….

Search range=2W+1

SEA

Tree pruning decision

PNSA

The smallest SAD

Total No of candidate Block: (2w+1)2

SEA < PNSA < SAD

SEA < PNSA < SAD

Probability of eliminating invalid candidate
block:

Computation Load:

5.5 The Motion tracking Hypothesis

The previous chapter is dedicated to the current algorithms designed for
motion tracking, while this chapter analyzes the underlying theory of motion
tracking. We recall that motion tracking is the process used to discover the
closest matching block, in the search area of the reference frame.

5.5.1 The Motion tracking Assumptions

If we attempt to describe the pitch of the motion tracking, we seem to
generate three distinct concepts. Following definition of each of these
ideas, we will expand on them to extract their implications.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 55

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5.5.2 Proximity Translation

The first of the concepts is a consideration of the physical properties of
motion video sequences. Motion is communicated by translation of a
group of pixels which resides in close physical proximity to one another.
We refer to this definition as the Proximity Translation Hypothesis, and it
forms the basis for block matching algorithms.

Figure 5.11 illustrating the proximity translation hypothesis. Motion is
communicated by the translation of a group of pixels.

Very often, large solid objects exist in their entirety and their

components move in a predictable fashion. Namely, all parts of the bottle
will be moving as the same rate since they are all attached, as illustrated in
Figure 5.11.

5.5.3 Intensity Stability

In order for block matching to work, we assume the intensity of objects
remain unchanged during translational motion. Of course, the same
argument can be made for inanimate objects appearing in the video
sequence. It is common that the intensity of objects changes only slightly
for a small translational movement.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 56

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Figure 5.12 illustrating the intensity stability hypothesis.

Each region of pixels translates with little change in intensity or relative position.

5.5.4 Linear Motion Hypothesis

In most of the cases, we can assume that motion can be considered as
relatively linear over short period of time. This means that an object will
have a smooth continuous motion as it moves. It is quite believable that a
driver would choose to drive continuously rather than applying the gas and
brake in quick succession. This means that the car has a smooth
continuous motion as it moves. The implication this produces is that if
motion occurred at the rate of two pixels per frame between frames one and
two, it is not unreasonable to assume that a motion of two pixels per frame
may continue through frames two and three, three and four, etc. Though
this may not last for extremely long in terms of seconds, linear motion may
last over a period of several frames.

Base on the linear Motion hypothesis, we invent a new method

“Adaptive Search Window” which increases the speed of the block
matching algorithm.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 57

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5.6 Optical Flow

Apart from block matching, there is another method for motion tracking --
Optical Flow.

In this chapter, we will discuss briefly how optical flow work and explain
why we choose block-matching algorithm instead of optical flow for motion.

5.6.1 Overview of Optical Flow

Optical Flow is defined as the apparent motion of brightness pattern in
an image. That is the velocity field of every pixel. This is illustrated by
the Figure 5.13 below. The sphere is rotating from left to right, generating the
optical flow field shown in the center.

Figure 5.13 Illustration of Optical Flow

Optical flow is very similar to motion field, but it is not equal to
motion field. Ideally, it will be the same as the motion field, but this is not
always the case.

5.6.2 Motion Fields

A velocity vector is associated to each image point, and a collection of
such velocity vectors is a 2D motion field. It tells us how the position of
the image of the corresponding scene point changes over time. It is the
projection of 3-D velocity field onto image plane. In figure 5.11, a point
po on a object moves with a velocity vo, then the image point pi can
assigned a vector vi to indicate its movement on the image plane

LYU0404: Mobile Motion Tracking using Onboard Camera Page 58

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Figure 5.14 Object motion creates a motion field on the 2D image plane

5.6.3 Difference between Optical Flow and Motion Field

The difference between Optical Flow and Motion Field can be
illustrated as follow. Consider a perfectly uniform sphere. There will be
some shadow on the surface. When the sphere rotates, such shading
pattern won’t move at all. In this case, the apparent motion of the
brightness pattern is zero, thus the optical flow is zero, but motion field is
not zero.

Figure 5.15 Figure 5.16

In figure 5.15, the image intensity of the object changes due to the
moving light source, so there is optical flow. However, the scene objects
do not move, so there is no motion field. For figure 5.16, the scene object
moves, so there is motion field. However, the image intensity does not
change, so there is no optical flow.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 59

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5.6.4 Optical flow computation

There are three approaches to calculate the optical flow: the
gradient-based approach, the correlation-based approach, or the
spatiotemporal energy-approach. In this session, we will briefly explain
the principle by using gradient-based approach.

One of the most important feature of optical flow is that it can be
calculated simply, using local information. Let I (x, y, t) be the brightness of
image, which changes in time to provide an image sequence. Firstly, there
are some assumptions before deriving the formula of optical flow. The
assumptions are
1. The change of brightness of a point to the motion of the brightness

pattern is constant (brightness constancy assumption)
2. Nearby points in the image plane move in a similar manner (velocity

smoothness constraint).

From the first assumption, we can obtain:

I(x,y,t) = I(x+u,y+v,t+dt) …….(1)

Where
I(x,y,t) is the brightness of the image at location (x,y) and time t.

(u,v) is the motion field at location (x,y) and time t+dt

From equation (1), it means the change of intensity w.r.t is zero, so we
can express it in another way:

0),,(
=

dt
tyxdI

By chain rule, it can be shown that

LYU0404: Mobile Motion Tracking using Onboard Camera Page 60

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

)2.(..........0

0

0

0),,(

=++

=
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

=

ftfyvfxu

t
Iv

y
Iu

x
I

t
I

dt
dy

y
I

dt
dx

x
I

dt
tyxdI

where

fx =
x
I
∂
∂ ,fy =

y
I
∂
∂ and ft =

t
I
∂
∂

From equation (2), it indicates that the velocity (u,v) of a point must lie

on a line perpendicular to the vector (fx,fy) as illustrated as figure 5.17.

v
(fx,fy) fxu+fyv+ft=0

u

Figure 5.17 geometric explanation of equation (2)

Thus, the local constraints provide one linear equation in the variables
u and v. As a result, the velocity (u,v) cannot be determined locally
without applying additional constraints as illustrated by figure 5.18

LYU0404: Mobile Motion Tracking using Onboard Camera Page 61

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Figure 5.18 aperture problem

As we can see from the above figure, we know that the green point
should move to a point on the line, but we don’t know which one. This is
known as aperture problem.

If we want to find a unique solution for equation (2), we need to have

another constraint, which is the second assumption -- The neighboring
pixels in the image should have similar optical flow. Therefore, u and v
need to have low variation with its neighboring pixels, so we set (u-uav) = 0
and (v-vav) = 0 where uav and vav are the average of neighboring pixels’
velocity.

In order to find a (u,v) that is as close as possible to the linear equation

(2) and also is locally smooth, we can use the Lagrange multipliers to
minimize the flow error

E2(x,y) = (fxu + fyv + ft)2 + λ 2[(u- uav)2 + (v- vav)2]

Differentiating this equation w.r.t u and v provides equations for the

LYU0404: Mobile Motion Tracking using Onboard Camera Page 62

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

change in error, which must be zero for minimum.

Thus, by differentiating the flow error w.r.t u and v, this gives:

txavyxx ffuvffuf −=++ 222)(λλ

tyavyyx ffvvfuff −=++ 222)(λλ

Solving the two equations gives

D
Pfxuu av −= ……(5.34)

D
Pfyvv av −= …….(5.35)

where

 ftfyvfxuP avav ++=

 222 fyfxD ++= λ

We can solve equation 5.34 and 5.35 iteratively by using Gauss-Seidel

method.
Algorithm 3.4: Optical Flow [Horn and Schunck 1980]
k=0;
Initialize all uk and vk to zero.
Until decrease in flow error is negligible, do

D
Pfxuu k

av
k −= −1 …………… (5.36)

D
Pfyvv k

av
k −= −1 …………… (5.37)

The derivates of brightness fx,fy and ft can be obtained from a

sequence of frames

LYU0404: Mobile Motion Tracking using Onboard Camera Page 63

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5.6.5 Comparison between optical flow and block-matching

In term of speed, optical flow is usually faster than block-matching,

because the motion vector is calculated by the formulas 4.44 and 4.45. It
can be solved iteratively and usually, the number of iteration is smaller than
the number of candidates block that need to be evaluated for
block-matching.

In term of stability, block-matching is better than optical flow.

Stability here means that for block-matching, it is more resistant to lighting
effect (including shadows, reflections, and highlights) while the optical flow
is more susceptible to lighting effect. This is because optical flow is
derived based on the assumption that the intensity of a pixel in the pattern is
constant. Although block-matching is also based on the intensity stability
assumption, the effects of lighting have less influence on block-matching
algorithm. It is because block-matching algorithm considers a block of
pixels, thus it is less susceptible to the lighting effects. Therefore, optical
flow requires a stable environment to work fine.

In term of type of movement, optical flow can only measure small

movement while block-matching can also measure large movement,
depending on the search range. It is because for the brightness constancy
assumption I(x,y,t) = I(x+u,y+v,t+dt) to be true, dt usually is small.
Therefore, for a large movement, usually this assumption will not hold.
Comparing to optical flow, block-matching is less susceptible to lighting
effect, so it can measure large movement.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 64

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Finally, we summarize the differences between the optical flow and
block-matching by table 5.16

 Optical Flow Block-Matching
Speed Faster Slower
Stability Less stable (affected by

lighting effect)
More stable (less
affected by lighting
effect)

Movement
measure

Small movement Small and Large
movement

Floating point
operations

Yes No

Table 5.16 Differences between optical flow and block-matching

5.6.6 Conclusion

We decide to use block matching instead of Optical Flow, because in
the calculation of Optical Flow, it involves a lot of floating point operations.
Recall from chapter 2 that Symbian phones don’t not have dedicated
floating point unit.

Moreover, Optical Flow is affected more by the effects of lighting

while the block-matching is more resistant to these effects. As we want
the motion tracking to be worked in different environment, we choose
block-matching for our project instead of optical flow.

5.7 Partial Distortion Elimination

Unlike fast search algorithm, which only examine a few candidate blocks in
order to determine whether it is the optimum block, full search algorithm ensure
all candidate blocks in the current frame will be examined and the block with
highest SAD inside the search window will be selected. However, there exist
some fast full search algorithms which can search for the highest SAD block
faster yet still ensure all blocks are examined. One of these algorithms is the
partial distortion elimination (PDE) algorithm, which is excellent in removing
unnecessary computations efficiently. The PDE technique has been widely

LYU0404: Mobile Motion Tracking using Onboard Camera Page 65

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

used to reduce the computational load in full search algorithm.

5.7.1 Methodology

PDE algorithm improves the speed of searching in shortening the
calculation of Square of Absolute Difference (SAD) between each currently
matching block with the previous block. Its main objective is to use the
partial sum of matching distortion to eliminate impossible candidates before
complete calculation of SAD in a matching block. That is, if an
intermediate sum of the matching distortion is larger than the minimum
value of the SAD at that time, the remaining computation for the SAD is
abandoned. The SAD of the matching block is calculated by:

∑∑
= =

≤++−=
N

i

N

j

WyxwhereyjxiYjiXyxSAD
1 1

|,||),(),(|),(

The kth partial sum of matching distortion is calculated by:

∑∑
= =

≤=++−=
k

i

N

j

WyxandNkwhereyjxiYjiXyxPSAD
1 1

|,|,...,3,2,1|),(),(|),(

W represents the size of search window and N the matching block size.

Usually, the SAD of a block is obtained by adding the pixels inside the
block in row by row basic. We can check if the partial sum of matching
distortion exceeds the current minimum SAD after each row is added to the
PSAD. Remaining calculation will be quit if PSAD(x, y) > SAD(x, y) and
this impossible candidate block is eliminated from consideration.

Checking PSAD(x, y) > SAD(x, y) can be done every time after a pixel

is added to the PSAD(x, y) or after a row of pixels is added. The latter
scheme is preferred because the code overhead of checking PSAD(x, y) >
SAD(x, y) is too large. If the block width and block height is N, the
former scheme costs at most N2 – N comparison operations more than the
latter scheme while the former scheme can at most stop the remaining
calculation 3N addition operations earlier than the latter scheme. For large
N, N2 – N is much larger than 3N. Since the cost outweighs the advantage,
the latter scheme is used instead.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 66

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5.7.2 Result

From the experimental result we have done on OpenCV program, PDE
algorithm is faster than exhaustive search algorithm (ESA) by 3 times on
average. PDE algorithm does not increase the memory storage
requirement, does not involve complex operation and does not increase
code overhead much, yet it can effectively remove the impossible candidate
blocks during calculation of SAD. Any algorithm that requires the
calculation of SAD can incorporate with PDE to improve its speed in
matching optimum block. And because this algorithm just affects the
calculation of SAD, it is compatible with other type of algorithms, such as
SEA and PPNM.

5.7.3 Possible Improvement

The speed of PDE algorithm depends on how fast computation of SAD
is stopped according to the partial sum of SAD. Kim, Byun and Ahn [1]
proposed some methods which can further reduce computations with the
same accuracy as that of conventional full search method. They
mathematically derived the relationship between spatial complexity of the
previous block and the matching distortion. In the derivation, they showed
that the matching distortion between the current blocks and previous block
is proportional to the image complexity of the previous block. That is,
larger SAD can be obtained by first calculating the matching distortions of
the image area with large gradient magnitudes, that is, more complex area.
Through this, unnecessary computations can further be removed. They
proposed to use adaptive sequential matching start with the left, right, top or
bottom and row vector based matching in which matching order is
determined by the image complexity. The PDE algorithm with adaptive
sequential matching and row vector based scan can be expressed as follows:

Figure from reference paper [1]

LYU0404: Mobile Motion Tracking using Onboard Camera Page 67

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Experimental result from reference paper [1]

The above table is the experimental result done by Kim, Byun and Ahn.

The sequential, dither and complexity algorithms are the modified PDE
algorithms. Original PDE algorithm has about 30% computation reduction
over the original FS algorithm. The sequential and dither PDE algorithms
have a bit better reduction than the original PDE algorithm while the
complexity PDE algorithm shows greater improvement in reduction.
However, the code overhead of using complexity is high and the
implementation is complex, the actual improvement of speed may be not so
high. We haven’t incorporated this kind of adaptive matching scan
method into our algorithm because of its complexity in implementing, but
later we may try improving PDE algorithm using this method.

5.8 Adaptive Search Window

In our application, it is very useful to carry history of the motions. Our
goal is to track the motion of the camera. If we reasonably assumed the things
captured by the camera do not move, when the camera moves, all these things
move together with about the same displacement. Therefore, the whole frame

LYU0404: Mobile Motion Tracking using Onboard Camera Page 68

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

can be regarded as one object. With this assumption, block at any position in
the previous frame actually tracks the motion of the same object. Thus, history
of motions is always useful to any candidate block.

Conventionally, search window is defined as a rectangle with the same

center as block in previous frame, extended by W pixels in both directions.
This definition is reasonable but it can be improved based on the history of
motions. With the history, search window can be newly defined as a rectangle
with its center being predicted from the previous motion vector and the previous
block position.

5.8.1 Methodology

DLPLP
vvv

+−= ')1(… (5.38)

P: Predicted Displacement of object

P’: Previous Predicted Displacement of object

L: Learning Factor, range is [0.5, 1.0]

D: Previous Displacement of object

The next displacement of object is predicted using exponential
averaging over previous displacement and previous predicted displacement
of the object. The previous predicted displacement is involved to predict a
new displacement in order to reduce the effect of detection error which may
exist in the previous displacement returned from the algorithm. That is, if
the object is detected to be moving to the left for a while, a sudden detection
telling that it is moving up will not cause the search window to shift upward
too much because it is usually due to detection error. But if there is a
second detection telling that it is still moving up, the search window will
shift upward much more. It is because the past previous displacement and
previous displacement affect the predicted displacement seriously.
Therefore, if the frames captured by a camera are noisy, the learning factor
should be set to a low value, say 0.5, so that a detection error will not affect
the search window much. If the frames are not so noisy, the learning
factor can be set higher, say even 1.0, so that predicted displacement solely
depends on the previous displacement.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 69

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5.8.2 Comparison with conventional method

Figure 5.19

To evaluate the performance of the adaptive search window method,
we used web camera to track the motion of an object and plot a graph
(Figure 5.19) showing its x-axis velocity against time. The data points are
collected when we run the Adaptive Spiral SEA PPNM PDE SAD
Algorithm. The velocity means how many pixels the object has moved,
positive value means it is moving to the right direction, negative value
means to the left. The algorithm is run every second, thus the velocity just
equals the magnitude of the x-component of the motion vector. The object
is moving to the left and right periodically, thus the curve move up and
down.
 The search window size is 41 x 41 and the magnitude of the motion is
40 pixels/s, so all the true optimum points fall within the conventional
search window. In this case, although the conventional search window
method is possible to find the true optimum point on every run, the speed of
the algorithm will not be high, it is because the average magnitude of the
object’s velocity is high, which means the distance between the optimum
point and the initial search center is long and therefore minimum SAD is
found only after many computations.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 70

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Considering the Figure 5.19, if the search window size is set to 20 x 20,

conventional search window method will definitely can’t find some true
optimum points on some runs of algorithm since the true optimum point
falls out of the search window at some points, say at time=80s. For the
same search window size, the adaptive search window method does not
have this error.

Figure 5.20

The displacement of the object is predicted using the equation (5.38)
with L=0.5 during the motion tracking, the graph of predicted velocity
(=displacement) over time is plotted on the Figure 5.19 to give Figure 5.20.
The two curves look similar and difficult to analyze, thus another graph
showing the difference between the two curves is plotted.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 71

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Figure 5.21

 Figure 5.21 is a graph showing the relative velocity between predicted
velocity and actual velocity over time. The maximum magnitude of the
curve is below 20 pixels per second. The true optimum point always falls
into the search window and thus no serious detection error would result
even if the search window size is 20 x 20. Moreover, the average
magnitude of the object’s velocity is relatively lower, which means the
distance between the optimum point and the initial search center is shorter
and thus less computation is required.

 Figure 5.22 is a graph showing the relative velocity over time using
different learning factor. Since noise in the image captured by web camera
is not too high, large learning factor generally gives better prediction of
motion. From the graph, point curve with learning factor = 1.0 is always
the closest one when compared with other curve with learning factor = 0.5
and 0.8. Thus, on PC, learning factor = 1.0 can be used, while on mobile,
since the noise in the image captured by the camera on mobile phone is
relatively higher, a bit lower learning factor can be used.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 72

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Figure 5.22

5.8.3 Constraint of each method

Accuracies of both methods are motion dependent. Based on the size
of the search window, we can represent a constraint on the velocity of object
by an equation. Unsatisfying this constraint leads to detection error. For
the conventional search window method, the constraint for the object’s
velocity can be represented by:

| Velocity | < W pixels/s … (5.39)

Where W is half of the search window width/height provided that the algorithm run

every second.

 For the adaptive search window method, the constraint becomes:

|Relative Velocity | < W pixels/s or | Acceleration | < W pixels/s2 … (5.40)

LYU0404: Mobile Motion Tracking using Onboard Camera Page 73

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5.8.4 Analysis

1. When velocity of object is low, both the conventional and adaptive
methods will not have detection error.

2. When velocity is high, conventional method can’t ensure the result is
the true optimum point while adaptive method can ensure provided that
the object is not accelerating fast at the same time.

3. When acceleration is high, conventional method will not have
detection error if the velocity can be kept lower than W pixels/s while
adaptive method will have detection error. But conventional method
will also have detection error if acceleration is higher than 2W
pixels/s2 since final velocity would definitely be higher than W pixels/s.
Thus, conventional method can’t ensure the result is the true optimum
point when acceleration is high, either.

The most important issue is how these constraints affect users’

movements. Considering a user is holding a camera-equipped mobile
phone and moving it. If conventional method is used, we concern
constraint (5.39), which means user must move slow enough in order to
ensure accurate motion detection. This is not desirable to user and very
inconvenient to use. If adaptive method is used, user can move as fast as
he wants but the acceleration must not be high, which is relatively easier to
achieve and more desirable. If user does not shake the phone rapidly,
natural motion of hand normally does not have too high acceleration. In
order word, adaptive method allows user to move in a more natural way.

5.8.5 Conclusion

If user moves naturally with small acceleration, adaptive search
method has two advantages over the conventional one. Firstly, it increases
the chance of finding the true optimum point. Secondly, it reduces the
computation steps, especially if spiral scan method is used together. Since
in spiral scan method, previous block will first match the center region of
the adaptive search window, which is highly probably to contain the true
optimum point. As distance between the starting search point and the true
optimum point becomes shorter, the previous block can match the block at
optimum point earlier and thus the computation steps is reduced. The
detail of spiral scan method is discussed in the next section.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 74

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5.9 Spiral Scan Method

5.9.1 Raster Scan method

 Commonly used block scanning method in the field of video
compensation and coding is the “Raster Scan” method. That is, when we
use the previous block to find a best match in the current frame, we
calculate the Sum of Absolute Difference (SAD) of the previous block with
the current block C00 at the left top position first, and then calculate that
with the current block C01 with center one pixel next to C00 in the same row.
This process repeats until all SAD of the current block in the first row is
calculated. Then the process repeat in the next row until all SAD of
current block in the search window is calculated. In short, it scans from
top to bottom, from left to right. The advantage of this method is that it is
very simple to implement and code overhead is very small.

5.9.2 Analysis

The order of scanning can affect the time to reach the optimum
candidate block. When SEA, PPNM and PDE method are used, this
property can affect the amount of computation. The reduction of
calculation in obtaining the motion vector with these algorithms depends on
how fast the global minimum of SAD is detected. If we find the global
minimum in the calculation of the matching error faster, complete
computation of the matching error in a block is avoided more. In PDE
method, calculation of the SAD stop if the sub-blocks SAD between the two
block is already larger than minimum SAD. If optimum candidate block is
reached earlier, global minimum SAD will be found earlier. For each
current block, a smaller sub-block SAD is already larger than the minimum
SAD, thus calculation of SAD stop earlier and amount of computation is
reduced. In SEA method, impossible candidate block is eliminated before
its PPNM and SAD are computed based on the following criterion:

),(|),(),(|
1 11 1

YXSADjiYjiX
N

i

N

j

N

i

N

j

>−∑∑∑∑
= == =

LYU0404: Mobile Motion Tracking using Onboard Camera Page 75

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Thus global minimum SAD found earlier leads to less computation on
PPNM and SAD. In PPNM method, impossible candidate block is
eliminated before its SAD are computed based on the following criterion:

),(|),(),(|
11 1

YXSADjiYjiX
N

j

N

i

N

j

>−∑∑ ∑
== =

In order reach the optimum candidate block earlier, candidate blocks
with higher probability to be an optimum block should be reached first. If
all candidate blocks have equal probability to be an optimum block, order of
scanning doesn’t matter. But if candidate block at the center region of the
search window has a higher probability to be an optimum block, scanning
the center region first highly improves the speed of our algorithm. This is
our motivation to use spiral scan method as the block scanning method.

5.9.3 Spiral Scan Method

Instead of starting at the left top position, we can start finding the SAD
at the center of the search window first, then finding the SAD at position
that are 1 pixels away from the center, then 2 pixels away from the
center, …etc. When adaptive search window method is used, most of the
motion vectors are center biased. That is, the optimum point would have
higher probability to locate at the center of the search window. Since
spiral scan method scans the center position of the search window first, it
has higher chance to reach the optimum block earlier. As discussed above,
reaching the optimum block earlier improves speed of our algorithm.

5.9.4 Result

Spiral scan method requires larger memory storage than Raster Scan
method if fast calculation of block sum is used together. In Raster Scan
method, only a row of block sum is needed to be stored. Since SAD of
current blocks is calculated row by row, the row of block sum can be
updated to store the block sum of the second row after the first row is
finished. However, in spiral method, since SAD of current blocks is
calculated in spiral order, not row by row, the whole block sum 2D array is
needed to be stored. Although larger memory storage is required, speed of
algorithm not only do not degraded, but improved a lot due to earlier
reaching of optimum block.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 76

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5.10 Motion Tracking Algorithm Development

Motion Tracking

Optical Flow Blocking
Matching

1. Lower Computation Complexity

2. Suitable to implement in mobile

devices where floating point, division

and multiplication operation is slow

Exhaustive Search
Algorithm (ESA)

Fast Algorithm
(FA)

1. Give suboptimal Result

poor accuracy

Three Step Search

(TSS)

2D Logarithmic

Search

Diamond Search

1. Good accuracy, Find

best match

2. Slow, but can be

improved

Successive
Elimination Algorithm

(SEA)

Partial Distortion
Elimination (PDE)

1. Faster

2. No performance

loss, i.e. same

performance as ESA
SEA + Progressive
Norm Successive
Algorithm (PPNS)

1. Further improvement

over SEA

LYU0404: Mobile Motion Tracking using Onboard Camera Page 77

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

1. Further improvement over SEA +

PPNM algorithm by better scanning

method

2. Assumption: motion is center-biased,

i.e. most of the movement around

center

SEA + PPNM + PDE
+ Spiral Scan Search

Spiral Scan + SEA +
PPNM + PDE +
Adaptive Search

Window

SEA + PPNS + Partial
Distortion Elimination

(PDE)

1. A paper (Year 1999) suggested that

PDE can be integrated with SEA

algorithm

2. We have tested that the PDE really

improve the speed of SEA+PPNM

algorithm

Our Final Algorithm

1. We proposed adaptive search window

method that makes use of the previous

motion tracking history to make good

guess on the next optimum position

and increase algorithm speed by

searching that area first

2. This make the assumption made by

Spiral Scan method no longer an

assumption, but a highly probably

event

Hierarchical Adaptive
Spiral Scan + SEA +

PPNM + PDE
1. Possible improvement over our final

Algorithm

LYU0404: Mobile Motion Tracking using Onboard Camera Page 78

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5.11 Improvement of performance by SSD matching
criteria

Originally, we use SAD (sum of absolute difference) as the matching
criteria of block matching algorithm. SAD is commonly used because of its
lower complexity which means it runs faster. However, we finally adopted
SSD as the matching criteria. Apparently, SSD is more complex than SAD and
should run slower. However, when SSD is used together with SEA, PPNM and
PDE, the run speed of the whole algorithm is as fast as that using SAD.

The major reason for why we choose to adopt SSD matching criteria in the

BM algorithm is that, algorithm runs with SSD has higher performance in term
of accuracy. Tracking blocks can be tracked more firmly and less matching
error results. The reason that algorithm runs with SSD has as high performance
in term of speed as that with SAD is that the elimination effects from SEA,
PPNM and PDE become large when SSD is used. This compensates the longer
runtime of running SSD which has higher complexity.

5.11.1 Methodology

As the matching criteria changes to SSD, SEA and PPNM lower bound

need to be adjusted. According to the paper “J.J. Francis and G. de Jager.
A Sum Square Error based Successive Elimination Algorithm for Block
Motion Estimation (2002) “[50], the lower bound can be derived as follow:

LYU0404: Mobile Motion Tracking using Onboard Camera Page 79

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Figure 5.23 An extract from the paper

According to equation (10), SSDNSADgf ×≤≤− 22

11
.

N

gf
2

11
−

 is the lower bound of SSD in SEA method.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 80

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Originally, ∑ −
i

ii gf
11

 is the lower bound of SAD in PPNM

method. This lower bound changes as SSD is used too.

According to equation (10) and the proof in the chapter of PPNM

method, the following relation can be derived:

SSDNSADgfgf
i

ii ×≤≤−≤− ∑ 22
11

2

11
)(

Thus, the lower bound of SSD in PPNM method becomes

N

gf
i

ii∑ − 2
11

)(
.

Using the same technique described in the paper above, we can prove

that ∑∑ −×≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

i
ii

N

i
ii gfNgf

2

11

2

11
. However, we can’t

prove that ∑ ×≤−×
i

ii SSDNgfN
2

11
. Thus, we can’t tell whether

N

gf
i

ii∑ −
2

11

is the lower bound of SSD. If it does, this bound is

much tighter than the above one and will increase the elimination effect of
PPNM.

5.11.2 Experiment

Experiment is done to investigate how efficient SSD is in removal of
candidate blocks when compared with SAD.

Col. 1: Total number of candidate blocks
Col. 2: Number of candidate blocks removed by SSD SEA
Col. 3: Number of candidate blocks removed by SSD PPNM
Col. 4: Total # of candidate blocks removed by SSD SEA & PPNM
Col. 5: Number of un-removed candidate blocks
Col. 6: Number of candidate blocks removed by SAD SEA
Col. 7: Number of candidate blocks removed by SAD PPNM
Col. 8: Total # of candidate blocks removed by SAD SEA & PPNM

LYU0404: Mobile Motion Tracking using Onboard Camera Page 81

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Col. 9: Number of un-removed candidate blocks
Col. 10: number in Col.4 – number in Col.8
Row: Result of each run of an algorithm

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 Col. 10

288 254 21 275 13 233 6 239 49 -36

288 261 25 286 2 244 6 250 38 -36

288 258 25 283 5 272 10 282 6 -1

288 252 17 269 19 269 10 279 9 10

288 268 17 285 3 253 3 256 32 -29

288 254 24 278 10 270 13 283 5 5

288 255 29 284 4 263 17 280 8 -4

288 268 18 286 2 265 13 278 10 -8

288 269 16 285 3 268 14 282 6 -3

288 269 16 285 3 265 14 279 9 -6

288 269 17 286 2 268 12 280 8 -6

288 262 25 287 1 269 12 281 7 -6

288 268 17 285 3 262 18 280 8 -5

288 263 17 280 8 263 12 275 13 -5

288 260 25 285 3 262 10 272 16 -13

288 267 19 286 2 266 13 279 9 -7

288 255 25 280 8 267 16 283 5 3

288 253 18 271 17 261 17 278 10 7

288 264 12 276 12 257 7 264 24 -12

288 250 19 269 19 256 10 266 22 -3

288 258 27 285 3 253 8 261 27 -24

288 256 28 284 4 262 19 281 7 -3

288 260 23 283 5 251 7 258 30 -25

288 255 28 283 5 250 3 253 35 -30

288 235 24 259 29 235 19 254 34 -5

288 214 25 239 49 219 10 229 59 -10

288 188 29 217 71 216 13 229 59 12

288 221 43 264 24 211 10 221 67 -43

288 249 29 278 10 222 13 235 53 -43

288 255 18 273 15 237 21 258 30 -15

288 260 15 275 13 236 14 250 38 -25

288 266 19 285 3 248 12 260 28 -25

288 254 29 283 5 259 15 274 14 -9

LYU0404: Mobile Motion Tracking using Onboard Camera Page 82

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

288 246 33 279 9 252 24 276 12 -3

288 250 30 280 8 249 7 256 32 -24

288 249 29 278 10 253 13 266 22 -12

288 249 31 280 8 251 10 261 27 -19

288 252 26 278 10 255 16 271 17 -7

288 243 37 280 8 254 20 274 14 -6

288 246 33 279 9 238 28 266 22 -13

288 252 33 285 3 249 21 270 18 -15

288 254 25 279 9 255 22 277 11 -2

288 253 27 280 8 242 25 267 21 -13

288 254 28 282 6 247 12 259 29 -23

288 242 27 269 19 251 21 272 16 3

288 211 36 247 41 226 23 249 39 2

As shown in Col. 10, SSD SEA and PPNM are generally more
effective in removing candidate blocks during block matching.

5.11.3 Conclusion

As the matching criterion is changed to SSD, the lower bounds for

SEA and PPNM are needed to be modified to keep the relation between
SSD and the lower bound tight. According to the paper “J.J. Francis and G.
de Jager. A Sum Square Error based Successive Elimination Algorithm for
Block Motion Estimation (2002) “, we have successfully worked out the

lower bounds for SEA and PPNM. They are
N

gf
2

11
−

,

N

gf
i

ii∑ − 2
11

)(
 respectively. In actual implementation, inequality

SSDNgf ×≤−
2

11
 and SSDNgf

i
ii ×≤−∑ 2

11
)(are used

instead because division computation is much slower than multiplication.

After changing the criteria, we have tested that the accuracy of motion

tracking has been increased and the performance in speed is slightly
improved in Symbian phone platform.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 83

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Chapter 6: Rotational Motion Tracking

6.1 Observation

After translational motion tracking engine is finished, it is observed that the
motion tracking algorithm can not only be used to track the translational
movement of the phone, but also the rotational movement.

Figure 6.1

To illustrate the observation clearly, let’s consider an example. The phone

shown in Figure 6.1 is tracking a fish. When the phone is rotated, the scene
captured by the camera and shown on the screen of the phone rotates relatively.
It is observed that the object, fish, can still be tracked correctly. That is, the
center of the object is roughly the same as that of the tracking box before and
after the phone is rotated. It has been tested that even the phone is rotated in
fast speed, the object can still be tracked firmly. The reason that the object can
still be tracked firmly is that the sum of squared difference between the rotated
object’s block and the non-rotated object’s block are very small when compared
with other blocks nearby.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 84

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

6.2 Motivation

Due to this observation, we have come up an idea that makes use of this
property. That is to detect the rotational movement using translational motion
tracking engine. The method is to track the movement of two blocks at the
same time and find the slope of the line connecting the two blocks’ centers.

6.3 Two-block approach

Two-block approach

Figure 6.2

As illustrated in the Figure 6.2, two blocks are being tracked and are

marked by the green square. The slope of the blue line connecting the two
blocks’ center can be used to estimate the tiling angle of the phone. Before the
phone is rotated, the slope of the blue line is zero. As the phone is rotated, the
scene is rotated relatively in the opposite direction. The two blocks can still be
tracked firmly and the blue line connecting the two blocks can now tell us the
tiling angle of the phone. The green line is a horizontal line relative to the
phone. The included angle between the blue line and the green line is roughly
equal to the tiling angle of the phone.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 85

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Advantage of this approach is its reliability. As long as the two blocks can

be tracked firmly, the slope of the line connecting them indicates the rotational
movement of the phone. Another advantage is that, with this approach,
translational motion of phone can be tracked at the same time from the
translational motion of the two blocks. Thus, rotation tracking engine can
support detecting both rotational and translational movement.

6.4 Another possible approach

One-block approach

Figure 6.3

In this approach, translational motion tracking algorithm is still used
because user must have chance to move in translational way instead of rotational
way. Instead of tracking two blocks, one block is tracked in this approach. In
addition to applying translational motion tracking algorithm, the previous
frame’s tracking block is rotated and compared with the current frame’s block.
As shown in figure 6.3, we call the yellow blocks the rotating frames and the
white blocks the rotated blocks. As seen from the figure, the rotating frames
have to be larger than the rotated blocks in order to accommodate an upright
square block for block-matching with current frame’s block.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 86

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Advantage of this approach is its accuracy. Measuring how much a block
is rotated is the same as measuring how much the phone is rotated. However,
the actual precision depends on the number of kinds of rotating frames used.
Use more rotating frames can increase the maximum precision, though it doesn’t
mean the precision attained by this approach is increased if using more frames.

Disadvantage of this approach is its performance. Rotating a rotating

frame must involve bilinear interpolation in order to obtain satisfactory result.
This is computationally expensive. Moreover, the rotating frame is large which

can be up to ksizeofBloc×2 . The larger the frame to rotate, the more

expensive is the rotation process. Thus the performance of this approach will
not be much higher than the two-block approach.

Another disadvantage is its reliability. Some objects being tracked doesn’t

have noticeably difference when being rotated. That means this approach may
not be able to find the degree of rotation made on this object. In that case, the
rotation tracking engine would fail.

Because of the reliability of the two-block approach, we currently adopted

that approach for the rotation tracking engine.

6.5 Reducing error by using level

In order to make the rotation tracking output suitable for game playing, the

output shouldn’t show changes or even frustrate when user hasn’t rotated the
phone or user has just rotated it a little bit. The rotation tracking output can be
made more stable by suppressing the output and cause the output to change only
when the rotation is larger than a threshold.

As illustrated in Figure 6.4 below, rotation tracking output is quantized as

several levels, says from level -4 to level 4. 0° or level 0 means the phone is
not rotated. Each level is 40° different from its neighbor level. If the tiling
angle of the phone is within -40° and 40°, level 0 will be outputted. If the tiling
angle is with 40° and 80°, level 1 will be outputted, etc. Through this method,
any error that will not cause a 40° changes will not cause the output to change
and this make the output more stable.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 87

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Level 0
- 40° 0° 40°

Level 1
Level -1

80°

Level 2

120°

Level 3

Figure 6.4

Many games doesn’t allow player to have too much degree of freedom of

movement in order to reduce the complexity of both producing and playing the
game. Thus, quantizing rotation tracking output suits the need of these games.
For example, the Skiing game allows only 7 degrees of freedom of movement
such that it requires only 7 different images of skier. Our rotation tracking
engine can also be tailor-made to give 7 levels of output namely -90°, -60°, -30°,
0°, 30°, 60° and 90°. Quantizing rotation tracking output gives less sensitive
but more desirable output for game playing. It also reduces the difficulty of the
game and increases the reliability of the engine.

6.6 Reference slope and non-reference slope method

By using the two-block approach in rotation tracking, we can obtain the

slope of the line connecting two tracking blocks easily by
21

21

xx
yy

slope
−
−

=

where (x1, y1) and (x2, y2) are the coordinates of the two blocks’ center. In
calculation, this slope information is converted to the angle between that line and
the horizontal line by:

)(tan 1 slopeangle −=

Notice that the function return value from -90° to 90° only, which

mean a line with angle 100° is regarded the same as a line with -10° by the
 function. However, the minimum range of angle we want to find from

1tan−

1tan−

LYU0404: Mobile Motion Tracking using Onboard Camera Page 88

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

a line is from -180° to 180°, we can’t fully rely on the angle returned to
determine the actual angle we want. Two methods can be used to solve the
problem. The first method is to guess the current angle based on the previous
angle. For example, if the previous angle is 80° and the current (returned)
angle is -10°. We can guess that the actual current angle is 100° instead of -10°.
Another method is to remember the coordinates of the previous blocks and guess
the actual current angle based on them.

After the correct angle information is found, rotation angle output is

calculated based on the angle information. Two methods can be used to
produce the correct rotation angle output from the angle information.

6.6.1 Static reference slope method

Once the rotation tracking engine is run, the first slope it found is

regarded as the reference slope. The phone is assumed to be held
horizontally and thus the rotation angle of the phone is 0°. As the phone
rotates, the slope found changes correspondingly. The current slope is
compared with the reference slope to obtain the included angle/rotation
angle. In this method, only the reference slope needs to be stored to
determine the rotation tracking output.

But this method suffers from a problem. It is that the detectable

rotation angle is in between -180° and 180°. That is, if the phone is
rotated more than 180° and less than 360°, the rotation tracking engine will
regard the phone as being rotated in between 0° and -180°, which is wrong.
This is the limitation of this method. However, for normal applications
and games, we seldom require user to rotate the phone more than 180° in
order to control something. Thus, this limitation doesn’t matter in most
cases. Moreover, we can solve this problem by guessing the correct
rotation angle using the similar method discussed just above this subchapter.

Not all applications or games actually want the exact degree of rotation

of the phone, but which direction the phone has been rotated or say the
change of the rotation angle of the phone. In this case, non-reference slope
method just suit the need

LYU0404: Mobile Motion Tracking using Onboard Camera Page 89

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

6.6.2 Dynamic reference slope method

Rather than remembering the initial slope and regard it as the reference

slope, we choose to use the previous slope as the reference. We regard the
previous as the x-axis of the new coordinates system and project the
coordinates of the current block to the new coordinates system. That is, if
the previous slope has t degree, the new coordinates of the current blocks
are found by rotating it by t degree. Therefore, if the angle that the slope
make with the x-axis is positive, that means the phone has rotated left;
whereas if the angle is negative, that means the phone has rotated right.
If the application or game wants to know which direction the phone is
rotating, the sign of the change of rotation angle can be the output to it. If
the application or game wants to know how much exactly the phone is
rotated in advance, a variable can be used to store the accumulated change
of rotation angle which can be outputted as the magnitude of the angle. If
level is wanted, the accumulated change can further be quantized to give
level output.

6.7 Adaptive window method on rotation tracking engine

In translational motion tracking algorithm, we have used adaptive window
method to improve its performance (speed and accuracy). That method is
designed for predicting linear motion and thus it is not applicable for predicting
circular motion. Since the rotation tracking engine is designed to track both
linear and circular motion, the adaptive window method has to be modified to
predict the hybrid of circular and linear motion.

6.7.1 Objective

As mentioned before in the Adaptive Search Window section of the

Motion Tracking chapter, it is useful to carry the history of the motions.
The history of motions can then be used to predict the next possible
movement of the phone and thus the next possible positions of the tracking
blocks. The history of motions available is the previous coordinates of the
tracking blocks and our goal is to predict the coordinates of the tracking
blocks that may appear in the next frame.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 90

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

6.7.2 Methodology

Figure 6.5

As shown in Figure 6.5, the line connecting the two tracking blocks are

represented by the line Li. The two blocks are represented by the end
points with coordinates (XLi1, YLi1) and (XLi2, YLi2).

To predict the coordinates of the tracking blocks in the next frame, we

make use of their coordinates in the last two previous frames.

Figure 6.6 a simplified mathematic problem

In Figure 6.6, L1, L2 and L3 correspond to lines in the current frame,
previous frame and frame before the previous frame. The problem is
simplified by making the following approximately correct assumption:
1. All the three lines pass through the circle’s center
2. End points of the three lines lie on the circle

Our goal is to find the end points of the line L1. From L2 and L3, we

obtain the magnitude and direction of the previous rotated angle. The
angle is calculated by:

Line Li

(XLi1, YLi1) (XLi2, YLi2)

Line L1

Line L2
θ

θ
Line L3

LYU0404: Mobile Motion Tracking using Onboard Camera Page 91

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

))((tan))L((tan 3
1

2
1 Lslopeslope −− −=θ … (6.1)

Where
21

21)(
LiLi

LiLi
i xx

yy
Lslope

−
−

= , i = 1, 2.

Our major assumption is that the rotation of the phone is
approximately uniform. That is, L1 can be obtained by rotating L2 by angle
θ. The coordinates of the center of the next tracking blocks (XL11, YL11)
and (XL12, YL12) can be calculated by:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

j

j

j

j

L

L

L

L

y
x

y
x

2

2

1

1

cossin
sincos
θθ
θθ

 … (6.2)

Where j = 1, 2.
 This prediction only takes into account of circular motion. To take linear
motion into account at the same time, the following method is used. Since
translational movement doesn’t affect the slopes of the lines, prediction of linear
motion and circular motion can be done separately.

 Horizontal displacement detected = Tx

Tx = (xL21 + xL22– xL31 - xL32)/2 … (6.3)
 Vertical displacement detected = Ty

Ty = (yL21 + yL22– yL31 - yL32)/2 … (6.4)

The coordinates of the center of the next tracking blocks (XL11, YL11)

and (XL12, YL12) can be calculated by:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1111
cossin
sincos

1
2

2

1

1

j

j

j

j

L

L

L

L

y
x

Ty
Tx

y
x

θθ
θθ

 … (6.5)

Where j = 1, 2.

6.8 Enhancement on rotation tracking engine

We have adopted the two-block approach to build the rotation tracking
engine. Something has to be done to improve the reliability of that approach.

Firstly, the two blocks to be selected during feature selection stage should

be as far away as possible. If they are too close, slope of them changes abruptly

LYU0404: Mobile Motion Tracking using Onboard Camera Page 92

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

when small detection error occurs. As illustrated in Figure 6.5, it is clear that
the two green blocks in right side is too close to each other. A small detection
error will change the slope greatly. Because of this reason, feature selection for
each block is carried out in non-overlapping region. Feature block is also
search spirally such that block at center of the feature selection window has
higher priority to be selected.

Figure 6.7

Secondly, after feature selection stage and during motion tracking stage, the
blocks may come closer to each other due to accumulated detection error. For
the same reason as above, if the two blocks are too close to each other that their
distance is below certain distance, the two blocks are reselected. Motion
tracking stage ends and feature selection stage begins.

6.9 Design and Implementation of the Engine

The implementation of this engine is the same as the translational motion

tracking engine except the algorithm part that dealing with each captured frame.
Below is the flow chart of the algorithm part of the rotation tracking engine:

LYU0404: Mobile Motion Tracking using Onboard Camera Page 93

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Figure 6.8 (a), (b) and (c).(a) Screenshot of switching to rotation tracking mode. (b)
Screenshot of rotation tracking. (c) Screenshot of presentation of rotation tracking

result.

ViewFinderReady() is called
- A frame is newly captured

Block matching
- Block matching the feature blocks with the

previous frame
- Produces motion vector

Feature block selection
- Gets two feature blocks for block matching
- The blocks are as far away each other as possible

Prediction and Bound-checking
- Predicts user’s next movement
- Checks if the next blocks’ positions are beyond the

frame boundary
In bound Out of bound

LYU0404: Mobile Motion Tracking using Onboard Camera Page 94

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Chapter 7: Feature Selection

 We use the block matching algorithm for the motion tracking, so which block in
the previous frame should be chosen for block matching? We must make a
compromise between two contradictory desires. On one hand we would like features
to be as descriptive as possible: The block chosen should facilitate the block matching
algorithm and increase the accuracy of the algorithm. On the other hand, we also
want feature extraction to be robust across thousands of video frames.

 In our application, our purpose is to provide real-time tracking on the mobile
device. Thus we implement our own feature selection algorithm instead of using
well-known feature selection algorithms which usually have a high computation load.
Our algorithm, although is simple, it bears certain level of robustness.

7.1 Implementation

Intuitively, if we want to select a good feature block for block matching, it
should not select a block in the flag region. As in figure 6.1, although the
window has moved to the right, we will not able to detect the movement. It is
because all neighbors of the feature block have the same color, so they will have
same SAD with the feature block. We can conclude that because motion is
indeterminate when spatial gradient is near zero. Therefore, we cannot find a
best match as all of the candidate blocks have the same SAD (Remember that we
will choose the candidate block with the minimum SAD as the best match).
Thus, the accuracy is decreased greatly.

Feature Block

Original position New position

Figure 6.1 A reference block in flag region

LYU0404: Mobile Motion Tracking using Onboard Camera Page 95

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

In order to prevent the selection of a flat-region block, the block selected

should be complex. We can evaluate the complexity of a block by calculating
the local variance within the block Sxy. If the block is totally flat, the local
variance will be 0 while the local variance will be large if the block is complex.
The selection of a highly complex block will increase the chance of Partial
Distortion Error (PDE) since the difference between candidate blocks and the
reference block will be large even for a small movement. Thus increase the
speed of the algorithm.

Apart from the complexity of a block, the feature block should have large

intensity difference between neighbor blocks. Consider the figure 3.x, although
either one of the block is complex, the complex block repeat itself all over the
window. Hence, it affects the accuracy of block matching.

Figure 6.2 repeated pattern background
In order to solve the above problem, we can use Laplacian mask to calculate

the intensity difference between the current block with its neighbors. Originally,
Laplacian operator is used as edge detector that it find out how brighter the
current pixel is than the neighborhood.

 - Gray level discontinuity large output
 - Flat background zero output

Firstly, we divide current frame into small rectangular blocks. For each
block, sum all the pixels value, denoted as Ixy, and store it in 2D array (Intensity
of the block). After that, we calculate the variance of each block which
represents the complexity of the block. Apply Laplacian Mask for the 2D array
(Masking). Since the Laplacian operator indicates how difference the reference
block is than the neighbors, we select the block which has the largest Ixy and

LYU0404: Mobile Motion Tracking using Onboard Camera Page 96

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

large variance as feature block

7.2 Laplacian Operator

The Laplacian L(x,y) of an image with pixel intensity values I(x,y) is given
by:

22

2

22

2
2

y
f

x
If

∂
∂

+
∂
∂

=∂

Where

),(2),1(),1(2

2

yxfyxfyxf
x

I
−−++=

∂
∂

),(2)1,()1,(2

2

yxfyxfyxf
y

I
−−++=

∂
∂

Negative Definition
),(4)1,()1,(),1(),1(2 yxfyxfyxfyxfyxff −−+++−++=∂

Positive Definition
),(4)]1,()1,(),1(),1([2 yxfyxfyxfyxfyxff +−+++−++−=∂

Diagonal derivatives can also be included.

In our application, we use the positive definition with diagonal derivates.
Then the Laplacian operator can be represented by the Laplacian mask (Figure
6.3)

Figure 6.3 Laplacian Mask

Then we apply the Laplacian mask to the image. For example, in figure

LYU0404: Mobile Motion Tracking using Onboard Camera Page 97

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

6.4, the mask values are multiplied by corresponding pixels values, and then
summed up. The final value is returned to the output image at the position
corresponding to the centre element of the window. The mask is then moved by
one pixel (not the window size) to its next position and the operation is repeated.

Output Image

Input Image

Laplacian Mask

Figure 6.4

Output Value is -86, because:
(-1x68)+ (-1x62) + (-1x66) + (-1x120) + (8x80)
+ (-1x37) + (-1x62) + (-1x65) + (-1x61)
= 99

7.3 Experimental Result

We have tested our feature selection algorithm in different cases:

1. A black rectangle in a white background
2. A black rectangle in a repeated pattern background

In case 1, we want to test the performance of our feature selection algorithm

on a flat region. In a white region background, we draw a black rectangle on it.
Intuitively, the black rectangle should be selected as the reference block for
block-matching. Our feature selection algorithm selects the corner of the black
rectangle as the reference block as shown in figure 6.5. It is a good tracking
location because of the brightness difference between the black and white colors.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 98

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

As we can see, the block selected contains black pixel values. Hence our
algorithm can prevent the selection of flat-region block as reference block.

Figure 6.5 Experiment on feature selection

In case 2, we apply the feature selection to a background of repeated pattern

with a black rectangle as illustrated in figure 6.6. If we do use feature selection
algorithm Again, it selects the black rectangle block as the reference block.
Thus, we can see that our algorithm will never select a block that will lead to
indeterminate movement. If we select a block as in figure 4.x rather than the
black rectangle, when the object move to the right, the block-matching algorithm
finds the best-match wrongly as illustrated in figure 6.7

LYU0404: Mobile Motion Tracking using Onboard Camera Page 99

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Figure 6.6

LYU0404: Mobile Motion Tracking using Onboard Camera Page 100

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Figure 6.7

 Hence, we can see that if we can select a good feature block as the reference
block, the performance of block-matching is guaranteed that it will not be acceptable.

7.4 Conclusion
For block matching, if we select either a block in flat region or in a repeated

pattern region as the reference block, the accuracy will be affected significantly.
Block mismatch always happens. After using the feature selection algorithm, it
will ensure that a block selected will not be in flat region or repeated pattern
region. Hence the error is reduced. Since our feature selection algorithm
requires a small computation load, the speed of the block matching algorithm is
not affected.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 101

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Chapter 8: Enhanced Feature Selection

8.1 Objective

We have developed a more robust feature selection. For the old feature
selection algorithm, sometimes a block on the edge is found as feature block. If
a block is found on an edge, then problem will be raised, as shown in the
following diagram:

Feature block found
by old feature selectio
algorithm

n

Best match found by
block matching
Wrong match!!

Figure 8.1 – A feature block on the edge

LYU0404: Mobile Motion Tracking using Onboard Camera Page 102

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

If a block is found on an edge, then the accuracy for finding the best match
will decrease significantly. Along the edges, nearly all the blocks are the same,
so we should prevent finding a block on an edge.

This motivates us to improve the feature selection algorithm. We add one
more constraint to the feature block found that we will check if the block is on an
edge or not. We can check it by the SSD difference in all directions of the
candidate feature block. Illustrate as follow:

If the feature
block is found
here

Important
differences in all
directions

Figure 8.2 – Important difference in all directions

LYU0404: Mobile Motion Tracking using Onboard Camera Page 103

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Therefore, now we will determine the block as a feature block in the
following steps:

1. Find a block with a large variance -> which indicate the
complexity of the block

2. Check if the block is on the edge or not by calculating the SSD in
all four directions

3. If either one of the SSD is small -> the block is on edge -> reject
Else the block is not on edge, and return this block as feature
block.

Apart from the above modification, we also make some changes to enhance

the performance of the feature selection:

1. More feature blocks are sampled
2. Search in a spiral way
3. Code more efficiently

8.2 Higher Sampling Rate

In our old feature selection, we divide the frame into squares, and examine
each square to check if it is a feature block as shown in figure 8.3. However,
the best feature block may appear between two squares as shown in figure 8.4.

square

One of the
candidate
blocks

Figure 8.3 – A frame is divided into square

LYU0404: Mobile Motion Tracking using Onboard Camera Page 104

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

W

The best feature
block appears here

Figure 8.4 – Possible location of the best feature block

Now, blocks that appear in between the squares are also examined.

Thus, it will have a higher chance to find a good feature block. Now, we
sample each block with distance between each other W pixels (W = 3 in
our project) Now 26x26 variances of blocks are sampled with size of
each block 15x15 in a 54x54 window.

8.3 Searching in Spiral Way

When searching a feature block, we want the block locate in the center as

much as possible. It is because, if a feature block is located at the boundary of
the screen, when the phone moves, there is a great chance that the location of the
block will exceed the boundary, and thus a new feature block need to be found.
Once we find a suitable feature block, the searching will be stopped. Therefore,
if we search the feature block in a spiral way, there will be a greater chance to
find a feature block located at the center of the searching.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 105

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Figure 8.5 – Searching a feature block in spiral way

8.4 Code Efficiently

Since in our feature selection, we need to find the variance of the

candidate blocks. In our old implementation, we use 2
,)(µσ −=∑ jiX

That means we need a for-loop to find the mean µ first, then

calculate 2
,)(µ−∑ jiX . That means two for-loops are required. Now, we

use the mathematic expression 22

,
µσ −= ∑ ji

X . We can find the

and mean

2

, ji
X∑

µ in a single for-loop, and only one subtraction is required
finally. Thus, it reduces the computational time for find a feature block.

8.5 Condition to be a good reference background image

A reference image is said to be good if it has plenty of feature blocks. If

we use this kind of image as the background image for our motion tracking
engine, our engine would have less chance to lose tracking of an object. With
this background image, the usability of the applications using our motion
tracking engine will be increased. On the other hand, it allows us to evaluate
the maximum performance of our motion tracking algorithm.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 106

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

8.5.1 Requirement

Tracking pattern

Figure 8.6

Consider Figure 8.6, the green block is the tracking block. The

pattern being tracked is the tracking pattern. Safety region is roughly the
same size as the search window of the motion tracking algorithm. In the
view of the motion tracking algorithm, within the safety region, if the
following things are satisfied, less detection error will occur. In other
word, performance increases.

1. The tracking pattern doesn’t appear at any other position within the safety

region. Otherwise, the motion tracking algorithm would have high
chance of misrecognizing the repeated pattern as the tracking pattern.

2. Patterns appear around the tracking block are very different with the

tracking pattern in the sense that they have large sum of squared
difference with the tracking block. In this way, those patterns would
have lower possibility of being recognized as the tracking pattern, this
reduces error of detection due to noise in captured image.

3. The tracking pattern/block itself should be a feature pattern/block. This

makes the feature selection algorithm easier to find a good feature block.

4. The tracking pattern remains more or less the same shape even when it is
rotated. Having this property is good for rotation tracking engine. The
tracking pattern can be tracked more firmly as the phone is rotated and

Safety region

Size of search window

LYU0404: Mobile Motion Tracking using Onboard Camera Page 107

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

this improves the performance of the algorithm.

8.5.2 Possible reference image

Figure 8.7 Background image 1

Figure 8.7 shows the first possible background image that satisfies the

requirement above.

Figure 8.8 Analysis of background image 1

Background image 1 satisfies the requirement above. Figure 8.8

illustrates why background image 1 is the background image we want.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 108

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

1. Within the safety region which is bound by the blue circle, the tracking
pattern, green dot in the case of Figure 2.3, doesn’t repeat itself. Actually,
for the other three kinds of dot, there is no repeat within the safety region of
itself too.

2. Within the safety region of green dot, there appear dots with different colors.

Green, blue, red, cyan, magenta and yellow colors have very distinct RGB
value. Thus the sum of squared difference among them is very large.

3. The color dots are very distinct with the black background. Thus, a block

containing the color dot usually has high variance. Since our feature
selection select feature block with high variance in the first pass, block
containing the color dot is usually selected.

4. The pattern used is circle. Circle remains the same shape as it is rotated.

This satisfies requirement 4.

8.6 Conclusion

 After our modification, the feature selection algorithm can find a better
feature block that make our motion tracking more accurate. Since we now
take more samples, the time used for finding a feature block is longer than
our previous feature selection algorithm. Although the time used is longer,
it increases the accuracy of the motion tracking. It is worth to do so, as the
feature selection algorithm will be invoked only when the block is out of the
bound and thus the times of invocation are low.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 109

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Chapter 9: Applications Development

In this chapter, we will discuss what kinds of applications can be developed from

motion tracking and benefits of using it.

 Motion tracking has been widely used in many areas, for example video
compression, robotics, video surveillance, etc. It is possible to develop different
kinds of applications. Moreover, it can be used as an innovative input method to
many applications, for example, games, camera mouse and gesture input. We will
focus on how motion tracking can be used as an input method for different
applications.

9.1 Development procedure

Before we talk about what applications can be made, we talk about how a
motion-tracking application can be developed. The flow chart of developing
motion-tracking application is shown below:

Video Source
captured by
camera

Already selected
feature block?

P Source Frames

Figure 9.1 Flow Chart of developing motion tracking application

Feature
Selection

delay
Block-matching
Algorithm using two
image frames

No

T

Server A

Frame t
Yes

MV of reference block

Frame t-1

A feature block is
selected as reference
block

LYU0404: Mobile Motion Tracking using Onboard Camera Page 110

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Input Stage

In order to use the motion tracking technique, we need to extract frames from

video. This process is procedure “P” shown in the Figure 5.1. There are several
ways to do that. In PC, we use libraries from OpenCV and in Symbian, we use the
view finder to extract the frames from video.

OpenCV provides a lot of library for us to manipulate the video. Firstly, we
need to reserve the camera to use. After that, by calling cvQueryFrame(), a frame
will be extracted and stored in a 2D array. Then we can get the frame data by using
a pointer.

Processing Stage

After we have extracted frames from video, we use two consecutive frames
Ft-1 and Ft for block-matching. If we have not selected a reference block for
tracking, feature selection algorithm will be applied to find a good feature block
as reference block. After that, we can use the block-matching algorithm to find
the motion vector of the reference block.

Output Stage

Once a motion vector is found, it will be output to a server by using
transmission medium “T”. We can use different kinds of transmission medium,
eg Serial Cable, USB, Bluetooth, etc. The server is responsible for receiving
the motion vector and interpreting it. Finally, the server will give
corresponding commands to the application “A”.

Conclusion

Different kinds of application can be developed by following the flow chart
above. Moreover, the motion tracking technique can be used in different
platforms, eg PC, PDA, Symbian phone, provided that they support video
capture and libraries for image manipulation.

9.2 Example Applications

LYU0404: Mobile Motion Tracking using Onboard Camera Page 111

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

In order to illustrate the idea of innovative input method using the motion
tracking, we have implemented two applications one in the PC and one in the
Symbian phone based on the block-matching algorithm that we have discussed
before.

9.2.1 Pong Game

Here show the screenshot of the pong game. The left one is
developed on the PC written by C# while the right one is developed on the
Symbian and tested by the emulator.

Figure 9.2 Screenshot of the pong game

Traditionally, users play the game by using the keyboard to control the
movement of the paddle. It would be much more interesting if users’
movements are involved in playing the game. We implemented the
block-matching algorithm in the game so that the paddle could be controlled
by the users’ movement. When the user moves the camera or camera
phone, the padding will move according to the direction of movement.
Because of the motion tracking technique, the traditional pong game has

LYU0404: Mobile Motion Tracking using Onboard Camera Page 112

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

become much more interesting.

The pong game is just one of the applications to illustrate the benefits
of using motion tracking technique. There are a lot of applications in
which this technique can be used

9.3 Other Possible Application

9.3.1 Camera Mouse

In the society, there are people with serve disabilities that they can only
move their heads. Because of their disabilities, they cannot use the
computers for any purpose. Therefore, there is a need to develop a tool for
the physically handicaps so that it can provide a chance for them to access
the computers. Due to their limitation of movements, a motion tracking
system, Camera Mouse, can helps them to access the computer. Therefore,
they can acquire knowledge more actively, use the Internet, and access
computer-controlled techniques such as automated wheel-chairs.

The idea of camera mouse system is that the system tracks the

computer user’s movements with a video camera and translates into the
movements of the mouse pointer on the screen. It is particularly useful for
physically handicaps. For example, people with serve disabilities can
control the movements of the mouse pointer by moving their heads.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 113

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Chapter 10: Virtual Mouse Application

Virtual Mouse application is developed aiming to illustrate how our motion

tracking engine can be incorporated to develop a new type of application. Virtual
Mouse application also illustrate how useful is our translational motion tracking
engine when compared with other conventional input method.

10.1 Brief Description of the Virtual Mouse Application

Virtual Mouse is a client-server application using Bluetooth wireless
technology as the core communication channel. By this application, user can
make commands on a Symbian phone to control the mouse cursor and keypress
event of a specific computer through Bluetooth wireless communication channel.
The server part is hosted on a desktop computer with Windows as the operating
system while the client part is implemented as a Symbian program.

Bl
ue

to
ot

h
Co

m
m

un
ica

tio
n

Ch
an

ne
l

Cable

10.2 Advantage of Motion Input over Conventional Input
Method

LYU0404: Mobile Motion Tracking using Onboard Camera Page 114

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

In this application, user issues commands on the phone and send out to the
server. There are at least three ways for user to issues commands:
1. Moving the joystick
2. Pressing the keypad
3. Use motion input (moving the phone)

The third way, the motion input, has absolute advantage over the first two

input methods. Comparison is made as follow:

1. Joysticks of most of the phones have limited freedom of movement.
Usually only up, down, right and left directions can be detected. Moreover,
its level of control is low. Usually joystick provides only one level of
control. That is, it can detect either upward or not upward, downward or
not downward, etc. We can imagine that if we can only move the cursor in
only four directions and can not control the speed of the cursor, controlling
will be very inefficient and slow. Imagine that we want to move the cursor
from the white circle to the cross position, we have to instruct the cursor to
move right and then upward instead of moving diagonally. The cursor is
required to be moved in a longer distance without controllable speed.
Clearly time of doing this will be longer than moving the cursor to the cross
in the shortest path with controllable speed.

. Pressing keypad is more inconvenient than moving the joystick because user

. Motion input has 4 advantages. Firstly, it allows input in all directions.

2
needs to press at least 4 distinct buttons in order to get the same function of
moving the joystick. Thus, certainly pressing keypad won’t be a better
input method than moving joystick in virtual mouse application.

3

LYU0404: Mobile Motion Tracking using Onboard Camera Page 115

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Our translational motion tracking engine is capable of tracking the phone
movement in all directions. Thus, user can instruct the mouse cursor to
move in any direction they like. In this way, user can always reach its
desired destination through the shortest path. Secondly, it provides high
levels of control. Motion input gives not only the phone is moving in
certain direction, but also gives the information of how many pixels it has
moved. Thus, user can instruct the mouse cursor to move faster or slower
by moving the phone faster or slower respectively. Thirdly, it allows user to
give commands faster. User does not need to struggle to turn the joystick or
busy to hit the keypad in order to give many commands; user can just simply
move the phone then he can give 12 commands per second as motion
information is captured and sent to the server 12 times every second.
Fourthly, motion input gives user a sense of moving an off-table wireless
computer mouse and that’s why this application is called virtual mouse.
User who is accustomed of moving a real computer mouse will enjoy using
this virtual mouse and will find it easy to use. Moreover, there are far more
buttons available on the phone that can be used to send shortcut commands to
the computer. This makes the mouse more convenient to use.

10.3 The Server

he server program is written in Windows MFC. The main task of this
prog

10.4 The Client

he client program is written in Symbian. The main task of this program
is to

T
ram is to listen on a Bluetooth virtual comm. Port for motion information

message sent from the client program and resolve the message according to the
predefined protocol. After motion information is resolved, this program
controls the mouse cursor of the window host and emulates keypress event
according to the motion information resolved.

T
 switch on the motion tracking engine and obtain the phone’s motion

information. The information is then sent to the pre-selected server via
Bluetooth connection according to the predefined protocol.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 116

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

10.5 Bluetooth Wireless Communication

Bluetooth is an industrial specification for wireless personal area networks.

It provides a way to connect and exchange information between devices like
PDA, mobile phones, PCs and laptops via a secure, low-cost, globally available
short range radio frequency. Bluetooth lets these devices talk to each other
when they come in range even if they are not in the same room, as long as they
are with 10 meters of each other. Bluetooth is a wireless radio standard
primarily designed for low power consumption and is suitable to be used for a
long time.

Most of the Symbian phones nowadays have Bluetooth wireless facility.

Thus, the virtual mouse application can be used in most of the Symbian phones.

10.6 Running the Server

Comm. Port selector Refresh button

Hide to tray button

Start/Stop button Shortcut config.

Debug console

Figure 10.1 Virtual mouse server

When the server is executed, the above window will appear. The function

of each component is described below:
1. Comm. Port selector

To select the virtual comm. Port Bluetooth device has bind with. The
port number has to be the same with the configuration in the Bluetooth
manager.

2. Refresh button

LYU0404: Mobile Motion Tracking using Onboard Camera Page 117

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

To refresh the list of comm. Port available in the computer.
3. Start/Stop button

To start/stop the server.
4. Hide to tray button

Hide the application to the tray bar on the bottom right of the
Windows.

5. Shortcut configuration
To configure the function mapping between client message and server
action.

6. Debug console
For debugging use only.

10.7 Design and Implementation of Server

 Below is the flow chart of the server program and server thread:

Startup of the server program

Refresh comm. Port List
- EnumerateSerialPorts method is called to fetch

a list of available comm. Port

User press “Start” button

Start server thread
- Check which comm. Port is selected
- Create thread of server and make it listen on

the selected comm. Port

User press “Stop” button

Stop server thread
- Server thread is instructed to stop gracefully

LYU0404: Mobile Motion Tracking using Onboard Camera Page 118

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

 Below is the protocol table:

Client’s Message Server’s Action User’s Action
M <a> Move cursor “a” pixels to phone

the right and “b” pixels
downward

User moves the

L ove the cursor User pushes the joystick to Coarsely m
to the left by a large step the left

R r hes the joystick to Coarsely move the curso
to the right by a large step

User pus
the right

U hes the joystick Coarsely move the cursor
upward by a large step

User pus
upward

D sor shes the joystick Coarsely move the cur
downward by a large step

User pu
downward

Open the comm. Port

ethod is called to set how many
- Open the port
- SetupComm m

bytes are read at a time

Startup of the server thread

Comm. Port Reader
essage into a buffer

- Store the client’s m
- The message may contain more than one

command

Client’s message Parser
ge to obtain motion

t
l

- Parse the client’s messa
information, keypress command and shortcu
command according to the pre-defined protoco

Action Performer
ccording to the command from - Perform action a

client

LYU0404: Mobile Motion Tracking using Onboard Camera Page 119

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

x s the button Emulate left mouse button
down event

User presse

X mouse button User release the button Emulate left
up event

z right mouse User presses the button Emulate
button down event

Z mouse User release the button Emulate right
button up event

y e mouse User presses the button Emulate middl
button down event

Y mouse User release the button Emulate middle
button up event

W User presses keypad 5 Wheel up
w Wheel down User presses keypad 8

10.8 Running the Client

 When the application starts up, the following screen appears:

he Options menu displays four choices, select the choice “BlueMouse”
then

T
the following screen will appear:

LYU0404: Mobile Motion Tracking using Onboard Camera Page 120

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

After choosing “Connect”, a window will be prompted to show the

searching process for Bluetooth device:

After choosing the server device, the program will setup a connection to the

server and you can control the mouse cursor of the server now.

10.9 Design and Implementation of Client

Startup of client program

Device discovery
- Search for Bluetooth device nearby
- Prompt a window for user to select for the device

Service discovery
- Check if the device provides the RFcomm service

LYU0404: Mobile Motion Tracking using Onboard Camera Page 121

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Open socket
- Initialize RSocket, connect, open, bind

Wait for command
- Wait for result of motion tracking engine
- Wait for keypress event from framework

Send command via Bluetooth socket
- Send out command according to the pre-defined

protocol

The UML sequence diagram below shows the function calls that occur as a
result of the user’s request to discover Bluetooth device, verify Bluetooth
RFComm service and send command to server.

framework CBTDiscover

CMotionTrackAppUi CBlueMouseClient

HandleCommandL()
Connect ()

StartSelectDeviceL()

EndSelectDeviceL()

SelectRFCommServiceL () CSDPAttributeParser parser ()

AcceptVisitorL ()

HandleCommandL()
SendCommand ()

CMotionTrackVideoEngine

SendMove ()

LYU0404: Mobile Motion Tracking using Onboard Camera Page 122

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Chapter 11: Games Development

This chapter provides an overview of the game concept, a more in-depth look how

to develop motion sensing game and finally our developed game applications

11.1 Programming Games for Series 60

As the mobile devices have become more and more sophisticated in term of

CPU power and technologies, they are currently well suitable as a game platform.
The Series 60 Developer Platform provides a wide range of features that make
game development easier. However, the small size of the display, the small
keyboard, which even varies between different devices need to be taken into
account when developing games.

Our goal is to develop games that make use of the Motion Tracking API that

we developed. By using the Motion Tracking API, it can be used as an
innovative input method for the games and design interesting games that will
response differently according to player’s motion.

 The following figures show some existing games for Symbian phones.

 Figure 11.1– A 3D motorcycle racing game

LYU0404: Mobile Motion Tracking using Onboard Camera Page 123

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

 Figure 11.2 – A J2ME skiing game

Before going into detail of the motion sensor games, we will talk about
some restriction in game programming in mobile phones.

11.2 Series 60 Specific Considerations

11.2.1 Memory

Memory management is very important in memory-constrained
devices. This concerns both the run time memory usage and the eventual
compiled code size. Most of the Symbian based devices have only several
MB of memory. Therefore, all allocated memory should be unallocated as
soon as possible. If you forget to free up the memory, small memory leaks
might go unnoticed over a day or two's usage have the chance to accumulate
over a lengthier period. The result is that the system's resources are finally
exhausted and the machine, or at least the app, needs to be restarted with
likely data loss in order to free up memory again.

When implementing an application, the usage of a stack memory is
worth noting too. In Symbian OS, each thread has its own memory stack,
which cannot grow after the thread has been launched. The default stack
size for an application in Series 60 is only 8KB, and because of this, it
should be use with great caution.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 124

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Due to graphical nature of games, bitmaps often form a large portion
of their memory consumption. The most effective way to reduce the
memory consumption, without decreasing the number of bitmaps is to
reduce their color depths.

11.2.2 Processors

In addition to limited memory size, Symbian phones have other
restriction when compared to PCs. Symbian phones do not have as
efficient processor as PCs do, and graphics processors are rare. Math
processors are also very rare in Symbian phones and hence calculations
should be implemented using integers.

11.2.3 Fixed Point Mathematics

Since there are no native floating points, we cannot include a lot of
floating point calculations in the games, as every emulated calculation
slows things down. In order to solve this problem, we use fixed point
mathematics. For example, we use a 32-bits integer with 24 bits for the
number and 8 bits for the decimal.

Moreover, we can use a pre-calculated table for some mathematics like

cosine or sine operation, because E32Math’s Math::Sin() is both very slow
and a floating point function.

11.3 Structure of Game and Game Loop

 The whole life of the game is actually in the game loop. The game loop
and overall structure of any game are the most important things in game
development. The document-view architecture of Series 60 is already suitable
for game development. The typical structure of a game is typically as follows:

 AppUI: Controller of the game. It controls the views of the game and

menu commands, and other user inputs

 View: Owns the game engine (or part of it), displays the game state

LYU0404: Mobile Motion Tracking using Onboard Camera Page 125

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

from the engine, and handles the UI controls on the view and other
user input.

 Document: Used to store the game state of the engine.

 Engine: The game engine. The game engine is responsible for the

logic of the game. The engine is sometimes mixed together with view,
so that the engine can handle the user input and drawing.

When developing a game, there are actually two ways of implementing the

multiple screen of the game:

1. Using multiple views (for example, introduction, main menu, options
screen, game playing).

2. Using single view.

If a single view is used throughout the game it may be easier to implement
the engine so that it is owned by appUI. Since both appUI and view process
user input and view displays the game state, it is usually necessary to pass a
reference of the game engine to view when creating it. This makes the structure
of the game somewhat obscure.

Using a single view makes handling user input and drawing messy because

the single view needs to be conditional depending on the game state, especially
with larger games.

 When the game is divided into multiple, logical views, the user input and
drawing can be capsulated clearly into separate classes, for example:

 View for the introduction of the game.

 View for the main menu.

 View for the options screen.

 View for the game playing

Since the multiple views architecture makes the structure of the game clear,

LYU0404: Mobile Motion Tracking using Onboard Camera Page 126

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

we use this approach for our games.

Figure 11.3 – Multiply views

As in figure 11.3, the game cover is one of the multiple views. After the

player presses “Play”, the game will enter game playing view.

For the game loop, we use a timer to implement it. The timer updates the

game state, and user input is processed independent of timer. The timer
updates the game status periodically:

void MyGameView::MyTimer()
{
 iMyEngine->NextFrame(frameTimer);
 UpdateDisplay();
}

LYU0404: Mobile Motion Tracking using Onboard Camera Page 127

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

11.4 Input Device

In the past the only way of controlling the game in Series 60 devices is the
keyboard. For the time being the keyboard is the only practical solution for
controlling games. The variety of different keyboard layouts and the limitations
of the small keyboard should be taken into account when developing games.

In our final year project, we have broken this limitation that by using the

embedded camera for controlling games. Now, by making use of our motion
tracking engine, developers can develop their applications not limiting by the
keyboard. They can now develop innovative and creative applications that use
motion as input.

Before introducing how to use the motion tracking engine, we will talk

about traditional game programming using keyboard.

Key event handling in an application is simple:

1. AppUI receives the key event in HandleKeyEventL.

2. AppUI relays the key event to active view by calling view’s
OfferKeyEventL.

Therefore, by implement the OfferKeyEventL function, we can handle the
key event.

Note that for Symbian phone, handling multiple keys simultaneously is
not possible by default. Only the events from the key that is pressed first
are received. This is called key blocking. If we want to handle multiple
keys event, we can allow this by using CAknAppUi which provides the
SetKeyBlockMode method to disable key blocking for the application

Below is an example of switching off key blocking:

void CMyGameAppUi::ConstructL()
{

// Disable key blocking
SetKeyBlockMode(ENoKeyBlock);

}

LYU0404: Mobile Motion Tracking using Onboard Camera Page 128

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

11.5 Advance Graphic Programming

In this section, we will talk about how to make your graphic programming
to be more efficient. There are several techniques that can be used to improve
the performance of the games.

11.5.1 Double Buffering

If a game’s graphics consists of multiple moving objects which need to

be updated frequently, the window server’s client side buffer may be filled
up and thus be flushed before all objects have been updated. To the user,
this may appear as flickering. Flickering or other undesirable effects may
also occur if a view that is built up over a long period of time is drawn
while it is still been updated. A solution for these problems is to use
double buffering where graphics are first drawn in an off-screen bitmap
(back buffer), which is then drawn on the screen, thus forcing the entire
frame to be drawn at once. Especially games, which redraw their screens
several times in a second, practically require an off-screen bitmap.

The procedure for using double buffering is as follows:

1. Create a new bitmap, size of the game view

2. Set the color depth of the bitmap to be the same as the view’s bit

depth. It is because, it can avoid the time consuming conversions
from one bit depth to another.

3. Create a bitmap device and the graphics context for the created
back buffer bitmap. This is needed, because when graphics
context is created for the bitmap, drawing onto the bitmap is
possible just like drawing onto the view’s graphics context.

4. Every time when the screen needs to be updated, the graphic is

drawn into the back buffer. When drawing is finished, call the
view’s DrawNow or DrawDeferred method, DrawDeferred is the
safer method.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 129

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

5. In the view’s Draw method the only drawing that exists is the blt

operation of the back buffer bitmap into the view (front buffer).

The following illustrates the ideas of double buffering:

Back Buffer

Back Buffer

Finish drawing in back
buffer

Screen Buffer

Frame 2

 blt(copy)

Figure 11.4 – The use of double buffering

As we can see from Figure 11.4, one frame is displayed while the other
is calculating next scene to be drawn. When the drawing of the next
frame is completed, the content of the back buffer is copied to the screen
surface.

11.5.2 Direct Screen Access

In Symbian, if you want to draw onto the screen, you need to make use

of the window server as shown in figure xxx. However, using the window
server will slow down the speed because it requires context switching. To
by pass the window server, and thus get rid of the context switching, an

LYU0404: Mobile Motion Tracking using Onboard Camera Page 130

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

application can access the screen directly in three ways:

 Creating and using CfbsScreenDevice
 Accessing screen memory directly.
 Using CdirectScreenAccess.

Device Screen and Keypad

Update Display

Window Server

Figure 11.5 – The flow of for the applications through sessions with the Window

Server.

CFbsScreenDevice is a graphics device that can be addressed to a

screen driver. After creating a CFbsBitGc graphics context for it, it can
be used like any other graphics device. However, the drawing is done
directly on the screen without using the window server.

In figure 11.6, a request is issued to the Window Server to operate in

Direct Screen Access mode, which if successful will provide an area on the
screen that can be drawn to.

RWsSession RWsSession RWsSession

Application 1 Application 1

Key Presses

Application 1

LYU0404: Mobile Motion Tracking using Onboard Camera Page 131

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Figure 11.6 – Requesting use of direct screen access

When an external event takes place that it wants to access a portion of
the screen (e.g. displaying a menu), this will result in Direct Screen Access
being stopped as shown in figure 11.7. Then a new request is made to the
Window Server, which will help you to access the screen.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 132

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

2. Initial Direct Screen Access

request is completed, informing

the application to stop using

Direct Screen Access

Figure 11.7 – Responding to external/window server events when using direct screen
access

11.6 Conclusion

In this chapter, we provide an overview of game programming in Symbian
phones. We also discuss the limitations of Symbian phones and the methods to
tackle the problems. By using some efficient graphic programming algorithm,
we will be able to make use of our motion tracking engine to develop other
applications without affecting the performance.

Application

4. If successful, a new region for

drawing is returned to the

application taking into account

Window Server needs (eg

displaying a menu)

3. A new request to use

Direct Screen Access is

issued

Window Server

1. External event

which requires an

area of the screen

LYU0404: Mobile Motion Tracking using Onboard Camera Page 133

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Chapter 12: Car Racing Game

 We have developed a Car Racing Game that illustrates the possibilities of game
development using our motion tracking engine. Here, we will first introduce our
game, and then talk about the structure of the game.

12.1 Overview of the Game

When the game is started, a game cover is displayed as shown in the figure
12.1.

Figure 12.1 Game Cover of Car Racing Game

After the player presses “Play”, the game will enter game playing view as

shown in figure xx.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 134

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Distance remained

Enemy

Life of player’s car

Player’s car

 Figure 12.2 Game-play view

In this game, it makes use of the motion tracking engine to track to user’s

hand movement. If the user moves his hand to the left/right, then the player’s
car will move accordingly. If the user moves up the phone, then the player’s car
will accelerate for 5s. If player’s car can reach the destination before the life
drop to zero, then the player win the game. If the player’s life drops to zero
before reaching the destination, then the player loses.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 135

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

If the player’s car collides
with the enemy, one unit of
life will be deducted.
When life reaches, the game

Label indicating the
game is finished.

Figure 12.3

When the game is finished, the user needs to return to the main menu first. If
the user wants to play again, press the play button.

Return to the main
menu

Figure 12.4

LYU0404: Mobile Motion Tracking using Onboard Camera Page 136

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

12.2 Sprite

The Sprite class helps to handle multiple frames, so that it can display
multiple frames periodically. Thus, it creates the illusion of object’s movement.

For example, a man walking might consist of three frames:

1. A man with both legs down.
2. A man with the right leg extended.
3. A man with the left leg extended.

You could then animate the man by calling the frames in sequence: 1, 2,

1,3,1,2, and so on using the Sprite class.

White stripes
in the tires

Figure 12.5 – images for sprite class

Notice that the two images in Figure 12.5 are nearly identical. The

rightmost image, however, has white stripes in its tires. When these two
frames are cycled quickly, it creates the illusion of speedy tire movement.

Since the use of Sprite class will consume more CPU power. In our

game, only the player’s car has used the Sprite class, while the enemies
contain one frame only, so as to reduce the use of CPU power.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 137

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

12.3 Collision Detection

Collision detection is an essential attribute of any game engine. Collision
detection lets you know when two sprites are touching. Moreover, robust
collision detection can make the game playing more interesting while a poor
design collision detection may use a lot of computation power and thus reducing
the smoothness of the game.

In our Car Racing Game, when the player's car collides with an enemy car,

we will deduct one unit of energy. If the player loses all 100 energy units, the
game is over. The question is, how can we implement fast but accurate
collision detection on small, slow, resource-limited devices?

 First, we will talk about some common collision detection techniques used
in game programming. Then we will talk about our collision detection in the
Car Racing Game.

12.3.1 Basic Collision Detection

The simplest form of collision detection is generally the fastest form.

Each sprite and its image are treated as a rectangle. If one sprite's rectangle
overlaps another sprite's rectangle, as in Figure 15.2, then we consider the
sprites as having collided.

.

Figure 12.6 - Simple collision between two sprites

LYU0404: Mobile Motion Tracking using Onboard Camera Page 138

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

To implement this type of detection, you need to take the x position, y
position, width, and height of two sprites and then do some simple math, as
shown in the following.

public boolean collide(Sprite sprite)
{

if ((x + width) > sprite.getX() &&
x < sprite.getX() &&
(y + height) > sprite.getY() &&
y < sprite.getY())
return true;

return false;
}

However, most of the sprites are not actually rectangular. In our

game, the racing car is shaped more like an “I”. Using this kind of collision
detection, the game might deduct energy from your car, even if the car doesn’t
touch any enemy.

12.3.2 Advance Collision Detection

In the previous section we talked about a way of detecting sprite

collision using overlapping rectangles. This type of collision detection is
very inaccurate. For instance, if the transparent corners of a ball sprite touch
the corners of another ball sprite, the game will think they have collided.
The player, however, will see two balls move past each other without
touching. In this section, we will talk about several advanced detection
techniques that can solve the above problem.

 The techniques are:
1. Collision detection with multiple levels
2. Collision detection with multiple areas

Solution 1: Multiple Levels

The concept of multiple levels is that the object is separated into two

LYU0404: Mobile Motion Tracking using Onboard Camera Page 139

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

levels. For example, in shooting game, it needs to detect the collision of
the bullet with the objects. The image of an object can be separated into
two levels. The larger rectangle surrounds the entire object. The smaller
rectangle, which is a child of the larger rectangle, denotes the center of the
object. When a collision occurs, the game is told which level is hit.

Figure 12.7 - Multiple levels of collision

Each level is represented by 4 attributes – upper-left coordinate (x, y)
of the area, as well as the width and height. The following code shows
how to detect a multilevel collision.

int areas[][] = {{0, 0, 10, 14} ,
{3, 2, 4, 11}};
public int collide(Sprite sprite)
{

for (int i = 0; i < areas.length; i++)
{

if ((areas[i][0] + areas[i][2]) > sprite.getX() &&
areas[i][0] < sprite.getX() &&
(areas[i][1] + areas[i][3]) > sprite.getY() &&
areas[i][1] < sprite.getY())

return i;

LYU0404: Mobile Motion Tracking using Onboard Camera Page 140

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

}
return -1;

}

The collide() method tests whether a given sprite has collided with a
specific area. The method returns an integer value that represents the level
number. The root level has a value 0. If there is no collision, -1 is returned.
Thus by examining the value returned, we can know which level of the
sprite is hit.

In reality, the game would need to make mxn comparisons for one

collision. It is because it needs to check each area of one sprite against
each area of another sprite. Therefore if one sprite has m areas, and the other
one has n areas, mxn comparisons are needed.

Solution 2: Multiple Areas
 A non-rectangular image can be partitioned into a finite number of
rectangular parts. For example, the circle in figure xxx has been divided
into three rectangles.

Any digital nonrectangular image can be partitioned into a finite
number of rectangular parts.

Figure 12.8 – Multiple areas of collision.

We can detect if two sprites have collided by checking every rectangle

of one sprite against every rectangle of another. This type of collision
detection is very accurate. However, the more rectangles your sprite is

LYU0404: Mobile Motion Tracking using Onboard Camera Page 141

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

made up of, the more checking iterations

Area collision detection can be implemented similarly to level
detection. Simply create an array of a structure that contain four
components (x, y, width and height).

int areas[][] = {{2, 1, 6, 3} , {3, 4, 4, 5} ,
{0, 9, 10, 14}};
public boolean collide(Sprite sprite)
{

for (int i = 0; i < areas.length; i++)
{

if ((areas[i][0] + areas[i][2]) > sprite.getX() &&
areas[i][0] < sprite.getX() &&
(areas[i][1] + areas[i][3]) > sprite.getY() &&
areas[i][1] < sprite.getY())

return true;

}

return false;

}

The collide() method returns true if at least one of the parts collide with

another sprite.

In our Car Racing Game, we have used the simplest method – treating

the sprite as a rectangle (the basic collision detection) since in the mobile
phone, the CPU speed is low. Moreover, in our game, we divide the
screen into 4 columns. Therefore the enemies will only appear in one of
the columns. This makes the collision detection in our game more
accurate and simpler. The following code shows how we implement the
collision detection.

int collision()
{

for(x=0;x<NoOfEnemy;x++)

LYU0404: Mobile Motion Tracking using Onboard Camera Page 142

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

{
 if(Enemy[x]->pos==iCar->centerX/columnWidth &&

Enemy[x]->centerY+EnemyHeight >= iCar->centerY)

 return 1;
}

return 0;

}

The collision function return 1 only when the player’s car is in the
same column with the enemy (Enemy[x]->pos == iCar->centerX/
columnWidth) and when the rear part of the enemy hit the center of the
player’s car.

12.4 Conclusion

In this chapter, we have demonstrated that making use of the motion
tracking engine is possible to game development. In our game, it can still play
smoothly while using our motion tracking engine. It shows that the engine will
not affect the smoothness of the games. Therefore, developers can use it to
develop more robust and interactive games using the motion tracking engine.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 143

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Chapter 13: Skiing Game

We have developed a rotation movement engine based on the translation
movement algorithm developed. In order to test the possibilities of using the
rotational engine in different applications, we have used the engine in a skiing game
(The skiing game is a sample program obtained from the book “Developing Series 60
Applications: A Guide for Symbian OS C++ Developers”)

13.1 Overview

The following shows how to play the skiing game with the rotation of the phone.

In this game, we define 6 levels with each level -2,-1, and 0,1,2,3. For

example, level 1 means the phone has rotated right about 6 degree; level 2 means
the phone has rotated right about 12 degree, etc… When the phone is upright,
the skier will slide down vertically down the mountain.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 144

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

About 6o

Figure 13.1 Skiing Game

About 6o

LYU0404: Mobile Motion Tracking using Onboard Camera Page 145

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

13.2 Structure of the Skiing Game

In this section, we will talk about the structure of the skiing game, and how

to use the rotation engine.

Common Routine

Some functionality needs to be available in multiple areas of the application,
including methods to load bitmaps. This is implemented by using distinct
namespaces. The file DoubleBufferArea.cpp implements many functions
which help with the handling and rendering of bitmaps. The core part of the
skiing game is the CSkiEngine class which is responsible for the game logic.

 The Game View and Control

While the view class is responsible for handling key presses, the control
handles the drawing of the user interface.

 Game Engine

 This class is responsible for the game logic and keeping check of the skier’s
status. It handles the pictures that are displayed. It also contains the timer
functionality which is activated when the game starts.

 Motion Tracking Engine

This class is responsible for tracking user’s movement. By creating an

instance of it in the Game Engine class, the engine will start to work
automatically. The Game Engine can then use the tracking result to determine
the status of the skier.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 146

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Chapter 14: Experimental Result

14.1 Computation load of SSD and SAD

There are two matching criteria commonly used in block matching
algorithm, they are SAD and SSD. We have tested how much SAD is faster
than SSD by a simple code. Recall that the equations of SAD and SSD are as
follow:

 ∑∑
= =

≤++−=
N

i

N

j

WyxwhereyjxiYjiXyxSAD
1 1

|,||),(),(|),(

∑∑
= =

≤++−=
N

i

N

j

WyxwhereyjxiYjiXyxSSD
1 1

2 |,|]),(),([),(

The code to test the performance of SSD is as follow:

 for(int i=0; i<100; i++)
 for(int j=1; j<=1000000; j++){
 d = dataA[i] - dataB[i];
 sum += d*d;
 }

Code snippet 1
This code snippet carries out 100 million operation of SSD. The sum of

squared difference is stored in “sum”. This code snippet costs 922ms to run in
a 2.0GHz personal computer.

Similarly, the code to test the performance of SAD is as follow:

 for(int i=0; i<100; i++)
 for(int j=1; j<=1000000; j++){
 sum+=abs(dataA[i] - dataB[i]);
 }

Code snippet 2
This code snippet carries out 100 million operation of SAD. The sum of

absolute difference is stored in “sum”. This code snippet costs 1297ms to run.
Surprisingly, absolute operation is much slower than multiplication operation.
This is because in this code snippet, abs() function is called instead of doing
simple arithmetic operation. Calling function involves procedure prolog which

LYU0404: Mobile Motion Tracking using Onboard Camera Page 147

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

produce a significantly large overhead when the function is called very
frequently. In order to improve the speed of absolute operation, we handle the
absolute operation by ourselves rather than use the Math class function, the code
snippet become:

for(int i=0; i<100; i++)
 for(int j=1; j<=1000000; j++){
 sum+=dataA[k]>dataB[k]?dataA[k]-dataB[k]:dataB[k]-dataA[k];
 }

Code snippet 3
This code snippet costs 781ms to run which is about 15% faster than

snippet 1. This code snippet is more efficient because it doesn’t involve
function calling. In total, snippet 4 requires 1 comparison and jump operation
(dataA[k]>dataB[k]?), 1 difference operation (dataA[k] – dataB[k] OR
dataB[k] – dataA[k]), 1 summation operation and 2 for loop. This code snippet
is not yet optimal, it is because dataA[] and dataB[] are image pixels arrays,
accessing elements in these arrays cost a long time. To minimize the access of
the image array and computation operations, we change the snippet to:

 for(int i=0; i<100; i++)
 for(int j=1; j<=1000000; j++){
 d = dataA[k] - dataB[k];
 if(d>=0) e+=d;
 else e-=d;
 }

Code snippet 4
This code snippet costs only 672ms to run which is about 30% faster than

snippet 1. This code snippet is more efficient than snippet 3 because it requires
the same amount of computation operations while reduced the number of access
of image arrays to two.

We concluded that computation load of SAD is smaller than that of SSD.
With code snippet 4, SAD is about 30% faster. Therefore, we would use code
snippet 4 in the calculation of SAD matching criterion.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 148

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

14.2 Improvement of ESA by SEA/PPNM

Testing Environment:

CPU – 2.0GHz Pentium 4

Block Matching Parameter:

Block Width 31 pixels
Block Height 31 pixels
Search Window Width 81 pixels
Search Window Height 81 pixels

Measuring Method:

In SEA and PPNM, SAD of the eliminated impossible candidate blocks

needs not to be calculated. Thus we measure the performance of SEA and
PPNM by counting the number of blocks involved in calculating the SAD.

Algorithm # of blocks

calculated in SAD
Speedup Computation Time

(x 5)
Speedup

ESA 6561 1.00 2140 ms 1.00
SEA+PPNM 2304 2.85 516 ms 4.15

SEA+PPNM algorithm show significant improvement in speed over ESA.

It is about 4 times faster than ESA.

14.3 Enhancement of SEA/PPNM by PDE

Experiment of this part is carried out in the same testing environment using
block matching parameter as before.

Measuring Method:

Since in PDE, condition “PSAD(x, y) > SAD(x, y)” is checked every time a

LYU0404: Mobile Motion Tracking using Onboard Camera Page 149

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

row of pixels’ difference is added to partial sum PSAD, PDE reduces
computation load in term of row (with size of 1 x 31) of pixel. Thus we
measure the performance of PDE by counting the number of rows involved in
calculating SAD.

Result:

Algorithm # of rows of pixels’

difference calculated
Speedup Computation

Time (x 5)
Speedup

ESA 203391 1.00 2140 ms 1.00
ESA+PDE 69024 2.95 500 ms 4.28

Since the code overhead of PDE is very small, time for checking “PSAD(x,

y) > SAD(x, y)” condition is not significant and can be neglected. Speedup
measured by numbers of rows of pixels involved in calculation is proportional to
speedup measured by computation time.

Although PDE and SEA/PPNM improves speed of ESA in different aspect,

they do affect each other. In our final algorithm, we have also used SEA and
PPNM method. These two methods remove impossible candidates in a fast
way and remain candidates that are quite close to the previous block. The
remaining candidates enter SAD calculation stage and PDE method is used to
improve the speed. Since the SAD of these candidates is close to that of the
optimum block, removal rate of PDE is reduced. Below is a table showing
speedup of PDE over SEA+PPNM algorithm:

Algorithm # of rows of pixels’

difference calculated
Speedup Computation

Time (x 5)
Speedup

SEA+PPNM 71734 1.00 516 ms 1.00
SEA+PPNM
+PDE

64643 1.11 312 ms 1.65

From the above result, we can see that PDE still have significant speed up

in computation time over the SEA+PPNM algorithm although its rate of
removing impossible candidates is lower. Therefore, in our final algorithm, we
included PDE method to improve the speed in calculating SAD.

Now With SEA+PPNM+PDE algorithm, the computation time for one

LYU0404: Mobile Motion Tracking using Onboard Camera Page 150

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

block is 62 ms (= 312 / 5 ms) on average. It has been fast enough to real-time
track object but lagging level is still quite significant.

14.4 Enhancement by Spiral Scan Method

Comparison of Code overhead of Spiral Scan method with Raster Scan
method:

 Raster Scan method is very simple to implement. Here is the pseudo code:

 for(j=TOPLEFTY; j<=TOPRIGHTY; j++){
 // For each row
 for(i=TOPLEFTX; i<=TOPRIGHTX; i++){
 // For each column
 SAD ();
 }
 }
Spiral Scan method is a bit more complicated. The pseudo code has

been optimized so that less computation is required:
 SAD ();
 for(d=1; d<=DX; d++){
 di = -d;
 dj = -d;
 for(k=0; k<(d<<3); k++){
 i = LeftTop_x_coord. + di;
 j = LeftTop_y_coord. + dj;
 SAD ();
 if(k<(d<<1))
 di ++;
 else if(k<(d<<2))
 dj ++;
 else if(k<((d<<2) + (d<<1)))
 di --;
 else
 dj --;
 }
 }

LYU0404: Mobile Motion Tracking using Onboard Camera Page 151

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Although spiral scan method has a bit higher code overhead, the overhead
which is of the Big O of (DX2) is less significant, when compared with the
complexity of SAD which is of the Big O of (DX2 BW2).

We carried out an experiment to compare the performance of ESA and
spiral ESA.

Algorithm Computation Time (x 5) Computation Time
ESA 2141 ms 428 ms
Spiral ESA 2156 ms 431 ms

The performance of spiral ESA is similar to ESA. However, it greatly

improve the speed of algorithm when PDE/SEA/PPNM is used together assumed
that most of the motion is center-biased. This assumption of center-biased
motion is no longer an assumption when adaptive method is also used.

14.5 Enhancement by Adaptive Spiral Method

Performance of adaptive spiral method is evaluated by comparing the
predicted motion vectors with the real motion vectors. Below is an extract of a
list of blocking matching results of real-time motion tracking with an input video
captured from web camera.

(Learning Rate = 1.0) i.e. Previous “Real” = Current “Expect”

Expect: 0 0 Real: 0 0 Real dist.: 0.0 Adapt dist.: 0.0

Expect: 0 0 Real: 5 2 Real dist.: 5.4 Adapt dist.: 5.4

Expect: 5 2 Real: 7 0 Real dist.: 7.0 Adapt dist.: 2.8

Expect: 7 0 Real: 8 1 Real dist.: 8.1 Adapt dist.: 1.4

Expect: 8 1 Real: 9 0 Real dist.: 9.0 Adapt dist.: 1.4

Expect: 9 0 Real: 9 0 Real dist.: 9.0 Adapt dist.: 0.0

Expect: 9 0 Real: 12 -2 Real dist.: 12.2 Adapt dist.: 3.6

Expect: 12 -2 Real: 8 -2 Real dist.: 8.2 Adapt dist.: 4.0

Expect: 8 -2 Real: 2 -2 Real dist.: 2.8 Adapt dist.: 6.0

Expect: 2 -2 Real: -1 0 Real dist.: 1.0 Adapt dist.: 3.6

Expect: -1 0 Real: -4 0 Real dist.: 4.0 Adapt dist.: 3.0

Expect: -4 0 Real: -6 0 Real dist.: 6.0 Adapt dist.: 2.0

Expect: -6 0 Real: -16 3 Real dist.: 16.3 Adapt dist.: 10.4

Expect: -16 3 Real: -19 4 Real dist.: 19.4 Adapt dist.: 3.2

Expect: -19 4 Real: -13 2 Real dist.: 13.2 Adapt dist.: 6.3

LYU0404: Mobile Motion Tracking using Onboard Camera Page 152

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Expect: -13 2 Real: -12 0 Real dist.: 12.0 Adapt dist.: 2.2

Expect: -12 0 Real: -17 -2 Real dist.: 17.1 Adapt dist.: 5.4

Expect: -17 -2 Real: -14 -1 Real dist.: 14.0 Adapt dist.: 3.2

…

Expect: 5 0 Real: 8 -1 Real dist.: 8.1 Adapt dist.: 3.2

Expect: 8 -1 Real: 6 0 Real dist.: 6.0 Adapt dist.: 2.2

Expect: 6 0 Real: 6 0 Real dist.: 6.0 Adapt dist.: 0.0

Expect: 6 0 Real: 5 0 Real dist.: 5.0 Adapt dist.: 1.0

Expect: 5 0 Real: 4 0 Real dist.: 4.0 Adapt dist.: 1.0

Expect: 4 0 Real: 4 0 Real dist.: 4.0 Adapt dist.: 0.0

Expect: 4 0 Real: 2 0 Real dist.: 2.0 Adapt dist.: 2.0

Expect: 2 0 Real: 1 0 Real dist.: 1.0 Adapt dist.: 1.0

Expect: 1 0 Real: 1 0 Real dist.: 1.0 Adapt dist.: 0.0

…

Average Real dist.: 7.5752 Average Adapt dist.: 2.7201

Each row of this list is printed every time the adaptive spiral algorithm is

run. In this list, “Expect” is the predicted motion vector, and “Real” is the real
optimum motion vector found by the algorithm. Both are represented by
<x-axis movement, y-axis movement of tracking object in term of pixels >.
The physical meaning of “Real dist” is the distance between non-adaptive search
window’s center (or say previous block position) and optimum position while
“Adapt dist.” is the distance between adaptive search window’s center and
optimum position. They are calculated by:

Real dist. = 22)()(movementaxisyoptimalmovementaxisxoptimal −+−

Adapt dist. =

22)()(movementaxisypredictedmovementaxisxpredicted −+−

These distances are equivalent to the length of the corresponding motion

vectors. The smaller these distances, the faster the algorithm runs. If “Real
dist.” is smaller than “Adapt dist.” on average, non-adaptive spiral algorithm
would run faster. If “Real dist.” is larger than “Adapt dist.” on average,
adaptive spiral algorithm would run faster. For natural motion, we observed
that the “Adapt dist.” is much smaller than “Real dist.”, which means adaptive
spiral algorithm is preferred. The input video used in this experiment contains

LYU0404: Mobile Motion Tracking using Onboard Camera Page 153

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

an object moving naturally, it is observed that the “Adapt dist.” is always smaller
than the “Real dist.”. On average, Adapt dist. is 2.7201 while real dist. is
7.5752. We can see that the average adapt dist. is smaller, thus adaptive spiral
algorithm run faster.

14.6 Performance of the Translational Tracking Engine on
Symbian

After we have developed our tracking engine, we have done some tests to

evaluate the speed of the engine. The experiments are conducted as follow:

1. Define several patterns of movement
2. Apply each pattern of movement on different backgrounds, e.g. indoor,

outdoor, bright and dark environment
3. Count the times of running the tracking algorithm in t seconds
4. Running time of the tracking algorithm is calculated by t/count

In this experiment, since we just want to evaluate the speed of the tracking

algorithm. We need to be caution that the tracking block should not be out of
the screen; otherwise feature selection will also be triggered.

Every time, a frame is ready, the tracking algorithm will be called 10 times.

The frame rate in Symbian phone is 14 frames/sec. That means the interval
between each frame is about 0.07s. If the tracking algorithm runs longer than
0.07s, the display will be lag. If the algorithm is fast enough, then in one
second, it should have been called 14x10 = 140 times, thus the speed of the
algorithm should be smaller or equal to 1/140 = 7ms.

The following figures show the results obtained by conducting the

experiments in different environments.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 154

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

a B
c D
e f
g h
i

Figure 14.1 (a) monitor (b) luminous lamp (c) plasma (d) whiteboard

 (e) door (f) outdoor (g) blue-white wall (h) tree (i) white wall

LYU0404: Mobile Motion Tracking using Onboard Camera Page 155

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Run time of motion tracking algorithms

0

10

20

30

40

50

60

mon
ito

r

blu
e-w

hit
e w

all

lum
ino

us
 la

mp

whit
e w

all

pla
sm

a

whit
eb

oa
rd

do
or

ou
tdo

or tre
e

background

Ti
m

e
(m

s)

 Full Search (ms)
Partial Sprial (ms)
Adaptive SEA (ms)

Figure 14.2 – Comparing the speed of different algorithms

14.6.1 Analysis

From the above experimental result, we can find that the run time for

the Full Search is nearly constant in any kind of environment. This is true
that for Full Search, all the candidate blocks are examined, regardless of the
environment. Therefore, it should have constant running time. And
when using the exhaustive search, the display appears to be lag as expected.

For Partial Spiral Search algorithm, we have made use of Partial

Distortion Error (PDE) and Spiral Scan order. It will reject a candidate
block if the error has already exceeded the error for the current best match.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 156

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Thus, with this early rejection mechanism, this algorithm runs faster than
the Full Search. However, the speed of the algorithm will be affected by
the background. This is because, in some background, eg flat region, all
the candidate blocks have similar error with the feature block and hence
cannot find a good feature block for tracking. Therefore, we cannot take
advantage of PDE, and the run time varies.

For our final algorithm, the run time varies slightly in different

backgrounds. The reasons are similar to the reasons in Partial Spiral Search
that the performance of the algorithm will be affected if it cannot find a
good feature block for tracking. Thus, it showed that finding a good
feature block is very important.

Although the run time of our final algorithm varies slightly in different

environment, we can see that it is capable of running at a speed of about
7ms. That means using our tracking algorithm will not make the display
appear to be lag.

14.7 Performance of the Rotational Tracking Engine

After we have developed our rotational tracking engine, we have done some
tests to evaluate the accuracy of the engine. The experiments are conducted as
follow:

1. Rotate the phone from vertical to horizontal level
2. Record the angle measured by the rotational tracking algorithm
3. Repeat the above 2 processes in different backgrounds

The following figures show the results obtained by conducting the

experiments in different environments.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 157

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

 1 2

3 4
5 6
7 8

Figure 14.3 (1) background 1 (b) background 2 (c) background 3 (d)
background 4 (e) background 5 (f) background 6 (g)background 7l

(h) background 8

LYU0404: Mobile Motion Tracking using Onboard Camera Page 158

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Accuracy of the rotational engine

50

55

60

65

70

75

80

85

90

bg 1 bg 2 bg 3 bg 4 bg 5 bg 6 bg 7 bg 8

measured angle

Figure 14.2 – Comparing the accuracy of the algorithm in different backgrounds

14.7.1 Analysis

From the above experiment, our rotational algorithm can give a

accurate result close to the actual angle rotated. However, there are some
cases that the rotational tracking engine does not perform well. It is
because, in these backgrounds, the feature block is found on an edge.
When the phone rotates, the best match found has the same problem as in
the problem mention is Chapter 8 “Enhance Feature Selection”, Figure 8.1.
Thus, if a feature block is found on an edge, this will make the accuracy of
the engine to decrease.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 159

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Chapter 14: Project Schedule

The table below lists the our schedule:

Month Task Completed

Plan the aim and approach of our FYP project June 2004

Learn the basic of Symbian OS Architecture

Get familiar with the programming environment of
Symbian and learn the Symbian programming Language

July 2004

Learn Bluetooth programming
Get familiar with the programming environment of
Microsoft Visual C++ and learn MFC programming

Study motion tracking and block matching algorithm

August 2004

Learn OpenCV programming

Implement Exhaustive Search Algorithm (ESA) on PC
using MFC and OpenCV
Implement Three Step Search (TSS) block matching
algorithm
Compare performance of SAD and SSD matching criteria

September 2004

Implement Successive Elimination Algorithm (SEA) and
PPNM algorithm
Implement Partial Distortion Elimination (PDE)
Implement Spiral Scan method and Adaptive Search
Window Method
Finalize the algorithm used for real-time motion tracking:
Adaptive Spiral SEA PPNM PDE algorithm
Make a pong game using C# on PC using web camera as
video capture device and our motion-tracking algorithm
output as input method

October 2004

Construct a “MotionTrack” Symbian program that can
capture video using the onboard camera

November 2004 Implement the final algorithm in the “MotionTrack”

LYU0404: Mobile Motion Tracking using Onboard Camera Page 160

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

program
Fine tuning the algorithm in “MotionTrack” to yield best
result, e.g. the block matching parameters
Develop a pong game on Symbian on the top of the
“MotionTrack” program
Prepare First Term presentation and demonstration
Write First Term FYP report

Develop rotation tracking engine December 2004

Design adaptive window method for rotation tracking
engine
Study Bluetooth programming technique on Windows and
Symbian
Develop virtual mouse application

January 2005

Study game programming on Symbian
Study graphical programming on Symbian February 2005
Develop car racing game

March 2005 Develop ice skiing game

Improve feature selection algorithm
Prepare Second Term presentation and demonstration

April 2005

Write FYP report

LYU0404: Mobile Motion Tracking using Onboard Camera Page 161

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Chapter 16: Contribution of Work

16.1 Introduction

Now, I am going to state my contribution of work and the knowledge gained
through this project.

Our FYP project can mainly be divided into three parts; they are the testing

platform part, the algorithm part and the application part. All of these parts are
essential yet difficult to implement. During the summer time before this
semester, my partner and I have already learnt many things that are to be used in
our FYP project. This makes us well prepared to do the FYP and have enough
time to do this project.

16.2 Preparation of Work

During the summer time, I have learnt the Symbian OS Architecture and
have learnt how to program applications on Symbian phone. Programming on
Symbian is not as easy as that on window and is a bit tedious. It requires quite
a number of steps: compile, build, make install file, transfer the install file to
Symbian phone, receive and install the program before I can really run and test
my application on Symbian phone. The Symbian emulator on window saves
me much time on developing applications, but when it comes to some
applications that require Bluetooth connection and need to access camera
function, I can’t rely on the Symbian emulator and must be tested on real
Symbian phone. However, I enjoy programming on Symbian. Part of the
reason is that it is highly object-oriented. Concept of class and hierarchy are
highly required during programming on Symbian because the basic structure of
every Symbian application involves many classes including hierarchical classes.
I have learnt a lot of object-oriented programming techniques during making the
Symbian applications. When trying to make some Symbian applications during
the summer time, I mainly focus on studying the image manipulation function
and Bluetooth communication method on Symbian. I have made a simple
application testing how to capture video and access pixels in the image frame of
the video, and also an application testing how to connect two Bluetooth devices
and send message between them. This experience facilitates me to build the

LYU0404: Mobile Motion Tracking using Onboard Camera Page 162

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

testing platform on Symbian and make the application using Bluetooth to
communicate.

Apart from learning Symbian, I have also learnt to use Window MFC with

OpenCV library. Programming MFC is not easy, but it is at least easier than
programming on Symbian.

The most important thing and the most useful thing that I have learnt during

the summer time is the method of tracking object’s motion. I have studied
many kinds of methods ranged from optical flow method to block matching
method. We at last agreed and chose to use block matching method as the
motion tracking algorithm for our application.

16.2 The Algorithm Part

After we have chosen to use block matching method, I have studied many
papers about motion tracking using block matching algorithm. Some papers
suggested some algorithms that claimed to have improvement over older
methods. I have tested the performance of those algorithms and finally agreed
with my partner to use some of them as part of the final algorithm we used.
Apart from using the existing algorithm, I have designed a method that improve
over the existing algorithm to suite the need of our applications, and that is
adaptive spiral method.

After translational motion tracking algorithm was finished, we planned to
develop an engine that detect rotational motion. We observed that translational
motion tracking engine can track firmly when the phone is rotated, we come up
an idea to make use of this property to construct the rotation tracking engine.
Since adaptive window method for rotation tracking algorithm is different, I have
worked out an equation to predict the position of tracking block and this equation
is capable of predicting both linear and circular motion. A simple application is
made to illustrate the rotational motion tracking result.

At last, feature selection algorithm is modified. Since the previously used

algorithm has the deficiency of regarding edge as a good feature which is in fact
not a desirable feature for motion tracking. We have developed a new feature
selection algorithm that can avoid finding edge feature and make use of variance

LYU0404: Mobile Motion Tracking using Onboard Camera Page 163

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

to select complex feature block.

16.3 The Testing Platform Part

With the knowledge of programming window MFC and OpenCV, we
worked together for a few days to build up a testing platform on window so that
we can test and implement algorithms on it at the start of this semester. In order
to facilitate the performance testing, we have continued to improve the program
to facilitate us to debug and fine tune the algorithms.

After we have come up with the final algorithm, we built a testing platform

on Symbian which is also capable to convert to a real application using the
motion tracking result as motion input. After the overall framework of the
testing platform was completed, I implemented some of block matching
algorithms including our final algorithm on Symbian. Because the data types
and methods in Symbian and window are not the same, those that are
implemented on window can’t be used directly on Symbian and must be
re-implemented again.

16.4 The Application Part

After the final algorithm of the MotionTrack application has successfully
been implemented, I am currently working on the virtual mouse application that
uses the tracking result to control the cursor movement on desktop PC. Since
this application involves Bluetooth programming on window and requires
accessing window cursor, I am still studying the way to program it and
implementation of this application is in progress.

After the algorithm part was finished, we developed the virtual mouse

application. As this application adopts Bluetooth as the wireless
communication method and we was not familiar with Bluetooth at first, we
studied Bluetooth programming on Symbian and Windows.

At last, we have also implemented our rotation tracking engine into the

Skiing game in order to illustrate the use of the engine.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 164

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

16.5 Conclusion

In conclusion, I have learnt MFC programming, OpenCV programming,
Symbian programming and many motion tracking algorithms in this semester. I
have got familiar with Visual C++ and the ways to debug window program and
Symbian program on it. My partner and I have worked together to implement
many block matching algorithms and the two testing platform on window and on
Symbian. And finally, we succeed to make a real application that makes use of
the onboard camera as the motion input.

Using the final version of translational motion tracking algorithm, rotation

tracking algorithm is implemented. Some methods are used to improve its
reliability and its speed is improved by adaptive method. A useful application,
Virtual Mouse, which fully utilizes the function of translational motion tracking
engine is then made. A game, Skiing game, which fully utilizes the function of
rotation tracking engine is modified to demo our engine.

Chapter 17: Conclusion

 In this project, the major difficulties are the speed and accuracy of the motion
tracking, because our objective is to develop a real-time motion tracking algorithm
which can be used in camera-based mobile devices. We have studied a lot of motion
tracking algorithms and done experiments to investigate their performance. The
results show that in order to have high accuracy, we cannot use the fast-search
algorithms. Hence, we decided to use the most accurate block-matching algorithm –
The Exhaustive Search Algorithm and tried to improve the speed of the tracking while
stilling preserving a high accuracy.

We tried many methods to increase the speed of the exhaustive search algorithm.
Finally, we developed new algorithms (Adaptive Search Window, Spiral Search and
Feature Selection) and combined the proposed algorithms with the exhaustive search
algorithm. As a result, the accuracy and speed are improved significantly. On top
of the translational motion tracking engine, we build the rotational motion tracking
engine which can support detection of the rotational movement of the phone.

Besides, we studied OpenCV which is a Open Souce Computer Vision Library
and MFC in the summer so that we developed a testing platform in the PC to test the
performance of motion tracking algorithms. The testing platform provided a good

LYU0404: Mobile Motion Tracking using Onboard Camera Page 165

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

environment for us to develop the motion tracking algorithm in a generic way that it
can be used in any devices with camera integrated and are programmable. After
tested thoroughly in the PC, we test the performance of our motion tracking algorithm
on the Symbian phone and fine tune the algorithm.

Finally, we have developed real-time motion tracking applications in the

Symbian phone – Nokia 6600. Now, the applications can track the movement in
real-time. We concluded that our algorithm would work well in other kinds of
mobile device, because its performance was already good in Symbian phone which
has very limited computation power and resources.

The last but not least, we can make use of the motion vectors found as an

innovative input method to many applications, such as virtual mouse, car racing,
skiing and other camera-based games. The motion tracking applications in the
Symbian showed the possibilities of developing other interesting applications, such as
the motorcycle game that we have mentioned in the introduction, by using a camera.

Chapter 18: Acknowledgement

 We would like to thank our final year project supervisor, Professor Michael Lyu.
He gave us a lot of valuable suggestions and provided us necessary equipments for
the project.

 We would also like to express our thanks to Edward Yau who gave us innovative
ideas and suggestions on our project.

Chapter 19: Reference

1. J.N. Kim, S.C. Byun, B.H. Ahn, “Fast full search motion tracking algorithm

using various matching scans in video coding,” Journal of Electronic
Imaging / October 2002 / Vol. 11(4)

2. J.N. Kim and T.S. Choi, ‘‘A fast three-step search algorithm with minimum
checking points using unimodal error surface assumption,’’ IEEE Trans.
Consum. Electron. 44(3), 638–648 (1998).

3. R. Li, B. Aeng, and M.L. Liou, ‘‘A new three-step search algorithm for block

LYU0404: Mobile Motion Tracking using Onboard Camera Page 166

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

motion tracking,’’ IEEE Trans. Circuits Syst. Video Technol.4, 438–442
(1994).

4. J.U. Tham, S. Ranganath, M. Ranganath, and A.A. Kassim, ‘‘A novel
unrestricted center-biased diamond search algorithm for block motion
tracking,’’ IEEE Trans. Circuits Syst. Video Technol. 8, 369–377 (1998).

5. S. Zhu and K.K. Ma, ‘‘A new diamond search algorithm for fast
block-matching motion tracking,’’ IEEE Trans. Image Process. 9, 287–290
(2000).

6. J. Chalidabhongse and C.-C. J. Kuo, ‘‘Fast motion vector estimation using
multiresolution-spatio-temporal correlations,’’ IEEE Trans. Circuits Syst.
Video Technol. 7, 477–488 (1997).

7. H.S. Oh and H.K. Lee, ‘‘Adaptive adjustment of the search window for
block-matching algorithm with variable block size,’’ IEEE Trans. Consum.
Electron. 44(3), 659–666 (1998).

8. K.W. Lim, B.C. Song, and J.B. Ra, ‘‘Fast hierarchical block matching
algorithm utilizing spatial motion vector correlation,’’ Proc. SPIE 3024,
284–292 (1997).

9. J.C. Tsai, C.H. Hsieh, S. K.Weng, and M. F. Lai, ‘‘Block-matching
motion tracking using correlation search algorithm,’’ Signal Process. Image
Commun. 13, 119–133 (1998).

10. B. Liu and A. Zaccarin, ‘‘New fast algorithms for the estimation of block
motion vectors,’’ IEEE Trans. Circuits Syst. Video Technol. 3, 148–157
(1991).

11. W. Li and E. Salari, ‘‘Successive elimination algorithm for motion
tracking,’’ IEEE Trans. Image Process. 4, 105–107 (1995).

12. H. S. Wang and R.M. Mersereau, ‘‘Fast algorithms for the estimation of
motion vectors,’’ IEEE Trans. Image Process. 8, 435–438 (1999).

13. X.Q. Gao, C.J. Duanmu, and C.R. Zou, ‘‘A multilevel successive elimination
algorithm for block matching motion tracking,’’ IEEE Trans. Image Process.
9, 501–504 (2000).

14. T.M. Oh, Y.R. Kim, W.G. Hong, and S.J. Ko, ‘‘A fast full search motion
tracking algorithm using the sum of partial norms,’’ Proc ICCE, pp.
236–237 (2000).

15. C. H. Cheung and L. M. Po, "Generalized Partial Distortion Search
Algorithm For Fast Block Motion Estimation," 2001 IEEE International
conference on Acoustics, Speech, and Signal Processing, vol. 3, pp.
1601-1604, May 2001, Salt Lake City, USA.

16. Y.C. Lin and S.C. Tai, ‘‘Fast full-search block-matching algorithm for

LYU0404: Mobile Motion Tracking using Onboard Camera Page 167

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

motion-compensated video compression,’’ IEEE Trans. Commun. 45,
527–531 (1997).

17. J.N. Kim and T.S. Choi, ‘‘Adaptive matching scan algorithm based on
gradient magnitude for fast full search in motion tracking,’’ IEEE Trans.
Consum. Electron. 45, 762–772 (1999).

18. F. Dufaux and F. Moscheni, “Motion tracking Techniques for Digital TV: A
Review and a New Contribution”, Proceedings of the IEEE, Vol 83, No.6,
June 1995, pp. 123-134.

19. H. Gharavi and M. Mills, “Block-Matching Motion tracking Algorithms –
New Results”, IEEE Transactions on Circuits and Systems, Vol 37, No.5,
May 1990, pp.649-651.

20. J.Jain and A Jain, “Displacement Measurement and its Application in
Interframe Image Coding”, IEEE Transactions on Communications, Vol. 29,
No 12, December 1981, pp. 1799-1808.

21. J.Koga, K. Iiunuma, A. Hirani, Y. Iijima, and T.Ishiguro, “Motion
Compensation Interframe Coding for Video Conferencing”, Proceedings of
the National Telecommunications Conference, 1981, pp. G5.3.1-5.3.5.

22. W. Lee, Y. Kim, R.J. Gove, and C.J. Read, “Media Station 5000: Integrating
Video and Audio”, IEEE Multimedia, Vol. 1, No. 2, 1994, pp.50-61.

23. R Shrinivasan and K Rao, “Predictive Coding Based on Efficient Motion
tracking”, IEEE Transaction on Communications, Vol. 33, No. 8, August
1985, pp. 888-896.

24. Netravali and B. Haskell, “Digital Pictures: Representation, Compression,
and Standards”, Plenum Press, New York, 1995.

25. B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell.,
vol. 17, pp. 185–203, 1981.

26. S. S. Beauchemin and J. L. Barron. “The Computation of Optical Flow”.
ACM Computing

27. J. L. Barron, D. J. Fleet and S. S. Beauchemin. “Performance of Optical Flow
Techniques”.

28. M. J. Black. “Robust Incremental Optical Flow”. PhD thesis, Yale University,
1992

29. C.-H. Lee and L.-H. Chen, “A Fast Motion Estimation Algorithm Based on
the Block Sum Pyramid,” IEEE Trans. Image Processing, vol. 6, pp.
1587-1591, Nov. 1997.

30. B. Zeng, R. Li, and M. L. Liou, “Optimization of fast block motion
estimation algorithms,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp.
833-844, Dec. 1997.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 168

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

31. T. Koga, et. al., “Motion-compensated interframe coding for video
conferencing,” in Proc. Nat. Telecommunications Conf., New Orleans, LA,
Dec. 1981. pp. G5.3.1-G5.3.5

32. J. R. Jain and A. K. Jain, “Diaplacement measurement and its application in
interframe image coding,” IEEE Trans. Commun., vol. COM-29, pp.
1799-1808, Dec. 1981.

33. L.-K. Liu and E. Feig, “A block-based gradient decent search algorithm for
Block motion estimation in video coding,” IEEE Trans. Circuits Syst. Video
Technol., vol. 6, pp. 833-844, Aug. 1996.

34. L.-M. Po and W.-C. Ma, “A novel four-step search algorithm for fast block
motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, pp.
3133-316, Jun. 1996.

35. C. W. Lam, L. M. Po and C. H. Cheung, "A New Cross-Diamond Search
Algorithm for Fast Block Matching Motion Estimation", Proceeding of 2003
IEEE International Conference on Neural Networks and Signal Processing,
pp. 1262-1265, Dec. 2003, Nanjing, China.

36. C. Zhu and L. M. Po, "Partial distortion sensitive competitive learning
algorithm for optimal codebook design," IEE Electronics Letters, vol. 32, no.
19, pp. 1757-1758, Sept. 1996.

37. C. H. Cheung and L. M. Po, "Adjustable Partial Distortion Search Algorithm
for Fast Block Motion Estimation," IEEE Trans. on Circuits and Systems for
Video Technology, Vol.13, No. 1, pp. 100-110, Jan. 2003.

38. C. Zhu, X. Lin, L. P. Chau, and L. M. Po, "Enhanced Hexagonal Search for
Fast Block Motion Estimation," IEEE Trans. on Circuits and Systems for
Video Technology, vol. 14, Issue 10, pp. 1210 - 1214, Oct. 2004.

39. C. H. Cheung and L. M. Po, "Novel Cross-diamond-hexagonal Search
Algorithms for Fast Block Motion Estimation," IEEE Trans. on Multimedia,
vol. 7, No. 1, pp. 16 - 22, Feb 2005.

40. E. Dubois and J. Konrad, “Estimation of 2-D motion fields from image
sequences with application to motion-compensated processing,” in Motion
Analysis and Image Sequence Processing, M. I. Sezan and R. L. Lagendijk,
Eds. Boston, MA: Kluwer, 1993.

41. C. H. Cheung and L. M. Po, "A Fast Block Motion Estimation Using
Progressive Partial Distortion Search", 2001 International Symposium on
Intelligent Multimedia, Video and Speech Processing, pp. 506-509, May
2001.

42. J. K. Aggarwal and N. Nandhakumar, “On the computation of motion from
sequences of images—A review,” Proc. IEEE, vol. 76, pp. 917–935, Aug.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 169

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

1988.
43. D. H. Ballard and O. A. Kimball, “Rigid body motion from depth and optical

flow,” Comput. Vis., Graph. Image Processing, vol. 22, pp. 95–115, 1983.
44. H. Shariat and K. E. Price, “Motion estimation with more than two frames,”

IEEE Trans. Pattern Anal. Machine Intell., vol. 12, no. 5, pp. 417–433, 1990.
45. T. J. Broida and R. Chellappa, “Estimation of object motion parameters from

noisy images,” IEEE Trans. Pattern Anal. Machine Intell, vol. PAMI-8, no. 1,
pp. 90–99, 1986.

46. C. W. Ting, L. M. Po and C. H. Cheung, "Center-Biased Frame Selection
Algorithms For Fast Multi-Frame Motion Estimation in H.264", Proceeding
of 2003 IEEE International Conference on Neural Networks and Signal
Processing, pp. 1258-1261, Dec. 2003, Nanjing, China.

47. H. C. Longuet-Higgins, “A computer algorithm for reconstructing a scene
from two projections,” Nature, vol. 293, pp. 133–135, 1981.

48. C. H. Cheung and L. M. Po, " A Novel Block Motion Estimation Algorithm
with Controllable Quality and Searching Speed", 2002 IEEE International
Symposium on Circuits and Systems, vol. 2, pp. 496-499, May 2002,
Scottsdale, Arizona

49. J. Bouquet and P. Perona, “Visual navigation using a single camera,” in Proc.
5th Int. Conf. Comput. Vision, 1995.

50. J.J. Francis and G. de Jager, “A Sum Square Error based Successive
Elimination Algorithm for Block Motion Estimation”, 2002

,

LYU0404: Mobile Motion Tracking using Onboard Camera Page 170

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Appendix 1: API Documentation

Below is the API documentation written for developers:

Class CVideoEngine

 This class contains the code that implements both the translational and rotational
motion tracking engine. When this class is created and initialized, camera capturing
and motion tracking engine functionality will be set up. Upon creation, this class
requires a parameter which should be the View class. This View class is required to
implement certain functions that are called every time motion tracking result is
produced. Those functions can be used to display out the result. In order to
increase the speed of our algorithm, many variables are set as macro variables to
reduce loading of frequently used variable from main memory. These variables are
shown below and are subjected for developer to change if applicable.

Macro variables

Format: <Variable name> <Default value>: Description
Feature Selection parameters
FBW 15: Feature block width
FBH 15: Feature block height
FSTEP 1: Pixel to skip after scanning 1 pixel in the feature block
FBx 3: Min. x-distance between feature blocks
FBy 3: Min. y-distance between feature blocks
FNox 26: Number of candidate feature blocks in a row
FNoy 26: Number of candidate feature blocks in a column
VARThreshold 200: Min. variance a feature block will be selected
PDEThreshold 44000: Min. SSD of a feature block with its nearby block
Rotation Tracking parameters
AngleThreshold 0.174532925199: Difference in slope between two tracking blocks in
order to increment the angle level by 1
Motion Tracking parameters
BW 8: Half block width of tracking block
BH 8: Half block height of tracking block
BW2 17: BW*2+1
BH2 17: BH*2+1

LYU0404: Mobile Motion Tracking using Onboard Camera Page 171

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

BW4 289: BW2*BW2
DX 8: Half of the search window width
DY 8: Half of the search window height
STEP 1: Pixel to skip after a pixel in a block is used in block matching
STEPSIZE 160: Width of a frame

Variables

TInt iMode

iMode=0: Use Adaptive Spiral SEA PPNM PDE SSD algorithm

iMode=1: Use Spiral PDE SSD algorithm

iMode=2: Use Spiral SEA PPNM PDE SSD algorithm

iMode=3: Use Adaptive Spiral PDE SSH algorithm

TInt iDetectMode

iDetectMode=0: Use Translational Motion Tracking Engine

iDetectMode=1: Use Rotational Motion Tracking Engine

TInt iDisplayMode

When rotation tracking engine is in use,

iDisplayMode=0: do not display rotation angle result

iDisplayMode=1: display rotation angle result

TInt iLevelMode

iLevelMode=0: rotation angle result is not quantized

iLevelMode=1: rotation angle result is quantized as discrete level

TInt iPredictionMode

iPredictionMode=0: Adaptive method is not used

iPredictionMode=1: Adaptive method is used, prediction is made

TInt iLevel

Store the quantized rotation angle result

TReal iStartAngle

Store the previous angle of the two tracking blocks with reference to the horizontal line

TReal iCurAngle

Store the current angle

Functions for Developers

void ConstructL(CMotionTrackAppView* iAppView2)

Constructor of this class. Parameter required is a View class with some functions

implemented.

void ViewFinderFrameReady(CFbsBitmap& aFrame)

LYU0404: Mobile Motion Tracking using Onboard Camera Page 172

Department of Computer Science and Engineering, CUHK 2004-2005 Final Year Project Report

Callback function from framework when a frame is newly captured. In this function, feature

selection, motion tracking algorithms are called. Motion tracking result is available at the end

of this function. By default, it will call some functions in View class to display the motion

tracking result. Developers are free to modify this function to suit their needs.

void Prediction(TInt x,TInt y,TInt x2,TInt y2,TReal angle, TInt &iAdapti,TInt &iAdaptj,TInt

&iAdapti2, TInt &iAdaptj2,TInt movex,TInt movey)

Function to predict user’s next movement based on the two tracking blocks’ positions and

previous movement.

void AdaptSpiralSearch_SEAenhanced(CFbsBitmap &img1, CFbsBitmap &img2, TInt

OFFSETW, TInt OFFSETH, TInt& BESTI, TInt& BESTJ, TInt& BESTSUM, TInt adapti, TInt

adaptj)

Function that runs the translational motion tracking algorithm.

LYU0404: Mobile Motion Tracking using Onboard Camera Page 173

