
Department of Computer Science & Engineering

The Chinese University of Hong Kong

2001-2002 Final Year Project

LYU0102

Supervised by Prof. LYU, Rung Tsong Michael

Group Members: Chan Pik Wah
Ngai Cheuk Han

Prepared by
Chan Pik Wah 99581663

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 2

Abstraction

This report is subject to the final year project LYU0102 which title is XML for
Interoperable Digital Video Library.

This report is divided into 10 parts, which includes: introduction of this final year
project, architecture of XVIP (the system we built), current digital video libraries,
extraction techniques that we implemented (scene change, VOCD, speech
recognition and face detection) in the project, XML-based video information
storage, the knowledge enrichment on primary video data, XML transformation
and multimedia presentation, our implementation on XVIP, problems
encountered and our solutions. Finally, it is our working progress and conclusion.

Our final year project describes an XML-based video information processing
system, which extracts information from video and stores the information in a
multimedia digital video library. We have named our system as XVIP, short for
XML-based video information processing system. XVIP encapsulates a number
of extraction techniques, including scene change detection, video optical
character detection, speech recognition, and face detection. Apart from the
primary extraction techniques, it provides geographical and biographical
information by doing knowledge enrichment. It also provides a seamless
approach to scale up the contents created in and delivered by the target
multimedia digital video library. Furthermore, XVIP is based on a multi-modal
concept, which treats each content extraction component as a mode, and users
can easily add new modes into XVIP. The information extracted from the video
is then stored in a flexible, scalable and reusable way based on a generic XML
structure, providing a convenient mechanism for data representation on web
browsers. Also, the content in the XML file can be used to perform knowledge
enrichment on top of the primary information extracted from the video. This
enriched data representation helps users search for multimedia video content
more efficiently. Moreover, the XML-enriched video data can then be presented
in players or browsers using XSLT or emerging presentation format like SMIL at
user’s discretion. In XVIP, we provide an XML to SMIL transformer. It is able to
generate different presentation templates of SMIL based on the XML file
generated from the video. The SMIL presentation includes the video, information
extracted and additional information for enriching the video content.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 3

Table of Content
Abstraction
Table of Content

1 Introduction.……………………………………………………..…………...………..8
1.1 Motivation.…………………………………………………….……...………8
1.2 Project Objective.……………………………………………….……...………..8

2 Architecture of XVIP.………………………………………………………………10
2.1 Introduction.…………………………………………………………………..10
2.2 XVIP overview.……………………………………………………...………11

2.2.1 Extraction Techniques……………………………………………...…12
2.2.2 Storage…………………………………………………………...………13
2.2.3 Knowledge Enrichment………………………………………………….14
2.2.4 Presentation………………………………………………………...……15

2.3 Structure of XVIP………………………………………………………...……18
2.4 Achievement in the First Semester…..………………………………………...21

2.4.1 Knowledge Gained.………………………………………………...……..21
2.4.2 Programming Work.………………………………………………...…….22

2.5 Achievement in Second Semester……………………………………………24
2.5.1 Knowledge Gained……………….……………………………………..24
2.5.2 Programming Work …………………………………………………….25

3 Informedia……………………………………………………………………...…….29
3.1 Review.…………………………………………………………………...……29
3.2 Digital Video Library System…………………………………………...……..31
3.3 Digital Video Library in CMU ……………………………………………31
3.4 Video Information……………………………………………………………..32
3.5 Video Information Extraction………………………………………….………33

3.5.1 Image……………………………………………………………...………33
3.5.2 Speech……………………………………………………………...……...35
3.5.3 Natural Language…………………………………………………..…….. 35

3.6 Integration on extracted information.………………………………...………..36
3.7 User Interface…………………………………………………………………..37

4 Extraction technique………………………………………………………………….40
4.1 Introduction ……………………………………………………………………40
4.2 Scene change detection.………………………………………………………..41

4.2.1 Review…………………………………………………………………….41
4.2.2 Review Existing Scene Change Detection Technique…………………….42

4.2.2.1 Cut Detection Methods……………………………………………...42

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 4

4.2.2.2 Dissolve and wiping scene change detection……………...………..44
4.2.3 Our Algorithm & Implementation.………………………………………..45

4.2.3.1 Histogram difference………………………………………………..45
4.2.3.2 Dynamic threshold………………………………………………….46

4.2.4 Key frame extraction …………………………………………………...47
4.3 Video Optical Character Recognition (VOCR)………………………………49

4.3.1 Review…………………………………………………………...………49
4.3.2 Detection of Text………………………………………………………….51
4.3.3 Image Enhancement……………………………………………………….51

4.3.3.1 Sub-pixel interpolation technique…………………………………..52
4.3.3.2 Multi-frame Integration……………………………….…………….52

4.3.4 Character Recognition an Segmentation………………………………… 52
4.3.5 Post-Processing……………………………………………………………56

4.4 Face Detection ………………………………………………………………...57
4.4.1 Review……………………………………………………………………57
4.4.2 Different Approaches……………………………………..……………….57
4.4.3 Neural Network-Based Detection..………………………………………..58
4.4.4 Description of the System.………………..……………………………… 59

4.4.4.1 Input Image………………………………………………………….59
4.4.4.2 Preprocess…………………………………………………………60
4.4.4.3 Neural Network…………………………………...………...………61

4.4.5 Face Detection in XVIP………………………………...…………………64
4.4.6 Further Process………………………………………...….………………65

4.5 Speech Recognition……………………………………………………………66
4.5.1 Review………………………………………………...………….……… 66
4.5.2 Speech Recognition Process…………………………………………… 67

4.5.2.1 Process Diagram……………………………...…………….……… 67
4.5.2.2 Process Explanation…………………………………………..…… 67

4.5.3 IBM ViaVoice…………………………………….……………………… 69
4.5.3.1 Introduction to ViaVoice………………………………………… 69
4.5.3.2 System Characteristics……………………………………………70
4.5.3.3 ViaVoice Native Architecture Overview …………………………70
4.5.3.4 ViaVoice Speech Engine Architecture………………………...……70
4.5.3.5 Application Programming Interface…………………………..…… 71

4.5.4 Speech Recognition in XVIP.………………………………………….. 72
5 XML………………………………………………………………..………...………73

5.1 Introduction…………………………………………………………………… 73
5.2 How its work………………………………………………………………… 74

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 5

5.3 Advantages of using XML…………………………………………….……… 75
5.4 Why we choose XML………………………………………………………. 79
5.5 How to design Scheme and our format……………………………..………… 82
5.6 Parser……………………………………………………………...………….. 83

5.6.1 DOM………………………………………………………...…………… 83
5.6.2 SAX………………………………………………………...……………. 85

5.7 How to represent XML in our tools………………………………………… 86
6 Knowledge Enrichment…………………………………………………………… 88

6.1 Introduction…………………………………………………………………. 88
6.2 Extracting Video Geographic Information…………………………………. 90
6.3 Our Implementation………………………………………...………………… 91
6.4 Examples on Map Representation of a Video Segment………………….…… 96
6.5 Accessing Video through Spatial Queries………………...……………..…… 98

7 Multimedia Transformation and Presentation.……………………………………..99
7.1 SMIL …………………………………………………...……………………...99

7.1.1 Introduction…………………………………………………………...…99
7.1.1.1 Basic Idea…………………………………………………………100
7.1.1.2 Advantages……………………………….………………………101

7.1.2 Player and Browsers …………………………………………………102
7.1.3 Document Structure……………………………………………………..104

7.1.3.1 Head………………………………………………………………104
7.1.3.2 Body………………………...……………………………………105

7.1.4 Timing and Synchronization……………………………………………106
7.1.4.1 Element: <seq>……………………………………………………106
7.1.4.2 Element: <par>…………………………………………………….107

7.1.5 RealPix and RealText…………………………………………………....108
7.1.5.1 RealPix………...…………………………………………………..108
7.1.5.2 RealText…………………………………………………………109

7.2 The Extensible Stylesheet Language (XSL)………………………………….110
7.2.1 Introduction…………………...………………………………………….110

7.2.1.1 Brief History………….……………………………………………110
7.2.1.2 About XSL………...………………………………………………111
7.2.1.3 About XSLT……………………………………………………….111

7.2.2 XSLT…………………………………………………………………….112
7.2.2.1 Working Principles…...……………………………….…………...112
7.2.2.2 Stylesheet…………………………………………………………..113
7.2.2.3 Document Order……………………………………...……………114
7.2.2.4 Templates………………………………………………………….116

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 6

7.2.3 XPath……………………………………………………………...…...118
7.2.4 XSLT Processors…………………………………………...……………120

7.3 XML to SMIL Transformation………………………………….……………121
7.3.1 Introduction…………………………………………………………...….122
7.3.2 Basic Concept of the Transformation Process……..…………………….123
7.3.3 Designs on Transformation Process……………………………………..124

7.3.3.1 Design 1………………………………………………………….125
7.3.3.2 Design 2…………………………...……………...………………..126

7.3.4 Our Transformation Process…………..……………………………127
7.3.4.1 Knowledge Enrichment………………………………………….127
7.3.4.2 Outputting Files…………………………………..………………130

7.3.5 User Interface…………………………………………………………..134
8 Implementation……………………………………………………..…………….…137

8.1 Overview…………………………………………………….………………..137
8.2 Programming Platform……………………………………...……….……….138

8.2.1 Visual C++……………………………………………...………………..138
8.2.1.1 Benefits…………………………………………...………………..138
8.2.1.2 Features………………………………………………………….139
8.2.1.3 Microsoft Foundation Class……………………………………….140

8.2.2 DirectShow……………………………………………...……………….141
8.2.2.1 Overview of DirectShow………………………..…………………141
8.2.2.2 DirectShow Application Programming………...………………….142

8.2.2.2.1Filter……………………………………………………….143
8.2.2.2.2Filter Graph Manager………………………………………144
8.2.2.2.3DirectShow Application...………………..………………….145

8.3 Implementation of the tool………………………………...………………….146
8.3.1 Overview……………………………………………………………….146
8.3.2 Implementation……………………………………..……………………147

8.3.2.1 Docking Window…………………………...……………………..147
8.3.2.2 Video Player……………………………...………………………..148
8.3.2.3 Control…………………………………..…………………………149
8.3.2.4 Scene Change………………………...……………………………152
8.3.2.5 VOCD……………………………...………………………………153
8.3.2.6 Face Detection…………………..…………………………………154
8.3.2.7 Speech Recognition……………………………………………..…154
8.3.2.8 XML editor…………………………...……………………………156
8.3.2.9 Knowledge Enrichment……………………………………………157
8.3.2.10 XML to SMIL Transformer.………………………………..157

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 7

9 Problems & Solutions………………………...……..………………………………159
10 Project Progress……………………………...……...………………………………165
11 Contribution of Work…...………………………………………………….……….167

11.1 Introduction………………………………………………………………167
11.2 Preparation Work…………………………………...……………………167
11.3 Information Extraction……………..……………………………………168
11.4 Preprocessing Information………………………………………………170
11.5 Report…………….………………………………………………………170
11.6 Summary of work contribution…………………………………………171
11.7 Conclusion……….………………………………………………………172

12 Conclusions…………………...…………………………………………………….173
13 Acknowledgement………………...………………………………………………...174
14 Reference……………………………………………………………………………175

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 8

Introduction

1.1 Motivations

There has been a rapid increase in the usage of multimedia information in recent
years. Of all media types (text, image, graphic, audio and video), video is the
most challenging one, as it combines all the other media information into a single
data stream and it becomes the most popular source of multimedia information.

As videos represent rich media in multimedia systems, many digital video
libraries are developed and a lot of attentions are paid on how to present
multimedia information. However, a little study has been performed on how to
extract information from video and to store this information with flexibility for
indexing and searching purpose. Our final year project will focus on the
extraction of the pertinent, multi-modal information from videos, the integration
of the extracted information into a flexible, XML-based, the knowledge
enrichment on top of the primary information extracted from video, and the
transformation and presentation of the XML documents in other structure, e.g.
SMIL.

Not only the accuracy of these techniques are keys to the success of a digital
library, but also the increasing number of different techniques affect the design of
an “open” digital video library system to a great extend. How to scale the digital
video library in terms of adding new extraction component also presents
challenges. Whenever a new extraction method is developed, it imposes a series
of new indexing and presentation functions to be included. Therefore, a generic
framework for presentation and visualization of video information is curial to the
deployment of the digital library. We attempt to implement a system that can
meet this challenge.

1.2 Project Objective

Our project aims at illustrating how different information in videos can be
extracted and edited, how information can be stored into an XML format, how
secondary information can be included and used, and how useful the XML
documents can be presented in other structure, e.g. SMIL. Consequently, we
designed and implemented an XML-based video information processing system
to address these issues.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 9

XVIP achieves the following targets.

• To provide an open architecture that can ease the overhead of integrating
different video processing, searching, indexing and presentation of various
digital video library functions.

• To increase the reusability of the information extracted form the videos,
includes information interchange between distributed video libraries and
different publishing media.

• Video information is extracted once and delivered and presented multiple
times to different computing platforms.

The above objectives are achieved via the following methods encapsulated in
XVIP,

• Modal concept of the digital video library functions throughout the video
information life-cycle.

• Collaboration of the video information processing modules.

• Generic framework for presentation and visualization of video information.

XVIP is complete system that can do video information processing, from
information extraction and enrichment, XML-based data storage, to presentation. It
is a multimodal system that contains different modules such as scene change
detection, video optical character detection, speech recognition, geographic
information, biological information etc. XVIP collaborates different modules in a
flexible and scalable way. Moreover, it provides a generic framework for
presentation and visualization of video information. XVIP demonstrated that
XML-based data could be transformed to different format for presentation, such as
SMIL.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 10

2. Architecture of XVIP
2.1 Introduction

We describe XVIP, an XML-based video information processing system, which
extracts information from video and stores the information in a multimedia
digital video library. XVIP encapsulates a number of extraction techniques,
including scene change detection, video optical character detection and
recognition, face detection, speech recognition, and geometric coding. It also
provides a seamless approach to scale up the contents created in and delivered by
the target multimedia digital video library. Furthermore, XVIP can handle
multilingual contents. XVIP is based on a multi-modal concept, which treats
each content extraction component as a mode, and users can easily add new
modes into XVIP. The information extracted from the video is then stored in a
flexible, scalable and reusable way based on a generic XML structure, providing
a convenient mechanism for data representation on web browsers. Also, the
content in the XML file can be used to perform knowledge enrichment on top of
the primary information extracted from the video. This enriched data
representation helps users search for multimedia video content more efficiently.
Then, the XML is transformed to SMIL, which is Synchronization Multimedia
Integrated Language, for presentation purpose. SMIL can synchronize the
playback of all multimedia elements.

Figure 2.1 Interface of XVIP

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 11

2.2 XVIP Overview
XVIP can be divided into four sections, extraction techniques, storage,
knowledge enrichment and presentation. The overview of XVIP is shown in
Figure 2.2. Video is the input of the system, then, XVIP will apply three
extraction techniques (shot break, VOCR, face detection) to the video channel
and speech recognition to audio channel. The information extracted (scene
change, text, name and transcript) is integrated as different modality in XML.
Then knowledge enrichment (geocode and names of people) is done base on the
extracted information. Lastly, the XML is transformed to SMIL with XSL for
presentation the extracted information.

Figure 2.2 overview of XVIP

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 12

2.2.1 Extraction techniques
There are many information can be extracted from the video sequence:
generating multimedia abstractions, segmenting video into stories, text clustering
and topic classification, speech recognitions, face detection, key frame selection,
skim, and video OCR.

Video

Figure 2.3 Data can be extracted from video

Digital Video Library combines all these techniques, shown in Figure 2.3. It is a
new approach for automated video and audio indexing, navigation, visualization,
searching and retrieval and embedded them in a system for use in education,
information and entertainment environments.

In XVIP, four extraction techniques are applied, including shot break, VOCR,
face detection and Speech Recognition. The corresponding information are
extracted, including scene change, text, name of people and transcript.

1. Shot break use Histogram Difference Method to find the scene change

2. Four main step is applied to VOCR include: Detection of Text Region,
Image Enhancement, Character Recognition and Segmentation,
Post-Processing.

Text processing

Audio processing

Image processing

Video processing

Scene Change

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 13

3. Neural network based face detection is use in XVIP

4. A commercial product Via Voice developed by IBM is used for Speech
recognition

2.2.2 Storage
Storage of information extracted from video in a flexible, scalable and reusable
way becomes very important. We found that XML satisfy all the above
requirements, and it is a good choice.

XML stands for EXtensible Markup Language. XML is a markup language
much like HTML. XML was designed to describe data. XML is receiving a great
deal of attention from the computing and Internet communication since it was
developed by the XML working group (known as the SGML Editorial Review
Board) formed under the auspices of the World Wide Web Consortium (W3C) in
1996. XML is a public format and not a proprietary format of any company. The
v 1.0 specification was accepted by the W3C as Recommendation on February
10, 1998.

An XML file contains not only data but also metadata – structural and semantic
information about that data. In this sense, an XML document is very similar to a
database, and it in general will look like one big database. XML is platform and
system independent and universal format. So, user can exchange data and
communicate through network with XML. It is powerful as everyone could

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 14

speak the same language and communicate together. XML is flexible, scalable
and can let us create any tag to describe the information. So, the information
extracted for the video by the tool is stored as XML and an XML editor is
implemented for the user to edit the XML without changing the XML format.

XML is a meta-language that permits a set of users to create its own mark-up
language for describing the contents of Web documents. An XML file contains
not only data but also metadata – structural and semantic information about that
data. In this sense, an XML document is very similar to a database, and it in
general will look like one big database. In resent year, many existing database
system try to adopt XML for exchanging data, such as IBM DB2, Oracle 8i and
Microsoft SQL Server.

XML is platform and system independent and universal format. So, user can
exchange data and communicate through network with XML. It is powerful as
everyone could speak the same language and communicate together.

2.2.3 Knowledge Enrichment
Video information processing is the content creation step of the digital video
library. The collaboration of different video information extraction techniques is
on the information exchange level, mainly

• Knowledge Cross-referencing
• Knowledge Enrichment

For some video processing techniques, the accuracy of the recognition process
can be increased by cross-referencing information generated by other modalities.
For example, to identify a human face in the video, face recognition technique
can be the primary modality information extracted. If available, the on screen
title of the person’s name can be recognized and served as the cross-reference
knowledge for the person identification. Example of knowledge enrichment is
the geographical naming process. The geographical naming database is a kind of
knowledge repository of geographical names of countries and cities. By applying
this knowledge to the text recognized from the speech recognition, the
knowledge encapsulated in the text is enriched. In XVIP, geographical names
and name of people is chosen for enrichment. A sample result is shown in Figure
2.3.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 15

Figure 2.3 The knowledge enrichment component in XVIP.

2.2.4 Presentation

In our project, SMIL is selected to be the format for video information
presentation. SMIL stands for Synchronized Multimedia Integration Language is
currently a W3C Recommendation. It is a markup language that can synchronize
and integrates multimedia. It enables authors to specify when and what should be
presented, enabling them to control the precise time that a sentence is spoken and
make it coincide with the display of a given image appearing on the screen. In
this example, our SMIL file integrates the video, images from scene change
detection and the text obtained from speech recognition.

The basic idea of SMIL is to name media components for text, images, audio and
video with URLs and to schedule their presentation either in parallel or in
sequence. The SMIL presentation is composed from several components that are
accessible via URLs. The components have different media types, such as audio,
video, image or text. The “begin” and “end” times of different components are
specified relative to events in other media components. For example, in a slide
show, a particular slide is displayed when the narrator in the audio starts talking
about it.

Presenting multimedia with SMIL has a lot of advantages. SMIL is text-based.
This makes it easy for any designer or developer to work with. A text editor can
already let them start without any investment, though powerful SMIL authoring
tools are also available. They can generate SMIL automatically for each visitor.
As SMIL is text-based, it is allowed to create different presentation parts,
assembling a customized SMIL file for each visitor based on preferences
recorded in the visitor's browser. Because SMIL can stream many media formats,
there is no need to merge clips into a single streaming file. This makes it easy to
alter the presentation. Moreover, SMIL effort is led by W3C. W3C tries to shape
a specification that is beneficial to all parties involved. Unlike a proprietary

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 16

technology owned by just one vendor, SMIL can lean toward general industry
and consumer interests.

After the information is extracted and stored as XML schema designed, we move
on to the transformation and presentation of the XML-formatted video data. The
work-flow of our project is shown in Figure 2.4.

Figure 2.4 Work flow from video information extraction to presentation in
XVIP.

• We built a XML to SMIL transformer. It gets the XML video data file as
input and generated files for the SMIL presentation. The transformer also
allows user to select templates and the additional information that they
preferred.

Figure 2.5 File list generated in XVIP for playing back the SMIL or Realtext
files.

• By clicking the file name of SMIL on the file list generated in Figure 2.5, the
SMIL presentation will start. Two samples of presentation are shown in
Figure 2.6. In the left figure below, it shows the SMIL presentation with
geographic information added. In the right figure below, it shows the SMIL

XMLScene Change

VOCD

Face detection

Speech
recognitions

Knowledge

enrichment

Transformat-

ion

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 17

presentation with biographic information added.

Apart from the sample shown in Figure 2.6, other templates of SMIL
presentation can also be generated using our XML to SMIL transformer. For
example, we can produce a SMIL presentation that can display bother
geographical and biographical information. Moreover, if more additional
information or different templates are preferred, our system is flexible and
extensible enough to produce them too.

Figure 2.6 SMIL presentations generated from our transformer..

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 18

2.3 Structure of XVIP

Video Audio

Shot break VOCR face detection Speech Recognition

Scene Change

Text

Name
Text

XML

Integration

XML Editor

Knowledge Enrichment

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 19

Cont’d

XML

MAP, cities database People database

XSL
<?xml

version="1.0

"?>

<xsl:stylesh

RealPlayer Basic.lnk

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 20

Video is the input of XVIP and it is processed in two ways, video and audio.
Three extraction techniques are applied to the system, scene change (color
histogram difference method), face detection (neural network-based method) and
video optical character detection (dynamic library from CUM). For audio, speech
recognition is applied to get the transcript. Commercial product IBM ViaVoice is
used for speech recognition.
Then all extracted data is integrated into XML with DOM parser. The XML can
be edited through the editor that XVIP provided.
With the cities and people database, knowledge can be enriching to the XML.
Lastly, with suitable XSL, XML can be transform to SMIL with the transformer
in XVIP for presentation.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 21

2.4 Achievement in the first semester

2.4.1 Knowledge gained

In order to enrich our background, we have read papers in different area.

• Existing Video Digital Library

We read information about current video digital libraries and extraction
techniques being used. This enriched our background knowledge in the field
and enabled us to implement XVIP.

• Video information

There is a lot of useful information in videos. By reading papers, we know
what information can be extracted from videos and how to classify them. The
understanding of different types of video information helps the design of our
XML scheme.

• Techniques of extracting scene change

Different scene change detection techniques have been developed. By
studying different techniques, we get familiar with different methods and
algorithms can be applied. Then, we can improve our algorithm and get a
better result.

• Techniques of VOCR

In the same sense, several papers are read before implementing the VOCR.
This increase our knowledge on the techniques applied in VOCR.

• Current XML issue and techniques

XML is a format that newly introduced in these few years and it is receiving
a great deal of attention from the computing and Internet communication. We
study this new technology and try to apply it to XVIP. It is used now for
storing the extracted video data in XVIP.

• Knowledge Enrichment

By reading papers, we know that secondary information can be added to
video based on the primary information extracted from videos. Then, we try
to enrich video information by extracting names of major cities mentioned in
videos and providing further information of the corresponding cities.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 22

• DirectShow

DirectShow provides high-quality capture and playback functions in
multimedia streams. It is very useful for implementing the video player in
XVIP.

2.4.2 Programming work

To achieve the goals mention in the previous section, the following work has
been done:

• After studying DirectShow, we implemented a video play.

• We built a single document MFC program in Microsoft Visual C++.

• We implemented docking window by adding new class in our Visual C++
project.

• We implemented a dialog box for controlling the video player.

• We implemented scene change detection with dynamic threshold. A sample
result is shown in Figure 2.7.

Figure 2.7 the result of the implemented scene change detection

• Video optical character detection is improved from the techniques from the
existing Digital Video Library of CMU. A sample result is shown in Figure
2.8.

Figure 2.8 the result of the implemented VOCD

• After the information is extracted, it is stored in the format of Extensible
Markup Language (XML). We designed a XML scheme for XVIP.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 23

• XML parser is found for reading the XML files.

• Tree model is chosen for representing the XML in the tool. Users can view
and edit the XML files created in XVIP.

• A secondary information extractor is implemented. It extracts names of major
cities in the XML file and indicates it by adding a new tag in the file. Also,
information of the extracted cities is provided with external data files. A
sample result is shown in Figure 2.9.

Figure 2.9 View of the secondary information extractor

• Different modalities are included in XVIP. An “extractor & editor” is then
developed. The integrated system is shown as Figure 2.10.

Figure 2.10 View of XVIP in first semester

Video

Scene

VOC

Control

XML

Secondary
informatio
n extractor

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 24

2.5 Achievement in the second semester

2.5.1 Knowledge gained

• Video information

We keep on studying what information, other than those implemented in first
semester, can be extracted from videos and how to classify them. This
knowledge helps us to extend the original design of our XML scheme.

• Techniques of speech recognition

Different speech recognition techniques and software have been developed.
By studying a number of them, we get familiar about different algorithms
and the performance of different software. Then, we selected the speech
recognizer that is suitable for XVIP.

• Techniques of face detection

In the same sense, several papers are read before implementing face detection.
This increase our knowledge on the techniques applied in face detection.

• SMIL

By reading online tutorials, books and the documentations, we know that
SMIL (Synchronized Multimedia Integration Language) is a powerful
language for doing multimedia presentation and is suitable for XVIP. Then,
we learn more deeply on its syntax and used it for presenting videos with the
corresponding information extracted or added by XVIP.

• XSL

By reading online tutorials, books and the documentations, we know that
XSLT (Extensible Stylesheet Language Transformation) defines a common
language for transforming one XML document into another. It can assist to
transform XML documents into SMIL presentation. Then, we learn more
deeply on its syntax, usage and limitations. This helps a lot in design our
XML to SMIL transformer.

• XML to SMIL transformation

After studying SMIL, we decided to use this format for presenting video
information obtained. In the first semester, we have generated an XML file
that contains video information. Therefore, we plan to build a transformer
that can transform this file to SMIL presentation automatically. We spent a lot

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 25

of time to investigate possible ways to build a good transformer before
implementing our final design. In our final design, we make use of XSL in
some part, but due to the limitation of XSL, we have to implement the
remaining part of it with our code.

2.5.2 Programming work

In the second semester, we further improved XVIP by adding two more
information extraction components into XVIP. They are speech recognition and
face detection. Together with the scene change detection and video optical
character detection, there are totally four extraction modules in XVIP.

Apart from video information extraction, we demonstrated how the extracted
video information could be presented using SMIL. In order to make XVIP
complete, we built a XML to SMIL transformer for converting our XML-based
video data to SMIL presentation automatically. XVIP also provides additional
geographic and biographic information to be displayed in the SMIL presentation.

• We implemented speech recognition with IBM ViaVoice and stored the
transcript obtained into XML file. A sample result and the produced XML
file are shown in Figure 2.11.

Figure 2.11 Speech recognition results in XVIP.

• We implemented face detection by calling an external process. The jpeg
source comes from the result of scene change detection. Whenever there is
face appear in the scene, it will be highlight by a green rectangle. A sample
result is shown in Figure 2.12.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 26

Figure 2.12 Face detection result in XVIP.

After the information is extracted and stored as XML schema designed, we move
on to the transformation and presentation of the XML-formatted video data.

• We built a XML to SMIL transformer. It gets the XML video data file as
input and generated files for the SMIL presentation. The transformer also
allows user to select templates and the additional information that they
preferred. The user interface is shown in Figure 2.13.

Figure 2.13 User interface of the XML to SMIL transformer in XVIP.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 27

• By clicking SMIL file’s name in the file list generated, the SMIL presentation
will start. Two samples of presentation are shown in Figure 2.14.

Figure 2.14 SMIL presentations generated from our transformer

� Different modalities are included in XVIP. This includes the video player, the
four extraction modules, XML editor, knowledge enrichment component, and the
XML to SMIL transformer. All of them are integrated into XVIP using the
docking window class in GUI. XVIP can do video information extraction,
XML-formatted storage, knowledge enrichment and SMIL transformation and
presentation. The integrated system is shown in Figure 2.15.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 28

Figure 2.15 View of XVIP in second semester

Video
Player

Scene
Change

VOCD

Control

XML Editor

Secondary
Information

Extractor

Face Detection

XML to
SMIL

Speech
Recognition

SMIL Presentation

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 29

33.. IInnffoorrmmeeddiiaa
33..11 RReevviieeww

Recent years have been a rapid increase in the usage of multimedia information.
Of all media types (text, image, graphic, audio and video), video is the most
challenging one, as it combines all the other media information into a single data
stream and it becomes the most popular source of multimedia information.
Informedia is studied as we try to find out the current techniques used in these
Informedia. This enables us to get experience to implement the integrated-tool.

There is a lot of attention paying on how to present multimedia information.
However, a little concern is on how to do information extraction from video and
storage of this information. These techniques are useful for indexing and
searching on video. Our final year project will focus on how to do information
extraction from video and storage of this information.

Digital Video Library is a new approach for automated video and audio indexing,
navigation, visualization, search and retrieval and embedded them in a system
for use in education, information and entertainment environments. It includes a
lot of techniques on video information extraction, storage, indexing, etc.
Therefore, understanding the techniques in Digital Video Library can gives a lot
of ideas on how to do our final year project.

33..22 DDiiggiittaall VViiddeeoo LLiibbrraarryy SSyysstteemm
A digital library of the future will provide electronic access to information in
many different forms. Recent technological advances make the storage and
transmission of digital video information possible. Digital Video Library System
(DVLS) is suitable for storing, indexing, searching, and retrieving video and
audio information and providing that information across the Internet.

To be an effective library, users need to be able to find the video segments they
want. Realizing this goal requires automatic content-based indexing of videos
that will significantly improve the users' ability to access specific segments of
interest with videos. Videos, soundtracks and transcripts will be digitized, and
information from the soundtrack and transcripts will be used to automatically
index videos in a frame-by-frame manner. This will allow users to quickly search
indices for multiple videos to locate segments of interest, and to view and
manipulate these segments on their remote computer.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 30

Figure 3.1 An Overview of the Digital Video Library Software components
of the University of Kansas.

The Digital Video Library Software is a complex system composed of the
following five primary components.
1. Video Storage System (VSS): The VSS stores video segments for

processing and retrieval purposes. It is to provide intelligent access to
portions of a video rather than entire videos; the VSS must be capable of
delivering numerous short video segments simultaneously.

2. Video Processing System (VPS): The VPS consists of video processing
programs to manipulate, compress, compact, and analyze the video and
audio components of a video segment. In particular, the VPS contains a
component to recognize keywords from the sound track of video segments.

3. Information Retrieval Engine (IRE): The IRE is used to store indices
extracted from video segments and other information about the video
segments, such as source, copyright, and authorization. The IRE will be
capable of supporting both free-text and Boolean queries.

4. Client: The Client is a graphical user interface, which resides on the user's
computer. It includes interfaces for conducting structured and free text
searching, hypertext browsing and a simple video editor.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 31

5. Query Server (QS): The QS processes video queries from the remote
Client and communicates with the IRE and VSS to enable users of the
digital library to extract video data and create multimedia representations of
the information of interest.

33..33 DDiiggiittaall VViiddeeoo LLiibbrraarryy iinn CCMMUU
One representative project working on Digital Video Library is the Informedia
Project at Carnegie Mellon University. The Informedia Digital Video Library
project will establish a large, online digital video library featuring full-content
and knowledge-based search and retrieval. Intelligent, automatic mechanisms
will be developed to populate the library.

Search and retrieval from digital video, audio, and text libraries will take place
via desktop computer over local, metropolitan, and wide area networks. Initially,
the library will be populated with 1,000 hours of raw and edited documentary
and education videos.

In our Final Year Project, the digital video library structure that we are using is
basically referenced to the Informedia Digital Video Library project at Carnegie
Mellon University.

Digital video presented a number of interesting challenges for library creation
and deployment. For example, the way it embeds information, its voluminous
file size, and its temporal characteristics. These challenges are basically
addressed by:
1. Automatically extracting information form digitized video
2. Creating interfaces that allowed users to search for and retrieve videos

based on extracted information.
3. Validating the system through user test beds.

The following is the Informedia Digital Video Library System Overview:

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 32

Figure 3.2 Informedia Digital Video Library System Overview

33..44 VViiddeeoo IInnffoorrmmaattiioonn
There are many information can be extracted from the video sequence:
1. Integration of speech, language, and image processing: generating

multimedia abstractions, segmenting video into stories, and tailoring
presentations based on context.

2. Text processing: headline generation, text clustering and topic
classification, and information retrieval from spoken documents.

3. Audio processing: speech recognitions, segmentation and alignment of
spoken dialogue to existing transcripts, and silence detection for better
“skim” abstractions

4. Image processing: face detection and matching based on regions, textures,
and colors.

5. Video processing: key frame selection, skim, video OCR, and Video trails.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 33

Figure 3.3 The above diagram shows the Component technologies applied to
segment video data.

3.5 Video Information Extraction
Videos contain rich information that will be useful in indexing and searching.
There are a lot of techniques for extracting and manipulating this kind of
information. Content of a video is conveyed both the narrative (speech and
language) and the image. Only by the collaborative interaction of image, speech,
and natural language understanding technology can successfully populate,
segment, index, and search diverse video collections with satisfactory recall and
precision. Now we can go to briefly describe image, speech and natural language
one by one.

3.5.1 Image
Image understanding plays a critical role in Informedia for organizing, searching,
and reusing digital video. When the digital video library is formed, the first
requisite capability is video segmentation. This process can segment video into
group of frames that represent different stories. Also, scene transition effects
such as fade, dissolves, and cuts can be automatically detected by comparing
color histograms, discrete cosine transform coefficients, shape, and texture
measures.
The following diagram is the Informedia image-understand video processing
overview:

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 34

Figure 3.4 Informedia image-understand video processing overview:

Currently image processing techniques are used to partition each video segment
into shots, choose a representative frame (key frame) for each shot -- usually the
middle frame in one shot, but also can be the last one frame if the shot contains a
camera motion.
Definitions:
A shot: a video clip recorded with one continuous camera operation.
A segment: several shots describing a topic.

Other than segmentation and detection of scene changes, object-presence
detections are also an important technique. Identify and index features to support
image similarity matching. Face recognition is a good example. It can show the
name of people appearing in the video or how they are interacting with the
environment.

Another essential detection technique is that of textual information appearing in
the video but not repeated in the audio. We can first find the caption in video,
then use OCR software to extract the text in it By detecting the clustered and
often high- contrast structure of printed characters, we can extract regions form
videos that contain text. The video optical character recognition always contains
important information, especially for news video.
The following diagram shows an example of face and text detections:

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 35

Figure 2.5 example of face and text detections

3.5.2 Speech
Even though much of broadcast television is closed-captioned, most of the
nation's video and film assets are not. More importantly, typical video production
generates 50 to 100 times more content than what is broadcast and is thus not
captioned. We therefore combine automatically generated transcripts, containing
tolerable errors, with captioning (where available) for the analysis, indexing, and
retrieval of multimedia data.

Unlimited-vocabulary, speaker-independent, connected-speech recognition is an
incompletely solved problem. However, recent results in domain-specific
applications demonstrate the promise and potential of being able to automatically
transcribe spoken language with an unlimited vocabulary. The keyword extracted
from the transcript will be useful in indexing the video

3.5.3 Natural language
Library search and retrieval, precision, and recall can be improved through
natural- language processing to understand and expand the user's query and to
associate it with correct but inexact matches from the library's content. This lets
us go beyond limited keyword matching in our library search. Natural-language
processing in Informedia is applied to both query processing and library creation.
It serves four principal functions--spoken and typed free-form query processing,

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 36

ranked retrieval, automated transcript correction, and summarization for use in
title generation and video abstract creation.

3.6 Integration on extracted information
Through combined techniques from language and image understanding, video
skims of the original video at varying compression ratios are obtained. This
compact video is created with significant image and audio regions to produce a
synopsis of the original, which can also be used to select a single representative
frame for each scene.

By examining the audio level for additional clues to detect transitions between
speakers and topics, which often correspond to low energy or silence in the
signal. Having segmented the video, we statistically compute the relative
importance of each scene's image content. Objects such as human faces and text
can be identified in video and used as a basis for significance during skim
creation.

The unsynchronized audio and video are now integrated into an effective skim of
the original content. The keywords and significant images are selected for skim
creation as follow:

Figure 3.6 keywords and significant images are selected for skim creation

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 37

3.7 User interface
(From Lessons learned from building a terabyte digital video library)

The information interface was designed to provide users with quick access to
relevant information in the digital video library. The user interface includes
query input and result set interface for the Informedia digital video library.
Generally, abstractions include headlines, thumbnails, filmstrips, and skims.

Figure 3.7 interface for the Informedia digital video library

Headlines: Early Informedia implementations created headlines for segments
based on the “most significant” words in their text (for example, the
text in the transcript or VOCR). If the word occurred often in the txt
associated with the video segment and infrequently in the whole
library’s text, then that word became part of the headline.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 38

Thumbnails: The thumbnail is some important frame. The thumbnail was chosen
based on the query, by using the key frame for the shot producing the
most matches for the query, then pictorial menus produced clear
advantages over text-only menus.

Figure3.8 Overview

Filmstrips: Key frames from a segment’s shots can be presented in sequential
order as filmstrips. The segment’s filmstrip can show a story matching
the query.

Skims: Video skim is a temporal multimedia abstraction, which is played
rather than viewed statically. A skim incorporates both video and audio
information from a longer source so that a 2-minute skim, for example,
may represent a 20-minute original video.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 39

Figure3.9 Skim

For our tools, we focus on the video processing and we have chosen 2 extraction
techniques of them, scene change detection and VOCR to implement to demonstrate
how the data can be extract from the video as the fundamental data and store as XML
Then we can extract the second data from the XML.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 40

4. Extraction Techniques
4.1 Introduction

As state in the pervious chapter, there are rich and useful information in videos,
it is necessary to have efficient and effective extraction techniques to extract all
these useful information from them.
In XVIP, there are four extraction techniques are implemented; they are scene
changes, video optical character detection, face detection and speech recognition.
Scene change technique is chosen as it is the most effective method for
segmenting a video sequence into significant components, generally called shots
(scene change also called shot break). For face detection, it is useful for indexing
and searching the data. After the location of the face is detected, the face
recognition engine can be applied and more data of the video can be retrieved
and make the content of the video be more searchable. The input frame for face
detection is the output of scene change, as we believe that the most
representative frames are included by scene change. For VOCR, it is a technique
that can greatly help to understand the details of the video and locate topics of
interest in a video as it can extract the captions on frames. To make the system to
be more complete, speech recognition is included, so that both video and audio
data are processed. Speech recognition engine extracts the transcript from the
audio channel and it can help for indexing the data. The following section is
going to introduce the extraction techniques applied in XVIP.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 41

4.2 Scene Change Detection
4.2.1 Review

As mention in pervious section, scene change detection technique is need for
extracting video information in digital video library. Scene change detection is an
effective method for segmenting a video sequence into significant components,
generally called shots (scene change also called shot break). So, automatically
extract key information from image and videos for the purpose of indexing, fast
and easy retrievals, and scene analysis is necessary.

Figure 4.1 Informedia image-understanding video processing overview

We try to implement the scene change detection technique because for video, a
common first step is to segment the video into temporal shots. Each represents an
event or continuous sequence of action. A shot in video refers to a continuous
recording of one or more video frames depicting a continuous action in time and
space.

From the result of some research, statistical and structural properties of images
are used to identify scene change. These features are used in three steps to
identify these scene changes sequentially, such as abrupt scene change detection,
dissolve scene change detection, and wiping scene change detection. Since
abrupt scene change is the most common in video sequence, we also try to use

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 42

this approach, abrupt scene change detection, to find the scene change in the
video.

The accuracy and execution speed of the abrupt scene change detection
algorithm is critical if large amounts of video data are to be processed. In resent
years, there is already have effective scene change detection techniques exist. We
are going to discuss and compare the performance of the abrupt scene changes
(or called shot boundaries) detection algorithm, describe the one that we have
chosen to implement in our tools, and a brief description of dissolve and wiping
scene change detection method and the technique for key-frame extraction.

Figure 4.2 Implement result of the Scene change

4.2.2 Review Existing Scene Changes Detection
Technique

A shot is defined as an unbroken sequence of frames recorded from a single
camera, which forms the building block of a video. The purpose of shot
boundary detection is to segment the video stream into multiple shots.

Many techniques to automatically determine shot break in a video sequence have
been proposed. Such techniques can be classified into two categories: cut
detection techniques for compressed video sequence and uncompressed video
sequence.

4.2.2.1 Cut Detection Methods
(a) Image difference method

Image difference method is base on the similarity of consecutive frames. If
the scene is continuous and no scene change occurs, the frame difference is
kept small. At the scene cut point, its difference becomes relatively large
compared with that of continuous scenes. Image difference method id defines
as:

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 43

Where M and N are the number of pixels in the image in the horizontal
direction and in the vertical direction respectively.
△P i, j,(x,y) = | P i, (x,y) - △P j(x,y)| is the inter-frame difference between the
i th frame and the j th frame. P i(x,y) is the intensity of pixel position (x, y) at
the i th frame.
This is a simplest way of evaluating an image difference. However, there are
some disadvantages.
� Every pixel in a frame is investigated for every frame in order to

achieve the detection. Therefore the detection speed is slower.
� Over-detection caused by various motions.

(b) Histogram Difference Method
Video data is classified into K classes. In each frame, the number of the
pixels categorized into each class is calculated. Then the summation if the
two consecutive frames is calculated and a threshold can be used to
determine scene cut detection. This is defined as:

H i,(k) =ΣΣm, n 1 if P i, (x,y) belongs to k and k = { P i, (x,y) | k <= P i, (x,y) < k+1

H i,(k) represent the relative frequency of occurrence of the k bin in the ith
image. For this method
� Advantage is over-detection caused by motions is reduced as long as

they move inside of the frame since the histogram is left unchanged.
� Disadvantage is detection speed is also slow since every pixel in a

frame is examined.

Figure 4.3 Color Histogram

Di, j (x,y) = (1/MN)(ΣΣ△P i, j(x,y)

HDi, j (x,y) = Σ |H i,(k) - H j(k)|

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 44

(c) Histogram Difference Method using DC Coefficient Image
Digital video sequences are usually stored in a compressed format such as
MPEG. The most computationally expensive part of the decoding algorithm
is the inverse DCT (IDCT) operation. DC images are spatially reduced
versions of the original images. DC images can be efficiently extracted from
compressed videos without IDCT operations. A fast scene cut algorithms
may be achieved using DC coefficient images.
In an intra-coded picture (1 picture) the images is divided into 8 X 8 blocks
and the DC terms, is 8 times the average intensity of the block given by

For this method,
� Advantage is that it is a faster cut detection algorithm for the reduction

of the processing time using 1/64 scaled images.
� Disadvantage is that it is difficult develop the more accurate detection

of the scene changes as approximated images are used.

4.2.2.2 Dissolve and wiping scene change detection
Apart from the abrupt scene change detection, there exist others scene change
detection method, dissolve and wiping scene change detection. Dissolve scene
change detection is the next common scene transition. This can be achieved by
considering the ratio between the second derivative of the variance and the first
derivative of the mean and spikes of the second derivative of the variance. If a
dissolve region is not detected, then wipe transitions are identified using
statistical features together with structural properties.

DC = (1/8) ΣΣ P i,(x, y)

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 45

44..22..33 OOuurr AAllggoorriitthhmm && IImmpplleemmeennttaattiioonn
After reading several algorithm and the experiment results from the papers, we
find that the accuracy of the histogram difference method is acceptable. If we use
it with a dynamic threshold, the accuracy of the scene change can be improved
and reduce lots of over-detection and un-detection. Let us describe our approach.

4.2.3.1 Histogram difference
We grasp one scene from the video for every 0.05 seconds and it is compared
with the pervious scene. The grasped scenes are 24-bit image, 8 bits for each
color (red R, green G, blue B). So, we can check each pixel and classified them
into different class.
For our algorithm, we only consider the most significant 2 bits of each color.
Therefore, we can classify the pixel into 64 different colors. After checking each
pixel and add one for the corresponding class, we can build a color histogram for
each image.

After building the color histogram for the two successive scene, we compare
them. For each column of the histogram, we calculate the difference of them and
sum all the square of the difference. If the total difference of the whole histogram
is greater than a threshold, we consider it as a scene change.

If H > threshold (T), we consider it as a scene change. The threshold can be
adjusted to reduce over-detection and un-detection
Using this approach, the result is acceptable, and the advantages are:
• Fast for detecting scene change
• Over-detection caused by motions is reduced as long as they move inside

of the frame since the histogram is left unchanged.
• Un-detection can be reduced by using appropriate threshold

Array[64]
For each pixel

Get the first 2 bit of R (r1, r2)
Get the first 2 bit of G (g1, g2)
Get the first 2 bit of B (b1, b2)
Array [r1r2g1g2b1b2] ++

H = Σ(0, 63)(P a,(i) - P b(j))2

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 46

• Easy to implement
It can be improved by checking more bits of each color in the pixel. However, it
will be more sensitive to the threshold. If the threshold chosen is not appropriate,
the number of over-detection and un-detection will be increase.

4.2.3.2 Dynamic threshold
Fixed threshold cannot perform equally well for all videos, which must be
assigned to tolerate variations in individual frames, while still ensuring a desired
level of performance. A high threshold value can prevent over-detection, but
increase the un-detection. Conversely, a low threshold value enables consistent
cuts to be accepted, but increase the number of the over-detection. Therefore,
obtaining a adaptive threshold becomes a important problem. With a correct
threshold, we can get a accuracy result.

A fixed appropriate threshold value is selected by experiment. Thus, dynamic
threshold can be used to improve the accuracy of scene change detection.

This dynamic threshold can be determined by the minimum of the difference of
the color histogram. We apply one-dimensional entropic thresholding to
histogram difference to find the optimal (T).

Let the largest value of these histogram distance (SDi) features be W, that is

where L is the sequence length. We divide the range of these values into W+1
bins, then, there are W+1 elements of histogram distances. Each element of the
histogram disrtance features has a frequency fi which indicates the number of
frames that differ from the succeeding frame by a histogram distance equals to i.

here δ (i– j) = 1 when i = j otherwise 0. As the distributions are assumed to be
independent, the probability for the frames with the scene cut relationships with
their successive frames

The entropy for can be defined as

W = max { SDi } ;for i=1, 2, …. L-1

fi =Σ(j=1, L-1) δ (SDi – i) ;for 0<= i <= W

Ps (i) = fi /Σ(h=0, T) fh ; 0 <= i <= T

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 47

The global threshold T, which is used to classify a frame as being a scene change,
is chosen to satisfy the following criterion function (Kapur et al., 1985)

44..22..44 KKeeyy FFrraammee EExxttrraaccttiioonn
After shots are segmented, key frames can be extracted from each shot.
Depending on the content complexity of the shot, one or more key frames can be
extracted for a single shot.

There are several difference approaches for extraction key frame:
1. Shot boundary based approach (the approach used in the tool)

After the video stream is segmented into shots, a natural and easy way of
key frame extraction is to use the first frame of each shot as the shot’s key
frame. Although simple, the number of key frame for each shot is limited to
one, regardless of the shot’s visual complexity.

2. Visual context based approach
There are multiple visual criteria to extract key frame:
� Shot based criteria: the first frame is always selected as the first key

frame; more than one key frame need to be selected depends on other
criteria

� Color feature based criteria: by comparing the successive frame, if
there is significant content change, select the front one as the key
frame

� Motion based criteria: For zooming-like and panning-like shot, the first
and the least frame are selected as the key frame as they represent a
global and more focused view respectively.

3. Motion analysis based approach
The optical flow for each frame is computed, and then computes a simple
motion metric based on the optical flow. Finally the metric is analyzed as a
function of time to select the key frame at the local minima of motion, this
key frame is identified by stillness.

Hs (T) =Σ(i=0, T) Ps (i) log Ps (i)

H(T) =max { Hs (T)} ;T=0,1,2….W

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 48

4. Shot activity based approach
The intra and reference histograms are computer and then compute an
activity indicator. Based on the activity curve, the local minima are selected
as the key frames.

As we implement the scene change detection and get the key frame aims to
demonstrate how to extract and store the data as XML, we try to choose the one
is less complexity and relatively less difficult to implement. Thus, we choose
Shot boundary based approach to get the key frame of each shot.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 49

44..33 VViiddeeoo OOppttiiccaall CChhaarraacctteerr RReeccooggnniittiioonn ((VVOOCCRR))
4.3.1 Review

Understanding the content of videos requires the intelligent combination of many
technologies, such as speech recognition, natural language processing, search
stragies, image understanding, etc.

Video OCR is a technique that can greatly help to locate topics of interest in a large
digital news video archive via the automatic extraction and reading of captions
and annotations. News captions generally provide vital search information about
the video being presented -- the names of people and places or descriptions of
objects. Performing Video OCR on video and combining its results with other
video understanding techniques will improve the overall understanding of the
video content. For example, caption graphically superimposed to news video can
provide an important supplemental source of indexing information.

Figure 4.4 Video OCR results
The above picture shows the Video OCR results. The OCR results extracted the
keywords on this frame. These keywords can be used together with the words
extracted from the transcript for indexing the video.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 50

Compared with OCR from document images, caption extraction and recognition
in news video presents new challenges:

• Complex background
• Low resolution of characters

Figure 4.5 Here are two frames extracted from the Digital news with
characters on them:

It can be observed that the two frames are with complex background and low
resolution of characters.

Since Video OCR is especially important in news video, we will focus on how to
do Video OCR for Digital News in the following parts.

The main steps of Video OCR for Digital News are as follow:
1. Detection of Text Region

-- For locating the caption from the video frame.

2. Image Enhancement
-- For increasing the resolution of each caption and reducing the

variability in the background.

3. Character Recognition and Segmentation
-- For recognizing characters and doing segmentation between characters.

4. Post-Processing
-- For improving the recognition rate.

The following paragraphs will explain the techniques in each step one by one.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 51

4.3.2 Detection of Text Region
Since a video news program comprises huge numbers of frames, it is
computationally prohibitive to detect each character in every frame. Therefore,
we first roughly detect text regions in groups of frames to increase processing
speed. Some known constraints of text regions can reduce the processing costs.

A typical text region can be characterized as a horizontal rectangular structure of
clustered sharp edges, because characters usually form regions of high contrast
against the background.

We select frames and extract regions that contain textual information from the
selected frame. For extraction of vertical edge features, we apply a horizontal
differential filter to the entire image with appropriate binary threshold. If a
bounding region, which is detected by the horizontal differential filtering
technique, satisfies size, fill factor and horizontal-vertical aspect ratio constraints,
it is selected for recognition as a text region. Detection results are selected by
their location to extract specific captions, which appear at lower positions in
frames.

Figure 4.6 It can be seen that the captions are the horizontal rectangular boxes
and is outlined with blue color.

4.3.3 Image Enhancement
In television news videos, the predominant difficulties in performing Video OCR
on captions are due to low-resolution characters and widely varying complex
backgrounds. To address both of these problems, we have developed a technique,
which sequentially filters the caption during frames where it is present. This
technique initially increases the resolution of each caption through a magnifying

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 52

sub-pixel interpolation method. The second part of this technique reduces the
variability in the background by minimizing (or maximizing) pixel values across
all frames containing the caption. The resulting text areas have good resolution
and greatly reduced background variability.

4.3.3.1 Sub-pixel interpolation technique
To obtain higher resolution images, we expand the low-resolution text regions by
applying a sub-pixel interpolation technique. To magnify the text area in each
frame by four times in both directions, each pixel of the original image I (x; y) is
placed at every fourth pixel in both x and y directions to obtain the four times
resolution image L (x; y): L (4x; 4y) =I (x; y). Other pixels are interpolated by a
linear function using neighbor pixel values of the original image weighted by
distances the video motion of non-caption areas. This technique results in text
areas with less complex backgrounds while maintaining the existing character
resolution. The following picture shows the example on how to do Sub-pixel
interpolation:

Figure 4.7 Example on how to do Sub-pixel interpolation.

4.3.3.2 Multi-frame Integration
For the problem of complex backgrounds, an image enhancement method by
multi-frame integration is employed using the enhanced resolution interpolation
frames. This technique reduces the variability in the background by minimizing
(or maximizing) pixel values across all frames containing the caption. By taking
advantage of the video motion of non-caption areas, this technique results in text
areas with less complex backgrounds while maintaining the existing character
resolution.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 53

The sub-pixel interpolated frames, Li (x, y), Li+1 (x, y), . . . , Li+n (x, y) are
enhanced as Lm (x, y) via
Lm (x, y) =min (Li (x, y), Li+1(x, y), . . . , Li+n (x, y))

where (x, y) indicates the position of a pixel and i and i + n are the beginning frame
number and the end frame number respectively. These frame numbers are
determined by text region detection. Here is an example of effects of both the
multi-frame integration for the original image:

Figure 4.8 Effects of doing the multi-frame integration.
Line 1 to line 4 of the above picture shows the frame No.1, 10, 20, 50 with the
same caption. Line 5 shows the enhanced image after doing multi-frame
integration.

4.3.4 Character Recognition and Segmentation
A conventional pattern matching technique to used to recognize characters. An
extracted character segment image is normalized in size and converted into a
blurred gray scale image by counting the number of neighbor pixels.

Thresholding at a fixed value for the output of the character extraction filter
Lfilter produces a binary image which is used to determine positions of
characters and recognize characters.

The left character of the following picture is the character before doing
binarization. The right character shows the binary image after binarization with
thresholding.

(1)

(2)

(3)

(4)

(5)

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 54

Figure 4.9 Image before (left) and after (right) binarization.

Then, we can filter the binary image with the morphological filter and filter the
character image with connected component filter. The result is as follow:

Figure 4.10 Image before (left) and after (right) morphological filtering.

Horizontal and vertical projection profiles of the binary image are used to
determine candidates for character segmentation.
First, we have to do edge detection and smoothing. The top image below is the
image before processing. The image at the bottom shows the processed image.

Figure 4.11 Image after doing edge detection and smoothing.

After that, we can do horizontal projection. After getting the result, we can do
caption line separation easily. The result of horizontal projection is as follow:

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 55

Figure 4.12 Result of horizontal projection.

After analyzing the result of horizontal projection, we can get the caption with
line separated. The result caption is as follow:

Figure 4.13 Result caption after line separation.

The white horizontal lines indicate the separation between different lines.

Then, we can do a vertical profile the caption on every horizontal line in the
caption.
The result of vertical profile will be as follow:

Figure 4.14 Result of vertical profile.

After getting the result, we process 2 consecutive segments at a time; we
consider the first segment of the two to be correct and fixed if both the first and
the second segments have high similarities. The left and right edges of peak of
each character are shown by the arrows as the following picture:

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 56

Figure 4.15 The vertical projection profile.
For example, the above picture indicates that there are four characters.

4.3.5 Post-Processing
To acquire text information for content-based access of video databases, high
word recognition rates for Video OCR are required. We apply post-processing,
which evaluates differences between recognition results with words in the
dictionary, and selects a word having the least differences. This can improve the
recognition rate

To acquire text information for content-based access of video databases, high
word recognition rates for Video OCR are required. The Video OCR recognizes
only 48.3% (393 out of 814 words). We apply post-processing, which evaluates
differences between recognition results with words in the dictionary, and select a
word having the least differences.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 57

4.4 Face Detection
4.4.1 Review

Face detection is locating the face(s) inside a given image. It is a necessary
pre-processing process for face recognition. After the location of the face is
detected, the face recognition engine can be applied and more data of the video
can be retrieved and make the content of the video be more searchable.

4.4.2 Different approaches
There are many ways to detect a face in a scene - easier and harder ones. Many
face detection researchers have used the idea that facial images can be
characterized directly in terms of pixel intensities. These images can be
characterized by probabilistic models of the set of face images, or implicitly by
neural networks or other mechanisms. The parameters for these models are
adjusted either automatically from example images or by hand. A few authors
have taken the approach of extracting features and applying either manually or
automatically generated rules for evaluating these features. Here is a list of the
most common approaches in face detection:
A. Finding faces in images with controlled background:

This is the easy way out. Use images with a plain monocolour background,
or use them with a predefined static background - removing the background
will always give you the face boundaries.

B. Finding faces by color
For accessing color images, it may use the typical skin color to find face
segments. The disadvantage is that it does not work with all kind of skin
colors, and is not very robust under varying lighting conditions.

� Basic colour extraction for face detection
� Face detection in color images
� Face detection in color images using PCA
� Skin colour detection under changing lighting conditions

C. Finding faces by motion
For real-time video, it may use the fact that a face is almost always moving
in reality. Just calculate the moving area, and the face can be detected. The
disadvantage is what if there are other objects moving in the background?

� Basic motion detection for face finding
� Blink detection: human eyes are simultaneously blinking; this can be

used to find and normalize faces

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 58

D. Using a mixture of the above

Combining several good approaches normally yields an even better result.
Here are some works on that:

� A mixture of colour and 3D
� A mixture of colour and background removal

E. Finding faces in unconstrained scenes:

Amount top of them all, the most complicated thing may be in whole object
recognition: Given a black and white still image, where is the face? Humans
can do it, so where's the perfect algorithm that can do it, too? Here are some
works on it:

� Neural Network-Based Face Detection
� Neural Nets using statistical cluster information
� Model-based Face Tracking

4.4.3 Neural Network-Based Detection
In XVIP, it has followed the project in CMU to use the Neural Network-Based
Detection algorithm for face detection.
We have prepared the preprocessed image for the neural network where
Informedia of CMU implements the neural network. The XVIP is connected with
the Dynamic Library with this neural network to do the face detection.

A retinally connected neural network examines small windows of an image, and
decides whether each window contains a face. The system arbitrates between
multiple networks to improve performance over a single network. It uses a
bootstrap algorithm for training the networks, which adds false detections into
the training set as training progresses. This eliminates the difficult task of
manually selecting non-face training examples, which must be chosen to span the
entire space of non-face images. Comparisons with other state-of-the-art face
detection systems are presented; this system has better performance in terms of
detection and false-positive rates

Training a neural network for the face detection task is challenging because of
the difficulty in characterizing prototypical “non-face” images. Unlike face
recognition, in which the classes to be discriminated are different faces, the two
classes to be discriminated in face detection are “images containing faces” and

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 59

“images not containing faces”. It is easy to get a representative sample of images
which contain faces, but much harder to get a representative sample of those
which do not.

4.4.4 Description of the System
4.4.4.1 Input Image

The process of face detection is very time consuming; it is not efficient to
perform the face detection through out the whole video. We decide to the face
detection with the frame in the scene change.
After the scene change is detected and the corresponding frame is save as a
bitmap and jpeg, the scene change can be used to perform the face detection. As
most of the representative frame is included by the scene change, we decided to
do the face detection with the scene change.

Figure4.16 Scene change result

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 60

4.4.4.2 Preprocess
The face detection system operates in two stages: it first applies filter to get the
image to do the preprocessing, and then applies a set of neural network-based
filters to a preprocessed image to get the outputs. The filters examine each
location in the image at several scales, looking for locations that might contain a
face.

Figure 4.17 The basic algorithm used for face detection

The first component of our system is a filter that receives as input a 20x20 pixel
region of the image, and generates an output ranging from 1 to -1, signifying the
presence or absence of a face, respectively. To detect faces anywhere in the input,
the filter is applied at every location in the image. To detect faces larger than the
window size, the input image is repeatedly reduced in size (by subsampling), and
the filter is applied at each size. This filter must have some invariance to position
and scale. The amount of invariance determines the number of scales and
positions at which it must be applied.

For the work presented here, we apply the filter at every pixel position in the
image, and scale the image down by a factor of 1.2 for each step in the pyramid.
The filtering algorithm is shown in Fig. 4.17. First, a preprocessing step is
applied to a window of the image. The window is then passed through a neural
network, which decides whether the window contains a face.

The preprocessing first attempts to equalize the intensity values across the
window. We fit a function that varies linearly across the window to the intensity
values in an oval region inside the window. Pixels outside the oval may represent
the background, so those intensity values are ignored in computing the lighting

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 61

variation across the face. The linear function will approximate the overall
brightness of each part of the window, and can be subtracted from the window to
compensate for a variety of lighting conditions.
Then histogram equalization is performed, which non-linearly maps the intensity
values to expand the range of intensities in the window. The histogram is
computed for pixels inside an oval region in the window. This compensates for
differences in camera input gains, as well as improving contrast in some cases.
The preprocessing steps are shown in Fig. 4.18.

Figure 4.18: The steps in preprocessing a window.

4.4.4.3 Neural Network
The preprocessed window is then passed through a neural network. The network
has retinal connections to its input layer; the receptive fields of hidden units are
shown in Fig. 1. There are three types of hidden units: 4 which look at 10x10
pixel subregions, 16 which look at 5x5 pixel subregions, and 6 which look at
overlapping 20x5 pixel horizontal stripes of pixels. Each of these types was
chosen to allow the hidden units to detect local features that might be important
for face detection. In particular, the horizontal stripes allow the hidden units to
detect such features as mouths or pairs of eyes; while the hidden units with
square receptive fields might detect features such as individual eyes, the nose, or
corners of the mouth. Although the figure shows a single hidden unit for each
subregion of the input, these units can be replicated. For the experiments, which
are described later, we use networks with two and three sets of these hidden units.
Similar input connection patterns are commonly used in speech and character

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 62

recognition tasks.

The network has a single, real-valued output, which indicates whether or not the
window contains a face. Examples of output from single network are shown in
Fig. 4.19. In the figure, each box represents the position and size of a window to
which the neural network gave a positive response. The network has some
invariance to position and scale, which results in multiple boxes around some
faces.

Figure 4.19 Images with all the above threshold detections indicated by boxes.

To train the neural network used in stage one to serve as an accurate filter, a
large number of face and non-face images are needed. Nearly 1050 face examples
were gathered from face databases at CMU, Harvard2, and from the World Wide
Web. The images contained faces of various sizes, orientations, positions, and
intensities. The eyes, tip of nose, and corners and center of the mouth of each face
were labeled manually. These points were used to normalize each face to the
same scale, orientation, and position, as follows:
1. Initialize _F, a vector that will be the average positions of each labeled

feature over all the faces, with the feature locations in the first face F1.
2. The feature coordinates in _ Fare rotated, translated, and scaled, so that the

average locations of the eyes will appear at predetermined locations in a
20x20 pixel window.

3. For each face i, compute the best rotation, translation, and scaling to align
the faces feature the average feature locations _F. Such transformations can
be written as a linear function of their parameters. Thus, we can write a
system of linear equations mapping the features from Fito _F. The least squares
solution to this over-constrained system yields the parameters for the best
alignment transformation. Call the aligned feature locations F

4. Update _ Fby averaging the aligned feature locations ifor each face i.
5. Go to step 2.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 63

The alignment algorithm converges within five iterations, yielding for each face
a function which maps that face to a 20x20 pixel window. Fifteen face examples
are generated for the training set from each original image, by randomly rotating
the images (about their center points) up to scaling between 90% and 110%,
translating up to half a pixel, and mirroring. Each 20x20 window in the set is
then preprocessed (by applying lighting correction and histogram equalization).
A few example images are shown in Fig. 4.20.

Figure 4.20 Example face images (the authors), randomly mirrored, rotated,
translated, and scaled by small amounts.

The randomization gives the filter invariance to translations of less than a pixel
and scalings of 20%. Larger changes in translation and scale are dealt with by
applying the filter at every pixel position in an image pyramid, in which the
images are scaled by factors of 1.2.

Practically any image can serve as a nonface example because the space of
nonface images is much larger than the space of face images. However,
collecting a “representative” set of nonfaces is difficult. Instead of collecting the
images before training is started, the images are collected during training, in the
following manner, adapted from:
1. Create an initial set of nonface images by generating 1000 random images.

Apply the pre-processing steps to each of these images.
2. Train a neural network to produce an output of 1 for the face examples, and

-1 for the nonface examples. The training algorithm is standard error
backpropogation with momentum [8]. On the first iteration of this loop, the
network’s weights are initialized randomly. After the first iteration, we use
the weights computed by training in the previous iteration as the starting
point.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 64

3. Run the system on an image of scenery which contains no faces. Collect
subimages in whichthe network incorrectly identifies a face

4. Select up to 250 of these subimages at random, apply the preprocessing steps,
and add them into the training set as negative examples. Go to step 2.

Some examples of nonfaces are collected during training. Note that some of the
examples resemble faces, although they are not very close to the positive
examples shown in Fig. 4.3.5. The presence of these examples forces the neural
network to learn the precise boundary between face and nonface images. It used
120 images of scenery for collecting negative examples in the bootstrap manner
described above. A typical training run selects approximately 8000 nonface
images from the 146,212,178 subimages that are available at all locations and
scales in the training scenery images. A similar training algorithm was described
in [25], where at each iteration an entirely new network was trained with the
examples on which the previous networks. Informedia of CMU implements this
neural network and provides the dll of the network as open.This dll is connected
to XVIP for face detection.

4.4.5 Face detection in XVIP
With scene change as the input image, XVIP preprocess the image and pass to
the neural network described above.
The face detection modality is added to the XVIP, the following picture shown
the result of the detection. The face is enclosed by a blue square.

Figure 4.21 Result of the Face detection

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 65

4.4.6 Further Process
After the location of the face(s) is detected, other process can be done to enrich
the data, such:

� Facial Expression Analysis
� Face Recognition

It makes XML to become more searchable and more information can be found.
However these techniques are not to be discussed in the project.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 66

4.5 Speech Recognition
4.5.1 Review

Speech recognition technology can make any spoken data useful for library
indexing and retrieval by extracting keyword from the transcript. To make our
XVIP more complete, including both video and audio information processing,
speech recognition is add to our XVIP as a new modality. The information
extracted from speech is also used to enrich the XML. This new modality is
named as “Transcript” in the XML.
Speech recognition, or speech-to-text, involves capturing and digitizing the
sound waves, converting them to basic language units or phonemes, constructing
words from phonemes, and contextually analyzing the words to ensure correct
spelling for words that sound alike (such as write and right). The figure 4.22
below illustrates this high-level description of the process

Figure 4.22 Overview of speech recognition

By applying speech recognition together with natural language processing,
information retrieval and image analysis, an interface has been produced that
helps users locate the information they want and navigate or browse the digital
video library more effectively.
Speech recognition generated transcripts can make multimedia material
searchable. The XVIP emphasizes the integration of speech recognition, image
processing and information retrieval to compensate for deficiencies in these
individual technologies.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 67

4.5.2 Speech Recognition Process

Figure 4.23 Speech recognition Process

4.5.2.1 Process Diagram
The speech recognition process can be divided into different components. Which
is illustrated in figure 4.23 above.

4.5.2.2 Process Explanation
� Input Signal

First, we get the speaker’s voice from an input device and save it as speech
signals. The commonly used input device is a microphone. Note that the
quality of the input device cans inference the accuracy of the SR system
very much. The came applies to acoustic environment. For instance,
additive noise, room reverberation, microphone position and the type of
microphone can all relate to this part of process.
For XVIP, the input signal is a wav file, which is extracted for the original
mpeg file.

� Feature Extraction
The next block, which shows the feature extraction subsystem, is tried to
deal with the problem created in the first part, as well as deriving acoustic
representations. The two aims are separate classes of speech sounds, such as

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 68

music and speech, and effectively suppress irrelevant sources of variation.

� Search Engine
The search engine block is the core part of speech recognition process. In a
typical ASR system, a representation of speech, such as spectral
representation, is computed over successive intervals, e.g., 100 times per
second. These representations or speech frames are then compared with the
spectra frames, which were used for training. Using some measurement of
distance of similarity does it.
Each of these comparisons can be regarded as a local match. The global
match is a search for the best sequence of words, in the sense that it is the
best match to the data. And it is determined by integrating many local
matches. The local match does not usually produce a single hard choice of
the closet speech class, but rather a group of distance or probabilities
corresponding to possible sounds. These are then used as part of a global
search or decoding to find an approximation to the closest sequence of
speech classes, or ideally to the most likely sequence of words.

� Acoustic Model
The acoustic model is the recognition system’s model for the pronunciation
of words, crucial to translating the sounds of speech to text. In reality, the
type of speaker model used by the recognition engine greatly affects the
type of acoustic model by the recognition system to convert the vocalized
words to data for the language model to be applied.
There are a wide variety of methods to build the pattern models, the three
major types are:

a. Vector Quantization
b. Hidden Markov Models (HMM)
c. Neutral Networks

As XVIP not aims to focus on the recognition system, it is not going to
present an in-depth discussion about the above methods here.

� Language Model & Lexicon
Language model is another major component of speech recognition process.
It provides the knowledge source for the engine and helps to predict the
next word.
The first component of the language model is the lexicon, which consists of
the vocabulary. The vocabulary, as explained before, contains all of the

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 69

possible words in the voice system that may be encountered.
The second component of the language model is the grammar. It defined the
structure and format of the text allowed at any point in the utterance.
Without grammar, every word in the lexicon would have an equal likelihood
of occurrence at any point within the utterance, requiring algorithm that are
too complex, making continuous speech impossible. These systems use the
grammar to constrain the word choice at any point, which is more efficient.

4.5.3 IBM ViaVoice
44..55..33..11 IInnttrroodduuccttiioonn ttoo VViiaaVVooiiccee

For speech recognition, we have chosen to use commercial product ViaVoice by
IBM to complete this part of XVIP.

Figure 4.24 ViaVoice for Windows Release 8 Rebate Program

In 1994, IBM was the first company to commercialize a dictation system based
on speech recognition. Science then IBM devoted to develop the most advanced
technology in this field.
ViaVoice is the speech recognition system that developed by IBM and it supports
13 different languages. In September 1997, Via Voice Chinese version came into
being and it draw much attention to the people who concerned. It successfully
solves the problems like there are many characters with the same pronunciation
and different meaning in Chinese, Chinese language has different tones, etc.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 70

4.5.3.2 System Characteristics
Science the first Chinese version of ViaVoice speech recognition system was
born, IBM devoted to increase the accuracy of the system. In 1999, they
enhanced the system to be a user independent, no vocabulary constraint, and
continuous speech recognition system with high recognition accuracy. And now
they have three different versions including Mandarin, Taiwanese and Cantonese.

4.5.3.3 ViaVoice Native Architecture Overview
The heart of a speech recognition system is known as the speech recognition
engine. The speech recognition engine recognizes speech input and translates it
into test that an application can understand. Application can access the engine
through a speech recognition API. For ViaVoice, this API is known as Speech
Manager API (SMAPI). SMAPI is a conversational API, meaning that the API is
defined as apart of resource; in ViaVoice, SMAPI is defined as part of the speech
engine. With an API, speech becomes a resource to all applications

4.5.3.4 ViaVoice Speech Engine Architecture
The speech engine has a rather complex tank to handle, that is, taking the raw
audio input and translating it to recognizes text that an application understands.
The Audio input source module encapsulates the methods used by the engine to
retrieve the audio input stream. By default, the engine retrieves its audio input
from the standard microphone input device in the system, a developer can write a
custom audio library so that the input of the engine would be a custom piece of
hardware.
The acoustic processor takes raw audio data and converts it to the appropriate
format for use. The acoustic processor consists of two components: the signal
processor and the labeler.
In the ViaVoice engine, audio input picked up by the microphone in analyzed by
the signal processor, this raw audio data is captured at 22 kHz by default, but
11kHz and 8kHz sampling is also supported. It contains both speech data and
background noise.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 71

4.5.3.5 Application Programming Interfaces
ViaVoice SDK provides several programming interfaces that developers can use to
incorporate speech into their applications. This guide describes the IBM SMAPI and

Grammar Compiler API.
� Speech Manager APIs (SMAPI)

IBM speech recognition engine APIs.
� SMAPI Grammar Compiler APIs

APIs used to compile grammars used by the speech recognition engine.

SMAPI
There is significantly more function in the ViaVoice engine beyond raw recognition of

spoken words, including dynamic vocabulary handling, database functions to query and
select installed users, languages, and domains, and the ability to add new words to the

user's vocabulary. SMAPI supports:
� Verifying the API version

� Establishing a database session to query system parameters
� Establishing a recognition session

� Setting up vocabularies

� Setting speech engine parameters
� Processing speech input

� Adding new words to the user's vocabulary
� Handling errors

� Disconnecting from the speech engine
� Closing a speech session

The SMAPI is provided as a library, which is linked into an application. The
engine is a separate executable. The ViaVoice architecture supports many speech
applications through a single engine, connected to one microphone. SMAPI was
derived from earlier IBM speech products so that all functions used by IBM
applications are available to the developer.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 72

4.5.4 Speech Recognition in XVIP
The error rate of the speech recognition is quite high, greater then 50%. The
performance can be improved by training the ViaVoice.

Figure 4.25 interface of the speech recognition engine in XVIP

After text is recognized, words are added to the XML. One more modality is
added to the XML, named as “Transcript”. The text is added to the XML
according to the time. As the error rate of the speech recognition is quite large.
The text can be insert or deleted inside the editor, shown in figure 4.26. However,
we believe the accuracy of speech recognition engine can be improved by

training.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 73

Figure 4.26: interface of the editor

55.. XXMMLL
For existing digital video library, some of them use relational database system to
store the data extracted. For our extracting tool, we choose to use XML for storing
the extracted data instead of following them. You may wonder why XML is chosen
instead of others, you may find the answer in the following section.

Figure 5.1 XML view in a browser

5.1 Introduction
The Extensible Markup Language (XML), HTML’s likely successor for
capturing much Web content, is easier-to-use subset of SGML (Standard
Generalized Markup Language) and a text-based markup language. XML is
receiving a great deal of attention from the computing and Internet
communication. XML is a meta-language that permits a set of users to create its
own mark-up language for describing the contents of Web documents. The use of
XML has many advantages, since an XML file contain not only data (like HTML)
but also metadata – structural and semantic information about that data. In this
sense, an XML document is very similar to a database, and it in general will look
like one big database. Life of an XML Document is shown as follow:

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 74

Figure 5.2 Life of an XML Document
5.2 How its work

XML is a markup meta-language that can be used to define a set of languages
that represent structured data in text-based documents. Any set of users, such as a
group of companies within an industry, can develop its own XML-based
language with its own set of markup tags. XML lets information publishers
invent their own tags for particular applications or work with other organizations
to define shared sets of tags that promote interoperability and that clearly
separate content and presentation. This gives users considerable flexibility and
functionality.
The XML tags provide metadata, which is information about the data a document
contains. For example, in online invoice, users could tag pieces of data as
“customer”, “product”, or others. System on different platforms could thus
understand what the data means

Figure 5.3 Roles for XML

Above is some of the roles for XML: transformed to HTML for standard Web
browsers (1), ingested into Java and other tools (2), as input to Data Location
Services (Catalogs) (3), and as input for ingest, editing, and validation tools (4).
We aim to support and enable as many of these uses as possible.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 75

5.3 Advantages of Using XML
For this markup language, there are many advantages:
� Platform and system independent

The first advantage is that XML is platform and system independent. XML
let users, devices, and applications on different platforms communicate
across the Internet, and permit organizations to integrate different data types
within their system. It works as well on one computer as it does on another.

� Essentially clear
The people responsible for designing XML wanted it to be clear as possible
so there are no optional tag or minimization.

� Create your own tag
XML lets information publishers invent their own tags for particular
applications or work with other organizations to define shared sets of tags
that promote interoperability and that clearly separate content and
presentation. Any XML-aware software will be able to work with other
custom application.

� Easy to search
Searching on the web at the moment can be the most frustrating task. A
search can result in hundreds of matches, but not pinpoint the content for
which is searching. This is because today’s search engines have no way of
differentiating content. When XML is widely adopted, search engines will
be able to search based on the content of particular tags.

� Adopt Unicode
XML has adopted ISO 10646, well known as Unicode. This standard is used
as a framework to encode characters and it will support most languages.
Since XML follows this standard, it is possible to use any language, include
Chinese, for the markup. It can contain Chinese names for tags and any
XML-aware software will still be able to understand it. XML dose not force
people to use English for their coding. Internationalization is built right in.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 76

Figure 5.4 XML offers global language support based on the broad
compatibility of Unicode

� Universal format
XML is universal format for exchanging information between software
components that is legible to both computers and human beings. It is
powerful as everyone could speak the same language and communicate
together. XML creates a lingua franca for the computer world that has been
missing for the longest time. XML can treat as a tool for engendering utopia
among computer users.

� Display in different ways
XML allows users to download a document and then display it in different
way. Because the style sheets are separate, not written right into the
document, the document can be display in a number of different. Extensible
style-sheet Language (XSL) expresses rules that indicate how to transform
an XML document to a presentation format such as HTML or PDF, or to an
alternate representation of the content such as an XML document with
different DTD.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 77

Figure 5.5 (a)

Figure 5.5 (b) XML can be displayed in different format

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 78

� Other markup language
As XML let user to create its own tag, there are dialects of XML. They used
by different industries and disciplines and define commonly used tags to be
specific and useful to that community. Of particular interest to technical
communicators is Synchronized Multimedia Integration Language (SMIL).
This is designed to optimize web-casts of media is a flexible manner and
includes streaming audio, streaming video and static images. The goal is to
revolutionize educational and entertainment on the web (which is our goal
in the second phase of this final year project). There are other dialects, for
example, MathML that is useful to mathematician because it can capture the
meaning of equations, rather than how it will look on a screen. Chemical
Markup Language (CML) help chemists to render molecular structure of
compounds.

� Advantage of XML over HTML

Feature HTML XML
Extensibility Fixed set of tags Extensible set of tags
Presentation/ content Tags for presentation

only
Tag describe data
content

View Single presentation of
each document

Multiple view of the
same document

Orientation Document orientation
only

Support for document
plus extensive
intra-structure for
exchange and
validation of structured
data

Search / query Search only Search plus
filed-sensitive queries
and later update

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 79

5.4 Why we choose XML
As XML has so many advantages, we choose XML for storing the data that
extracted for videos. The major factors that we think XML is suitable for our tool
instead of other database system are:
� XML ’s flexibility lets it serve as a meta-language for defining other

markup language specialized for specific contexts.
For each modal dimension, it manages its own XML DTD or XML schema.
The DTD would be extended, if knowledge enrichment or cross-referencing
were applied. In the above example, the geographical name process will
extend the XML as follow,
<modal name=”VOCD”>

<text start=”0s” end=”5s”>

Hong Kong is a beautiful place.

<geoname>Hong Kong</geoname>

</text>

<text start=”5s” end=”7.5s”>You can find</text>

<text start=”7.5s” end=”9s”>the best clothing

here.</text>

</modal>

By extending the XML DTD, the new tag that represents new modality
information is added into the original XML file. The new modality, in this
example the geoname, can be treated as an extended-modality of the parent
modal text

� XML can let us create any tag to describe the information the extracted
from videos. It may the read easy the read and understand what information
that can be extracted from videos.

� XML can describe the information, so information in the XML can be
searched easily and accurately, only the related result is show for the
searcher. So, the information extracted can be search easily so that the
information becomes useful and meaningful.

� XML is scalable; we can add more information without affecting others. As
our tool is a multi-modal tool, more components will be added to the tool if
other extracting information techniques is developed. For two independent
modalities, the XML part will be combined as follow to form the final XML
document.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 80

<modal name=”VOCR”>

<text start=”0s” end=”5s”>

Hong Kong is a beautiful place

<geoname>Hong Kong</geoname>

</text>

<text start=”5s” end=”7.5s”>You can find</text>

<text start=”7.5s” end=”9s”>the best clothing

here.</text>

</modal>

<modal name=”scene change”>

<scene start=”0s” end=”20s” src=”/101.jpg”/>

<scene start=”20s” end=”33s” src=”/102.jpg”/>

</modal>

After choosing XML as a format for storing the data extracted, it is time to
design how the schema is and how to read and present is our tool.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 81

5.5 How to design schema and our format
The process of designing an XML document for the videos’ extracted
information necessarily includes several element tags as schema representations
of the document content and structure. This process starts with choosing a
vocabulary, i.e. words and phrases that are able to describe all the required
aspects of the extracted video information content and therefore can be used as
tag name. For example, video is chosen for representing the video information,
time for representing the time that the information is extracted from the video,
frame for the scene change that is detected, and text is the context for describing
the information or the transcript.

The next step is to show relationship between vocabulary entries, or in other
words, to create ontology of the video information domain. A common way of
doing this is using UML (unfilled markup language), its diagram and notations.

The UML-based ontology of extracted video information shown as follow:

Figure 5.6 UML-based ontology

The UML-based ontology is the initial native visualization of the content of the
XML documents to be created. These diagrams are much more human-oriented
than any other native visualization. It is a thorough conceptual model that

Video information (UML)

Video basic
information

Scene
Change

VOCR Transcript

Video

Source
Frame rate
:
:

Time Time Time

Frame Text
Start
Time

Text

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 82

captures a human view of the domain, its object (elements), their properties
(attributes) and relations. Therefore, this visualization may have a very high
heuristic potential for user interfaces that enable visual interaction with XML
ontology.

The XML schema of video information present in diagrammatic form:

Figure 5.7 XML scheme
It looks very similar to the above ontological model. In principle, a UML model
can be converted into an XML schema automatically, although inn the case of
complex XML documents it may be difficult to achieve without human
intellectual help. In comparison to a UML ontology, an components that are
necessary for computers but are not so important for human understanding of the
domain structure.

Once an XML schema is constructed, it can be used as a template for creating an
unlimited number of XML document. The design process is finished, and the
next stage of reading and displaying the created documents lies ahead.

Video

Modal – Scene Change Time Frame

Modal – VOCR Time Text
Source

Model – Transcript Time Start-Time
Text

Video

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 83

5.6 Parser
An XML document dose not do anything by itself, it must be combined with an
application program that dose something useful with it. A parser is an interface
between an XML document and the application program that uses it. XML parser
is a special program for reading XML file. The parser reads the XML documents
and provides application programs with access to the documents’ internal
structure and content. It can be a standalone parser or an integral part of a Web
browser.

Figure 5.7 Relationship between the XML and its parser

Two types of XML parser application programming interfaces (APIs) are
available:
� Document Object Model (DOM), which is a tree-structure-based API issued

as a W3C recommendation
� Simple API for XML (SAX), which is an event-driven API developed by

the members of the XML-DEV mailing list.

5.6.1 DOM
For our tool, we choose DOM. DOM is a platform and language-neutral interface
that lets programs and scripts dynamically access and update the content,
structure, and style of the documents. The DOM model represents an XML
document as a tree whose nodes are elements, text, and so on. As the following
figure,

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 84

An XML processor generates the tree and hands it to an application program.

Figure 5.8 DOM model

DOM provides a set of APIs to access and manipulate these nodes in the DOM
tree. A DOM-based XML processor creates the entries structure of an XML
document in memory. DOM is best suited for

� Structurally modifying or dynamically creating an XMLL document, just as
our tool need to create the XML and then modify it dynamically.

� Sharing the document in memory with other application.

Sample XML
<chapter id="cmds">

<chaptitle>FileCab</chaptitle>

<para>This chapter describes the commands that manage

the <tm>FileCab</tm>inet application.</para>

</chapter>

Source document viewed as a tree This is how the source XML document may
be represented after it has been parsed

Figure 5.9 XML represent as a tree

DOM parser Application program
XML Document

Converts XML
document into
a tree-like
structure and
store it in
memory

By using the
DOM APIs,
the program
can process the
XML
document

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 85

5.6.2 SAX
An XML processor with SAX does not create a data structure. Instead, it scans
an input XML document and generates events, such as an element start or end.
The application programs implement handlers that receive these events and
process them appropriately. SAX is best suit for

� Handling large documents that do not fit in memory
� Extracting the contents of the specific element

Figure 5.10 SAX model

As we choose DOM as the type of parser for the tool, we found some example
from the web site. We found a DOM parser called “CXML” from the site –
“Code-Project” which is written in Visual C++ and easy to use. It does not need
to link to any library when using it in the Visual C++. Thus, we choose it as our
parser.

SAX parser Application program

XML Document
Scans the XML
document and
generates events,
such as start of
an element, so
on

The application
program
intercepts the
events and dose
appropriate
processing

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 86

5.7 How to present XML in XVIP
Various native visualizations, a novel and efficient representation of the XML
document ontology have been developed – the Generalized Document Object
Model Tree Interface. The interface represents XML metadata and their structure
in a comprehensive, intelligible and compact way.

This interface is based on the XML DOM visualization, generalized and
enhanced to make it move suitable foe effective visual interaction with meta-data.
Basically, it is a part of a DOM tree where all logical and structural components
of an XML document are represented as nodes. The main difference from a
DOM tree is that our model borrows from a standard DOM only its recurring
metadata structure.

The Tree model becomes very similar to an XML schema. But, at the same time,
the Tree modality inherits the structural organization of a DOM rather than of a
schema.

All types of metadata (elements, attributes and text) are represented as nodes that
show element/attribute names or the text content and their relative places within
the XML document structure. Each attribute has the status of a special child
element of its parent element. The bitmap “�” in front of a node name is to
indicate an element. The bitmap “A” in front of a node name is to indicate

difference between an attribute and an element. The bitmap “�” in front of a

node name is to indicate a text.

Figure 5.11 XML represent as a tree in our tool

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 87

The feature of the Tree view that make it an efficient and promising visualization
of XML meta-data:
� The ontology of an XML document is represented in a comprehensive form

is much more compact than an XML schema.
� It is easy to read and understand because of its indentation-based form that

match the recurring structural pattern of an XML document and also
because of the use of the document tag names.

� User cannot modify the structure of the XML as the structure of the tree is
fixed and the user cannot only modify the content of the text. So, this
prevents the users change the XML structure.

Figure 5.12 The overview of how the XML can be used

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 88

6. Knowledge Enrichment
After the XML is build from our tool, secondary information is being extracted
for knowledge. This section will briefly describe what is secondary information
and why it is useful to add in our tool

6.1 Introduction
Video information processing is the content creation step of the digital video
library. The collaboration of different video information extraction techniques is
on the information exchange level, mainly

• Knowledge Cross-referencing
• Knowledge Enrichment

For some video processing techniques, the accuracy of the recognition process
can be increased by cross-referencing information generated by other modalities.
For example, to identify a human face in the video, face recognition technique
can be the primary modality information extracted. If available, the on screen
title of the person’s name can be recognized and served as the cross-reference
knowledge for the person identification. Example of knowledge enrichment is
the geographical naming process. The geographical naming database is a kind of
knowledge repository of geographical names of countries and cities. By applying
this knowledge to the text recognized from the speech recognition, the
knowledge encapsulated in the text is enriched.

The Informedia processing provided state of the art access to video by Content.
This new research direction will communicate information trends across time,
space, and sources by emphasizing analysis and understanding of context as well
as content.

The informdia Digital Video Library contains large number of hours of video.
Through automatic processing, descriptors are derived for the video to improve
library access. The sheer volume of video data reveals new issue for interfaces to
digital video libraries in the future. A good query engine is not sufficient because
often the candidate result sets grow in number as the library grows. Interfaces for
browsing both the library and defined library subsets such as the results from a
query become increasingly important. The ability to extract names of
organizations, people, locations, dates and times is essential for correlating

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 89

occurrences of important facts, events, and other metadata in the video library,
and is central to production of information collages.

Users are interested in quickly finding the set of video stories or segments
relevant to their needs. When the library was on the order of a hundred hours, a
statistical word query engine adequately provided this focus. Users entered text
queries, and a small set of segments was returned sorted by the query engine's
relevance score. When the library grew to a thousand hours, queries returned
hundreds of segments, overwhelming users much like Web search engines can
return lists whose length and default ordering no longer meet the needs of the
user. An information visualization interface was developed to let the user browse
the whole result space without having to resort to the time-consuming and
frustrating traversal of a list of results. The employed visualization techniques
allowed the user to browse and retrieve video from the Informedia library based
on date (i.e., "when") and word occurrences (i.e., "what"). We realized that a
potentially rich vein of information was the location information (i.e., “where”).
This information dimension could be used in presenting overviews of the video
content, summarizing multiple video segments, and as a query mechanism to
find segments dealing with a particular region of interest.

Geographical references (georeferences) will be associated with each video
segment and represented as a single value, a set of distinct values, or range of
values corresponding to the locations where the video was situated as well as the
locations referred to in the video. The user will be able to specify a named
location or location coordinates in order to query or browse for events at that
location or within some "distance" of that location.

Since geographic information is especially important among secondary
information, our project will focus on implementing this technique. In the
following, we are going to discuss this technique in details.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 90

6.2 Extracting Video Geographic Information
The transcript of the narrative is the greatest source of geographic reference
information for the videos in the Informedia library. If closed-captioned text
exists for a video, it is integrated with the output of the speech recognizer.

While the transcript provides the primary source of geographic references, it is
not the sole source. Often a location name and perhaps a person's name are
overlaid on the video, especially for news. The Informedia Video OCR (VOCR)
process identifies video frames containing probable text regions, in part through
horizontal differential filters with binary thresholding. VOCR then filters the
probable text region across the multiple video frames to improve the quality of
the image used as input for OCR processing. Commercial OCR software
converts the final filtered image of alphanumeric symbols into text. The
VOCR-produced text is another potential source of geographic references. For
example, a video segment discussing volcanic activity included shots of lava
with the overlaid text stating "Mount Etna, Italy." While the transcript text was
associated to video times through Sphinx speech alignment, the VOCR text is
associated to video times through image processing which identifies the frames
containing the probable text regions.

Extracting geographic information from video begins by using the text metadata
as the source material to be processed. A known set of places along with their
spatial coordinates, i.e. longitude, latitude are collected to form a geographic
database. The text metadata, which associates text with video times, is then
matched to terms in the geographic database which maps geographic text terms
to longitude and latitude. The end result is the tagging of video sequences with
latitude and longitude.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 91

6.3 Our Implementation
In our project, we try to extract the names of major cities mentioned in the video.
The names of major cities and their details are stored in an XML file. Our tools
read the XML file as the database. Then, we compare the text extracted from the
video with the names of major cities in the XML file.

The following is the XML input file we used:

<MAJORCITY>
<CITY ID=0>

<NAME>上海</NAME>
<COUNTRY>中國</COUNTRY>
<LONGITUDE>31 15N</LONGITUDE>
<LATITUDE>121 26E</LATITUDE>

</CITY>
<CITY ID=1>

<NAME>北京</NAME>
<COUNTRY>中國</COUNTRY>
<LONGITUDE>39 55N</LONGITUDE>
<LATITUDE>116 20E</LATITUDE>

</CITY>
<CITY ID=2>

<NAME>香港</NAME>
<COUNTRY>中國</COUNTRY>
<LONGITUDE>22 11N</LONGITUDE>
<LATITUDE>114 14E</LATITUDE>

</CITY>
</MAJORCITY>

The unit of information retrieval in the Informedia library is the video segment,
which (when segmentation strategies work to perfection) contains a single story.
On average, each hour of broadcast news consists of 20 segments. For each
segment, a list is constructed during the geocoding process consisting of those
places that are mentioned in a segment. A place may be named more than once in
a segment, but it is represented only once in the segment's list. The number of
references is included in the entry for each place to enable subsequent interfaces
to emphasize locations visually based on how frequently the places are
mentioned.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 92

The geocoding process establishes a relationship between the video and place
names. For a given video time interval, the place names referenced in that
interval can be identified.

For places identified in transcript metadata, the sentence or sentences where each
place is mentioned is tracked. If a place is only mentioned once, the beginning
and ending times, in milliseconds from the beginning of the video, of the
sentence in which it is mentioned are used as the time interval for that place. If a
place is mentioned more than once, the time span from the start of the first
sentence containing the place reference to the end of the last sentence containing
a mention of the place is used.

For VOCR, the time span approximates the duration when the overlaid text
appears in the video. As with transcripts, if a place occurs multiple times then its
time span extends from the start time for its first mention to the end time for its
final mention in the video segment.

In our project, the XML file is used as the outputs, which can shows the
geographic information extracted from the text obtained by VOCR or speech
recognition. In our project, we did not implement the part of speech recognition.
So we use the text resulting from VOCR to do geographic information extraction.
We try to extract the names of major cities from this text. The following XML is
extracted from the XML output file in our tools:

<MyVideo>
<VIDEO SRC ="C:\Documents and Settings\movie\news2\atvnews02.mpg"/>
<Modal TYPE="VOCR">

<TIME VALUE="1">
<TEXT>
The reporter is speaking ...
</TEXT>

</TIME>
<TIME VALUE="34">

<TEXT>
A flight flying from西雅圖 to 華盛頓 ….

<CITY>
西雅圖

</CITY>

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 93

<CITY>
華盛頓

</CITY>
</TEXT>

</TIME>
<TIME VALUE="38">

<TEXT>
There is an accident ...
</TEXT>

</TIME>
</Modal>
</MyVideo>

The words in red above “A flight flying from西雅圖 to 華盛頓 ….” is the text
in VOCR that contains names of city names. In this example, it contains “西雅
圖” and “華盛頓” (the words in blue), which are two major cities in The United
States of America. They are stored under the tag “CITY” inside the tag “TEXT”.
At the same time, each text extracted from VOCR is referenced to a time value
(in second), which indicate when this information appears in the video. The
words in green shows that the names of city “西雅圖” and “華盛頓” appear in
the video at 34 seconds after the video being played.

In our XML file, the whole content of VOCR, including the text, the time
referencing and the city names extracted from this text are included inside the tag
“MODEL”. This indicates that VOCR is only one of the models that are used in
our tools. There can be a number of different models. For example, we can have
a model called Speech Recognition in the future. The result of Speech
Recognition can be represented similar to that of the VOCR. We can treat every
sentence extracted from the recognizer as a text and we can store the time that
the reporter is speaking this sentence. Then we can do similar text extraction as
we do in VOCR, to extract the geographic information that contains in this text.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 94

The following figure shows the flow of geographic information extraction:

Figure 6.1 flow of geographic information extraction

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 95

It shows that the system use the text extracted from VOCR and Speech
Recognition, then compare them with the names of major cities in our database.
Then we can do term matching to find out the names contained in our video.
Using the information provided by the database, we can get further information
about these cities. For example, we can get the name of country that the cities
belong to and the latitudes and longitudes of them.
In our project, the names of major cities of The United States of America, China
and Japan are extracted from the text resulting from VOCR. The list of names of
major cities is shown and user can choose anyone of them. When a name of city
is selected, the details of that city will be displayed. The longitude and latitude of
that city will be shown and the name of country that the city belongs to will be
shown too. Also, a map of that country and its surrounding countries will be
displayed.

Figure 6.2 Secondary information extractor in the tool

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 96

6.4 Examples on Map Representation of a Video
Segment

The following figure shows how the geocoded information is incorporated into
the Informedia interface. When a video segment is played back, an optional
window pops up that contains a map displaying all of the places discussed in that
segment.

Figure 6.3 how the geocoded information is incorporated into the
Informedia interface

The use can interact with the map through the use of the toolbar icons:

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 97

It should be note that the real value to the geocoding and map interface is in
displaying location information for video segments for which the producer has
not previously added a map within the video data. Every news story does not
have an embedded map that becomes part of the broadcast, but through our
geocoding maps can be automatically produced to reflect the areas discussed
within each story. Another benefit is that the user can interact with the interface
map using the toolbar icons to get additional detail, whereas no such interaction
is possible with an image of a map encoded as part of the video stream.

The maps accompanying videos are not static displays. They are animated in
synchronization with video playback. As places are discussed, they are
highlighted on the map. For countries and administrative areas such as states or
provinces, the areas contained within their respective polygon boundaries are
highlighted by changing the color with which they are shaded. Areas covered at
some time during a video segment are colored yellow; when the video frames
during which an area is discussed are played, that area is then colored orange.
For cities and other places, the marker color is changed from blue to red and the
label is shown. A glance at the map can then show the areas of current focus.

The following figure shows a story where the current focus is on North Korea
and Japan, with China, South Korea and Russia mentioned elsewhere in the story.
The highlighting changes over time to show the story flow within the video
segment.

Figure 6.4 story where the current focus is on North Korea and Japan, with
China, South Korea and Russia mentioned

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 98

6.5 Accessing Video through Spatial Queries
The maps in the Informedia interface are not merely for presentation but also can
be used to specify a location query. The arrow icon in the toolbar for the map
window is used to drag a rectangular region on the map that serves to identify the
user's region of interest

For example, the user can select the region that he is interested in. Then,
searching against the corpus, within a few seconds the results are displayed with
headlines and representative thumbnail images, about the news on the region
selected. Feedback is provided on the map to indicate the locations within the
specified query that actually produced results.

The Informedia digital video library interface supports word query, image query,
and now spatial query through the use of maps. One interesting area of work will
be to enable mixed modality query, such as finding all the video segments
mentioning "famine" for a specified area on the map, or finding all the faces like
a given face for a specified country. The presentation of information can be
improved by utilizing not only the information dimensions of date/time and topic,
but also the dimension of location. Results from word queries could be
visualized on a map, revealing interesting patterns for discovery.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 99

77.. MMuullttiimmeeddiiaa TTrraannssffoorrmmaattiioonn aanndd PPrreesseennttaattiioonn
After generating the enriched XML-based video data, we plan to present the data
properly. Different types of media objects can be presented in this multimedia,
like transcript from speech recognition, scenes from scene change detection,
maps and geographic information from knowledge enrichment, the video itself,
etc. Therefore, finding a good language that can integrate and synchronize all
media objects in a single presentation is important. Fortunately, SMIL was found
to be a good language that can complete the task. In our project, we are building
a XML to SMIL transformer for converting the enriched XML-based video data
from XVIP to different templates of SMIL presentation. Also, we are integrating
the transformer into XVIP and allowing users to trigger the SMIL presentation in
XVIP.

77..11 SSMMIILL
7.1.1 Introduction

Rich and interactive multimedia applications, where audio, video, graphics and
text are precisely synchronized under timing constraints are becoming ubiquitous.
Like our multimodal system, which combine different modalities, like speech
recognition, scene change detection, face detection and VOCD. A mulitmodal,
multimedia services become very important. Fortunately, the W3C has sponsored
the development of SMIL, an elegant notation for multimedia applications,
which has been embraced by both Microsoft and RealNetworks [30]. SMIL,
stands for Synchronized Multimedia Integration Language, is currently is a
markup language that can synchronize and integrates multimedia. It enables
authors to specify when and what should be presented, enabling them to control
the precise time that a sentence is spoken and make it coincide with the display
of a given image appearing on the screen [31]. Figure 7.1.1 is example showing
our SMIL file, which integrates the video, images from scene change detection
and the text obtained from speech recognition.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 100

Figure 7.1.1 A snapshot of SMIL presentation in our FYP.

7.1.1.1 Basic idea
The basic idea of SMIL is to name media components for text,
images, audio and video with URLs and to schedule their
presentation either in parallel or in sequence. A typical SMIL
presentation has the following characteristics:
� The presentation is composed from several components that are

accessible via URLs, e.g. files stored on a Web server.
� The components have different media types, such as audio,

video, image or text. The “begin” and “end” times of different
components are specified relative to events in other media
components. For example, in a slide show, a particular slide is
displayed when the narrator in the audio starts talking about it.

� Familiar looking control buttons such as “stop”, “fast-forward”
and “rewind” allow the user to interrupt the presentation and to
move forwards or backwards to another point in the
presentation.

� Additional functions are “random access”, i.e. the presentation
can be started anywhere, and “slow motion”, i.e. the
presentation is played slower than at its original speed.

� The user can follow hyperlinks embedded in the presentation.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 101

The SMIL language has been designed so that it is easy to author
simple presentations with a text editor. The key to success for
HTML was that attractive hypertext content could be created
without requiring a sophisticated authoring tool. The SMIL
language achieves the same goal for synchronized hypermedia.

SMIL allows user to put text, still images, audio, video, and
animation into interactive presentation. Before the development of
SMIL, people had great difficulties sending and moving still images
and sound to a Web user, because each element is separate from the
others and can’t be coordinated with other elements without
elaborate programming. SMIL enables web developers to deliver
multiple movies, still images, and sound separately but coordinate
their timing and control spatial layout and hyperlinks. As a new and
powerful web format, SMIL will definitely change the scene of
web-based information delivery and human communication [32].

7.1.1.2 Advantages
• SMIL is text-based

It is easy for any designer or developer to work with it. A text editor can already
let you start without any investment, though powerful SMIL authoring tools are
also available.

• Put together customized presentations.
Because a SMIL file is a simple text file, you can generate it automatically for
each visitor. You can therefore create different presentation parts, assembling a
customized SMIL file for each visitor based on preferences recorded in the
visitor's browser.

• SMIL effort is led by the W3C.
The W3C is focused on ironing out standards that everyone can follow. As a
standards body, the W3C tries to shape a specification that is beneficial to all
parties involved. Unlike a proprietary technology owned by just one vendor,
SMIL can lean toward general industry and consumer interests.

• Avoid using container formats.
Because SMIL can stream many media formats, you don't need to merge clips
into a single streaming file. To alter your presentation, for example, you simply
edit the SMIL file rather than merge the clips again into a different container file.

• Use clips from different locations.
Because a SMIL file lists a separate URL for each clip, you can put together

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 102

presentations using clips stored on any server. You can use a video clip on a
RealServer, for example, and a text clip on a Web server.

• Time and control a presentation.
The SMIL file lets you easily control the presentation timeline. You can start
playing an audio clip at 2.5 seconds into its internal timeline, for example,
without changing the encoded clip.

• Lay out a presentation.
When your presentation includes multiple clips, such as a RealVideo clip playing
simultaneously with a RealPix slide show, you use SMIL to define the layout.

• Stream clips in multiple languages.
A SMIL file can list different language options for clips. To create a video with
soundtracks in different languages, for example, you produce one video clip with
no soundtrack, and then create separate audio clips for each language. Your Web
page needs just one link to the SMIL file. When a visitor clicks that link, the
visitor's RealPlayer chooses a soundtrack based on its language preference.

• Reach viewers at multiple bandwidths.
A SMIL file can also list presentation choices for different bandwidths.
RealPlayer then chooses which clips to receive, based on its available bandwidth.
This lets you support multiple connection speeds through a single hypertext link,
rather than separate links for modem users, ISDN users, T1 users, and so on.

• Create interactive multimedia experiences.
Using SMIL, you can easily create interactive media presentations; such as an
audio or video jukebox that plays a different clip each time the viewer clicks a
button [33].

77..11..22 PPllaayyeerrss aanndd bbrroowwsseerrss
The following listed some of the most famous players and browsers for showing
SMIL presentations:

RReeaallPPllaayyeerr
RealNetworks’ RealPlayer is one of the best-equipped Web multimedia players
around. The G2 version of RealPlayer started supporting SMIL. SMIL for
RealPlayer is the most dominant use of SMIL nowadays. RealPlayer supports
multiple platforms and is available as a free download directly from
RealNetworks.
Its link is as follow:
http://www.real.com/

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 103

QuickTime
QuickTime has a long history in multimedia. Its implementation of SMIL in
Apple Computer’s QuickTime multimedia player started out modestly. It is a
cross-platform player that can be played both on Windows and
Macintosh.QuickTime forms a very effective Web multimedia environment with
SMIL.
Its link is as follow:
http://www.apple.com/quicktime/

IInntteerrnneett EExxpplloorreerr
Although most other companies are approaching SMIL from the player side,
Microsoft is approaching SMIL thoroughly from the browser side. SMIL has
been gradually started to appear since version 5 of the Microsoft Internet
Explorer. Internet Explorer was one of the first of the major browsers and players
to support functions of SMIL2.0.
Its link is as follow:
http://www.microsoft.com/windows/ie/default.asp

GRiNS
The GRiNS player is short for Graphical Interface for SMIL. It is one the oldest
SMIL players. It was originally a research project of the National Research
Insttitute of Mathematics and Computer Science in the Netherlands. Later, it
spun off as a product of a company called Oratrix, it developed the GriNS player
with a SMIL authoring tool.
Its link is as follow:
http://www.oratrix.com/GRiNS/

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 104

77..11..33 DDooccuummeenntt ssttrruuccttuurree
The structure of SMIL document is quite similar to the structure of HTML
document. SMIL has the <smil>, <head>, and <body> elements. Both SMIL 1.0
and SMIL 2.0 are compatible with the same structure. Though SMIL and HTML
are very similar in their structures, the differences are as follow:
� SMIL is case-sensitive, so all the tags should be written in lower case.
� SMIL is XML-based, so all the tags should be ended properly.

The SMIL document is divided into two parts, the head and the body. They are
under the tags <head> and <body> individually. However, both of them are
under the parent tag <smil>. <smil> element is the outer container of the whole
SMIL document. Figure 7.1.2 is an example showing a simple SMIL document.

<smil>
<head>

… Here is the head of the document …
</head>
<body>

… Here is the body of the document …
</body>

</smil>
Figure 7.1.2 A simple SMIL document.

7.1.3.1 Head
In the head of the SMIL document, it normally includes the <meta>, <layout>,
and <switch> element as the children of <head>. The details of the above three
elements are as follow:
1. The <meta> element can be used to define properties of a document (e.g.,

author, expiration date, a list of key words, etc.) and assign values to those
properties. Each <meta> element specifies a single property/value pair.

2. The <layout> element determines how the elements in the document's body
are positioned on an abstract rendering surface (either visual or acoustic).

3. The switch element allows an author to specify a set of alternative elements
from which only one acceptable element should be chosen [34].

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 105

Figure 7.1.3 shows the head of the SMIL document used in our final year project.
It contains the meta name and layout tags.

<smil>

<head>

<meta name="news" content="roundup" />

<meta name="author" content="LYU0102" />

<meta name="copyright" content="(c) 2002" />

<layout>

<root-layout width="568" height="540" background-color="black" />

<region id="scene" left="16" top="30" width="200" height="150" fit="fill" />

<region id="video" left="272" top="30" width="240" height="180"

background-color="black"/>

…

</layout>

</head>

<body>

……

<body>

</smil>

Figure 7.1.3 A SMIL document showing head in details.

7.1.3.2 Body
For the body of the document, it allows user to design when and what to be
displayed in the regions defined in the head of the document. The media object
elements allow the inclusion of different media objects into a SMIL presentation.
Media objects are included by reference (using a URI).

There are two types of media objects. media objects with an intrinsic duration
(e.g. video, audio). It also called "continuous media"). Media objects without
intrinsic duration (e.g. text, image). It also called "discrete media".

Anchors and links can be attached to visual media objects, i.e. media objects
rendered on a visual abstract rendering surface. When playing back a media
object, the player must not derive the exact type of the media object from the
name of the media object element. Instead, it must rely solely on other sources
about the type, such as type information contained in the "type" attribute, or the
type information communicated by a server or the operating system. Authors,

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 106

however, should make sure that the group into which of the media object falls
(animation, audio, img, video, text or textstream) is reflected in the element
name. This is in order to increase the readability of the SMIL document. When in
doubt about the group of a media object, authors should use the generic "ref"
element [34].

7.1.4 Timing and synchronization
The heart of the SMIL lies on the timing and synchronization different modules
in the multimedia presentation. All this information should to be defined in the
body of the SMIL document. In the following section, we will discuss more
details on it.

Basically, SMIL can define media playing in sequence or in parallel to each other.
In sequence means that the media objects are playing one after the others, while
in parallel means the media objects are playing at the same time.

7.1.4.1 Element: <seq>
It contains a child set of elements and specifies how they will relate to each other
along a timeline. It plays each child element sequentially, as it is listed.
Figure 7.1.4 shows part of the code in our final year project that implemented
with the <seq> element:

<seq>

</seq>
Figure 7.1.4 A SMIL example plays a sequence of jpeg images one after another.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 107

Figure 7.1.5 is the result of a sequence of jpeg images one after another by SMIL.
It is similar to a slide show. In our final year project, we use the above code to
display the scene change pictures one by one in the region “scece” that we
defined in the layout of the SMIL document. The “dur” attribute indicates the
duration of display for each scene.

Figure 7.1.5 Result of a series of snapshot in SMIL presentation.

7.1.4.2 Element: <par>
The children of a par element can overlap in time. The textual order of
appearance of children in a par has no significance for the timing in their
presentation. The following shows part of the code in our final year project that
implemented with the <par> element. Figure 7.1.6 shows that the transcript and
the video playing at the same time.

<par>
<text src="text/transcript.rt" region="transcript" />
<video src="news.mpg" region="video" fill="freeze"/>
…

</par>
Figure 7.1.6 A SMIL example makes transcript and video playing at the same

time.

The above example plays a few media channels at the same time. In our final
year project, we use the above code to display the transcript, the video, and some
other channels together in different pre-defined regions in the SMIL document
layout. The result is shown in Figure 7.1.7.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 108

Figure 7.1.7 A snapshot of the SMIL presentation in our FYP.

7.1.5 RealPix and RealText
One of the strength of SMIL 1.0 is its simplicity, but this also brings some
limitation on it. SMIL is good at working with pre-build pieces of animation,
video, or audio. However, for smaller independent building blocks, such as
individual images, it offered few options. It lacks the hooks to do much with
those images though they can be put into the presentation easily. Also, text
supported by SMIL 1.0 is very simple that it does not offer a lot of power beyond
its simple role as another media type.

Due to the above limitation on SMIL 1.0, RealNetworks defined two proprietary
SMIL-based streaming picture and text formats that reinforce SMIL
presentations in RealPlayer. They are RealPix and RealText.

7.1.5.1 RealPix
RealPix allows us to create the illusion of a high-bandwidth user experience with
low-bandwidth streaming images. Rendered locally by the user’s machine,
images could artfully fade, dissolve, or wipe to transition from one to the next.
The reference file for RealPix should use the file extension of .rp. After the
RealPix files are loaded, RealPlayer renders those instructions in its display area.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 109

7.1.5.2 RealText
RealText allows us to add tricks to the basic text in the presentations. In addition
to style changes, text can be made to roll, scroll, and hyperlink. The reference
file for RealText should use the file extension of .rt. After the RealText files are
loaded, RealPlayer renders those instructions in its display area. Figure 7.1.8
shows a realtext example in our FYP.

Figure 7.1.8 A realtext file on transcript in our FYP

It should be note that RealPix and RealText are not true SMIL. They are rather
the proprietary RealNetworks solutions. RealPix or RealText is unable to be run
on the player other than RealPlayer G2 or later. However, RealPlayer G2 or later
players have been released for a long time and RealNetworks has a huge
installed user base. Also, SMIL for RealPlayer is the most dominant use of SMIL
nowadays. Therefore, RealPix and RealText are still very popular formats
nowadays.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 110

7.2 The Extensible Stylesheet Language (XSL)
7.2.1 Introduction

XSL stands for Extensible Stylesheet Language. It is the language defined by the
W3C to add formatting information to XML data. Stylesheets allow data to be
formatted based on its structure; so one stylesheet can be used with many similar
XML documents. XML and XSL are standards defined in the interest of
multi-purpose publishing and content reuse. They have been gaining popularity
rapidly both in industry and in academia [35].

XSL is a language for expressing stylesheets. It consists of three parts:
1. XSL Transformations (XSLT): a language for transforming XML

documents.
2. XML Path Language (XPath): an expression language used by XSLT to

access or refers to parts of an XML document. (XPath is also used by the
XML Linking specification).

3. XSL Formatting Objects: an XML vocabulary for specifying formatting
semantics. An XSL stylesheet specifies the presentation of a class of XML
documents by describing how an instance of the class is transformed into an
XML document that uses the formatting vocabulary [36].

7.2.1.1 Brief History
Within a few months of the introduction of XML came the introduction of the
Extensible Stylesheet Language (XSL). This early XSL standard tried to
incorporate the following two functionally different operations under a single
process:
Styling— Controlling the manner in which the content appears. This operation
covers visual display characteristics, such as font attributes, boxes, and so on,
and also allows for non-visual presentations of content, particularly aural
presentation.
Transforming— Parsing an input document into a source tree with a collection
of distinct nodes, and then converting that tree into a separate, perhaps quite
different, result tree.

Since that time, XSL has gone through several permutations, the most important
of which was a split into XSL proper—specifications for how to display
document content—and XSL Transformations (XSLT)—specifications on how
to transform data from one document to another.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 111

7.2.1.2 About XSL
XSL is now generally referred to as XSL Formatting Objects (XSL-FO) to
distinguish it from XSLT. The extent to which it will be widely adopted is still
uncertain, because much of its functionality overlaps with that already provided
by CSS and indeed the HTML tag set. Also, there are currently no XSL-FO
processing applications in common use. Thus, for now, XSL-FO standalone style
sheets serve largely an academic function. Until the XSL-FO standard moves to
full Worldwide Web Consortium (W3C) recommendation status, vendors are
unlikely to invest resources in supporting it in more than limited experimental
ways. So—again, for now—the XSL-FO portion of the original XSL Working
Draft is in limbo.

7.2.1.3 About XSLT
XSLT, on the other hand, in its brief history has already become profoundly
successful. Its purpose is to transform marked-up documents into something else.
For instance, you can convert an XML document into HTML, as shown in
Figure 7.2.1; or into a comma-separated- values (CSV) flat file; or into another
XML vocabulary. Originally, XSLT used a pattern-matching syntax of its own.
Later, with the availability of the XML Path Language (XPath) specification,
XSLT adopted XPath as its pattern-matching tool.

Figure 7.2.1 An example converting an XML document into HTML.

XML

XSL file

HTML

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 112

7.2.2 XSLT
As the above description, XSLT defines a common language for transforming
one XML document into another. It defines how to create a result tree from a
source tree.
It is the major function that we have applied on our final year project.

XSLT is used to transform XML documents into other XML documents. XSLT
processors parse the input XML document, as well as the XSLT stylesheet, and
then process the instructions found in the XSLT stylesheet, using the elements
from the input XML document. During the processing of the XSLT instructions,
a structured XML output is created. XSLT instructions are in the form of XML
elements, and use XML attributes to access and process the content of the
elements in the XML input document [37].

XSLT is not generally used for formatting. There is a separate specification for
formatting from the W3C called XSL, which is generally called XSL FO
(formatting objects). XSLT can affect formatting if, for instance, the XSLT
stylesheet is designed to output GTML tags for display in a browser, but this is
only a small fragment of its capabilities [38].

7.2.2.1 Working principles
XSLT works on two principles: pattern matching and templates. The XSLT
processor takes two inputs: the XSL stylesheet and the source tree, and produces
one output – the result tree. The stylesheet associates patterns with templates.
The patterns identify parts of the source tree. When a match is made, the
associated template is applied [38].

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 113

Figure 7.2.2 The XSLT process

Figure 7.2.2 shows the various input files and output destinations for an XSLT
transformation. The input and output can be any text format. The most common
transformation uses an XML file as input and an HTML document as output.

7.2.2.2 Stylesheet
An XSLT stylesheet is an XML document instance that is processed by an XSLT
engine to perform a transformation on other XML documents. A stylesheet
follows XML well-formedness rules, uses XSLT-specific namespace declarations,
and can contain one or more XSLT templates that select and process elements
from the source XML document.

In the process of transformation, the XSLT processor will first parse the XML
document. A source tree is then created by the XSLT processor and stored in
“memory” for reference during the processing of the XSLT stylesheet. The
source tree is a representation of a well-formed XML document that is created
during the parsing of the XML document. A valid source tree will always have a
root node and with all nodes from the input XML document, including element
nodes, attribute nodes, etc.

After the processing of the XSLT stylesheet, a result tree is produced as an
output. Matching the root node of the input XML document instance and
generating and output based on the rules found in the stylesheet create the tree.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 114

The output, or result tree, from an XSLT stylesheet is always a well-formed
XML document, unless another output format like HTML or text is specifically
selected [37]. Figure 7.2.3 shows how to XSLT parse the XML file to a source
tree.

Figure 7.2.3: Creating a source tree by the XSLT Processor

7.2.2.3 Document order
The concept of document order is important because the process and order by
which nodes are evaluated depend on it. Basically, the order would be from
left-to-right and top-to-bottom. The document order of nodes is based on the tree
hierarchy of the XML instance. The first node, then, would be the root node, or
document root. Element nodes are ordered proper to their children, so the first
element node would be the document element, followed by its children. Nodes
are selected in document order based on their opening tag. Children nodes are
processed prior to sibling nodes, and closing tags, are implicitly ignored.
Attribute and namespace nodes of a given element are ordered prior to the
children of the element [37].

XSLT Processor

COMBINE

TIME

NAME DETAIL AREA

TIME

NAME DETAIL AREA

Source Tree

XML file

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 115

Figure 7.2.4 The XML file for showing document order (Figure 7.2.5).

Figure 7.2.5: The document order of the above XML file (Figure 7.2.4).

Figure 7.2.4 shows an example XML file with its document order in Figure
7.2.5. The circles containing numbers indicate the order of elements in the XML
file.

COMBINE

TIME

NAME DETAIL AREA

TIME

NAME DETAIL AREA

Root

Dur=”16”

begin=”15”

Dur=”5”

begin=”31”

香港 洛杉磯China America… …

1

2

3

4

5

6

7

8

12

10

13

14

11

17 19

9 16
20

18

15

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 116

7.2.2.4 Templates
The main building block of an XSLT stylesheet is the template, which contains
all the instructions used to process XML elements. In the simple sense, a
template is a model. The XSLT stylesheet has rules that process a source tree and
convert it to a result tree. The basic process associates a pattern with a template.
In other words, the expression in the match statement of an <xsl:template>
element is used to select nodes from the input tree. The nodes are then processed
by the instructions in the template. A template is instantiated for a particular
source element to create part of the result tree. The result tree is constructed by
finding the template rule for the root node and instantiating its template [37].

Apart from the <xsl:template> element, the following shows some common
instruction elements that are used in our final year project:
1. <xsl:apply-templates>

Function: Directs the XSL Transformations (XSLT) processor to find the
appropriate template to apply, based on the type and context of
each selected node.

Calling Method:
<xsl:apply-templates

select = expression
mode = QName>

</xsl:apply-templates>
Example:

<xsl:apply-templates select="AREA"/>

2. <xsl:for-each>
Function: Applies a template repeatedly, applying it in turn to each node in a

set.
Calling Method:

<xsl:for-each
select = expression>

</xsl:for-each>
Example:

<xsl:for-each select="TIME">
<seq>………</seq>
</xsl:for-each>

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 117

3. <xsl:value-of>
Function: Inserts the value of the selected node as text.
Calling Method:

<xsl:value-of
select = expression
disable-output-escaping = "yes" | "no"

</xsl:value-of>
Example:

<xsl:value-of select="."/>

4. <xsl:if>
Function: Allows simple conditional template fragments.
Calling Method:

<xsl:if
test = boolean expression>

</xsl:if>
Example:

<xsl:if test="position()=1">
<seq>…</seq>

</xsl:if>

5. <xsl:text>
Function: Generates text in the output.
Calling Method:

<xsl:text
disable-output-escaping = "yes" | "no">

</xsl:text>
Example:

<xsl:text>.jpg</xsl:text>

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 118

6. <xsl:attribute>
Function: Creates an attribute node and attaches it to an output

element.
Calling method:

<xsl:attribute
name = "attribute-name"

namespace = "uri-reference">
</xsl:attribute>

Example:

<xsl:attributename="src"><xsl:apply-templates
select="AREA"/></xsl:attribute>
<xsl:attribute name="dur"><xsl:value-of
select="@dur"/></xsl:attribute>

7.2.3 XPath
XSLT is raraly discussed without a reference to XPath. XPath is a separate
recommendation from the W3C that uses a simple path language to address parts
of an XML document. Although XPath is used by other W3C recommendations,
there is hardly a use for XSLT that does not involve XPath. Generally speaking,
XSLT provides a series of operations and manipulators, while XPath provides
precision of selection and addressing [37].

XPath and XSLT specifications became recommendations from the W3C on the
same day in November 1999. XSLT rely entirely on the expressions provided by
XPath to select and extract nodes from the input XML document. XPath provides
a common syntax and semantics for addressing nodes in an XML document, and
is used by both the XSLT specification and XPointer. XPath was given its name
to reflect its primary style of notation syntax, the path. This path reflects the
same functionality as that of the URL, for instance. While the URL indicates a
path to where a particular file is located, XPath indicates the particular path,
based on the logical structure of an XML document, of where a given node is
located. Paths are what the XSLT processor traverses in the course of matching,
selecting, transforming, manipulating, and counting nodes. The paths are a form
of expressions, which are the fundamental construct in which XPath manifest
itself [37].

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 119

For example,
<xsl: template match=”/MyVideo/Model/Time”>

The words in double quotes are the XPath Expression. The syntax looks like a
directory hierarchy, but it does not mean a file and the various directories
containing it. The true meaning is there are MyVideo, Model and Time elements
in the tree structure of the XML document.

The above paragraphs described the underlying principles of XPath, but the full
value of XPath is limited without functions. Functions provide a “programming”
aspect to XPath. In the XPath specification, functions are declared with a
function prototype, which contains a function name, a function return type, and
an argument set. The XPath function library provides functions that can be
divided into groups based on the four object types: node-set, string, Boolean, and
number.

The following example shows a function that is used in our FYP,
<xsl:for-each select="TIME">

<xsl:if test="position()=1">
<seq>…</seq>
</xsl:if>
…

</xsl:for-each>
The position() Function belongs to the Node-set function group. It returns a
number equal to the context position from the expression evaluation context.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 120

7.2.4 XSLT Processors
An XSL processor is something that can read the XML document and follow the
instructions in the XSL style sheet, and then it output a new XML document or
XML-document fragment. The following listed three of the most common XSLT
processors nowadays:

Xalan
Xalan is an XSLT processor developed by Scott Boag at Lotus. The engineers at
Lotus developed both Xalan C++ (using C++) and Xalan-J (using Java). Both
versions implement XSLT 1.0 and XPath 1.0. XML parser is needed to validate
the input XML document instances. Both the Xalan C++ and Xalan-J use the
Apache parser, Xerces. The related links of the Xalan XSLT processor are as
follow:
http://xml.apache.org/xalan-c/
http://xml.apache.org/xalan-j/

Saxon
Saxon is an XSLT developed by Michael Kay with his Saxon product. It has one
of the largest sets of built-in extension top-level elements, instruction elements,
and functions. It runs on Java and includes a servlet that allows it to be invoked
directly from a URL entered into a browser. There are two forms of Saxon XSLT
processor. One is the “complete” Saxon API for Java; another is a simple
command-line version of the processor. The related link of the Saxon XSLT
processor is as follow:
http://users.iclway.co.uk/mhkay/saxon

MSXML
Microsoft® XML Core Services (MSXML) 4.0, formerly known as the
Microsoft XML Parser was released in October 2000. It allows customers to
build high-performance XML-based applications that provide a high degree of
interoperability with other applications that adhere to the XML 1.0 standard.
Since the MSXML is convenient to be used in visual C++ and it provides
complete and latest XSL functions, our final year project chose to use MXSML
as our XSLT processor. Also, MSXML provides a command utility for testing. It
is useful for testing the correctness of the XSL codes in our program. The related
link of MSXML is as follow:
http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url=/m

sdn-files/027/001/594/msdncompositedoc.xml

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 121

Among the core services MSXML 4.0 provides is developer support for the
following:

� The Document Object Model (DOM), a standard library of application
programming interfaces (APIs) for accessing XML documents.

� The XML Schema definition language (XSD), a current W3C standard for
using XML to create XML Schemas. XML Schemas can be used to validate
other XML documents.

� The Schema Object Model (SOM), an additional set of APIs for accessing
XML Schema documents programmatically.

� Extensible Stylesheet Language Transformations (XSLT) 1.0, a current
W3C XML style sheet language standard. XSLT is recommended for
transforming XML documents.

� The XML Path Language (XPath) 1.0, a current W3C XML standard used
by XSLT and other XML programming vocabularies to query and filter data
stored in XML documents.

� The Simple API for XML (SAX), a programmatic alternative to
DOM-based processing.

The process provides by the XSLT processor, can be divided into to parts:

(1) Parsing the Documents into Trees in the DOM
MSXML parses both the source file and XSLT file into a source tree and XSLT
tree, respectively. Parsing the source file into a tree is critical since the XML
Path Language (XPath) is not able to navigate a source document directly. XPath
treats XML documents as trees with interrelated nodes. So, by parsing a source
document into a tree, XSLT is able to use XPath to navigate that tree.
Part of the parsing process is to check the documents to make sure they have
well-formed XML. Processing halts with an error message if the document isn't
well formed [39].

(2) Transforming and Outputting Data
The XSLT processor begins the transformation process by first looking at the
transformation information stored in the XSLT tree. This transformation
information is in the form of template rules.
As the XSLT processor processes the template rules, the processor outputs the
transformed data into a result tree. This result tree can be either XML or any
other structured text content, such as HTML, comma-separated-values (CSV)
flat files, or RTF documents [39].

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 122

Figure 7.2.6 illustrates the processing relationship among the XSLT processor,
XSLT tree, source tree, and result tree [39].

Figure 7.2.6: The processing relationship among the XSLT processor, XSLT tree,
source tree, and result tree.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 123

7.3 XML to SMIL Transformation
7.3.1 Introduction

We have extracted a lot of information from the video after doing Scene change
detection, Video Optical Character Detection (VOCD), Face Detection and
Speech Recognition. Then, we have stored the information extracted in the XML
format. Also, we have done knowledge enrichment based on the XML file
generated. The new XML file is full of information; however, it is just a text file.
Although it can be delivered to different platform and be used for different
purpose conveniently, it is not presentable without further implementation. Due
to the above reason, we decided to think of some ways to make the XML
presentable to users.

In the previous chapters, we have discussed the advantages of presenting video
information with SMIL. SMIL is a markup language that can synchronize and
integrates media components for text, images, audio and video. It is very suitable
for presenting the video with the information stored in our XML file. The reason
is that each type of information being extracted and presented with SMIL can be
treated as a media component. For example, the transcript can be seen as a media
component for text, the geographic information with a map can be seen as a
media component for image, etc. Using SMIL, different media objects can be
presented together.

In order to present the video with its extracted information efficiently, we have to
think of a process that can transform XML to SMIL automatically. The following
is our design and implementation.

7.3.2 Basic concept of the transformation process
In our XML to SMIL transformation process, the main purposes is to generate a
SMIL presentation based on the XML files that we possess. A set of input files is
required and a set of output files should be generated. The details is as follow:

Input files:
1. XML file generated from XVIP

The most important input file, of course, is the XML file that XVIP
generated after applying different video extraction techniques on the video.
This file contains all the extracted information, like the transcript from
speech recognition, the scenes from scene change detection, etc.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 124

2. Data files for additional information
A number of data files are required for doing knowledge enrichment. For
example, we need a data file with names and details of major cities if we
want to present information about major cities mentioned in the video. If we
also want to see the map of the cities, we need to have a field for storing the
file names of the maps in the data file too. Similarly, if we want to have
additional information about famous people in the world, we need another
data file for storing this kind of information.

Output files:
1. A SMIL file

A SMIL file for the layout and synchronization on different media objects in
the presentation should be generated. It should include the layout of the
presentation in the head, and define the timing and synchronization for
different media objects in the body. It should also define which type of
media object and the source to be appeared in different regions.

2. Some realtext files
Since a lot of text need to be displayed in the SMIL presentation, just like
the transcript, the additional information for major cities and famous people.
All these text are stored in separate realtext files, treated as different media
objects. They will be integrated and displayed together with the right timing
using SMIL.

7.3.3 Designs on the transformation process
Our transformer is basically an XML to SMIL transformer. Its purpose is to
generate a SMIL presentation based on the XML input files. In the above section,
we have already discussed the input and output files of our transformer. To build
a real transformer, we have to consider a lot of factors in order to get a good
design and think of the possibility to implement our design. We have thought of a
few designs of our transformer before coming to our final design. The following
is the details of each design:

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 125

7.3.3.1 Design 1
In our first design, we plan to build the whole transformer with Visual C++. It is
the most direct method that we think of. The reason is that all the input and
output files are actually text-based. It is convenient to read the input files by our
program, get the information we need, then generate the output files we want.
Though this design is quite simple and easy to implement, it has great
disadvantages.

The layout and design of the SMIL presentation needed to be hard-coded in the
Visual C++ program, this makes it program-dependent.
Disadvantages:
1. Whenever the layout and design of the SMIL presentation want to be

changed, the code in our program need to be changed accordingly. This
brings a lot of inconvenience, as lots of codes have to be modified.

2. Whenever a new media module or some additional information was added
to our system, the code in our program need to be changed accordingly. This
makes our transformer hard to extend.

7.3.3.2 Design 1 with modification
Since our first design has lot of disadvantages, we try to modify it to eliminate
some of the disadvantages. We plan to provide an additional file or a user
interface as a template. It is used for defining the layout and basic design of our
SMIL presentation. The most important thing is that user can modify this
template in order to change the layout of the SMIL presentation, without
modifying the transformer program. Though users now have more freedom to
design their own presentation, but there are still some disadvantages in this
design.
Disadvantages:
1. The flexibility provided for modifying the layout and design of the SMIL

presentation is still limited. The reason is that there is too many attributes
provided in SMIL for setting the layout and design the presentation; simply
an additional file or interface is impossible to define all kind of design.

2. Our program defined the format of the additional file or interface provided
for user input. It is not an international standard for defining a template.
User may feel unfamiliar in defining the presentation with our template.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 126

7.3.3.3 Design 2
Aims at the disadvantages in our previous designs, we try a new approach. We
found that XSL Transformations (XSLT), which a language for transforming
XML documents, can assist us in doing transformation between XML and SMIL.
As we mention in a chapter before about XSL, XSLT defines a common
language for transforming one XML document into another. It defines how to
create a result tree from a source tree. It is the major function that we can apply
in our transformation process.

XSLT works on two principles: pattern matching and templates. The XSLT
processor takes two inputs: the XSL stylesheet and the source tree, and produces
one output – the result tree. The stylesheet associates patterns with templates.
The patterns identify parts of the source tree. When a match is made, the
associated template is applied.

Advantages:
1. Since the stylesheet defining the template in the XSLT is a separate file.

This makes the template program-independent. Whenever the layout of the
SMIL presentation wanted to be modified, the code in the transformer need
not be modified.

2. Whenever a new module is added to our system, we just have to modify or
create another stylesheet to assist the transformation. This makes our system
more extensible.

3. XSL is the language defined by the W3C to add formatting information to
XML data. It defines a universal standard in defining template that many
people know about. User may feel more familiar in using this format in
defining templates.

4. Stylesheets in XSL allow data to be formatted based on the structure of the
XML, so one stylesheet can be used with many similar XML documents.
This makes the stylesheet reusable.

Due to the above advantages, it is the design that we are currently adopting. In
the following section we will have more detail explanation on our transformation
process.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 127

7.3.4 Our transformation process
Our transformation process is divided into two parts, which are knowledge
enrichment and outputting files. The details are as follow:

Part 1 – Knowledge enrichment
The purpose of knowledge enrichment is combining the data files of additional
information with the original XML file generated after video information
extraction. For example, we can have a data file storing the name and
information of major cities in the world and our XML file on video information.
From the XML file on the video, we find some names of major cities have been
mentioned in the video. We can then find the relative information about those
cities from the data file and combine them.

Part 2 – Outputting files
The purpose of outputting files is to use the enriched result to generate a set of
output files for SMIL presentation with the assist of XSL. The output files
include a SMIL file defining the layout and the appearing of images and video,
and some realtext files for showing the transcript and additional information.

In the following sections, we will go through each part of the transformation
process with more details.

7.3.4.1 Knowledge enrichment
In the part of knowledge enrichment, we will read different data files of
additional information and find out the information that is related to our video
from these files. For example, we want to do knowledge enrichment on the major
cities that have been mentioned in the video. We have to read a data file
containing information of major cities, and also the XML file generated after
video information extraction. Then, we have to combine them and generate a
new XML file with the combined information. The process is shown in Figure
7.3.1.

It should be note that XSLT cannot read 2 input files that are XML files. Also,
XSLT is not target for doing comparison and combination between XML files.
Therefore, we have to implement this part with our own code.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 128

Figure 7.3.1 Combination process in knowledge enrichment.

The combined XML output file shown in Figure 7.3.2. It contains additional
information related to the video. In this example, the cities “香港” and “紐約” are
mentioned, so the details of these two cities are stored in the output file for further use.
It should be noted that under the tag “TIME”, there are two attribute “begin” and
“dur” indicating the starting time and the duration of the city that is mentioned
relative to the video.

City-info.xml

Video.xml

Our Combination
Process

Combine-city.xml

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 129

Figure 7.3.2 XML file created (combine-city.xml) created after combination
process.

The combination process can be applied to different kind of additional information.
For example, apart from the geographical information, biographical or other
information can also be combined. The process is shown in Figure 7.3.3.

Figure 7.3.3 Knowledge enrichment applies to different kinds of additional
information.

Combination

Process

City-info.

xml /

Peop-info.

xml

Xml
after
video

informati

Combined-city.x

ml /

Combined-peop.

xml

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 130

7.3.4.2 Outputting files
As we mentioned before, there are two type of files need to be created in order to
produce a SMIL presentation. One is the realtext files for displaying text, another
is the SMIL file for the layout of the presentation. In the following part, we will
discuss the process of creating these files with details.

Creating realtext files
There are different realtext files needed to be created, such as the realtext files
for transcript, details of major cities and famous people mentioned in the video,
etc. In our transformer, we define different templates (stylesheets/ XSL files) for
each realtext file to be created. These processes are shown in Figure 7.3.4.

Figure 7.3.4 Creating realtext files in our transformer.

Combine-city.xml

Combine-peop.xml

Video.xml

(XSLT Processor)
Map-detail.xsl

(XSLT Processor)
Man-detail.xsl

(XSLT Processor)
Transcript.xsl

Map-details.rt

Man-details.rt

Transcript.rt

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 131

The process of generating realtext files can be extended easily. Whenever a new
additional information or a new module is added into our system, we just have to
modify or create a new stylesheet. With that new stylesheet and the data file, we
can output the realtext file immediately using the XSL processor.

Creating the SMIL file
The SMIL file that we need to create contains the layout and definitions for the
content to be displayed in different regions. This SMIL file is actually the heart
of the presentation. It integrates different media objects that are going to be
displayed, such as the video, images from scene change detection, transcript
from speech recognition, images of maps, images of faces, description of major
cities and famous people, etc. Also due to this reason, we need to combine all the
above information together, with proper layout for the presentation and correct
displaying order for the objects in different media. It is a great challenge and not
so simple.

After our analysis, we found that the combined XML files of additional
information on the video, the XML file after video information extraction, a
stylesheet for the layout of the SMIL presentation are needed. Also, different
regions may need individual for defining the timing and synchronization order
for their child objects.

At the same time, we understand the limitation of XSL. It can only read one
input data file and one XSL file, and then generate one output file. It cannot do
combination between files and it is not allowed to read more than one data file.
This gives difficulty in reading a number of XML files, and generates a
complicated file that need to join different results for SMIL presentation.
Therefore, we know that we cannot simply write a stylesheet and use XSLT to do
the transformation as we did for creating the realtext files.

Finally, we think of a solution that allows us to complete the above task. First,
we use a XSL file to generate the layout of the whole presentation and define the
timing and synchronization of the video, scenes and different realtext files that
we have generated before. It is shown in Figure 7.3.5. Basically, the layout file is
for generating the layout and timing and synchronization of those media objects
that do not need additional information. Secondly, we use separate XSL files to
generate the timing and synchronization result of the media objects that with
images, like slide show. This media objects include the images of maps or photos

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 132

of famous people, etc. After creating all the timing and synchronization result of
the media objects, we saved them in temporary files. It is shown in Figure 7.3.6.
Thirdly, we try to put the temporary files that we generated into our SMIL file
and delete all the temporary files. After the about process, a SMIL file with the
layout, timing and synchronization content are created as shown in Figure 7.3.7.
It can then be played and presented. The resulting presentation is shown in
Figure 7.3.7.

Figure 7.3.5 Process for generating layout of the whole presentation.

Figure 7.3.6 Process for generating timing and synchronization results for
different media objects.

Video.xml

(Xml after

VIP)

Layout.xsl

(XSLT)

Layout.txt

Combine-

city.xml

City-display

.xsl (XSLT)

City-

display.txt

…… (more

modules can be

added here)

Combine-

peop.xml

Peop-displ

ay.xsl

(XSLT)

Peop-

display.txt

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 133

Figure 7.3.7 Putting all the temporary files generated into our SMIL file.

Figure 7.3.8 The SMIL presentation with the files we created.

Layout.
txt

City-
display
txt

Peop-
display
txt

…… (other

modules)

Our
Combination

SMIL
file

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 134

7.3.5 User interface
In our final year project, we integrated our XML to SMIL transformer into XVIP.
This make XVIP can complete all the jobs from video information extraction,
XML storage to producing SMIL presentation.

In the window that is providing the transformation function in XVIP, we require
user to input the XML file that is generated after video information extraction.
Also, user can specify if they want to use our default template or their own
template to do the transformation. The user interface of the transformer is shown
in Figure 7.3.9.

Figure 7.3.9 User interface of our transformer

Apart from the selection of templates, we also implemented two types of
additional information that can be used to enrich the SMIL presentation. They
are information of major cities and famous people. User can select the check box
of the additional information that they are interested in. For example, they can
select only the geographic information, as shown in Figure 7.3.10; or only the
biographic information as shown in Figure 7.3.1; or both types of information, as
shown in Figure 7.3.12.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 135

Figure 7.3.10 (Left) Geographical information selected to be displayed.
Figure 7.3.11 (Right) Biographical information selected to be displayed.

Figure 7.3.12 Both geographical and biological information selected to be
displayed.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 136

In the user interface of our transformer, we provided a listbox showing the files
generated for the SMIL presentation our user requested. Users can also playing the
SMIL file and all the realtext files by double clicking the items on the listbox. After
selection a file name and double clicking, a realplayer will start up and play the file
selected. This makes XVIP user-friendlier.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 137

88.. IImmpplleemmeennttaattiioonn
After knowing all the background of the project, the extraction techniques (scene
change, VOCR, face detection and speech recognition), the techniques of XML,
knowledge enrichment and the way of presentation, it’s time to describe the
detail implement of the tool.

88..11 OOvveerrvviieeww
In our final year project, we are trying the built a XML-based Video Information
Processing system (XVIP) to extract some of the information from the video and
save them as XML XVIP is also acts as an editor. After extracting the data, users
can edit the information with XVIP, they can add more or eliminate data of the
XML through XVIP. Then knowledge enrichment can be done based on the
information provided by the database. Lastly, the XML generated can be
transformed of SMIL with XSL for presentation.

Figure 8.1 interface of our tool

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 138

Scene Change
VOCD

Face detection
Speech recognitions

Video
Figure 8.2 Overview of the tool

This tool is implemented with Visual C++ and Direct Show.

8.2 Programming Platform
Before describing the detail of the implementation of the tool, let’s brfely
introduce the basic knowledge of the program platform and the software we used
All of the programs are written in Microsoft Visual C++ with DirectShow

8.2.1 Microsoft Visual C++
Microsoft Visual C++® is the most productive C++ tool for creating the
highest-performance applications for Windows® and the Web. Nearly all
world-class software, ranging from the leading Web browsers to mission-critical
corporate applications, is built using the Microsoft Visual C++ development
system. Visual C++ 6.0 brings a new level of productivity to C++, without
compromising flexibility, performance, or control.

Visual C++ is object-oriented it is an event driven programming language, when
there is event is track in the interface, the corresponding message is send and the
corresponding action is taken or program is run.

8.2.1.1 Benefits
• Enjoy a new level of productivity with new features that significantly reduce

development time. Developers will spend less time building applications, less
time coding, less time compiling, and less time debugging, while enjoying
greater component reuse.

• Get blazing speed. Visual C++, already the standard for speed, now generates
faster code than ever before. Visual C++ 6.0 is tuned in a number of places so
that developers can build the fastest, smallest components and applications
possible.

XML

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 139

• Develop for Windows and the Web. Now you can easily build the smallest
ActiveX controls, take advantage of the latest user interface enhancements
from Microsoft in your applications, and create multimedia-based highly
interactive, Dynamic HTML pages.

8.2.1.2 Features
• IntelliSense Technology

Increase productivity and greatly simplify coding with auto list members,
parameter info, type info, code comments, and complete word that eliminates
the need to memorize complex syntax, parameters, and component properties.

• Edit & Continue
Get faster turnaround with new Edit and Continue in the debugger. Developers
can edit code while debugging without having to quit the debugging session,
rebuild, restart the debugger, and return the application to the state where the
problem occurred.

• Dynamic ClassView updating
Easily navigate your code and save time as changes like adding a variable or
method are reflected immediately in ClassView.

• Active Document Containment
Easily and seamlessly integrate the functionality of Active Documents from
Microsoft Word, Microsoft Excel, and other applications.

• Composite Controls
Get state-of-the-art ActiveX development with new Composite Controls.
Easily reuse any ActiveX control within your own.

• Faster compiler throughput
Compiler throughput on debug projects is as much as 30 percent faster, and on
non-debug projects as much as 15 percent faster (without sacrificing any
optimizations).

• Faster MFC applications
MFC runs faster with better granularity and less code overhead in dynamic
link scenarios.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 140

• Optimizing compiler keywords
Aggressively optimize with new compiler performance keywords.

• Delay Load Imports
Speed applications by deferring DLL loading until necessary for continuing
execution.

• Dynamic HTML support
Build multimedia-rich, highly interactive dynamic HTML Web pages that
fully exploit Internet Explorer 4.0 and capitalize on your existing skills and
code.

• Multiple monitor support
Divide and conquer with the multiple monitor support. Run an application on
one screen and debug on another (Requires Windows 98 or Windows NT 5.0).

• Improved Features Optimizing compiler
Take advantage of industry-leading performance and the number-one
optimizing compiler for the smallest, fastest executables.

• Microsoft Foundation Classes (MFC)
Build world-class applications with the most robust, productive, and widely
used application framework available for Windows.

• Active Template Library (ATL)
Quickly create the smallest, most scalable server-side components and
ActiveX controls with the Active Template Library (ATL).

• Wizards
Save time with numerous new and enhanced wizards throughout the product
for MFC, ATL, and more.

8.2.1.3 Microsoft Foundation Class
Microsoft Foundation Class Library (MFC) was created to make programming in
Windows easier. As an object-oriented wrapper for Win32, it automates many
routine programming tasks (mostly passing references around). Paradigms like
the document/view architecture were added to automate even more tasks for the
programmer, but in the process, some control was taken away. MFC provides
many data structure and function library, which can help us in programming.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 141

Using the MFC with the Visual C++ to implement the tool, and we can take
advantages from them.

8.2.2 DirectShow
Microsoft® DirectShow® (formerly known, in part, as ActiveMovie) is a
multimedia architecture for streaming media on the Microsoft® Window®
platform developed by Microsoft. It is part of Windows 98, Windows 2000 and
Internet Explorer, and available separately for free download from Microsoft. It
is based on the Component object Model (COM). DirectShow provides for
high-quality capture and playback of multimedia streams. The streams can
contain video and audio data compressed in a wide variety of formats, including
MPEG, audio-video interleaved (AVI), MPEG-1 Layer 3 (MP3), and WAV files.
Capture can be based on either Windows Driver Model (WDM) or legacy Video
for Windows (VFW) devices. DirectShow is integrated with DirectX
technologies so that it automatically takes advantage of any video and audio
acceleration hardware to deliver the highest possible performance.

8.2.2.1 Overview of DirectShow
The following diagram shows the relation between an application, the
DirectShow component, and some of the hardware and software components that
DirectShow supports.

Figure 8.4 relation between an application

DirectShow enables applications to play files and streams from various sources,
including local files, local CD and DVD drives and remote files on a network.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 142

DirectShow also has native compressors and decompressors for some file
formats, and many third-party hardware and software decoder are compatible
with DirectShow. Playback makes full use of DirectShow hardware acceleration
and DirectSound capabilities when the hard supports it.

8.2.2.2 DirectShow Application Programming
At the heart of the DirectShow services is a modular system of pluggable
components called filters, arranged in a configuration called a filter graph. A
component called filter graph manger oversees the connection of these filters and
controls the stream’s data flow.
DirectShow is set up with the ideas of a number "filters" joined together to create
a "graph". It divides the processing of multimedia tasks such as video playback
into a set of steps known as filters. Filters have a number of input and output pins,
which connect them together. The generic design of the connection mechanism
means that filters can be connected in many different ways to achieve different
tasks, and developers can add their own effects or other filters at any stage in the
graph. DirectShow filter graphs are widely used in video playback (in which the
filters will provide steps such as file parsing, video and audio de-multiplexing,
decompressing and rendering) as well as being used for video and audio
recording and editing. Interactive tasks such as DVD navigation are also
successfully based on DirectShow.

Here's a visual representation of the graph an filters using a utility that comes
with the DirectXMedia SDK, called GraphEdit

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 143

Figure 8.5 Screen of GraphEdit

Each box represents a filter. Arrows connecting boxes represent the output of
one filter being passed to the input of another filter. Arrows also show the flow
of data in the graph.

8.2.2.2.1 Filter
DirectShow applications use a graph of filters to process multimedia data.
Typically, the multimedia data flows through the graph from a source file to a
destination device or window with the application controlling the operation, but
in some cases the application itself will want to supply or receive the data rather
than just providing control.

Below is a typical playback graph for an mpeg movie file. It shows

• a source filter, responsible for reading data from a file (or a URL)
• a parser filter that separates out chunks of audio and video data and supplies

them to the appropriate decoder
• decoders for audio and video that decompress the data
• 'rendering filters' for both audio and video that take the decompressed data

and draw or play it.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 144

Figure 8.6 DirectShow filter graph

Filters are COM objects that provide a set of COM interfaces, principally
IBaseFilter. They can have any number of input and output pins (sub-objects
obtained through IBaseFilter::EnumPins) which support a set of pin interfaces
including IPin. When two filters connect their pins together the pins agree a
media type that defines the data to be exchanged, and obtain interfaces on each
other which they will use to exchange data.

To play back a file using DirectShow, an application would create a filter graph
manager, and ask this object to create a graph for the file. The application can
then use the IMediaControl interface to start and stop playback of the file.

8.2.2.2.2 Filter Graph Manager
A DirectShow application interacts with a filter graph manager . This provides a
central point of control for the application and is responsible for building and
controlling the graph, and distributing state change information to the filters.

The filter graph manager is a COM object created by CoCreateInstance. It will
build the graph using IGraphBuilder either by passing in a file or by directly
inserting and connecting filters. Filters can be connected indirectly, in which
case the filter graph manager will use transform filters as necessary to transform
the data type so that a connection can be made.

In addition to basic graph-building services, the filter graph manager also acts as
a single point of control. The application queries for control and status interfaces
from the filter graph manager, which will implement the interfaces by calls to the
graph. For example, IMediaControl::Run is implemented by calling the Run
method of every filter (in a particular order: the threading rules of DirectShow
which are designed to ensure that filters do not have to have their own thread

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 145

require state changes such as Run to be done in an upstream order or a deadlock
may result: one reason for letting the filter graph manager do it).

This mechanism is extensible via plug-in distributors. You can register a COM
object as a distributor for any interface not currently supported by the filter
graph: when the application queries for that interface on the filter graph manager,
it will look in the registry for a Distributor key in the registry and will load that
object. The distributor is then responsible for implementing its interfaces by calls
to the filters in the graph. This provides an extension mechanism so that any
filter can implement custom interfaces that are then exposed straightforwardly to
the application, even if that application is Visual Basic. All the standard control
interfaces are implemented by plug-in distributors in DirectShow. Note that
although they are in theory replaceable, in practice you are unlikely to survive
replacing any of them as they are all interwoven.

8.2.2.2.3 DirectShow Application
DirectShow application typically performs three basic steps, as the following
diagram:

Figure 8.7 DirectShow application typically performs three basic steps

1. Creates an instance of the filter Graph Manager.
2. Uses the filter graph manager to build the filter graph.
3. Control the filter graph and responds to events.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 146

8.3 Implementation of the tool
After have a background of the basic knowledge of the programming
environment, lets have a detail look of the implementation.

As it is implemented as a multi-modal tool, any extraction techniques can be
easily added to this tool. In this project, scene change, VOCD, face detection,
speech recognition are developed and added to XVIP.

The multi-modal tool is consisted of several parts and each of them and
implement as a view in a docking window. View is a class in Visual C++ for
displaying content, including text, picture, dialog box, ActiveX control and any
software that can embedded into the Visual C++. Different docking window need
a View for displaying its own content. Different View is chosen for different
docking window according to the purpose of the window.

8.3.1 overview
The following is the overview of the tool.

Figure 8.8 View of the interface of the integrated tool

Video

Scene Change

VOCD

Control

XML editor

Secondary
information

extractor

Face detection

XSL Transform

Speech Recognition

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 147

There are nine main components in the tool,
1. Modified video Player from DirectShow
2. Control
3. Scene Change
4. Video Optical Character Detection (VOCD)
5. Speech Recognition
6. Face detection
7. XML editor
8. Secondary information extractor
9. XSL transformer

8.3.2 Implementation
8.3.2.1 Docking Window

The multi-modal tool is consist of several parts and each of them and shown in a
docking window. In the tool, it need edit control, tabbed tree and windows to be
docked to the frame's sides. Docking window is chosen because it can present
our tool clearly and it is clear for the user to distinguish different modalities.

There is no such class in the MFC, and we have used the library from
http://www.datamekanix.com/. It provides source code for implementation of
docking window. The class CsizingControlBar is provided and it is an easy to
use collection of classes, allowing us to focus on our application needs rather
than on implementation tweaks.

Figure 8.9 This is the original look of the docking window from the website

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 148

Using the class of the docking window, the following files are included in the
Visual C++ project:

� sizecbar.h
� sizecbar.cpp
� scbarg.h
� scbarg.cpp

Two header files are included for this, "sizecbar.h" and "scbarg.h".

8.3.2.2 Video Player
The video player is implemented with Direct Show. It supports a wide variety of
formats including MPEG, audio-video interleaved (AVI), MPEG-1 Layer 3
(MP3), and WAV files. Capture can be based on either Windows Driver Model
(WDM) or legacy Video for Windows (VFW) devices.

The video player supports function of pause and stop a video that is playing. IT
also supports resize of the window that is playing.

In this player 6 filter of Direct Show is used.
1. A source filter to read the data off the disk
2. An MPEG filter to parse the stream and split the MPEG audio and video data

streams
3. A transform filter to decompress the video data
4. A transform filter to decompress the audio data.
5. A video render filter to display the video data on the screen.
6. A audio render filter to send a audio to the sound card.

Figure 8.10. filter graph of video player

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 149

Figure 8.11 the video player implemented
The video player is embedded in the MFC program and the video player pass the
handler to the main frame and display it in the docking window, no specified
view need to create for it.

8.3.2.3 Control
Control is divided in four parts
(A) Input and output control

Figure 8.12 Implemented control bar
It is implemented with the class Ctoolbar in the visual C++. Toolbar can be
created using this class. It allows the user to press the buttons on the tool bar
and a corresponding message is send to the mainframe and the corresponding
action is taken.
The detail of the function of the buttons is describe below:
� If the video is not processed before, button “�” should be pressed. Then

different type of video file (*.avi; *.qt; *.mov; *.mpg; *.mpeg; *.m1v,
*.avi; *.qt; *.mov; *.mpg; *.mpeg; *.m1v) can be chosen for processing.

� If the video is being processed by this tool before, there must a XML file
is generated and there is the location of the video source in the XML. So,
if button “�” is pressed, the tool can get the video file directly without
asking the path of the video file and play the video automatically.

� When button is pressed, the information extracted from the video

IInnppuutt vviiddeeoo

IInnppuutt XXMMLL
Export XML Read XML

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 150

by the tool can be store as a XML file.
� When button is pressed, a XML file is read and it will display as

a tree in the XML editor and it let user edit

Figure 8.13 Implemented XML editor

(B) Video control

Figure 8.14 Implemented video control

The provide the information of the current position of the playing video and
the user can seeking the position wherever they like by moving the slider or
enter the destination time or frame in the edit box.
This is a dialog based class and create with the class CFormView. Create with

Display the
current position

of the video

Current time
and frame

End time and
frame

Control for the video

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 151

this class, the dialog box will not be floating, it is attach to the docking
window.

By creating the CoCreateInstance of filter graph manager with COM
object, this provides a central point of control for the application and is
responsible for building and controlling the graph, and distributing state
change information to the filters.

Forward�, Play�, Backward�Parse�, and Stop� are provided for the
user to control the playing video. In direct Show, there are some functions
for controlling the playing video. Thus, if the event of clicking the button is
received, the corresponding function is called and the action will be
performed.

(C) Extracting information control

Figure 8.15 Implemented Extracting information control

These are for controlling the information extractor. If the box for scene
change is tick, then the video will play the video again and perform the
scene change.
It also is a dialog based class and create with the class CformView. Create
with this class, the dialog box will not be floating, it is attach to the docking
window.

For VOCD, there are three buttons “run”, “stop” and “show result” are
provided for the user to control the VOCD.

Scene Change

VOCD

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 152

(D) Control for docking window

Figure 8.16 Control for docking window

As limited to the size of the monitor, not all the things in the tool can be
viewed clearly. Thus, some window can be closed if they are not in used.
It is implemented with the class Ctoolbar in the visual C++. Toolbar can be
created using this class. It allows the user to press the buttons on the tool bar
and a corresponding message is send to the mainframe and the
corresponding action is taken.
As the class provide a function ShowControlBar, it allow us the make the
control bar be visible or invisible.

8.3.2.4 Scene change
A view is created for displaying the scene change. The view is the class
CscrollView, which provide scroll bar for the user scroll along the view. The
bitmap can draw on the screen by creating a memory DC that's compatible with
the window's DC. With this DC, the bitmap can be stretched on the view

For detecting scene change, the Histogram difference method with a dynamic
threshold is used.
For every 0.05 second, a frame in the video is grabbed by the sample grabber,
which is provided by Direct Show. If the frame is grabber, a bitmap handler is
given and the color histogram can be built with this bitmap handler.
If the scene change is detected, the corresponding bitmap is draw on the docking
window. The information of that frame will be shown if the frame is selected and
a red rectangular of enclose the frame. The Class CPen let us draw color line on
the view. The video will play from that frame if the user double click the frame
on the docking window.

Control visible or
invisible of each
docking window

1. Play Video Window

2. Scene Change Window

3. VOCD Window

4. XML Editor Window

5. Secondary Information

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 153

Figure 8.17 View of Docking window of scene change

Figure 8.18 Control for Scene change

As this tool also is an editor, in the scene change’s docking window, it let user to
insert or delete any frame they think which is suitable. This is because the scene
change detected may be incorrect and this can let user to improve the result and
get more accurate information for the video.
A Menu bar is implemented with the class Cmenu. When the user right click the
screen, a message is sent to the view and the menu bar will be displayed. When
the button on the menu bar is select, the corresponding event is created and sent

8.3.2.5 VOCD

Figure 8.19 View of Docking window of VOCD and its control
The frame display on the view is same as the one in the scene change. When
there is character found in a frame, the information of the frame and the place of
the character appears is recorded and stored in a specific data structure. After all
the frames are processed, some of the frames may be incorrect, the incorrect data
is filter out. Then the corresponding frames are grabbed and display the frame on
the docking window and the characters are pointed out.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 154

8.3.2.6 Face Detection
Neural network-based method is applied to face detection. After the
preprocessing the image, it is passed to the neural network to detect the location
of the scene change.
A docking window is added to XVIP and the picture is draw on the scene and the
face is enclosed by a blue square.
The face detection modality is added to the XVIP, the following picture shown
the result of the detection. The face is enclosed by a blue square.

Figure 8.20 Result of the Face detection

8.3.2.7 Speech Recognition
Speech recognition is preformed by the IBM ViaVoice. After the speech engine is
connected to XVIP, the text is output and an edit box is added to the interface.

Figure 8.21 interface of the speech recognition engine in XVIP

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 155

After text is recognized, words are added to the XML. One more modality is
added to the XML, named as “Transcript”. The text is added to the XML
according to the time. As the error rate of the speech recognition is quite large.
The text can be insert or deleted inside the editor, shown in figure 4.4.5.
However, we believe the accuracy of speech recognition engine can be improved

by training.
Figure 8.22 interface of the editor

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 156

8.3.2.8 XML editor
By the XML parser, the XML file is read as an XML tree and hand to the tool.
The XML is represented as a tree in the docking window.

Figure 8.20 View of Docking window of treeview and its control

A TreeView is created for displaying a tree in a view. When the view is created, a
tree handler is created automatically. Node can be added to the tree and it will be
display on the view as in figure 8.20. So, each tag in the XML tree is converted
to the node of the tree in the tree view.
The node can be deleted or inserted from the tree to enrich the information of the
XML. The text in the node can also be edit. After editing, user can save the XML
again. A Menu bar is implemented with the class Cmenu. When the user right
click the screen, an message is sent to the view and the menu bar will be
displayed. When the button on the menu bar is select, the corresponding event is
created and sent

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 157

8.3.2.9 Knowledge Enrichment

Figure 8.21 View secondary information extractor

The extracted information is stored in the XML in text format. This text may
be the result from VOCR and speech recognition etc. They contains rich
information for understand the video. We are trying to extract geographic
information from this text. In our project, we extracted the names of major
cities from the video. Then, the longitude, latitude and the corresponding
country are listed for these cities. A map of the country a city belongs to will
also be shown.

88..33..22..1100 XXMMLL ttoo SSMMIILL ttrraannssffoorrmmeerr

Figure 8.22. Picture for the user interface

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 158

The XML to SMIL transformer read the XML file generated after video information
extraction. Then, it will do knowledge enrichment based on the type of additional
information being selected by users. Finally, it will output files for the SMIL
presentation as shown in Figure 8.22. In our interface, users can also select the files
produced by the list box provided to play individual files or see the SMIL
presentation.

For the process of transformation, we divided it into 2 parts, which are knowledge
enrichment and outputting files. For the knowledge enrichment part, a combination
process that we implemented in Visual C++ did it. For the part of outputting files, it
was done with the assistance of XSLT and another combination process that we
implemented. The XSLT processor that we are using in our project is the MSXML 4.0,
which was developed by Microsoft. After the transformation process, a set of files is
output and can be played as a SMIL presentation in Figure 8.23.

FFiigguurree 88..2233 PPiiccttuurree ffoorr tthhee SSMMIILL pprreesseennttaattiioonn

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 159

9. Problems & Solutions
Problem 1

We should familiarizes the tool Visual C++ and DirectShow which are we are
not familiarize before.

Solution
We have spent 1 month to read some reference book and try to familiarize with
them. Also, we followed some online Visual C++ tutorial to implement some
basic program to get more experience to use this language and program.

Problem 2
We want to get the control of the video play and it let us to do the information
extraction on a video. At first, we try to use the player provided by ActiveX
control in Visual C++, but we cannot get the handler.

Solution
We try to study DirectShow and implement a video player by this. By creating
the CoCreateInstance of filter graph manager with COM object in DirectShow,
this provides a central point of control for the application and is responsible
for building and controlling the graph, and distributing state change
information to the filters. After getting the control, we can start to implement
the extraction tool.

Problem 3
The increasing number of different techniques affect the design of an “open”
digital video library system in a great extends. How can the digital library
being easily scaled up in terms of adding new extraction component is also
very challenging. Whatever a new extraction method is developed, at the same
moment; it would imply a series of new indexing and presentation functions to
be added.

Solution
Modal Concept is introduced to the project. We define the modality is a
domain or type of information that can be extracted from the video. Examples
are the text by speech recognition and human identity by face recognition. The
set of functions that the modality supports the digital library applications is
called the modal dimension. Typical processes are video information
extraction, indexing and presentation. For different modalities, the
requirements for the whole series of library functions are totally different.
Compare the query input for a text search and a face search where former is

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 160

the string but the latter is picture. The text indexing method is certainly
different to the face indexing method. Furthermore, at the front end of the
presentation client, a text visualization tool is very different from the human
face visualization tool in layout, content and presentation styles.
By introducing the modal concept, the integration interface and information
exchange of different modality (dimension) can be easily identified. This
provides an efficient way to adding different new modalities into the system
without losing the flexibilities.

Problem 4
Different video information extraction techniques need to be included in the
tool, it is difficult to display all of them in one window and it is not clear for
the user.

Solution
Docking Window is introduced to the tool. Each component is implemented in
the view class in the Visual C++ and attach to the docking window. This
makes the interface more clear and user friendly.

Problem 5
Each component in the tool is controlled by its own view, and other view
cannot get the handler of others’ view. So different cannot communicate.

Solution
We try to use global variable for different component to communicate. At
different time, different can read or write the global variables. However, we
believe that it is not a good solution to solve this. We will try to find a better
solution.

Problem 6
As mention in problem 3, view’s control cannot be get by others, when the
information is extracted by the mainframe, it cannot update other view to
show the result immediately.

Solution
When we know the information is ready, refresh the view by clicking the
corresponding docking window. We also know it is not a good solution but it
does not affect the performance of the tool, we try to find a better solution in
the future time

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 161

Problem 7
In doing scene changes, we have to build histogram for the frames and
compare them for consequence frames. Doing the comparison, it takes time
for us to tune the threshold in order to get a good result.

Solution
We introduce dynamic threshold to scene change, it improve the
performance of scene change detection and do not need to tune the
threshold.

Problem 8
It has great freedom on designing the tags and format of our XML file. We
need to familiarize with XML

Solution
We have to read many papers, consider our future work and the flexibility in
order to design a good format.

Problem 9
We do not have much knowledge on geography.

Solution
It takes time for us to collect the information for the major cities to build the
database. We have to search the latitude, longitude and other information for
each major city.

Problem 10
There are a number of components integrate together in our tools. Each
component includes a number of classes. This makes our program large and
complicate. We have to keep in mind what classes belong to which
component and it is not easy for us to remember the functions of all the
classes.

Solution
We still try to find out a good solution.

Problem 11
The speech recognition engine IBM ViaVoice is collapsed and cannot do the
speech recognition.

Solution
It collapsed because some callback function is missed and need to be
implemented by us. After the callback function is implemented and the

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 162

Speech recognition engine is reinstalled, the problem is solved.

Problem 12
The face detection result is not accurate. The coordinate given out is not the
face position

Solution
We miss understand the coordinate output by the neural network. We think
that the output point is the left upper corner but after read the detail of the
specification of neural network, it was the point of the center of the face.

Problem 13
The XML with the Chinese character cannot read by the MSXML

Solution
The tag <?xml version="1.0" encoding="Big5"?>is added to the XML
generated by XVIP and the problem is solved.

Problem 14
We do not know much about SMIL before doing the project. We just know
it is a language that can integrate different kinds of media, but we do not
know its structure and how to code it. Also, we found that very few books
teaching about SMIL in library and bookshops.

Solution
We spent some time to search some useful tutorials about SMIL on web and
we read the w3c specification in order to build some simple examples with
SMIL. In this process, we gained more and more experience on writing
SMIL.

Problem 15
The early design and implementation of our transformer have a lot of
disadvantages, such as program-dependent, not extensible and not user
friendly.

Solution
We abandoned our first transformer and try to think of other approach.
Finally, we found that with the assistance of XSLT can eliminate the
disadvantages on our first design.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 163

Problem 16
Though we know that XSLT is a language that can be used to transform
XML document, we do not know the details of its functions and how to
implement it.

Solution
We spent some time to study XSLT. We borrowed some books from library
and read the w3c specifications on web to make us understand more on it.
Finally, we are getting more familiar with its syntax and can code it.

Problem 17
We used the Microsoft XSLT command utility in our early testing stage.
However, this command utility is not for coding in Visual C++. We had
some difficulties in finding and using a XSLT processor in our project.

Solution
We learned from web that MSXML could be used as XSLT processor in
Visual C++. Then, we read the MSDN and searched some sample code in
using the MSXML on web. Finally, we could use it in our own Visual C++
project.

Problem 18
We found that the XSLT has some limitation. For example, it can only read
one XML file and one XSL file, then produce one output file. This makes it
impossible to read more than one input files while doing the transformation.
However, in producing the realtext files that contains additional information,
we have to read more then one input files (both the XML file from video
and the data file).

Solution
We try to do knowledge enrichment before using XSL to do the
transformation. For example, we can combine the data file with the XML
file from video and output a new XML file. Then, we can use these newly
created XML file as the input file in the XSL transformation.

Problem 19
A number of files are needed in the SMIL presentation. However, each time
the XSLT process can only generate one output file. Also, the input file and
stylesheet are different for different media objects.

Solution
We try to carry out separate XSL transformation for each media object and

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 164

prepare separate stylesheet for each of them.

Problem 20
The SMIL file to be generated requires different input files providing it
information. However, XSLT can only read one input files each time doing
the transformation

Solution
We try to do transformation a few times to generate the required results for
different media objects and the layout of the presentation. Then, we write a
combination process to join all these information and create a completed
SMIL file as output.

Problem 21
The files created by our transformation process should be run using a SMIL
player, like realplayer. This makes it inconvenient to play, as users need to
open the folder and realplayer in order to see the presentation created.

Solution
We listed out all the files produced in the user interface. Also, we
implemented the functionality that the realplayer process will be called and
run the file being selected in the user interface.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 165

10. Project Progress
Month Tasks completed

May 2001 Get familiar with the programming environment in Visual C++ and
study the basic idea on informedia and Digital Video Library.

June 2001 Build a media player using Visual C++, which include the functions of
play, stop, pause and start playing from any specific moment.

July 2001 Study the techniques on building histogram and doing scene changes.
Implement this technique to obtain the shot breaks from the video
being played.

Aug 2001 Study the techniques on doing Video Optical Character Detection.
Integrate this module into our system, so the captions in the video
being played can be detected.

Sep 2001 Study XML and design a suitable format for our tools. Data extracted
from the video by the previous steps are stored into a XML file and
our tools can export it.

Oct 2001 Study the tree structure presentation in Visual C++ and method for
displaying an XML file by tree structure. Implement a tree display for
XML file in our tools and allow user to edit that XML file on this
display.

Nov 2001 Do knowledge enrichment base on the data stored in the XML file.
Names of major cities are extracted from the file and details of the
extracted cities are shown with a map displayed. This new information
gained is added to the original XML file to enrich it.

Dec 2001 Study XSL and SMIL and design a suitable XSL that transform XML
to SMIL for presenting the element in the XML. In this stage XML is
transform by MSXML and without knowledge enrichment

Jan 2002 Study the principle of speech recognition and different speech
recognition engine and their algorithm. ViaVoice is chosen and added
to XVIP to perform speech recognition.
Implemented Design 1 of XSLT, which is program dependent. The
transformer is added to XVIP

Feb 2002 Study the principle of face recognition and the algorithm used by
informedia of CMU. Study the preprocessing part of face recognition.
Evaluate the Design 1 of XSLT and start to design a better version of
the transformer

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 166

Mar 2002 Implemented the preprocessing part of face recognition and connected
the neural-network dll of CMU to XVIP to do face recognition. And
implement a better interface for it.
Finished the design of Design 2 and implemented the new transformer

Apr 2002 Improved the interface of XVIP
Improved the interface of SMIL
Writing the report

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 167

11. Contribution of Work
1111..11IInnttrroodduuccttiioonn

In this section, it is going to state the contribution of work of my part and the
knowledge gained through this final year project.

For our final year project, it can main mainly divided into two parts that is
information extraction and post-processing the extracted data. For information
extraction, several extraction techniques are included into XVIP with
multi-modal concept. They are: shot break, face detection, video optical
character detection and speech recognition. Then all extraction information is
integrated into XML with our own schema. For post-processing part, it included
secondary information extraction and transformation (from XML to SMIL for
presentation purpose).

I was focusing on the first part that is information extraction and I also have
taken parts of the work in the post-processing part. And my partner (Table) had
focused on the post-processing part. And the detail will be stated in the following
part.

1111..22PPrreeppaarraattiioonn wwoorrkk
Before implementing the system, it is necessary for us to have some background
knowledge about the project and some technical skill should be learnt. I have
studied the current digital video library to find out what techniques they have
applied for extracting information from video and storing the data.

After we have decided to use Microsoft Visual C++® and Microsoft®

DirectShow® to implement the system XVIP, I have studied Visual C++ and
MFC programming skill and studied the detail of DirectShow.

After I have enriched the background and have better programming skill, we
started to implement the system.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 168

11.3Information Extraction
As me and Table are not familiarize with Visual C++ and DirectShow, we had
developed the video player with DirectShow which is for inputting the video to
our system together, which is the primary step for building our system. Then we
had implemented a control for the video player.

Next, we started to implement the first extraction technique – shot break in our
system. We tried to use the color histogram difference method to detect the scene
change in the video. After that, we had worked separately; I focus on extraction
techniques and Table focus on the post-processing the extracted data. Here I am
going to stated the extracted techniques that I have applied to XVIP.

1. Scene change
As stated in before, we had used the color histogram difference method to
detect the scene change for the video and then I tried to grape the frame of
the scene change for the video. As the frames are saved as bitmap and this it
too large for storage, I tried to convert the saved bitmap files to jpeg, which
have smaller file size.
After the scene change is detected, I had studied how to draw the result onto
the screen. I had studied the view class in MFC and draw the result onto the
view.
To improve the performance of scene change, I had applied the
one-dimensional entropy threshold to the histogram difference method. This
improves the result of the scene change. As the result is not prefect, I tried to
add some edit function, including insert and delete, to edit the result.
Then, the extracted information is added to the XML according to the time of
the shot break with the modality name “Scene Change”.
To improve the interface, I had added the docking window to the system to
make it looks tidier.

2. VOCD
The dll used in VOCD is implemented by Informedia of CMU but their
version is for detection the English character only. So, if directly apply the dll
to XVIP, the accuracy would be very low.
To make the detection engine fit to XVIP, Table and me tried to modified the
parameters for VOCD and make it to be suit for detecting Chinese character.
After that, I connected the dll to XVIP. The dll will output the coordinate of
the text area of the frame. With this coordinates, I tried to draw rectangles on

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 169

the frame to indicate the position of the text and the frame are displayed onto
the view in the system.
Then, the extracted information is added to the XML according to the time of
the character detected with the modality name “VOCD”.

3. Face detection
After studying the face detection techniques used by Informedia of CMU, I
decided to connect the neural network they implemented to the system XVIP.
Before that, the preprocessing part of the face detection should be
implemented, that is extracting a 20 by 20 pixel image from the frame and do
the equalization to reduce the background noise. After the preprocessing part
is connected to the neural network. The detected face region will be output
and the result is displayed on the screen.
As more that one face can be detected within a frame, more than one square
will be drawn on the frame displayed.
Then, the extracted information is added to the XML according to the time of
the face detected with the modality name “Face”.

4. Speech recognition
After studying several speech recognition engines, including CMU Sphinx
and IBM ViaVoice. IBM ViaVoice is chosen to connect to XVIP to perform
the speech recognition.
With the speech recognition SDK, the speech recognition engine can add to
our system. As the input file to ViaVoice should be a wave file, a wave file
should be prepared before using the speech recognition engine.
Through the speech recognition engine, the transcript of the video can be
recognized and the result is shown in the XVIP. The texts are added to the
XML according the time with the modality name “Transcript”.

5. Storage – XML
XML is used to store the extracted information. As to use XML efficiently, I
had tried to study the XML and the parser. Then DOM XML parser is chosen
to parse the XML to XVIP, which parse the XML as a tree structure.
With the multi-modal concept, 4 modalities are added to the XML, these are
scene change, VOCD, face detection and speech recognition. I tried to
designed our own XML schema to store the extracted information
As the extraction techniques are not prefect, an XML editor is implemented
in XVIP for the user to edit the XML after the extracted data is added to the

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 170

XML. By studying tree structure in VC++, XML can be displayed in XVIP
as a tree.

11.4Post-processing information
As I responsible for extracting and storing the extracted information, I have less
focus on post-processing information part. But I still had participated in schema
designing, studying different XSLT and designing XSL and SMIL.

1. Knowledge enrichment
After the useful information in extracted from the video, knowledge
enrichment is applied to the XML generated by XVIP. I was responsible of
designing the schema of the XML for knowledge and try to minimize the
affect to the original generated XML.

2. Connect MSXML to XVIP
To transform the XML to SMIL with XSL, an XSL transformer is need. I
tried to study different XSLT and designed to use MSXML in XVIP. With
MSXML 4.0 SDK, I tried to connect to MSXML to the XVIP to transform
the XML to SMIL.

3. Design simple XSL for XML
As I responsible to study and connect the MSXML to XVIP, I have to design
a simple XSL that is suitable for the generated XML. After studying XSL, a
simple XSL is designed for testing the MSXML. My partner designs the
more detail XSL for the project.

4. Design simple SMIL for testing purpose
As I responsible to study and connect the MSXML to XVIP, I have to design
a simple SMIL that is suitable for the generated XML. After studying SMIL,
a simple SMIL is designed for testing the MSXML. The more detail SMIL is
designed by my partner.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 171

11.5 Report
As state before, our project divided into two main pasts and each of us
responsible for different part, we write the part of the report that we have more
contribution of work. I responsible for the following part:
� Architecture of XVIP
� Extraction technique
� Scene change detection
� Face Detection
� Speech Recognition
� XML
� Implementation
� Problems & Solutions
� Project Progress
� Contribution of work
� Conclusions

11.6Summary of work contribution
� Study current DVL, VC, MFC, DirectShow, XML, XSL, SMIL
� Implement video player
� Build docking window
� Add all the extraction techniques to XVIP with modal concept
� Build color histogram and implement scene change
� Tune VOCR parameter and added to XVIP
� Implement preprocessing part of face detection, and connect the

dll to XVIP
� Study and connect ViaVoice to XVIP

� Extract wav file from the original video file for speech recognition
� Integrate all the information extracted to a signal XML
� Do most of the interface work
� Insert / delete frame from scene change
� Different size display
� Let user to edit XML
� View VOCR result
� View Face detection result
� View speech recognition result

� Design schema of XML
� Design the schema of XML for knowledge enrichment and add the

new information to XML

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 172

� Build the XML parser
� Study tree structure in VC++ and display the XML in XVIP
� Build XML editor
� Connect MSXML to XVIP
� Design simple XSL for XML
� Design simple SMIL for testing propose
� Improve the interface of XVIP
� Writing report

1111..77CCoonncclluussiioonn
After the final year project, I more understand how the current digital video
library work and it have strengthened my programming skill. Also, I have learnt
lots of new technologies and knowledge through this FYP, including VC, MFC,
DirectShow, XML, XSL, SMIL and different extraction techniques. And let me
keep in touch with the state of the art technologies.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 173

12. Conclusions
We develop XML based Video Information Processing system (XVIP) with
multiple functions for processing and storing information extracted from video
files. It can integrate different video information extraction techniques with a
multi-model concept, generate an XML file for storing the extracted information,
and allow users to perform editing on the XML file exported from our system.
The multi-model concept and XML format give us flexibility to integrate new
techniques, do further enrichment or modification on data in the future. Finally,
we implement an XML to SMIL transformer to generate different presentation
templates of SMIL.

We studied current methods on doing video information extraction and
presentation. There are four modalities in the XVIP system. We have
implemented four of these techniques on video information extraction. These
include scene changes, video optical character detection face detection and
speech recognition. Then, we generated an XML file for storing the extracted
information. In addition, users are allowed to do editing on the XML file
exported using our tools. After that, we are doing information enrichment using
the data in our XML file. Some geographic information is extracted from the text
in our XML file. The result of information extracted from the current data will be
used to enrich the XML file. This newly added information helps us to do
indexing and searching. XML is then transform to SMIL with XSL for
presentation purpose.

In this semester, we focus on how to use the XML file format we designed in this
semester to do multimedia presentation effectively. We notice that the XML
format allow us to fill in templates with content retrieved dynamically from a
database or transformation of structured documents using style sheets (e.g.
XSLT). This method can generate HTML pages on demand. It is much effective
than encoding information in handwritten (HTML) Web pages. However, these
text-oriented techniques may not be suitable for multimedia document generation.
The current stile sheet technology cannot be applied to multimedia. Because of
these reasons, new formats on multimedia presentation are developed. And we
focus on using SMIL.

After this final year project, we have learnt different programming skill,
including visual C++, DirectShow and it gives a chance for us to enrich

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 174

ourselves by studying different Digital Video Library, extraction techniques,
XML, XSL and SMIL and let us to keep in touch with the state of the art
technology.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 175

13. Acknowledgement
We would like to thank Prof. Michael Lyu, our project supervisor, for giving us
valuable advice. He has provided many suggestions and comments to us
throughout this project. We are much appreciated by his patience and kindness in
advising us.

Moreover, we would like to thanks Edward, Technical Manager of VIEW project,
who gives us ideas in our project.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 176

14. Reference
[1] Howard D. Wactlar, New Directions in Video Information Extraction and

Summarization, June 1999.
[2] Howard D. Wactlar, Michael G. Christel, Yihong Gong, Alexander G.Hauptmann,

Lessons Learned from Building a Terabyte Digital Video Library, Feb 1999,
IEEE.

[3] Howard D. Wactlar, Taceo Kanade, Michael A. Smith, and Scott M. Stevens,
Intelligent Access to Digital Video: Informedia Project, May 1996 IEEE.

[4] Michael Christel and David Martin, Information Visualization within a Digital
Video Library, June 1998.

[5] Susan Gauch, Ron Aust, Joe Evans, John Gauch, Gary Minden, Doug Niehaus,
and James Roberts, The Digital Video Library System: Vision and Design,
Digital Libraries '94, June 1994.

[6] Jong Whan Jang and I1 Kyun Oh, Performance Evaluation of Scene Change
Detection Algorithms, Spring 1997

[7] Yueting Zhuang, Yong Rui, Thomas S. Huang and Sharad Mehrotra, Adaptive
Key Frame Extraction Using Unsupervised Clustering, IEEE International
Conference on Image Processing, 1998(ICIP98), Oct. 1998

[8] D. Lelescu and D. Schonfeld, Real-time scene change detection on compressed
multimedia bitstream based on statistical sequential analysis, Proceedings of the
IEEE International Conference on Multimedia and Expo, Compact Disk, pp. 1–4,
New York, New York, 2000.

[9] Micha Haas and Michael S. Lew and Dionysius P. Huijsmans, Shot Break
Detection and Camera Motion Classification, Oct 1998

[10] Xinying Wang, Zhengke Wong, Scene Abrupt Change Detection, IJCV(24), 1997
[11] W. A. C. Fernando, C. N. Canagaraiah and D. R. Bull, A Unified Approach to A

Scene Change Detection In Uncompressed and Compressed Video, Image
Communications Group, Oct 2000.

[12] Sato, T., Kanade, T., Hughes, E., Smith, M., Video OCR for Digital News
Archives, IEEE Workshop on Content-Based Access of Image and Video
Databases (CAIVD'98), Bombay, India, January, 1998.

[13] Sato, T., Kanade, T., Hughes, E., Smith, M., Satoh, S., Video OCR: Indexing
Digital News Libraries by Recognition of Superimposed Caption, ACM
Multimedia Systems Special Issue on Video Libraries, 7(5): 385-395, 1999.

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 177

[14] Xiaoou Tang, Cheung Yung Chan, and Jianzhuang Liu, Handwriting Chinese m
Character Recognition through a Video Camera, Lecture notes of IEG4190 of
The Chinese University of Hong Kong, Nov 2001.

[15] Xiaoou Tang, Feng Lin, Shadow-resistance Stroke-tracing for Handwritten
Chinese Character Recognition, Lecture notes of IEG4190 of The Chinese
University of Hong Kong, Nov 2001.

[16] Micheal G. Christel, Bryan Maher, Andrew Begun, XSLT for Tailored Access to
a Digital Vied Library, JCDL 2001, June 2001

[17] Vladimir Geroimenko and Larissa Geroimenko Visual Interaction with XML
Medata

[18] XML Schema Language: Takinf XML to Next Level, IT PRO March/April 2001
[19] The Challenges that XML Faces, IEEE Technology News, October 2001
[20] XML’s Impact on Databases and Data Sharing, IEEE Research Feature, June

2001
[21] Integrating XML and Databases, IEEE Internet Computing July+August 2001
[22] Michael G. Christel, Andreas M. Olligschlaeger, Carnegie Mellon University,

Interactive Maps for a Digital Video Library, June 1999, IEEE.
[23] Howard D. Wachtlar, Carnegie Mellon University, Multi-Document

Summarization and Visualization in the Informedia Digital Video Library, New
Information Technology 2001 Conference, May, 2001

[24] Jacco van Ossenbruggen, Joost Geurts, Frank Cornelissen, Lynda Hardman and
Lloyd Rutledge, Towards Second and Third Generation Web-Based Multimedia,
May 2001

[25] Henry A. Rowley, Shumeet baluja, and Takeo Kanade, Neural Network-Based
Face detection, PAMI. January 1998

[26] Henry A. Rowley, Shumeet baluja, and Takeo Kanade, Human Face Detection in
Visual Scenes. Novrmber 1995 CMU-CS-95-158R

[27] Micheal J. Witbrock and Alexander G, Hauptmann, Speech Recognition for a
Digital Video Library, JASIS,1996

[28] Alexander G. Hauptmann and Howard D. Wactlar, Indexing and Search of
Multimodal Information.

[29] Howard D. Wactar, Alexander G. Hauptmann ans Michael J. Witbrock
INFORMEDIA: NEWS-ON-DEMAND EXPERIMENTS IN SPEECH
RECOGNITION.

[30] “Towards SMIL as a Foundation for Multimodal, Multimedia Applications”
Jennifer L.Beckham, Giuseppe Di Fabbrizio, Mils Klarlund, W3C Multimodal
Interaction Activity, 2002.

[31] “W3C Synchronized Multimedia Activity Statement”,

LYU0102 XML for Interoperable Digital Video Library 2001-2002 Final Year Project

Department of Computer Science & Engineering Page 178

http://www.w3.org/AudioVideo/Activity.html
[32] “Multimedia Tools for Online Tutorials: Using SMIL to Create Web-Based

Instruction” Yuwu Song, Arizona State University, Internet Librarian 2000
Conference, November 2000.

[33] SMIL adding multimedia to the web, written by Tim Kennedy, Mary Slowinski
Copyright ©2002 by Sams Publishing

[34]“W3C Synchronized Multimedia Integration Language (SMIL) 1.0 Specification”,
http://www.w3.org/TR/REC-smil/

[35] “Building and Managing XML/XSL-powered Web Sites: an Experience Report”,
Clemens Kerer, Engin Kirda, Mehdi Jazateri and Roman Kurmanowytsch,
Distributed Systems Group, Technical University of Vienna, IEEE 2001

[36] http://www.w3.org/Style/XSL/
[37] Book: XSLT & XPATH, A Guide to XML Transformations

by John Robert Gardner, Zarella L.Rendon, 2002 Prentice Hall PTR
[38] Book: XML/XSL Programming Guide
[39] XSLT Reference from the MSXML4.0 SDK documentation

