
Department of Computer Science and Engineering

The Chinese University of Hong Kong

2003-2004 Final Year Project

Location-based Services using GSM Cell

Information over Symbian OS

LYU0301

Supervised by Professor Michael LYU Rung Tsong

Group members: Mok Ming Fai
 Lee Kwok Chau

Prepared by Mok Ming Fai (01713554)

 1

Abstract

This project is subjected to the final year project LYU0301. The project title is
“Location-based Services using GSM Cell Information over Symbian OS”.

This report contains ten chapters. They include the introduction of this project,
the introduction of Symbian OS, some basic GSM technologies, currently
existing LBS solutions, location-based service using location area identifier
(LAI) and cell identifier (CI), LBS in the 2-dimensional space, LBS in the
1-dimensional space, the middleware architecture and its component.

Our final year project tries to make use of LAI and CI to provide location-based
service in 2-dimensional and the 1-dimensional space using simple hardware
which is going to be widely distributed in the near future - mobile phones with
Symbian OS.

We also created a middleware for developing location-based application using
our approach in LBS. This middleware includes a set of APIs and tool kits.

This report also includes two test on the middleware developed. We tried to
remake MTR Traveller and create a new application, CU Campus Bus Route,
using the middleware.

We performed investigations and experiments for all the possible ways to
accomplish this project. This report includes the descriptions and results of all
the experiments done. Programs developed are also explained.

Chapter 1 to chapter 7 are all work done in the first semester while chapter 8 to
16 belongs to those work done in the second semester.

 2

Table of Content

Abstract 1
Table of Content 2
1. Introduction 6
 1.1 Motivation 6
 1.2 Project Objective 6

2. The Symbian OS 7
 2.1 The Rise of Symbian OS 7
 2.2 Operating System for Mobile Devices 7
 2.3 Characteristics of Symbian OS 9
 2.4 System Structure of the Symbian OS 10
 2.5 Special Features of Symbian OS 11
 2.5.1 Descriptors 11
 2.5.2 Cleanup Stack 15
 2.5.3 Two-phase Construction 17
 2.5.4 Active Object 19
 2.6 Summer Work on Symbian OS 20

3. The GSM Technologies 21
 3.1 Cellular Technology 21
 3.2 System Architecture and Addressing 22
 3.3 Cell Selection and Reselection 23

4. Currently Existing LBS Solution 24
 4.1 The Global Positioning System 25
 4.2 SMS Query using Specially Designed SIM Card 25
 4.3 Comparison of the Two Methods 26

5. Location-based Service using LAI and CI 28
 5.1 The Principle 28
 5.2 Development of the Data Collection Kit – GSM Status 30
 5.3 Data Collection Methods 31
 5.3.1 The Static Method 32
 5.3.2 The Cell Change Method 34
 5.3.3 Comparison of the Two Methods 34

 3

6. Location-based Service in 2-dimensional Space 36
 6.1 Motivation 36
 6.2 The Experiment 36
 6.2.1 Expectation of the Experiment 36
 6.2.2 Results and Statistics 37
 6.2.3 Conclusion of the Experiment 41

7. Location-based Service in 1-dimensional Space 42
 7.1 The Principle 42
 7.2 The Experiment 43
 7.3 Results and Statistics 44
 7.4 Accuracy Measurement 50
 7.5 Conclusion of the Experiments 53
 7.6 The MTR Traveller 54
 7.6.1 The Functionally 54
 7.6.2 Program Architecture and Concept 55

8. The Middleware 57
 8.1 Situation 57
 8.2 Motivation 57
 8.3 Location-based Application Development Process 57
 8.4 Middleware as a Solution 59
 8.5 The Architecture 60

8.6 Some Definitions 61
 8.6.1 Reference Point and Point of Interest 61
 8.6.2 Location Definition and Distance Mapping 63

9. Application Programming Interface 64
 9.1 API Design Principle 64
 9.2 The API Structure 66
 9.2.1 CNetworkInfo 67
 9.2.2 CLocationListener 68
 9.2.3 CProximity 69

10. Development Tools 71
 10.1 Automatic Cell Collection and Manipulation 71
 10.2 Cell Snap 72
 10.3 Celll Analyzer 74

 4

10.4 Distance Mapper 78

 10.5 AppGen 81

11. Application Development Paths 89
 11.1 The New Development Paths 89
 11.1.1 Development Approach One 90
 11.1.2 Development Approach Two 91
 11.1.3 Development Approach Three 92
 11.2 Classification of Developers 93

12. Experiment on Middleware 95
 12.1 MTR Remake 95
 12.1.1 Difference between MTR Traveller and
 AppGen-Generated LBS Application

95

 12.1.2 Data Collection and Processing 96
 12.1.3 Application Generation 97
 12.1.4 Comparison between the Two Applications 98
 12.2 CU Campus Bus Route 101
 12.2.1 Data Collection and Processing 101
 12.2.2 Application Generation 101
 12.2.3 Potential Problem 103
 12.3 Trade-off of Using Middlewared-Assisted Application 103
 12.4 Conclusion 104

13. Conclusion 105

14. Appendix 106

15. Acknowledgements 109

16. Reference 110

 5

 6

1. Introduction
1.1 Motivation

With the rapid development of information technology, the need of various
types of information service emerges. Among them the location sensitive
applications are of the utmost importance. There are quite a number of
researches being done in this field recently to look into a way to provide
location-based service to the general public.

Knowing the location where one is at can be of great help in daily life. For
example, one can find out nearby restaurants or fast food chain shops for
lunch; one can also find out where to take a bus or change for MTR. There
is really a need of location-based service that can be used by the general
citizens. Therefore we would like to try to have a study in this field.

1.2 Project Objective
There are currently a number of existing location-based services (LBS)
available. However, they require some special hardware in order to
provide services. This make the service not easily distributed among the
general citizens. We would like to work on a system that requires the
minimum special hardware requirement and system overhead while
providing LBS.

Our approach is to use the location area identifier (LAI) and cell identifier
(CI) to approximate our current location. These information can be
retrieved from the signal emitted by GSM base station. However,
retrieving these information is not easy, since most mobile phone does not
support this operation. This is why we turn to use mobile phones that
utilize Symbian OS, which is power enough for us to carry out this
operation.

With the help of Symbian OS, we tried to implement an LBS that only
requires a mobile phone to operate. In the following chapters, we will try to
explain the basic knowledge of Symbian OS, GSM Technologies first.
After that, we will describe and explain our work in this semester.

 7

2. The Symbian OS

2.1 The Rise of Symbian
 Symbian, founded in June 1988, is a software licensing company jointly

owned by several wireless industry leaders including Ericsson, Nokia,
Panasonic, Psion, Samsung Electronics, Siemens and Sony Ericsson. It
is a private independent company developing advanced, open, standard
operating system for data-enabled mobile phones. Its product, Symbian
OS (Symbian Operating System), is becoming popular in the mobile
phone market.

There are currently quite a number of mobile phone using Symbian OS.
They include:

 Nokia 6600, 7650, 3650, N-Gage and 9210 Communicator
 Sony Ericsson P800, P900
 Motorola A920
 Fujitsu F2051, F2102V

There will be more mobile phone producers turning to this new operating
system. It is announced that the following mobile phones, which use
Symbian OS, will be released very soon.

 Samsung SGH-D700
 Siemens SX1
 Sendo X
 BenQ P30

2.2 Operating System for Mobile Devices
 Symbian OS is a robust multi-tasking operating system specially

designed for real-world wireless environments and the constraints of
mobile phones like limited amount of memory and limited speed of CPU.
It is 32-bit, little-endian operating system working with ARM architecture
chips with V4 instruction set or higher. Supported platforms include
PrimeXSys platform from ARM, the StrongARM, Xscale architectures

 8

form Intel, the OMAP platform from Texas Instruments and the Dragonball
platform from Motorola.

 Symbian OS not only works on mobile phone, but also work on any
mobile devices that satisfy the requirement of the operating system. This
operating system contains an extensive and rich collection of libraries and
for implementing many industry standards.

Industry Standards Examples
Networking TCP/IP, PPP, TSL, SSL,

IPSec, FTP
Communications Bluetooth, IrDA, Obex
Security DES, RSA, DSA, DH
Messaging POP3, IMAP4, SMTP, SMS,

BIO
Browsing HTML, HTTPS, WAP, WML
Telephony GSM, GPRS, fax
Multimedia WAV, AU, WVE, JPEG,

BMP, MBM, GIF
 Table 2.1: Industry Standards Supported by Symbian OS

Symbian OS is so powerful that, besides supporting a number of industry
standards, it also support a lot of useful functions in various field for developers
to develop application for both computation and telephony.

For example, Symbian OS allows developers to retrieve cell information and
information of telcos via the frame sent out from base station; There is a DBMS
in the phone for better data storage efficiency; There is also APIs for
developers to use the camera.

All these strength are the reasons for us to turn to use Symbian OS as our
working platform in our FYP.

 9

2.3 Characteristics of Symbian OS
Symbian OS has a number of characteristics that make it suitable for
mobile computing and better against other operating system.

1. Integrated Multi-Mode Mobile Telephony

Symbian OS integrates the power of computing with mobile telephony,
supporting complex computations, advanced data service and
telephony service on one single mobile machine

2. Open Application Environment
Applications written in different programming languages, like C++ and
Java, can be deployed onto Symbian OS

3. Open Standards and Interoperability
Symbian OS provides a core set of APIs that is shared by all Symbian
OS phone. Thus, a program written using the core set of APIs can be
used in many Symbian OS phones without the need of modifying the
source and recompiling.

4. Multi-tasking
Symbian OS fully implements multi-tasking and threading. Its special
feature active object allows program require multi-threading to be
written with only one thread with several active objects.

5. Fully Object-oriented
Symbian OS is designed completely using object-oriented techniques.
It also allows program to be written using OO technique.

6. Flexible User Interface
Graphical user interface in Symbian OS is flexible, users can design
their own user interface easily. For example, Nokia developed its own
specific GUI called “Avkon” for use in its mobile phone.

 10

2.4 System Structure of the Symbian OS
The system structure of the Symbian OS is quite straight forward. The
operating system and its applications can be divided into 4 types of
components. They are kernel, engines, servers and applications.

The kernel is used to manage the hardware inside the system. They may
include RAM, display device and keypad etc. In Symbian OS, hardware
devices can only be accessed by privileged APIs, which in turn can only
be executed by the kernel. Other applications have to access these
system resources by calling the kernel APIs.

A server is a program that do not have graphical user interface. It
manages resources that may be needed by clients. Examples of server
include file server, which helps to manage the operations of the system,
and window server, which helps to manage the display area on the screen.

An engine is part of an application that only manipulates data and do not
interact with the user. An engine helps to separate the program core from
the part that manipulates the GUI. This makes the program more flexible.
For example if we want to change the interface, we don’t need to have any
modification on the core engine.

An application is just a program that interacts with users with an interface.
It may need to access to servers for certain resources.

Figure 2.1: The components of the Symbian OS and its applications

Server Server Application
Application Application

Engine Engine

Kernel

Process boundaries DLL
boundary

Privilege
boundary

 11

2.5 Special Features of Symbian OS
There are a number of special implementation on the Symbian OS that
make it a robust and suitable operating system for mobile devices with
limited memory and computing powers. These special features include
Descriptors, Cleanup Stack, Two-phase Construction, Active Object.

2.5.1 Descriptors

2.5.1.1 Descriptor Overview

In C, strings processing is inconvenient. Strings are
NULL-terminated, so programmers have to allocate the extra byte to
accommodate the terminator. A slightly wrong in arithmetic while
manipulating the string may cause undesired memory overwrites.
Therefore using strings in C may easily create bugs.

In Symbian OS, descriptors are used instead for string handling.
Descriptor provides safe and consistent mechanism in dealing with
strings and even binary data. Descriptor object maintains pointer
and length information to describe data. It is used to access and
manipulate the data. Descriptor object provides safe access and
manipulation to the data it refers. Attempts to access memory
outside the data area represented by the descriptor object are
caught. In the current version of Symbian OS, two different sizes of
descriptors are provided. They include 8-bit version and 16-bit
version.

2.5.1.2 Classification of Descriptors
We can divide descriptors into different types from different point of
view. In term of the location where the data and the descriptor object
exist, we may classify descriptors into Buffer Descriptor, Heap
Descriptor and Pointer Descriptor. In term of the modifiability, we
may classify descriptors into modifiable and non-modifiable.

1. Non-modifiable Descriptor

Non-modifiable descriptor can be accessed but cannot be
changed (except complete replace). Examples are TBufC, TPtrC

 12

and HBufC. All descriptor class ends with a capital letter ‘C’
indicates that the descriptor object is non-modifiable. The length
information stored in non-modifiable descriptor is the current
data length.

2. Modifiable Descriptor

Modifiable descriptor can both be accessed and changed. They
include TBuf, TPtr. Besides the current data length, modifiable
descriptor contains an extra length information, the maximum
length of data that can be represented by the descriptor. This
extra information is needed so as to make changes to the data
within.

We may also classify descriptors in term of their structure:

1. Buffer Descriptor

Data is part of the descriptor object and the descriptor object
lives in the program stack.

 Figure 2.2: Representation of a Buffer Descriptor

2. Heap Descriptor
Data is part of the descriptor object and the descriptor object
lives in the heap.

H E L L O 5

TDesC

TBufC<5>

 13

 Figure 2.3: Representation of a Heap Descriptor

3. Pointer Descriptor
Data is separated from the descriptor object. The descriptor
object lives in program stack while the data may lives in heap or
program stack.

 Figure 2.4: Representation of a Pointer Descriptor

 5 H E L L O

TDesC

HBufC

0x00245155
HBufC*

Heap

H E L L O

5 0x0054235

TDesC

TPtrC

 14

2.5.1.3 The Hierarchy of Descriptors
Figure 3.4 shows the hierarchy of descriptors. All the descriptors,
modifiable, non-modifiable, buffer-based, heap-based and pointer-based, are
all derived from the abstract base class TDesC. As implied by the name,
TDesC is non-modifiable. Other modifiable descriptor classes have some
extra information and functions to make them modifiable. The abstract class
facilitates the design of function and parameter passing.

 Figure 2.5: The Hierarchy of Descriptors

TDesC

TBufCBase TDes

TPtrC TBufC<n> HBufC TBuf<n> TPtr

 15

2.5.2 Cleanup Stack
Memory is of very limited size in most mobile device. It is even more
treasurable in mobile phones. If we allocate memory and do not free
them after finished using them, we may run into out-of-memory problem.
Unlike desktop machines, which could be readily restart when there is
out-of-memory problem caused by extensively not freeing memory after
use, mobile devices are expected to work for a long period of time
before they are switched off or restarted. Therefore, freeing unused
memory becomes an important issue. If memory is continuously being
allocated without freeing up, the mobile device is under the risk of
out-of-memory problem.

In C++, a delete function is provided so as to free up heap memory that
is allocated by objects. It seems nice with the function to free up
unwanted memory, but there is still the chance that delete cannot free
those unwanted memory. Consider the following code fragment:

 CX* x = new (ELeave) CX;
 x->UseL();
 delete x;

 Code fragment 2.1: Possible cause of Heap Failure

where CX is a class, x is an automatic variable allocated from heap by
the identifier new and UseL() is a function that leave (terminates upon
encountering unexpected error). In the above implementation, if UseL()
does leave when it is executed, the automatic variable x will never be
able to be freed since the pointer pointing to that memory is destroyed.
This will cause a heap failure (heap memory cannot be freed) and may
result in out-of-memory problem in a long run. This introduces a
cleaning mechanism using the Cleanup stack.

 16

 Figure 2.6: Heap Failure caused by a Leaving Function

The problem of heap failure is caused by automatic variables. Cleanup
stack pinpoint this problem by providing a place for holding these
automatic variables. With the existence of Cleanup stack, code
fragment 3.1 can be rewritten as follow:

 CX* x = new (ELeave) CX;
 CleanupStack::PushL(x);
 x->UseL();
 CleanupStack::PopAndDestroy();

 Code fragment 2.2: The use of Cleanup Stack

CX

Pointer is destroyed when
the function leave. This portion of heap memory is

no longer reachable and cannot be
destroyed

Automatic variable

 17

 Figure 2.7: How Cleanup Stack help to ease Heap Failure

Cleanup stack will free up all the heap memory that are addressed by
the pointer stored in the Cleanup stack. Thus, after we created an
automatic variable, we push it onto the Cleanup stack. If the program
leaves, then the allocated heap memory will be freed by the Cleanup
stack. Therefore, using Cleanup stack can ease the problem of heap
failure.

2.5.3 Two-phase Construction
The Cleanup Stack provides a safe mechanism to prevent memory leak.
However, there is still some situation that memory may leak.

 CY::CY() // Constructor of CY
 {
 iX = new (ELeave) CX;
 }

Code fragment 2.3: Construction that may leave

When an instance of CY is being instantiated, there may be some
problem about memory leak:

CX

Cleanup Stack

Automatic Variable

This portion of heap memory is still
accessible from the Cleanup Stack
and thus can be deallocated

 18

1. If the allocation of CY fails, everything leaves and there is no
problem

2. If the allocation of CX fails, the codes leaves, but CY is not yet
pushed onto the Cleanup Stack, the memory allocated to CY leaks.

3. After the initialization of CY and CX, any call to function that leave
causes no problem, since CX and CY are on already on the Cleanup
Stack.

The problem occurs when a leaving function, including the construction
of another object, is executed. Immediately after CY is instantiated,
there is not yet a chance to push it onto the Cleanup Stack. If a leaving
function is called here and it does leave, CY will not be able to be
de-allocated. Therefore, Symbian OS introduce another rule to prevent
memory leaks. The rule is called the Two-phase Construction. This rule,
together with the use of Cleanup Stack, fully prevent memory leak from
occurring in Symbian OS.

Two-phase construction states that all constructors must not leave. This
means that no leaving function, including the construction of other
object, can be performed in the first phase of the construction process.
All leaving function can only be called in the second phase of the
construction process.

Two-phase construction divides the construction process into two
phases. The first phase is the normal construction, denoted by the
object’s name, for example CY::CY(). The second phase is usually
denoted by CY::ConstructL(). In fact, it is a leaving function. All the
operations that might leave should only be done here.

The construction process with two-phase construction rule is like follow:

1. Create the object, for example CY, using the first phase constructor
2. Push the object onto the Cleanup Stack
3. Call the second phase constructor to perform operation that leaves

 19

In this way, if any of the operation in the second phase of the
construction process leaves, CY will still be able to be deallocated since
it is already on the Cleanup Stack.

2.5.4 Active Object

Symbian OS is a multi-tasking operating system. However, unlike most
operating system, it does not use multi-threading to achieve the
purpose of multi-tasking. Instead, it utilizes a mechanism called Active
object to perform multi-tasking.

With a view to the system overhead of multi-threading, Symbian OS
turned to another approach that requires lesser system overhead. In
using active object to perform multi-tasking, there is only one thread. In
the thread there is an active scheduler together with one or more active
objects. The active objects send out requests. These requests will then
be scheduled by the active scheduler so that these requests can be
served in an interleaved manner.

The active scheduler schedules to serve the requests sent out from
active object in an non-preemptive manner. Therefore there is no
mutual exclusion code needed in using active objects. This further
reduces the code complexity while achieving multi-tasking.

 20

2.6 Summer Work on Symbian OS
In the summer, we learnt to program for the Symbian OS. We wrote two
little applications to demonstrate what we have learnt and the
computing power of this OS.

Figure 2.8: Programs written for the Symbian OS

The CUHK Map shown in figure 2.8 is a program that displays the map
of the CU campus. User can scroll in the four directions to view the map.
Nokia Square on the right hand side of figure 2.8 is a game that looks
like Tertis. The one shown in figure 2.9 is a program written to show the
various GUI components that can be used in Symbian OS.

Figure 2.9: A program for illustrating the power of GUI components of

Symbian OS

Having introduced the operating system we are going to use, we will
next describe the basic GSM knowledge we will use in our project.

 21

3. The GSM Technologies

3.1 Cellular Technology
GSM networks are hierarchically structured. In a GSM network, there is
at least one administrative region, which is the Mobile Switching Centre
(MSC). Each administrative region consists of at least one Location
Area (LA). Each location area in turn is made up of several cell groups.
Each of these cell groups is assigned to a Base Station Controller (BSC).
Figure 3.1 shows the system hierarchy of the GSM network

Figure 3.1: System hierarchy of the GSM network

Because of the limited frequency bands, GSM system only allocated
25MHz in the 900MHz frequency range. Maximum of 125 frequency
channels each with a carrier bandwidth of 200kHz. Therefore GSM
service providers must reuse their assigned frequency repeatedly. This
give rise to the formation of cell clusters. For example, if a GSM
operator is assigned k number of different frequencies that it can use to
provide service, it has to reuse the frequencies. In order to prevent
inter-channel cross-talk, cells using the same frequency band should be
placed as far apart as possible. Figure 3.2 shows how frequencies can
be reused in three cases, in each case the GSM operator is assigned
different number of frequencies that it can use (indicated by k). Different

MSC Region

Location Area

Cell Cell

BSC

GSM Network

Location Area 2 …

BSC 2..

MSC Region 2…

MSC Region 3…

 22

cell clusters are formed in each case.

Figure 3.2: Frequency reuse and cell cluster formation

3.2 System Architecture and Addressing
As we mentioned in the previous subsection, GSM system is structured
hierarchically. Figure 3.3 shows the physical structure of the GSM
system architecture with essential components. Some important
components are described in the previous subsection, while others are
not very important to our project so we just ignored them.

Since the system is in a form of hierarchy, there should be some way to
identify each component among the whole system. There are some
international standard in addressing each mobile station, for example
the International Mobile Station Equipment Identity (IMEI), which utilizes
the Type Approval Code, Final Assembly Code and Serial Number to
uniquely identify a mobile station internationally. However, in this project
we only concentrate on how to identify each mobile station locally, but
not internationally, so we do not need the IMEI, which is too detailed to
be used. Instead, we concentrated at the Location Area Identifier (LAI)
and the Cell Identifier (CI), which when combines together, can identify
a local mobile station uniquely.

LAI consists of two portions, the Country Code (CC) and the Mobile
Network Code (MNC). These two codes together forms an identifier
which of maximally a 5 decimal digits number. For the CI, it is of

 One cell cluster

 23

maximum length of 16 bits in size.

LAI uniquely identify a location area in a GSM network while the CI
uniquely identifies a cell in a base station controller’s domain.

3.3 Cell Selection and Reselection
A mobile phone must periodically measure the strength of the signals
emitted from the base stations nearby. Base on the measurement a
mobile phone select a cell which gives the best reception. After
connected to a cell, accessing a service become possible. However,
when the mobile phone moves along a path, the strength of signal
received from the base station that it is connected to may drops, which
may due to several reasons like it is moving away from that base station
or there is some environmental factor that distort the reception. In this
case, a mobile phone must reselect another cell which gives a better
strength of signal. This process is called the cell reselection. Cell
reselection is very common, when we travel around some place we
usually experience quite a number of cell reselection event, since cell
are of limited size. When we reach the edge of a cell, a mobile phone
will reselect another cell that gives a better reception in order to
guarantee the quality of service provided to a user. When a cell
reselection event occurs, the mobile phone will transit from one cell to
another cell, thus receiving signal from another cell which is of different
LAI and CI.

Figure 3.3: Cell reselection when traveling from one cell to another cell

 24

4. Currently Existing LBS Solutions
There are currently two major streams of LBS solution available. They are
the Global Positioning System (GPS) and SMS Query using specially
designed SIM card. GPS is already very mature and is widely used in
industrial and commercial fields, while the latter one is still very new and is
still under the development process. In the following subsection we will
give a brief introduction on the two methods and compare their
advantages and disadvantages.

4.1 The Global Positioning System

The Global Positioning System is a satellite-based navigation system
made up of a network of 24 satellites. The satellites orbit around the
earth in 12 hours. There are totally 6 orbital planes which are equally
spaced (separated at about 60 degree from each other).

Figure 4.1: 24 satellites and 6 orbital planes for GPS system

21 GPS satellites and three spare satellites are in orbit at 10,600 miles
above the Earth. They are set to be in those positions so that there will
be four satellites above the horizon at any particular location on the
Earth. Each satellite continuously broadcast a signal representing its
position. Then GPS receivers on the Earth receive any three of the four
satellites that is above the horizon and calculate it position by using
triangulation. The result is then represented in form of geographic

 25

location, which includes longitude and latitude. The signal from the
fourth satellites can be used to find out the attitude.

Figure 4.2: How GPS works

GPS is widely used in science, in sea navigation and in air (flight) to
determine the current location and the route to take to destination.
Furthermore, GPS is used militarily. There are still many applications
but mostly not targeted to the general citizen.

Figure 4.3: PDA equipped with GPS receiver for location determination

4.2 SMS Query using Specially Designed SIM Card
This system is much simpler than the GPS system. It involves no
satellite. What it needs are specially designed SIM card and some GSM
base stations. It works as follow: The application drive the mobile phone
to constantly send out SMS query message. Then the nearest base

 26

station will reply the query with a location string and some information of
the current location of the user. Since the GSM base stations are
deployed in a systematic manner, each base station can represent a
specific region of area. So, when a base station replies an SMS query, it
is sure that the user is inside that region, otherwise the SMS query
would be replied by another base station which is nearer to him. A
specially designed SIM card is needed so as to accomplish this task.
This specially designed SIM card is used to send out special SMS query
to GSM base station. This LBS solution uses simple equipment and
would be more easily accepted by the general public.

Figure 4.4: The operation of SMS Query for location information. The
 mobile phone actively sends out queries

4.3 Comparison of the Two Methods
The above methods mentioned are nice. They have their relative
advantages and disadvantages.

The accuracy of GPS is generally high. It is about 10 to 100 metres with
most equipment. This accuracy can be improved to 1 metre with
military-approved equipment. For the second method, the accuracy
greatly depends on the cell size and the signal strength of the base

 27

station. If the cell size is small, the accuracy can be high (within 50
metres). However if the cell size is large, the accuracy can be reduced
to about 500 metres.

Both methods require extra hardware support. GPS users have to get a
GPS receiver installed while the latter method requires user to have a
specially designed SIM card.

The draw back of using GPS is that GPS signal would be seriously
distorted by severe weather condition. Since signal has to be sent from
space to the Earth, a severe weather condition, for example
thunderstorm, would distort the signal, making the
location-determination process inaccurate. Secondly, GPS signal is not
reachable in closed environment, like inside a building. Furthermore,
three satellites must be visible by the GPS receiver in order to provide
the service. It is not very probable in densely populated urban area.

The SMS Query method does not have this constraint, since GSM
signal can reach most part of the building, users can still query their
current location. However, the major draw back is that the active role of
the mobile phone requires it to constantly send out SMS query, which
will occupy the communication channel of the mobile phone, other
communication, for example making a phone call, will not be available
then.

 28

5. Location-based Service using LAI and CI

The two methods mentioned in the previous section are nice, but they
require special hardware device like GPS receiver and specially
designed SIM card. In order to provide location-based service with the
minimal use of special hardware and overhead, we turned to an
approach that tries to retrieve the Location Area Identifier (LAI) and Cell
Identifier (CI) from the base station our mobile phone is connected to.

5.1 The Principle
In order to provide service with good quality, mobile phone service
providers deploy GSM base station in a way that most of the area
people may go to will be covered by one or more than one GSM cell.
Each GSM cell covers a region of area which may overlap with other
cells. Each mobile phone, when being switched on, will try to connect to
one and only one GSM base station in order to access their service.
Mobile phones would connect to a base station that gives the strongest
signal strength to the location where the mobile phone is at. In most of

Figure 5.1: Area covered by cells. The dots inside cells represent the
 base stations

 29

the case, the nearest base station would give the strongest signal
strength to the mobile phone. Therefore, retrieving the LAI and CI of the
base station that a device is currently connected to can tell us which cell
region we are currently in. This in turn gives us an approximation of the
current location of the mobile phone.

A GSM base station continuously sends out data and control frames. In
the header of each frame, there are fields storing the information of the
base station which send out the frame. One of the information is the
base station identification which includes the location area identifier (LAI)
and cell identification (CI) of that station. These information are
transparent to mobile phone users. Using Symbian OS, a mobile phone
can retrieve these data for special use. We try to use this approach to
determine our current location.

 Figure 5.2: Structure of a GSM frame under RLP protocol. Header
 includes base station information

We try to discover the LAI and CI from the signal received by the mobile
phone. Since a mobile phone can at most connect to one GSM base
station which gives the strongest signal (which usually implies the
nearest GSM base station) by retrieving the location area identifier and
cell identifier pair of that GSM base station, we could approximately
determine our current location. In the following sections, we will explain
our main principle and what have to be done in order to provide this
location-based service.

 30

 Figure 5.3: Retrieve LAI and CI passively from GSM broadcasting
 signal.

5.2 Development of the Data Collection Kit – GSM Status
To retrieve the currently LAI and CI from the GSM signal, we need to
write a program which runs on Symbian OS and perform the required
task.

We used Nokia Series 60 platform, which is in fact Symbian OS version
6.1 with a graphical user interface specially designed by Nokia, to
perform our task. Inside the libraries provided by the system
development kit, there is one function which can perform the task of
retrieving the cell identification numbers. However, owing to some
special reason, Nokia removed the header of this function from the
system development kit, making it inaccessible by developers. In order
to use this function, we have to re-activate this function by adding the
header back to the program. In the older Communicator 9200 SDK, the
function was not yet hidden from developer’s access. Therefore, by
copying the header files etel.h and etelbgsm.h from this SDK to our
SDK and link them to our program, we can re-activate the function for
our project to use.

 31

With this function, we wrote a program that retrieve the current LAI and
CI pair.

 Figure 5.4: GSM Status that retrieve current cell information

The program retrieves the current cell information on every one-second
interval. It displays the data onto the screen. Then it compares the
pervious data with the newly-retrieved data, if a cell change occurs, it
pops up a dialog box telling the user that a cell change has occurred.
From figure 5.4, we can see that three information are retrieved. They
are the LAI (displayed as “Location”), CI (displayed as “Cell ID”) and
relative signal strength (displayed in them of percentage). Whenever
any of the information changes, the program updates the data in the
one-second interval’s time.

5.3 The Data Collection Methods
In order to investigate whether the use of LAI and CI is appropriate to
serve as the foundation of a new direction of LBS, we have to look into
the cell distribution, signal strength and the accuracy over an area.

To figure out the cell distribution within an area, we have to use our data
collection kit, the GSM Status, together with some data collection rule,
to achieve our goal.

GSM Status returns us the LAI, CI and relative signal strength at the
particular point where the mobile phone is at. However, as we all know,

 32

there is overlapping of cells over the whole region of area, a data
retrieved at that particular point in the area may only represent part of
the actual data that we need to collect. Therefore, to figure out the cell
distribution and boundaries within the whole area, we need some rule in
collecting the data.

Figure 5.5: We need a rule to collect data so as to figure out all the
hidden data

 We proposed two rules to collect cell information. They are the static

method and the cell change method. The two methods are explained in
the following subsections.

5.3.1 The Static Method
The static method is a rule for use to collect cell information using GSM
Status. In this method we first define a set of important points on the
map of the area that we are interest. Then we use GSM Status to collect
data at those set of points. At those points, we wait for a sufficiently long
period of time to observe the cell information. If the point is at the
overlapping region of two or more cells, we may experience cell change
event during this period of time since the strength of the signal emitted
by base station is dependent on the environment, for example the
existence of an moving object like car. Any environmental change would
have some effect of the signal strength. If the signal strength of the base
station we are currently connected to drops below the strength of signal

LAI: 12000
CI: 3256

Cell 1

Cell 2

LAI: 15000
CI: 3711

GSM Status displays information of

Cell 2, we even don’t know the

existence of Cell 1 at this point!

 33

emitted by another near by station, the mobile phone will connect to that
station instead, to guarantee communication quality. Therefore we may
be able to determine whether we are at the overlapping region and can
discover the existence of both cells.

By defining points dense enough and observing the data for a longer
time, we can accurately determine the distribution of all cells within a
region.

In fact, we can make the result even more accurate. We can repeat the
experiment several times at those selected points and find out the
probability of getting particular cell information. Then we may draw a
probability contour line map to figure out the region covered by a
particular cell with different probability. However, since this method
requires a very long experimental time, we did not perform this (plotting
probability contour line map) in our experiment.

Figure 5.6: Probability contour line map with probability p that we are in
 a particular cell

 34

5.3.2 The Cell Change Method
Another method we propose is the cell change method. In this method,
we do not define any set of points to be taken as experimental points.
Instead, we walk around the whole area to detect cell change events.
Since our data collection kit is capable of detecting cell change event,
we can use the cell change event to figure out the boundaries of the
cells inside the area to be investigated. By walking along all the main
path in the area, we may find out most of the place where cell change
take place. By repeat the experiment several times we may improve the
accuracy of the experiment and can figure out the boundaries of cells.

 Figure 5.7: By walking along the main path in the area, most cell
 boundaries can be detected

5.3.3 The Comparison of the Two Methods
The two data collection rules have their advantages and disadvantages.
We summarized them in the following table

:

: location where cell change
event is detected

Cell boundaries

Cell A

Cell B

Cell C

A->B

B->C

 35

Table 5.1: Comparison of the two data collection rules

There are relative advantages in each method we mentioned, in order
to completely find out the cell distribution in an area, we used both the
methods in our project.

 Static Method Cell Change Method
Results very accurate at
those selected points

Can figure out the
boundaries of different
cells in the area

Advantages

Experiments only done
on those selected points

Fast, no need to wait for
a long time to get the
result

Takes a longer time Boundaries detected
are regions instead of
sharp lines

Disadvantages

Cannot figure out the
distribution of cells
clearly without dense
selected points

Have to walk through
the whole area several
times

 36

6. Location-based Service in 2-dimensional Space

6.1 Motivation
Most of the current LBS applications are targeted in the 2-dimensional
space. We would also like to work on the 2-dimensional field, which
dominates the market of LBS application.

Hong Kong is an international city. Many tourists from all over the world
enjoy traveling in Hong Kong. With technology advancement, it is
supposed that we should have an electronic tour agent to guide tourists
while they are traveling around Hong Kong. However, tourists may not
have a GPS receiver to utilize the existing LBS. Therefore, we would
like to develop an electronic tour agent running on mobile phones that
utilize the Symbian OS. Therefore, we first choose the campus of The
Chinese University of Hong Kong as a testing site. We would like to
know whether the application of LAI and CI would be capable in helping
us to build our system.

6.2 The Experiment
In order to investigate the capability of using LAI and CI for determining
the current location, we have to figure out the cell distribution, cell size,
degree of overlapping in the campus first. Then, we will plot a
cell-to-location map for future use in building our system.

In this experiment, we investigated the cell distribution of two local
telcos. They are SmarTone and Peoples. We used different approach
mentioned in the previous section in different telcos. For SmarTone, we
used the static method in collecting the cell information; for Peoples, we
turned to the cell changed method. We repeated the experiment five
times in order to obtain a better accuracy.

6.3 Expectation of the Experiment
Before we do our experiment, we have the following expectations:

 Cells are of similar size
 The portion of cell overlapping is small and only occur at the

edge of the boundary
 No large cell completely covering a smaller cell

 37

 Cells can be modeled as hexagonal shape cluster covering the
whole area.

6.4 Results and Statistic
Distribution of cell identifiers in the CU campus for SmarTone:
(LAI is the same throughout the CU campus, number represents CI)

Figure 6.1: Experimental results for SmarTone

 38

Outline of cell boundaries for SmarTone in the campus.
(The number represents the cell identifier)

Figure 6.2: Approximated cells distribution in the CU campus for
 SmarTone

 39

Distribution of cell identifiers in the CU campus for Peoples:
(LAI is the same throughout the CU campus, numbers represents CI)

Figure 6.3: Experiment result for Peoples

 40

Outline of cell boundaries for SmarTone in the campus.

 (The number represents the cell identifier)

Figure 6.4: Approximated cells distribution in the CU campus for
 Peoples

 41

6.5 Conclusion of the Experiment
After performing the experiment, we found there are some
discrepancies with our expectations.

Firstly, cell varies greatly in size. For example, from the result of the
experiment done on Peoples (figure 6.4), the cell in blue colour is very
small compared with the orange one.

Secondly, the scale of cell overlap is quite large. From the result of
SmarTone (figure 6.2), the light blue cell overlaps greatly with the light
green one.

Furthermore, there are large macro-cell completely encapsulating a
smaller micro-cell. From figure 6.4, a light green cell is totally within the
red cell.

Also, some cell covers an area that is too large to be used in accurately
determine the current location. For example, in figure 6.2, a brown cell
covers a quite large area (including the Chung Chi campus and part of
the main campus). This cell, without other cells’ assistance, cannot give
enough information for use to accurately determine our current location.
An example is that: when we are at the CU bus station near the KCR
station, we may receive the cell information of the brown cell (CI =
32122). However, the brown cell covers a very large area. With only this
information we cannot say for sure that whether we are at the CU bus
station or at the University sport centre.

Lastly, cell may change shape under different environmental condition.
This may make the cell boundaries slightly different from the expected
ones.

To conclude, there are several potential difficulties in using the LAI and
CI to determine accurately the exact location of a mobile user. It is
because the cell size is controlled by the telco, and those cells are
usually too large to be used accurately in this way. Furthermore, mobile
phones currently can only connect to one single mobile station. No
other information can be retrieved other than the information of the base

 42

station we our currently connected to. All these make the use of LAI and
CI not accurate to be used in the 2-dimensional space. Because of this
inaccuracy, we turned to the 1-dimensional space LBS.

7. Location-based Service in 1-dimensional Space

7.1 The Principle
There are quite a number of technical problems we have to solve in the
2-dimensional space. Without the help of telcos it seems not very
possible to provide LBS that are accurate enough to be used by the
general public. Therefore we turned to the 1-dimensional space.

1-dimensional space here we mean a line. Since cell may vary greatly in
size, the information of exactly which point we are currently at in a cell
seems not very useful. We are more interested in the event of cell change
in the 1-dimensional space.

Figure 7.1: Cell change events happened in a 1D space

In the one dimensional space, we are interested in the “entrance” of a
new cell. Other information becomes not important to us. In other words,
we only want know when we transit from one cell to another cell.

A

B
C

D

A->B

B->C

C->D

X->Y
: represents a cell change event
from cell X to cell Y

g

h

 43

In a 1-dimensional space, for a particular route, when it goes from one
place to another place, it must pass through a set of cells that are located
along the path. For example, in figure 7.1, a route from g to h passes
through four cells: A, B, C and D. No matter how many times we go from
g to h, if we take the same route, we must pass through these four cells.
Thus the three events (A->B, B->C and C->D) must occur during the
journey from g to h. With a route and a set of cell change events, we can
say for sure that which region we are currently in with a very high
confidence For example, when we detect a cell change event of P->Q,
then we know that we are currently in the realm of base station Q, and we
were in the realm of base station P..

Therefore, a pre-defined route can eliminate all the uncertainties and
inaccuracies we have had in the 2-dimensional space.

With the principle of LBS in the 1-dimensional space, we turn to
something along a path - rails and buses. Travelers, when touring around
Hong Kong, must take public transports. However there are too little
information can be retrieved from the public transport system. For
example when a tourist want to go to Clear Water Bay, he takes an MTR,
where should he change for other public transport, say, minibus? Another
case is that when a tourist is traveling on an MTR, he is passing through
Causeway Bay station, how can he know more about the sightseeing site
there? Any shopping mall or restaurant there? Where and when to
change train? With a view to this, we proposed to develop an LBS system
for the rails (MTR and KCR) to give more information about the current
location where they are in, and to prompt them to change for other trains.
We will still use the LAI + CI information in Symbian OS to achieve this.

7.2 The Experiment
This time we do our experiment on two rail systems – MTR and KCR. We
used our data collection kit to note down any cell change event happen
during the journey. We travel to and fro different stations for more than
five times so as to improve and verify the results.

To illustrate the experiment more clearly, refer to figure 7.2. In figure 7.2,
we travel from station A to station B. Since there are three cells in

 44

between the two stations, we should experience three cell change events
during the journey from A to B. We would then note down these cell
change events between stations. These data would then be used to
develop our system for the rail.

Figure 7.2: Principle of the experiment: records all the cell change event for
 the future use in developing our LBS system

7.3 Results and Statistics

This time, we also performed the experiment for both telcos, SmarTone
and Peoples, on part of the MTR rail and KCR rail. The experimental data
are tabulated as follows (left column represents the station transition,
while the right represents the new cell entered during the journey) :

For Peoples:

Data for MTR:

Po Lam - Hang Hau 19061

Hang Hau - Tseung Kwan O 19051

Tseung Kwan O - Tiu Keng Leng 19041

Tiu Keng Leng - Yau Tong 19031

Yau Tong - Quarry Bay 9161

Station A Station B

Cell S
Cell P

Cell Q

S->P P->Q

X->Y
: represents cell change from X
to Y

 45

Quarry Bay - North Point 9231

Sheung Wan - Central 9031

Central - Admiralty 9011

Adimralty - Wan Chai 9371

Wan Chai - Causeway Bay 9021

Causeway Bay - Tin Hau 9321

Tin Hau - Fortress Hill 9081

Fortress Hill - North Point 9201

North Point - Quarry Bay 9211

Quarry Bay - Tai Koo 9231

Tai Koo - Sai Wan Ho 9291

Sai Wan Ho - Shau Kei Wan 9241

Shau Kei Wan - Heng Fa Chuen 9251

Heng Fa Chuen - Chai Wan
9131, {1381, 10713, 10712, 1381,

1401}

Yau Tong - Lam Tin 9161

Lam Tin - Kwun Tong {842, 841, 1811

Kwun Tong - Ngau Tau Kok 1012, 931, 933, 3561

Ngau Tau Kok- Kowloon Bay 811, 3562, 11462, 11463, 2112

Kowloon Bay - Choi Hung 11451, 11452, 12131,} 9051

Choi Hung - Diamond Hill 9061

Diamond Hill - Wong Tai Sin 9381

Wong Tai Sin - Lok Fu 9171

Lok Fu - Kowloon Tong 9111

Kowloon Tong - Shek Kip Mei 9271

Shek Kip Mei - Prince Edward 9221

Prince Edward - Mong Kok 9192

Mong Kok - Yau Ma Tei 9391

Yau Mai Tei - Jordan 9101

Jordan - Tsim Sha Tsui 9341

Tsim Sha Tsui - Admiralty 9011

Note: CI in parenthesis represents cells in open area, other cells are in
closed area. LAI in closed area is 120, while that in open area is 150

Table 7.1: Experimental results for MTR using Peoples

 Data for KCR:

 46

Kowloon Tong - Tai Wai
10203, 4293, 4091, {949, 9481,

661}

Tai Wai - Sha Tin
4511, 11571, 11572, 11573, 4101,

10202

Sha Tin - Fo Tan 4191, 11121, 11123

Fo Tan - University
2443, 10871, 3263, 4782, 10582,

10581, 5531, 4131, 4124

Note: CIs in parenthesis are in tunnel, others are in open environment.
LAI in open area is 140, while it is 110 inside the tunnel.

Table 7.2: Experimental results for KCR using Peoples

For SmarTone:
 Data for MTR:

Po Lam - Hang Hau 13051

Hang Hau - Tseung Kwan O 13041

Tseung Kwan O - Tiu Keng Leng 13031

Tiu Keng Leng - Yau Tong 13021

Yau Tong - Quarry Bay 13012

Quarry Bay - North Point 4921

Central - Admiralty 4942

Adimralty - Wan Chai 4941

Wan Chai - Causeway Bay 4934

Causeway Bay - Tin Hau 4935

Tin Hau - Fortress Hill 4936

Fortress Hill - North Point 4937

North Point - Quarry Bay 3438

Yau Tong - Lam Tin 42502

Lam Tin - Kwun Tong 12813, 42503, 12812, 42502

Kwun Tong - Ngau Tau Kok
4071, 43352, 40481, 20113,

43231, 43305, 12812

Ngau Tau Kok- Kowloon Bay 20382, 20001, 43352, 4071

Kowloon Bay - Choi Hung
41257, 43611, 9286, 43611,

41256, 4911

Choi Hung - Diamond Hill 4912

 47

Diamond Hill - Wong Tai Sin 4913

Wong Tai Sin - Lok Fu 4914

Lok Fu - Kowloon Tong 81141

Kowloon Tong - Shek Kip Mei 81131

Prince Edward - Mong Kok 4961

Mong Kok - Yau Ma Tei 4962

Yau Mai Tei - Jordan 4963

Jordan - Tsim Sha Tsui 4964

Tsim Sha Tsui - Admiralty 4941

Admiralty - Central 4942

Table 7.3: Experimental results for MTR using SmarTone

 For KCR:

Kowloon Tong - Tai Wai
61531, 682, 673, 5793, 30701,

31423, 4243, 4242, 8326

Tai Wai - Sha Tin
30766, 31422, 31983, 203, 30741,

33005, 31981, 8161

Sha Tin - Fo Tan
32611, 18431, 32611, 32353,

33232, 33231, 32042, 7482, 33135

Fo Tan - University
7353, 8341, 32041, 7481, 37513,

33553, 33731, 26391, 61511

Table 7.4: Experimental results for KCR using SmarTone

We discovered several observations associated with GSM cell change
in MTR and KCR:

1. For underground stations, there is one particular GSM cell

covering each station. Therefore, there is one and only one cell
change detected in between any two nearby underground MTR
stations. This facilitates the development of LBS since we can
clearly identify the location (at which station) we are currently at.

 48

Figure 7.3: In tunnel or underground area, only one cell covers
 one station.

2. For station that is in open environment, for example Kwun Tong
and Chai Wan, several cell changes are detected during a
journey from one station to another nearby station. This is
because in an open environment, GSM cells outside the MTR
station are reachable from the train, so more that one cell can be
reached by mobile phones when the train travels in open
environment. For example, while traveling from Kwun Tong to
Ngau Tau Kok, cell identifier changes from 1012 to 931, from 931
to 933 and finally reached 3561.

Figure 7.4: In open area, multiple cells may be detected.

Station 1 Station 2

Cell 1 Cell 2 Cell change takes
place at the
overlapped region

Cells outside
the station
cover the
station and
the rail

 49

3. When the train travels at constant speed, inside a GSM cell,
received signal strength is about 100%. However, when the train
starts to accelerate or decelerate, the received signal strength
drops. It rises to 100% when the speed approaches to a constant.
This could be resulted from Doppler effect. When the traveling
speed changes, the apparent frequency emitted by GSM
antenna varies, thus the mobile phone cannot receive the
desired frequency well. Only when the traveling speed becomes
steady will the apparent frequency become steady, and makes
the signal strength return to 100%.

Figure 7.5: Signal strength drops when the train accelerates

4. Location area identity changes when entering or exiting a closed
environment (tunnel or underground). This may indicate that
GSM cells in closed environment are specially deployed, so as to
let users within these places to access to the GSM network. For
example, LAI change from 120 to 140 while traveling from Shau
Kei Wan (underground) to Heng Fa Chuen (ground level).

Time

Signal

Strength (%)

Starts to
accelerate

Speed
reaches

 50

7.4 Accuracy Measurement
After looking into the cell coverage in the 1-dimensional space (MTR
and KCR in this project), we performed an experiment to investigate the
accuracy of our LBS approach used in this space. In this experiment,
we tried to measure the time needed for the train to get stopped at a
particular station after our program detected a cell change event
representing that we are entering that particular station.

Since the size of overlapping of cell is not negligible, a cell change
event may happen at any point within the overlapping region. For
example in figure 7.6, the route g to h passes through a cell overlap
region. A cell change event may take place at any point inside the
overlap region, for example point U or V. The place at which cell change
take place is very dependent on the environmental condition, which
affects the signal strength received by the mobile phone.

Figure 7.6: Cell change may take place at any point inside the overlap
 region

By finding out the portion of time in which cell change event may occur
in the journey from one station to another nearby station, we can
estimate the accuracy of using this LBS approach in the MTR.

We used time as our measurement metric since the speed of an MTR
varies greatly in a journey, which make it hard to find out the exact
length of the journey in term of distance.

We first estimate the average time needed for a train to go from one

Cell overlap region

U V

g

h

 51

station to another station, and then we find out the interval of time at
which cell change events occur by repeating the experiment several
times..

If the interval at which cell change may take place is small compared
with the length of whole journey, then the result is said to be quite
accurate since all the cell change events happen nearly at the same
point in the journey.

Table 7.6 shows the result of the experiment we done at some MTR
station. All the data are taken in the metric “second”. We performed the
experiment at different dates so as to get a more general result, since
the environmental condition varies from day to day.

The column “Variation of time” shows the accuracy we obtained. The
term “Variation of time” here we mean the interval of time at which cell
change occur within the whole journey. We find out that most of the
results we got are quite accurate. They are mostly around 10-15% of
the length in the whole journey.

Interval at which cell change
take place

X seconds

Length of whole journey (Y seconds)

Station A Station B

 52

From To

Average Total

Time of Journey 11/17/2003 11/18/2003 11/20/2003 11/21/2003 11/22/2003 11/24/2003 11/25/2003

Variation of Time

Po Lam Hang Hau 83.4 32.0 34.5 35.3 39.1 38.1 36.8 36.4 0.085

Hang Hau Tseung Kwan O 106.3 45.0 56.4 71.5* 49.0 61.0 49.6 57.3 0.112

Tseung Kwan O Tiu Keng Leng 74.0 21.0 29.2 30.5 16.8 31.1 18.4 X 0.136

Tiu Keng Leng Yau Tong 136.8 42.1 62.7* 43.0 46.1 47.9 41.5 39.0 0.086

Yau Tong Lam Tin 103.4 1.0 X 4.5 X X 1.6 1.8 0.034

Choi Hung Diamond Hill 79.8 34.3 31.4 38.6 X X 27.1 31.5 0.144

Diamond Hill Wong Tai Sin 74.5 16.8 22.2 23.3 X X 21.4 21.8 0.087

Lok Fu Kowloon Tong 97.2 25.0 60.0* X X X 16.6 47.4 0.317

Kowloon Tong Lok Fu 74.5 18.5 13.2 14.9 7.1 X 18.9 14.7 0.158

Wong Tai Sin Diamond Hill 60.0 28.7 28.9 30.0 32.1 36.2 15.6 X 0.343

Diamond Hill Choi Hung 83.8 36.8 36.7 32.4 33.9 33.3 32.1 35.4 0.056

Lam Tin Yau Tong 80.2 59.5 40.0 44.1 44.0 45.3 41.7 43.1 0.243

Yau Tong Tiu Keng Leng 150.7 78.0 81.3 70.6 91.6 88.3 91.3 84.3 0.139

Tiu Keng Leng Tseung Kwan O 77.4 27.0 23.2 28.3 29.9 28.3 29.9 31.1 0.102

Tseung Kwan O Hang Hau 58.5 46.3 31.8 37.7 39.2 46.7 37.5 X 0.254

Hang Hau Po Lam 87.8 X 22.7 X 38.1 35.5 30.9 25.4 0.175

Note: X: Not recorded or MTR Traveller cannot detect the current station

 *: The train travelled at an abnormal speed (e.g. stopping the train on the way between two stations)

 Average speed of Hong Kong MTR should be 33km/h according to the webmaster of Hong Kong Rail Engineering Centre

Table 7.5: Statistics on the time needed to reach a station after our program prompts

 53

7.5 Conclusion to the Experiments
The experiment shows that LBS in 1-dimensional space are feasible.
No matter in closed environment or in open environment, we can easily
determine which region or station we are at in the whole 1D route. For in
close area, only one cell covering a station gives us a clear-cut of the
realm covered by a particular base station, thus we are sure to be in a
specific region without uncertainty. For in open area, several cells may
be accessible to the route during a journey. This gives us higher
accuracy of determining the location we are going to. For example,
there are five cells (A to E) in between the journey from g to h. If we
experience cell change events A->B, B->C and C->D, then we are quite
sure that we are going to h before we exactly reach h. This extra
information helps us to predict our destination.

LBS in 1-dimensional space can be used not only in MTR, KCR and
buses. Everything that has a path can utilize this service. For example
we can implement a system for passenger to use, so that the system
will prompt the passenger when he should get off the bus, or prompt him
when it is time to change for other means of transport. Furthermore, we
can implement a system that warns the driver when he is entering a
region where there would be speed inspection so that he could reduce
his speed in time. Lastly, we could also use it to calculate a more
accurate location in 2D space by the “history” of his path taken.

 54

7.6 MTR Traveller

With the 1-dimensional data in MTR and KCR, we implemented a
program named MTR Traveller. As its name implies, it is an electronic
travel agent used in MTR (and part of KCR). It is still a prototype of the
whole system.

7.6.1 The Function
In MTR Traveller, we have implemented function that tells the user his
current location in the journey. It also displays the corresponding map of
the railway for the user to refer to.

Figure 7.6: Screenshots for MTR Traveller, an electronic travel agent
 used in MTR and KCR

For example, when we are traveling from Causeway Bay to Wan Chai,
the system will prompt the user that he is going from Causeway Bay to
Wan Chai. It also displays the cellular information onto the screen. We
could add more useful functions onto this program. For example, we
could add a function that find the shortest path for going from one
station to another station; we could make the program more informative
by adding other public transport, like bus, that a user can change at that
particular station; we could also add some information about the
sightseeing sites nearby that station for tourist to go. All these can easily
be implemented onto MTR Traveler. And we suppose we would do so in
the next semester.

 55

7.6.2 Program Architecture and Concept
This program is conceptually simple, though not easy to implement. In
this program, there are three main components: the location sensor, the
database controller and the graphical display unit.

The location sensor is in fact the extension of GSM Status. It detects the
cell change event in every one second interval. If a cell change event is
detected, it makes a query to the database controller for the current
location using the current and the new LAI and CI pair. The database
controller, upon receiving the query, returns with the names and GUI
positions of the source station and destination station. These
information are then displayed to the users.

We store all the information, including the LAI CI pairs, station name,
and GUI positions into a database bundled with the Symbian OS. The
DBMS inside supports simple data query only, no aggregate function is
supported.

Figure 7.7: Entity-relationship diagram for the database we used

We used two tables to store the data for the transition from one cell to
another cell during a journey from one station to another station. In the
tables we record the data of stations, new cell entered and the transition
information, which includes station IDs of the two stations, and the new
cell discovered.

Cell

Station

Travel

Station ID

Station Name

Location ID

Cell ID

X

Y To
From

 56

Schema of the tables we used:
Station (Station ID, Station Name)
Transition (Station ID 1, Station ID 2, Location ID, Cell ID, X, Y)

The GUI display in fact only displays one bitmap for the whole program.
This bitmap includes all the necessary graphics for each station we did
experiment. The GUI position required from the database indicates
which portion of the bitmap is to be displayed. The GUI position is in fact
an (X,Y) coordinate, which is used as the starting point (top-left corner)
of the bitmap to be displayed.

 57

8. The Middleware

8.1 Situation

From previous chapter we conclude that our approach towards building
location-based application is feasible and of nice accuracy in the one
dimensional space. As the world is migrating to the wireless era, the
demand of mobile location-based services emerges. Although building
location-based application using our approach is nice, the development of
location-based services can be quite cumbersome since developers need
to collect cell information, analyze and process collected information
before building the real application. In many cases, building the
application can also be quite difficult. It is because developers need to dig
into the system API in order to retrieve location information. They also
need to tailor-made each application so that they fit different purposes.

8.2 Motivation
As most company prefer to shorten system development time, we would
like to provide developers developing location-based services using
mobile phones with Symbian OS a middleware, which includes a set of
application programming interface (API) together with several toolkits, so
as to facilitate system development.

In our middleware, the API set should allow developers to perform most
type of location-based functions. These functions may include retrieving
current location information, keeping track of location change event,
performing a particular action upon entering a set of specified GSM cell
and also searching for a nearest point of interest by reading a location
definition file.

8.3 Location-based Application Development Process
The following flow diagram shows the general flow in developing a
location-based application:

 58

Figure 8.1: LBS Development Process

The development process is explained as follow:

Cell Data Collection:
Cell information is the basic element for the positioning method to work.
Developers have to take cell data information by traveling the region of
interest, such as MTR route for MTR Traveller, and gather the data.

Cell Data Analysis and Processing:
Raw cell data collected should be analyzed before importing into the
application. For example, user may remove cell change duplicates and
adjust the sequence of cell pair ordering. Moreover, usually data from
different network operators are taken in different time. Developer is
responsible to combine all these data together into single data file so that
application itself does not need to identify which network operators the
user rely on (independent of network operators subscribed).

Collect Cell Data

Analyze and Process
Cell Data

Design Mechanism of
Using Cell Data

Construct Functional
Application

Feed in Content

LBS Application

Collect Cell Data

Analyze and Process
Cell Data

 59

Mechanism Design:
A mechanism of using cell data, such as cell change detection, has to be
implemented programmatically. This is necessary prior to building an
application.

Functional Application Construction and Content Import:
Developers can start designing their applications. The word “functional”
means that the application can accept content from a dedicated source
(e.g. local data file or network). This separates the tasks of software
development and content/service offering.

It should be noticed that cell data collection, followed by analysis, should
be done regularly as network operators may reconfigure their base
station settings from time-to-time.

Therefore, besides giving developers a way to perform handset
positioning, complication at each step should be reduced in order to chop
down the development effort.

8.4 Middleware as a Solution
Nowadays, software companies usually ships their products, such as
library, with a set of toolkits, forming an easy-to-use development
environment. Typical examples are Microsoft Visual Studio, NetBeans,
Symbian SDK and Emulator. We found that similar approach can be
taken in our case – a middleware, consisting of a well-defined APIs and a
set of tools for developers to build, and also maintain, a LBS application in
a time-saving manner. This can be achieved by:

Encapsulation:
Low level function calls can be invisible from developers by wrapping up
them into library. A well-defined application programming interface, API,
would be provided to developers to work with. Besides, the whole GSM
cell ID handling can also be hidden through a set of toolkits.

Automation:
Considering the whole LBS development process using cell ID,

 60

developers have to collect cell data, process them, build a LBS
application for a particular purpose and all of them should be done
manually. For example, in tradition, cell data are collected by reading data
from phones or linking with extra devices, like PDAs, as mentioned in the
section of cell data collection (Chapter 5). There should be some toolkits
to automate some of the work, or at least reduce manual processing.

Layering:
Interfaces and tools provided should be arranged in layer approach such
that developers can view the underlying implementation as a black box
when interacting with a particular interface or tool. Developers of different
concerns can start their work at corresponding ‘layer’.

8.5 The Architecture
In order to perform the task of building an location-based service system
in a simpler and faster manner, our system must include several
components: an API set, tools that help to collect, process and analyze
cell information. We also need an application that help the developer in
setting the relative distance among those point of interest, so that there is
a distance definition file to be referred when searching for the nearest
point of interest. Last but not least, we need an application generator
which generates location-based service application automatically with
parameters set by developers.

The following figure shows the architecture of our middleware.

 61

Figure 8.2: Overview of the development kit architecture

As seen from the above figure, the development kit contains three
different layers built on top of the hardware layer.

Just above the hardware layer comes the API layer. This layer APIs which
encapsulate low level system call, so that it allows developers to retrieve
and manipulate location information without going through complex steps
in invoking those system calls.

Cell Snap and Cell Analyzer are used to collect and process cell
information. Traditionally, there is no application written for developers to
collect GSM cell information. Developing an application for merely
collecting cell information can be time-consuming. Users usually have to
remember all location and cell ID pairs together with their relative physical
location in order to associate those ID pairs with their physical location.
With Cell Snap and Cell Analyzer, developers are now able to collect
location information in a handy way. Cell Analyzer helps to group and
manipulate location information collected from different
telecommunication companies.

At the top level there are AppGen and Distance Mapper. AppGen is a
power application that allows automatic generation of location-based

GSM Modem and Network

Cell Snap & Cell Analyzer

Application Generator Distance Mapper

Hardware Layer

Encapsulate low level

system function

Cell information collection,

processing and analysis

Generates LBS

applications

Generates distance definition file

for easy searching

APIs

 62

mobile application. Developers can set several parameters such as what
type of location-based service is going to be included, what action to be
taken upon reaching some point of interest, which location change should
be observed etc. This application allows easy generation of
location-based application without having to write much code.

Distance Mapper helps to map collected location information to their
physical location, and it generates a location definition file that will be
read by the application generated by AppGen for providing the service of
searching for nearest point of interest.

8.6 Some Definitions
Before investigating how the middleware provides necessary functions for
developers, some definitions are introduced before hand.

8.6.1 Reference Point and Point of Interest
Location-based service usually focuses on a set of regions or points,
such as building, shopping mall and tourist spot. A point of interest, or
POI (PsOI for plural form) in short, represents a particular point on the
map of which the LBS application would be aware. For instance, an
interactive campus visitor application should have all buildings and
canteens as points of interest.

However, as experimented before, GSM cell ID positioning method
performs best on 1D path. This implies that the application should
consider a path rather than the whole 2D map. Therefore, what the
developers concern actually is the reference point on a path.
Reference points are those points taken in cell data collection process
on a predefined path.

To illustrate clearly the idea, an interactive tourist guide along a bus
route is taken as an example. The application regards tourist spots
interested as PsOI. However, such application may be designed for a
particular bus route (or multiple bus routes), so bus stops involved can
be considered as reference points as shown below:

 63

Figure 8.3: Reference Points and POIs of an Interactive Tourist Guide

Each POI (i.e. tourist spot) has a corresponding reference point (i.e. bus
stop) associated along the bus route. Also, POIs may also lie on the
route so it is also a reference point (indicated by the circle).

8.6.2 Location Definition and Distance Mapping
As mentioned in the previous section, user may need to know the
nearest target region, such as fast-food restaurant nearby. However,
purely with cell data, the application is not able to identify which cell is
near or far away from current cell without giving also distance or
geometric information. Therefore, it may require an extra step, called
location definition, to associate the cell into to physical location, like this:

 64

Figure 8.4: Mapping Cell with Geometrical Points on a Reference Map

As a result, the distance between cells can be calculated – distance
mapping. It should be noted that what developers do is to approximate
the cell because the actual location of a cell centre is unknown.
However, this does not contribute a great problem as distances are
used to find nearest point of interest but not precisely and accurately
identify a location.

Location ID: [50]
Cell ID: [150]

Location ID: [50]
Cell ID: [140]

Location ID: [50]
Cell ID: [160]

Location ID: [50]
Cell ID: [110]

Location ID: [50]
Cell ID: [120]

Location ID: [50]
Cell ID: [130]

 65

9. Application Programming Interface

There are existing system calls that allows developers to retrieve current
location information via GSM Modem. However, calling these system calls
can be quite troublesome. We need to connect to the GSM modem,
creating an active object for requesting those information and many more.
However all these operation seems to be a must-do when implementing
location-based applications. In order to simplify the operation of
generating system calls in retrieving and manipulating location information,
we designed a set of APIs which facilitates the development of
location-based application.

9.1 API Design Principle
In order to design good APIs that are complete and easy to use, we
adhered to several design principle in designing our APIs.

9.1.1 Packaging
In a complete set of API there are usually a large number of functions.
These functions may serve for different goals. These API functions can
thus be grouped into different sub groups. Within each sub group, all
functions serve for a similar goal. For example, a function that connect
to the GSM modem can be grouped with functions that retrieve Cell ID
and Location ID since they both serve for getting location information.
By grouping functions into groups with the same goal can make the API
more clear and easy to use. Users only need to know what goal they
want to achieve and then use that particular package of API functions.

9.1.2 Naming Convention
Different programming languages have their own naming convention.
For example Visual C++ uses the Hungarian notion; Java uses capital
letter for the first character in their class name while methods must start
with a lower case. These naming conventions, although seems simple
and unnecessary, play an important role in giving information to end
users. Therefore we followed the naming convention in designing the

 66

API set. We followed the naming convention of Symbian. Some
examples of naming convention in Symbian are: Classes that create
objects in heap starts have a name starting with a character ‘C’;
functions that may leave should end with a capital letter ‘L’ etc. For
example, the following line:

CDesCArray* InsertWordL(TDesC& aWord)

represents a function that insert a word into a descriptor array and it
may leave. aWord is the input parameter while this function output a
pointer to CDesCArry which creates object in heap and therefore need
cleanup after use.

9.1.3 Interfacing
As the API set becomes complex, sometimes we need to have a series
of API calls so as to perform a particular task. In this case we may want
to wrap series of API calls to a single API functions, providing users with
the interface to use, while hiding internal operations from them. This can
simplify the usage while making the API more convenient to use. This
also make the API more robust since end users need to call less API
functions to accomplish a task and minimized the chance of getting
error.

9.1.4 Input Parameters and Return Values
The last consideration is the input parameters and return values. To
make our API more general, we should use interface class as our input
parameter of our function. Using an interface class instead of an
implementation class make an API more general. For example, TPtr
and TBuf are both derived class of TDesC. We would use TDesC as our
function parameter instead of the former two because a function
accepting TDesC means it can accept both TBuf andTDesC. Thus we
increased the freedom to users to choose the input parameter type.

Contrast to input parameter, return value should be as specific as
possible. This is because an implementation class usually are more

 67

powerful than interface class since implementation class should have
more helper functions which help to manipulate data in that object.
Besides, users do not need to waste time performing type casting.

9.2 The API Structures

Figure 9.1: Class view of the API structure

As shown in figure 9.1, our API mainly consist of three main parts. One
is CNetworkInfo, which helps to connect to the GSM modem, send
information retrieval request and retrieve location information.
CLocationListener keeps track of location change events and perform a
specific action when specific cell change event take place. The last
component, CProximity, searches for the nearest point of interest
relative to the current location. These components will be explained in
detail in the next sub chapter.

These three components should form a complete set for location-based
service. In fact, after an in-depth investigation, we find that most
location-based service can be divided into two types: one is searching
for nearest point of interest, the other is keeping track of location
change, then perform an action upon that cell change event occur.

CNetworkInfo

CLocationListener CProximity

 68

Figure 9.2 Perform an action upon specific cell change event
 occurs

Figure 9.3: Searching for nearest POI relative to current location

Cell change event take place, perform

some action for the user, for example,

prompt out a dialog box or invoke an

application

Cell A
Cell B

Cell C

Travel
direction

Current Location

Points-of-interest, for
example, restaurants

Nearest POI relative
to current location

 69

9.2.1 CNetworkInfo
As mentioned before, CNetworkInfo is used to retrieve location
information without the need for developer to perform low level system
call. There are a number of functions in this class which can be used by
developer while they are developing location-based application.
Detailed specification for this API class can be found in the appendix
section

Figure 9.4: The role of CNetworkInfo

From the figure above, it clearly shows the role of CNetworkInfo.
CNetworkInfo, once received user application request, sends out a
request to the operating system for location information. The retrieval of
location information is done in an asynchronous manner. Once a new
set of information is available, it will be returned to CNetworkInfo.
CNetworkInfo will store the most update location information and allow
user application to retrieve by using simple function calls.

9.2.2 CLocationListener

One of the two most popular location-based services is to keep track of
cell change events. CLoctionListener performs this task for developers.

CLocationListener makes use of CNetworkInfo in retrieving location

Operating System and
GSM modem

CNetworkInfo

User Application

Complex function
calls are handled

Simple function
calls, requesting
the action of
hardware modem

Location information
returns when
available

Retrieve current
location
information

 70

information as it needs to keep track of location change event. Since
CLocationListener keeps track of location change event, so it knows
whenever cell change occurs. In order to increase the flexibility for
developers, a list of cell ID which the program is interested in should be
supplied to it. By referring to the list, CLocationListener will be able to
perform specific tasks when entering cells that are specified in the list.

Figure 9.5: Principle of how CLocationListener works.

9.2.3 CProximity
This API class performs the task of searching for the nearest point of
interest relative to the current location. Users have to supply a location
definition file which defines the geographical proximity of all point of
interest.

Cell B

Cell D

Cell E

Cell A

Cell B
Cell C

Cell D
Action performs
at these transitions

Action not
performed, since
they are not listed

Cell changes to be
kept tracked

 71

Figure 9.6: Physical distribution of four point of interest and its
 location definition file

The above figure shows the physical distribution of four point of interest
and its location definition file. In the figure, stars represent point of
interest, for example restaurant, bus stop, toilet etc. Numbers in bracket
represent the location ID and cell ID pair the POI is located in; numbers
on arrows represent physical distance between two POIs.

The generation of location definition file can be done manually or with
the help of Distance Mapper, which is a part of our development tool kit.
We will explain the use of tool kits in next chapter.

To have a brief conclusion on the API set, it simplifies the steps needed
in developing location-based application while providing most common
location-based functions.

100

94

75

30

62

75

(15,201)

(15,63)

(24,17)

(23, 4522)

: Point of interest

; Sample location definition file

4

24#17

23#4522

15#201

15#63

; start of distance definition

99999#30#62#100

30#99999#75#75

62#75#99999#94

100#75#94#99999

; end of distance definition

 72

10. Development Tools

The API set is ready to be used in creating location-based application.
However we still need to collect and process location information.
Furthermore, developers still have to write their pieces of code.

A complete middleware should help developers in developing their
application in all aspect. Therefore, we created several development tools
which take care of all steps in the creation process. These tools help
developers in collecting and processing location information. There are
also tools to map point of interest and generate source codes from
location-based application. These tools fall into two main streams in the
development process, 1) Automatic Cell Collection and Manipulation, 2)
Automatic Program Generation.

10.1 Automatic Cell Collection and Manipulation
As introduced before, cell data collection and processing are the
necessary steps in LBS development process. However, these steps
often require manpower and, hence, become time-consuming,
especially when they must be done regularly to suit the change of cell
configuration made by network operators.

Also, developers have to deal with cell data from multiple network
operators rather than a single one because the LBS application should
support all operators with a single data file. At the same time, they have
to do some analysis and filtering of collected raw data before use. As a
result, the steps of combining cell data from different operators and
processing all cell data at once are bothersome, especially when data
size is huge.

For example, in Hong Kong, there are 6 operators, namely Orange,
CSL, SmarTone, New World Mobility, Peoples and Sunday. Suppose
that the LBS application is designed for a bus route with 15 bus stops
and there are 8 cell changes in between each bus stop on average.
Thus,

 73

The number of cell ID involved = 6 x (15 - 1) x 8 = 672
Notice that this number is for single bus route. If the application
concerns also multiple bus routes, or, for instance, links to other
transport routes, the data size become large and it is impossible to
process them by human in a short period. Therefore, tools for
automation are of uttermost importance.

In the following sub section, the operations of Cell Snap and Cell
Analyzer, part of the software development kit, are explained in details.

10.2 Cell Snap
In the past, cell data are collected manually or with devices like PDAs
Cell Snap is designed for collecting cell data automatically by using the
Symbian phone alone. This can be achieved now because Symbian OS
offers developers with programming capability in accessing mobile
phone hardware, including GSM modem, Bluetooth module and
camera.

10.2.1 Operation of Cell Snap
Cell Snap is a Symbian program that allows:

1. storing cell change event automatically in a list of triples:
 (Location ID, Cell ID, Time elapsed since program start)

2. capturing photo at reference points so that developers can identify
 actual locations in between cell data sequence.

Figure 10.1: Cell Snap Screenshot – Photo Capture (Left) and
 Cell Data Record (Right)

 74

The following diagram shows Cell Snap as a building block in the
middleware. It captures cell data within the journey into a list of cell
data and photos.

Figure 10.2: Cell Snap as a Building Block

10.2.2 Deficiencies of Cell Snap
Cell Snap is initially designed for small-scale cell data collection. This
introduces certain problems:

1. Cell Snap is designed to be read by human, so the Cell Snap output data
 shows a list of raw cell change event log for human to read, like:

129 s: < CellSnap0002.jpg > Location: [130], Cell ID: [33731]
321 s: Location: [130 -> 130], Cell ID: [33731 -> 5812]

However, when there are more data, it is time-consuming to read this by
human. Instead, it should be passed to machine to interpret. Besides, the API
would require a list of cell data in specified format, so a conversion from this
“human” text to concise text is required.

2. Photos and cell data files are stored separately. Developers should look at
 the content of data file and find the corresponding photo to map on their
 own. Therefore, it introduces complication to developers.

Also, Cell Snap only captures raw data. It is the responsibility of developers
to edit the data by themselves. Therefore, this comes to the birth of Cell
Analyzer.

Cell Snap

Environment

Raw cell data and
photos at

reference points

 75

10.3 Cell Analyzer

Cell Analyzer is a utility to edit cell data, combine data from all network
operators and optimize the classification between reference points.

The following diagram shows the operation of Cell Analyzer:

Figure 10.3: Cell Analyzer as a Building Block

10.3.1 Operations of Cell Analyzer
Cell Analyzer is written in Java and acts as a user-friendly tool for
developers to process cell data. It provides following functions:

1. Data Format Transform:
Without any modification of data, it simply transforms raw cell data
from Cell Snap into formatted data for further use (e.g. as an import
file to construct location definition file through Distance Mapper).

2. Data Presentation:
Cell Snap data is not simply a list of cell data, but it can also be
regarded as a tree, with reference points as parent nodes and cell
data in between two reference points as child nodes. Besides, in the
situation that multiple network operators’ data involved in the same
route, a 4-level tree structure can be obtained. Developer may find
easier to understand the data through the user interface.

The following figure shows an example of a bus route project. It
should be noticed that the leaf nodes are the cell data involved
between reference points i and i+1. For example, the cells “Location
ID [50] and Cell ID [160]” and “Location ID [50] and Cell ID [170]” are

Raw cell data and
photos at

reference points

Cell Analyzer

Formatted

Cell Data

 76

involved in cell changes in between reference point 1 and reference
point 2.

Figure 10.4: Cell Data in Tree Representation

3. Cell Duplicates Removal:
Consider the following diagram:

Figure 10.5: Cell Duplicates

There are two cells, cell 1 and 2, in between two reference points
(indicated by the dots). Through the given path, the cell changes
would be [Cell 1→ Cell 2→Cell 1] and result in Cell Snap data
[X:Cell 1, Cell 2, Cell 1] (i.e. Reference point X contains Cell 1, Cell 2
and then Cell 1). However, the proposed location estimation method

1

2Ref. Pt. X

Active Bus
Route Project

SmarTone Orange

Ref. Pt. 1

………

Ref. Pt. 2 Ref. Pt. 3Ref. Pt. 1 ………

Location ID: [50]

Cell ID: [150]

Location ID: [50]

Cell ID: [160]

Location ID: [50]

Cell ID: [170]

Location ID: [50]

Cell ID: [150]

Location ID: [50]

Cell ID: [160]

Location ID: [50]

Cell ID: [293]

……

Project

Operators

 77

only requires the existence of Cell 1 and Cell 2 in between transition
these two reference points. Therefore, the second “Cell 1” can be
removed. This can be done automatically by Cell Analyzer.
4. Intelligent Reference Point Classification:
The origin of this problem can be observed from building MTR cell
data in open area. As mentioned before, in MTR Traveller
implementation, cell data are classified as 1) station cell set and 2)
transition cell set in order to identify the event of “You are in the
station.” (station cells) and “You are in the way of station X to station
Y” (transition cells). Similar optimization is taken in this middleware.

Consider the following situation in an open area.

Figure 10.6: Situation in which Reference Point Classification is
 Needed

Both reference points X and Y contain a node of Cell 1. However, the
expectation is, when mobile phone detects cell 1, it should represent
the fact of “You are at reference point Y.”. Therefore, Cell 1 should
be detached from reference point X in order to reflect this condition.
Cell Analyzer would be able to classify which reference point a cell
should attach to for open area.

5. Manual Editing:
Developers may manually adjust cell data, such as data removal, if
necessary, rather than editing the import file from text editor.

6. Reference Point Pair-up for Multiple Operators:
Developers can define data from one of the operators as master
data. As a result, all reference points from master data are
considered as the main reference point set for the entire project. For
reference points from other operators, they should be mapped to

1

Ref. Pt. Y

Ref. Pt. X

 78

corresponding reference points in master. Developers may choose
data from operator with the smallest number of reference points as
master data such that multiple reference points can be mapped to
one master reference point. If developers only take some fixed
points (like bus stops) as reference points, they may also perform
“Auto Pair-up” to quickly map reference points among all network
operators’ cell data. The cell pair-up interface is easy to use:

Figure 10.7: Cell Pair-up from Multiple Network Operators’ Data

10.3.2 Cell Analyzer Output
As mentioned before, Cell Analyzer would produce a formatted
output for Distance Mapper, for assigning approximate locations for
each cell, or AppGen, for LBS application generation.

Developer may choose to output a single file for individual operator
or combined data for all operators’ data loaded.

 79

10.4 Distance Mapper
Distance Mapper is one component of the development tool kits and is
written in Visual C++. It is responsible for generating location definition
file. A location definition file stores the approximate location of reference
points. This file will be used by location-based application which
provides the function of searching for the nearest point of interest
relative to currently location.

10.4.1 Operation of Distance Mapper
The input file for Distance Mapper is the output of Cell Analyzer. Cell
Analyzer format cell data collected by Cell Snap and generate a
Formatted Cell Data File. Distance Mapper reads in the Formatted
Cell Data File and let users to map those location information onto a
physical map.

Figure 10.8: The Interface of Distance Mapper

The above figure shows the layout of Distance Mapper. On the left is
the working space, a physical map can be loaded into the working
space so as to map location information onto their physical location.
There is a tool bar on the right. Users can load location information
and physical map there. The top part of the tool bar is a list showing
the location information retrieved from the formatted cell data file

 80

outputted by Cell Analyzer. Users can map those data onto the map
on the left-hand side.

10.4.2 Output of Distance Mapper
After mapping those location information onto the physical map, the
program generates the location definition file which records the
logical distance data among all point of interest.

The operation of generating the location definition file is as follow.
After mapping all location information onto the physical map, the
program calculates the relative logical distance in the pixel space.
We simply use the distance equation in calculating the relative
logical distance.

where x and y are the x- and y-coordinate of a location information in
the pixel space. Since we only concern about which POI is closest to
the current location, there is no point in calculating the exact
physical distance. Relative logical distance can fulfill our need.

Figure 10.9: A sample location definition file generated by Distance
 Mapper and its explanation

() ()2
21

2
21 yyxxD −+−=

; Sample location definition file

4

24#17

23#4522

15#201

15#63

; start of distance definition

99999#30#62#100

30#99999#75#75

62#75#99999#94

100#75#94#99999

; end of distance definition

Number of POI

in this file

Location

information

of POIs

Distance definition for first

POI, second POI so on so forth.

99999 represents not applicable

 81

Figure 10.10: POIs distribution in (left) physical space and (right)
 pixel space.

The above figure illustrates the difference between exact physical
distribution and logical distribution. The distributions do not need to
be exactly the same. Both geometry and distance can vary, provided
that the degree of separations among all POIs is preserved.

The output file will be used by location-based application for
providing the search function

(15,63)

100

94

75

30

62

75

(15,201)

(24,17)
(23, 4522)

175

75

102
254 102

20

 82

10.5 Automatic Application Generation
Besides manipulating location information, we also need an application
generator that automatically generate a location-based application.
AppGen is the program which handles this task.

AppGen is specifically designed for content builders who concentrate
on content provided and actions performed when application users
enters or leaves a region. As the name of AppGen implies, it generates
source code of a multi-functional LBS application using the given GSM
Cell ID positioning method, while AppGen users can edit the text,
images, etc, prior to source code creation.

10.5.1 Operation of AppGen
AppGen refers to data from Cell Analyzer to define the reference
points as follows:

Figure 10.11: Role of AppGen in the LBS Application Development
 Flow

The role of AppGen is to generate source code for the application on
the top of LBS APIs, so it requires cell data and location definition file
for the code to work. At the same time, it also manages all resources
involved in the application, including map, photos and icons.

AppGen

Formatted and

analyzed cell data
from Cell Analyzer

Manually processed
cell data + Location

definition file

Application source
code + Resources

Software Development Kit (SDK)

Application Programming Interface (API)

LBS APIs

LBS

Application

 83

As a result, content builders can modify the content while developers
may consider the generated source code as the initial material to
start build their own application.

10.5.2 Some Features in AppGen
Based on the assumption that content builders may not have deep
knowledge in Symbian programming, AppGen aims to offer as much
flexibility as possible to content builders (i.e. they can modify
parameters and add new content in various formats) and ensure that
changes provided should be closely relevant to content editing. Thus,
AppGen provides three types of options for content builders, namely
general options, reference point settings and point of interest (POI)
settings.

10.5.2.1 Primary Features of the Application Generated
One should understand the functions that the application provided in
order to decide the entire content needed. The application
generated would cover as much as possible that a general LBS
application can do, including:

1. To keep track of interested cell changes and report to user (e.g.
 entering a new station for MTR Traveller) and;

2. To let user to specify a destination and acknowledge the user
 when he/she reaches a reference point that associates with that
 destination (Those destinations are usually defined as point of
 interest (POI) here).

10.5.2.2 General Option in AppGen
The following screen shot shows part of the general options
provided.

 84

Figure 10.12: General Options Provided in AppGen

AppGen users can set their own application name for both display
purposes and source code generation. If the application name
provided is Bus_Route_Project, then the class names becomes, for
instance, CBus_Route_ProjectAppUi, CBus_Route_ProjectContainer, etc.

AppGen users may also set their own map and icons used in the
application. Different image formats are allowed, including JPEG,
PNG, GIF, etc.

At the same time, content builders can edit the message displayed
in different events, including detection of new reference point,
startup, cell ID display format, etc., as shown below:

 85

Figure 10.13: Message Editing

Reference points are points taken in Cell Snap and further
processed by Cell Analyzer. Usually, they are some fixed points in
the target 1D path. The application generated would keep track of
these reference points. When user enters a new reference point (or
corresponding region), certain actions are taken, such as changing
the display at the bottom of the screen or showing a non-modal
message box.

Content builders can also associate a pixel point from the map to a
reference point such that the screen would change the display (with
that map point as centre) when users enter this reference point.

Figure 10.14: Selection of a Point on the Map for a Particular
 Reference Point

Most importantly, content builders may add certain point of interest
(POI) for each reference point (In the starting chapter of middleware
series, POI is first introduced). POI is a point or region, of which the

 86

application should be aware, such as Engineering Building in CUHK
and University Library. They are not necessarily on the 1D path
interested.

By default of AppGen, all reference points are also points of interest.
AppGen users can add new points of interest within a reference
point. Take MTR case as an example: developers have to map all
important constructions around the corresponding MTR station as
points of interest.

10.5.2.3 Point of Interest Settings
Most of the configurations are for POI. Content builders are allowed
to change the name of POI (most likely the name of particular
building or spot) and a description for it, including POI brief
description as well as, upcoming news/events of this POI. At the
same time, content builder can supply the application with photos for
each POI so that application users can have an idea about the
appearance before going there.

Figure 10.15: Interface for a Point of Interest

 87

Moreover, developers are able to draw path from the corresponding
reference point (e.g. bus stop) to the target POI. For example, the
above diagram shows how AppGen users draw a path from a
reference point (Central Campus bus stop in CU) to a POI
(Engineering Building in CU). This is useful to build a tour guide in
the resulting LBS application – telling mobile users to go to a
destination from certain well-known points.

10.5.2.4 Source Code Generation
After users have finished their configurations, they can start creating
source code line by line by AppGen application. Also, all images are
transformed into BMP format for Symbian application.

The following screenshot shows an example application generated
without further modification on code. As one can observe, the
application can consistently keep track of the change of location ID
and cell ID and present user a path from a reference point (indicated
by the big dot) to a target destination.

Figure 10.16: A Sample Application Generated

The generated application does already have enough functions to
build a general LBS application.

 88

10.5.2.5 Conclusion on AppGen
AppGen provides content builders with user interface to create their
applications without writing any code. With control of reference
points and points of interest, message formats, POI presentation in
detailed text and photo as well as path to destination, generated
application would be capable to give enough functions to build a
general LBS application. Alternatively, application developers can
start building an application from the source code generated.

 89

11. Application Development Paths

With the introduction of our middleware, the original application
development path is now modified.

Originally, to develop a location-based application, developers need to
under go several fixed steps. Since location-based applications are
location-sensitive, developers need to collect location information
(location ID and cell ID pairs). After that they have to manually
manipulate those location information collected, for example they have
to identify, group, match those information. Lastly, based on the
processed location information and the specification of the application,
developers can start to write their code.

Figure 11.1: Traditional Location-based Application Development Path

With our development kit set, not only is the development process
simplified, the number of development paths also increased. The
increase in development path does not mean the development process
becomes complicated. We provide different development path in a hope
to provide flexibility to developers.

11.1 The New Development Paths
The middleware provides developers with totally three different
development paths. They are:

Raw location

information

Formatted location

information

Location-based

application

Application

Specification

Manually

process data

 90

1. Full use of the middleware, from data collection, data
 manipulation, classification to application generation.

2. Use development kit set to collect and process data, but
 manually write application codes.

3. Manually write the application using the APIs provided.

All the above paths provide different degree of simplicity and flexibility to
developers. And we are going to explain their advantages in the
following sub sections

11.1.1 Development Approach One
In this approach, we will use Cell Snap, Cell Analyzer, AppGen and
the API set. The following figure shows the process:

Figure 11.2: Graphical Representation of Development Approach
 One

Developers use Cell Snap to collect location information, that say,
location ID and cell ID pairs. These raw information data are fed into
Cell Analyzer for further processing. Developers can correlate

Cell Snap

Cell Analyzer

AppGen

API

Raw cell data

Processed

cell data

LBS

application

Distance Mapper

Location

definition file

 91

location information collected from different telecommunication
companies together, remove duplicated information and add
comments. The processed cell data would then be used by Distance
Mapper, if the developer wants to provide searching function in the
output application. The processed cell data, perhaps together with a
location definition file, are supplied to AppGen, which generates
location-based application according to developer’s parameter
selection. The API we provided will be used in generating the output
application.

This approach needs the minimum intervention from developers
since most of the development processes are automatically
accomplished. What the developer needs to do is to collect location
information using Cell Snap and select application generation
parameter in AppGen. Of course, minimum intervention means least
flexibility. Applications generated in this manner have fewer
variations.

11.1.2 Development Approach Two
To give more flexibility to developers and more variations to those
output applications, approach two is introduced. In this approach,
developers do not use AppGen in generating the source code for the
application, and only use the tool set to collect and process location
information into different output files. Developers then write their
applications using these output files. Since AppGen is involved,
programs written can be of greater variations and will be more
tailor-made to suit different request. However, the development
complexity will be slightly higher than using approach one.

 92

Figure 11.3: Graphical Representation of Development Approach
 Two

11.1.3 Development Approach Three
This approach give developers the maximum flexibility while
providing them with support. Developers may want to create all the
data files manually without the need of help from Cell Snap and Cell
Analyzer, so that the application written can even be more flexible. In
this case, developers only use our APIs to develop location-based
applications. They will need to collect and process all location
information, and generate data files needed by APIs and their target
application.

Cell Snap

Cell Analyzer

API

Distance Mapper

LBS

application

Location

definition file

Processed

cell data
Raw cell data

Processed

cell data

 93

Figure 11.4: Graphical Representation of Development Approach
 Three

11.2 Classification of Developers
Developers can be classified into three categories according to the path
they take in developing location-based applications. The above
development paths suit all these three types of developer.

Low-Level Developer:
These kinds of developers would like to work on GSM cell ID and even
optimize the underlying mechanism and algorithm to suit their
application needs. They may need a simple interface to retrieve and
work around with cell information. Approach Three suits them.

General Application Developer:
Rather than purely handling cell information, they may need a set of
tools to facilitate cell data collection, analysis and distance
measurement on a geometrical map. They can take approach Two

LBS Content Builder:
They would focus on how the service is offered through content
enrichment. They only concerns on location changes in order to give
relevant response to application users. A simple example is showing a

API

LBS

application
Raw cell data

Processed

cell data

Location

definition file

Everything done

manually

Other application

specific data file

 94

message if users enter or leave a particular region. As a result, what
they concern mostly are the information, in form of text, graphics, media,
as well as the subsequent actions allowed. For simplicity, they should
take approach One.

To conclude, the middleware is complete in such a way that all these
three types of developers can take full advantage of. LBS development
process becomes simplified; developers can design location-based
application in a more efficient manner.

 95

12. Experiment on Middleware

In this chapter, two sample applications built by the middleware are
presented. MTR Traveller remakes show how the middleware can handle
the same task in an efficient way. CU Campus Bus Route project
demonstrates the how the package can apply in a real situation.

12.1 MTR Remake
Here we would like to recreate the MTR Traveller application (with similar
behaviour) from stretch (i.e. from data collection to actual application
running on the mobile phone) through the LBS API and SDK provided.

12.1.1 Difference between MTR Traveller and
AppGen-Generated LBS Application
There are several differences between these two applications in
terms of underlying mechanisms

1. As mentioned in the chapter for MTR Traveller, it depends on the
query to Symbian DBMS. However, both of our applications do not
have parallel queries to the database. Moreover, Symbian DBMS
does not support table joining and some of the SQL statement like
UNION. As there is no significant performance and functional gain in
using DBMS, the later LBS application simply gets rid of DBMS
usage.

2. MTR Traveller has a dedicated algorithm to handle open area
problem by classifying cells into transition cells and station cells. As
a result, developers have to submit another data file to specify
whether a cell is a transition / station cell or not. On the other hand,
Cell Analyzer, the cell data processing tools, does have handled
such problem by the reference point architecture (i.e. grouping cells
under a reference point (MTR station in this case)). The following
two figures illustrate the difference in data structures

 96

Figure 12.1: How MTRTraveller handles open area stations

Figure 12.2: How AppGen-Generated application handles open area
 stations

3. MTR Traveller accesses to GSM modem directly through function
calls while the later one is built on the top of LBS API

4. In order to save storage, MTR Traveller chops the MTR / KCR
map (in bitmap format) into tiles of stations and rails. However, as
the AppGen-created application is designed for general purposes,
there is no such storage optimization (i.e. the whole the map is
stored rather than constructing the map from tiles)

12.1.2 Data Collection and Processing
With Cell Snap, MTR / KCR data can be simply recorded by taking
photos at each station as reference point. Although collectors still
has to travel all involved stations, they do not need to manage how
cell information changes.

Concerning data processing, MTR Traveller requires developers to:

 97

1. Type in collected data to a text file,
2. Transform cell data into specific format for the program,
3. Identify which cells are station cells and which cells are transition

cells,
4. Edit the data by themselves and,
5. Combine data from different network operators manually.

Compared with processing with middleware, developers simply
interact with Cell Analyzer user interface and get most of the things
done automatically

12.1.3 Application Generation
MTR Traveller was built by writing a Symbian program from stretch.
Then, developers have to determine which tiles should be mapped for
all stations by finding the pixel coordinates by imaging software.

On the other hand, the later one is created by AppGen. As the concept
of point of interest does not exist in MTR Traveller, developers can
generate the application by just importing file from Cell Analyzer,
entering the project name: MTR Traveller, assigning x-, y-coordinates
of the map to each station, and, optionally, importing the icon specific
to MTR Traveller. The whole process is less than 10 minutes.

The screenshots of two applications are shown in the following figures:

Figure 12.3: Screenshots for MTR Traveller (Left) and its remake
 version (Right)

 98

Figure 12.4: Comparison in general MTR map (Left) and arriving a
 new station (Right)

12.1.4 Comparison between the Two Application
Actually, both of the two applications can have the similar interface
and operations. In this section, they are compared with each other in
terms of time required for development, package size and application
extensibility.

12.1.4.1 Time Required for Development
Both applications contain the data in three of the six MTR routes,
namely Tseung Kwan O Line, Kwun Tong Line and Island Line.
MTR Traveller required 3-day development with a week for
testing and optimization (i.e. 1.5 week in total) for 2 telcos,
SmarTone and Peoples.

On the other hand, the remake version was created in less than 8
hours, including data recollection, processing and application
building. This shows a significant advantage in time and effort
needed for building similar application.

Another interesting point that should be discussed here is the
time distribution in each process. The following bars show such
factor:

 99

15%
50 %

20 %

30 %

80 %

MTR Traveller

MTR Traveller
Remake

To build MTR Traveller, developers should spend most of time in
both data collection (and usually have to collect many times) and
application development. However, data collection becomes
most significant time contribution in remake version because
there is not difference because both cases requires collector to
bring the mobile phones to travel around all stations involved.
Possible solutions are to put mobile phone devices in MTR trains
or to take data from users afterwards when they are using the
application.

12.1.4.2 Package Size
The resulting package sizes of two applications can be
summarized in the following table:

 MTR Traveller MTR Traveller Remake
Program Binary
(i.e. .app file)

76 KB* 60 KB

Package (i.e. .sis
file)

42 KB 122 KB

Table 12.1: Comparison of Packet Size
* MTR Traveller binary size is slight larger because it embeds with GSM Status (the program that displays
currently registered cell information and signal strength) also. This information is not the concern of the
discussion here.

5 %

 Cell Data Collection

 Cell Data Processing

 Application Building

 100

The binary size of two applications can be regarded as similar.
However, the package size (i.e. the total size of all files involved,
including binary, icons, data files and images) of the remake
version is significantly larger than the original one due to the use
of full-size bitmap for the MTR route map, compared with bitmap
tiles in original version of MTR Traveller.

12.1.5 Application Extensibility
As we know, an application is not designed only for current use. In
the future, there may have necessary modifications in order to fit the
reality. Consider a real case that a new MTR station, Nam Cheong,
came into service on 16th December 2003. In order to capable to
handle this new station, the following changes are required for MTR
Traveller:

1) collect cell data for this new station,
2) add this entry in the map data file and cell data file manually and,
3) make a station bitmap tile for Nam Cheong station, rearrange the

map array value in the resource file as well as recompile the
program.

Considering AppGen-generated MTR Traveller, what developers
need to do are to:

1) collect cell data for this new station and regenerate a new data

file and,
2) replace the new map.

Of course, both applications require developers to recollect the new
data. However, MTR Traveller may require recompilation of the
program because of the change in resource file, resulting in the
situation that the application should be redistributed to users. On the
other hand, the later application requires only to replace the bitmap
and this can be done through network update without program
redistribution. This case middleware provides a nice support when
an application extends in terms of time and dependency.

 101

12.1.6 Conclusion

With the help of middleware, developers can reduce the time in
producing a LBS application. Meanwhile, the application is more
easily to be managed and extended.

12.2 CU Campus Bus Route
This application is created also through the help of middleware. This
time, we had collected cell data from 4 network operators, namely
SmarTone, Peoples, Sunday and Orange, and it was created at the
end of March, after finishing the implementation of all middleware
components. The bus route involved is the one from University KCR
Station to New Asia College.

Besides the major function of MTR Traveller, this application aims to
be more informative so that it can be a complete and interactive CU
campus guide. For example, it would show the details and upcoming
events (e.g. seminars) within different locations in the campus,
photos of each buildings and path to these destinations.

12.2.1 Data Collection and Processing
v We recollected data in CU bus by Cell Snap, instead of applying cell
data from experiment at the end of 2003. It is because we merely own
campus-wide data for SmarTone and People only and, most
importantly, we would like to show the whole process of building a
specific application from the very beginning. We have taken all bus
stops as reference points. Appendix contains more detailed data files.

The data processing here is completely handled by Cell Analyzer
without manual editing (i.e. Cell Analyzer would remove duplicates,
intelligently cut reference point, etc.). This process is similar to MTR
Traveller, but it requires extra work to map data from different telcos
into a single output data file.

12.2.2 Application Generation
AppGen is responsible for application generation for our CU Campus

 102

Bus Route Guide. Additionally, we had added a lot of content using
AppGen fron-end. To consider major buildings of the campus, we
inserted those buildings (as POI) to corresponding reference points
(i.e. campus bus stops). Also, building names, descriptions, events,
photos and the paths from a bus stop to destination location are also
considered.

The resulting application is shown below. Users have to select the
destination before starting tracking (of course they can select
destination later on). Once the corresponding bus stop has been
reached, related information would be shown up
.

Figure 12.5: Destination Selection (University Gym has been selected)

Figure 12.6: Starting from KCR Station (Left), the mobile phone comes to CC

 Hostels bus stop eventually (Centre) and shows up information,

 photos (Right) as well as path from bus stop to University Gym (Centre).

 103

The total development, including cell data collection through traveling
with campus bus, processing, building information collection (including
photos) and content editing, was done within 1 day which is
appreciable.

12.2.3 Potential Problem
As mentioned, we have tested the application with 4 telcos. However,
it was found that these four telcos behaves differently. Actually, it
represented the same potential problem found in MTR Traveller
(imagine when two stations share the same cell, although it does not
actually occur from right now).

The most considerable case is Sunday, one of the telcos in Hong
Kong, where it had only 3 to 4 cells in the campus, where there were
6 bus stops in the target route.

Figure 12.7: Estimated Cell Coverage of Sunday in CC College

12.3 Trade-off of Using Middleware-Assisted Application
This section concludes the trade-off of using middleware-assisted
application and self-built application. Although middleware-assisted
application can build an application in a quite development time such that

 104

developers can concentrate on further manual cell data processing and
content enrichment, toolkits, especially AppGen, would introduce
limitations – LBS application is confined into content providing. For
example, when a new LBS game has to be built, there is no way to use
AppGen for such purpose. LBS API and Cell Analyzer may somehow
restrict developers to have new algorithm for cell data handling and
processing. Therefore, there is a trade-off between convenience and
flexibility as shown below. The higher the layer is, the more the convenience
in LBS application development.

Figure 12.8: Trade-off between Convenience and Flexibility

12.4 Conclusion

From these two applications, MTR Traveller Remake and CU Campus
Bus Route Guide, it is found that the middleware assists a lot in
automated processing, manual data and content editing and software
extensibility – these significantly reduce LBS application development
time

GSM Modem and Network

LBS Application Programming Interface

Cell Snap and Cell Analyzer

AppGen Distance Mapper

Convenience Flexibility

 105

13. Conclusion

In this project, we have done quite a number of things. We studied the
characteristic and behaviour of the Symbian OS. We also learnt how to
program applications used in Symbian OS. Furthermore, we studied
some GSM topics and technologies that are useful to our project. They
include the system structure and addressing of GSM network, cellular
information and cell reselection.

With the basic idea in programming for Symbian OS and GSM
technologies, we then investigated current LBS solutions and try to
figure out there relative advantages and disadvantages. Then we try to
look into the capability of using cell information (location area identifier
and cell identifier). The result turned out showed that the accuracy in
2-dimensional space is not accurate without any help from the telco.
Then we started to look into the application in 1-dimensional space. The
constraints in this space help to eliminate the uncertainties in
2-dimensional space.

Because of the accuracy and certainty in this space, we began to work
in the 1-dimensional space. We came up with an idea of providing
service and information to tourist in the transportation system. Thus we
developed a system called MTR Traveller.

After that, we developed a set of APIs and tool kits used for developing
location-based application. This middleware provides LBS developers
with three different approaches towards building location-based
application. With this middleware, every step in the development
process, from location information collection to application source code
generation, can be automatic. This makes the development of LBS
application more efficient and more reliable.

To be more precise, we have tested the middleware by remaking MTR
Traveller and created a new application, CU Campus Bus Route. These
two tests shows the middleware works nice.

 106

14. Appendix

14.1 Symbian Location-sensitive SDK Documentation

Class CNetworkInfo
Description:
This class provides basic functions to retrieve the current location data from
the mobile phone

void connectL()
This function connects the telephone server through which we can retrieve
location data. It must be called before retrieving any location data.

void disconnect()
This disconnects the telephone server.

TBool isConnected()
This function return ETrue if the telephone server is already connected.
Otherwise, it returns EFalse.

TInt getCurrentLocationID()
This function retrieves the current location ID and return in form of an
integer.

Tint getCurrentCellID()
This function retrieves the current cell ID and return in form of an integer.

Class CLocationListener
Description:
This class provides function that allows users to develop location-sensitive
function. By providing a list of desired location IDs, users can specify a
function to be executed when the device detects the entrance of any of the
cells specified in the list. To use this service, users have to extend this class
and implement the function coreFunction().

void start()

 107

Start monitoring cell change event, if an entrance of a specific location
specified by the location list is matched, coreFunction() will be invoked.

void stop()
Stop monitoring cell change event.

void connectL()
Connect to telephone server via CNetworkInfo class

void disconnect()
Disconnect from telephone server

void setCheckingInterval(const TInt aInterval)
Set the rate of cell-change event checking. Parameter is time in
microsecond. Default checking interval is 1 second

void setLocationList(RArray<TLocation> aLocationList)
Set the location list that is to be checked with the current location IDs. If the
location list is empty, coreFunction() will be invoked every time a cell change
event is detected

TInt getCurrentLocationID()
Retrieve the current location ID.

TInt getCurrentCellID()
Retrieve the current location ID

void coreFunction()
Users have to implement this function. This function will be invoked if the
current location matches any of the location in the location list. This function
should take no parameter and return nothing.

void reading(const TDesC& aFileName)
Read in the file specifying a set of reference point. Upon reaching these
reference point, coreFunction will be called.

void prepareSelectionList(const TDesC& aFileName)

 108

Read in a file that contains a set of point of interest (POI) together with their
relative reference point. The list of POI will be displayed in a list for users to
choose.

void setPOI(Tint aIndex) (internal usage)
Set the POI so that when reaching that POI, an action will be taken(prompt
message)

Class CProximity
Description:
This class provides functions that allow users to find out the object(s)
nearest to the current location.

TBool readIn(TDesC& aFileName)
Read in the distance table specifying the distance of different objects with
the current location.

void findNearest(TLocation aCurrentLocation&, RArray<TLocation>
aResult)

Given a current location, the nearest object(s) will be inserted into the
aResult.
void findSameRange(TLocation aCurrentLocation, TInt aDistance,
RArray<TLocation>& aResult) (Deprecated)

Given a current location and a specific distance, it will find out all the object(s)
with distance equals to the specified distance. All results

 109

15. Acknowledgement

We would like to thank our final year project supervisor, Professor
Michael Lyu, who gave us unlimited support and invaluable advice. He
even arranged meeting for us to discuss our project with people from
ASTRI. We really want to thank him for his kindness and support.

We would also like to thank Mr. Edward Yau, for he gave a lot of useful
ideas and technical help in our project. He enriched our project by
providing us with a lot of information we need.

 110

16. References

[1] M. Tasker, Professional Symbian Programming, Wrox, Birmingham,
2002

[2] R. Harrison, Symbian OS C++ for Mobile Phones, Wiley, New York,
April 2003

[4] Digia, Programming for the Series 60 Platform and Symbian OS,
Wiley, New Your, November 2002

[5] M.J. Jipping, “Telephony,” Symbian OS Communications
Programming, Wiley, New York, pp. 350-372, June 2002

[6] “Symbian OS – the Mobile Operating System,” Symbian Ltd., 2003
[Online]. Available: http://www.symbian.com

[7] “Nokia on the Web,” Nokia Ltd., 2003 [Online]. Available:
http://www.nokia.com

[8] “Developer Discussion Boards – Symbian,” Nokia Ltd., 2003 [Online].
Available: http://discussion.forum.nokia.com/forum

[9] “Symbian OS Communicators and Smartphones Info Center,” 2002
[Online]. Available: http://my-symbian.com

[10] “All About Symbian,” 2003 [Online]. Available:
http://allaboutsymbian.com

[11] J. Eberspacher, H. Vogel and C. Bettstetter, GSM Switching,
Services and Protocols, 2nd ed., Wiley, Chichester, pp. 9-92, 2001

[12] M. Mouly and M.B. Pautet, “Current Evolution of the GSM
Systems,” IEEE Personal Communications Magazine, October, pp.
9-19, 1995

[13] W.C.Y. Lee, Mobile Cellular Telecommunication Systems,

 111

McGraw-Hill, New York, 1989

[14] “The Website of the GSM Association,” GSM Association, 2003
[Online]. Available: http://www.gsmworld.com
[15] J. Tisal, GSM Cellular Radio Telephony, Wiley, New York, 1997

[16] M. Mouly, M.B. Pautet, The GSM System for Mobile
Communications, Palaiseau, France, 1992

[17] S.Y. Willassen, “Positioning a Mobile Station,” March 1998 [Online].
Available: http://www.willassen.no/msl/node6.html

[18] S. Buckingham, “Mobile Positioning – An Introduction,” December
1999 [Online]. Available: http://www.mobilepositioning.com

[19] J.H. Yap, S. Ghaheri-Niri and R. Tafazolli, “Accuracy and
Hearability of Mobile Positioning in GSM and CDMA Networks,” 3rd
International Conference on 3G Mobile Communication Technologies,
pp. 350-354, 2002

[20] J. Costa-Requena, H. Tang and I. Espigares, “Consistent LBS
Solution in Next Generations of Mobile Internet,” Parallel and
Distributed Systems, Ninth International Conference, Proceedings, pp
637-642, December 2002

[21] “Garmin: What is GPS,” Garmin Ltd., 2003 [Online]. Available:
http://www.garmin.com/aboutGPS

[22] “Global Positioning System Overview,” University of Colorado, 2000
[Online]. Available:
http://colorado.edu/geograhpy/gcraft/notes/gps/gps.html

[23] K. Nakamura. “The GPS Resource Library,” 2001 [Online].
Available: http://gpsy.com/gpsinfo

[24] “Wireless World Forum,” W2F Ltd., 2003 [Online] Available:
http://www.w2forum.com

 112

[25] Bostock and Pollitt, “CPS Location Based Service”, Cambridge
Positioning System Ltd., 2003 [Online]. Available:
http://www.cursor-system.com

[26] N. Krishnamurthy, “Using SMS to Deliver Location-based Services,”
Personal Wireless Communications, 2002 IEEE International
Conference, pp. 177-181, December 2002

[27] K. Chadha, “The Global Positioning System: challenges in brining
GPS to mainstream consumers,” Solid-State Circuit Conference,
February 1998

[28] M. Goller, “Application of GSM in High Speed Trains:
Measurements and Simulations,” Radiocommunicataions in
Transportation, IEEE Colloquium, May 1995

[29] C. Drane, M. Macnaughtan and C. Scott, “Positioning GSM
Telephones,” Communications Magazine, IEEE, vol.50, Issue 4, pp.
44-54,59, April 1998

[30] C.L.C. Wong, M.C. Lee and R.K.W. Chan, “GSM-based Mobile
Positioning using WAP,” Wireless Communications and Networking
Conference, September 2000

[31] M.P. Wylie-Green, P. Wang, “GSM Mobile Positioning Simulator,”
Emerging Technologies Symposium: Broadband, Wireless Internet
Access, April 2002

[32] E. Villier, L. Lopes and B. Ludden, “Performance of a
Handset-assisted Positioning Method for GSM,” Vehicular Technology
Conference, 1999 IEEE 49th, vol. 3, May 1999

[33] M. Silventoinen and T. Rantalainen, “Mobile Station Locating in
GSM,” Wireless Communication System Symposium, IEEE, November
1995

 113

[34] M.A. Spriito and M.P. Wylie-Green, “Mobile Stations Location in
Future TDMA Mobile Communication Systems,” Vehicular Technology
Conference, IEEE VTS 50th, vol. 2, September 1999

[36] S.B. Guthery, Mobile Application Development with SMS and the
SIM Toolkit, McGraw-Hill, New York, 2002

[37] L.B. Gwenael, MobileMessaging Technologies and Service: SMS,
EMS and MMS, Wiley, Chichester, 2003

[38] J.Y.B. Lin, Wireless and Mobile Network Architectures, Wiley, New
York, pp. 1-12, 2001

[39] T. Gunstone, “SMS and Location-based Service in the Travel
Industry,” October 2001 [Online]. Available:
http://m-travel.com/11009a.shtml

[40] “Location Based Services: Heading in the Right Direction,” January
2001 [Online]. Available:
http://www/geoplace.com/ge/2001/0101/0101lbs.asp

