
925

Support Vector Regression for Software
Reliability Growth Modeling and Prediction

Fei Xing1 and Ping Guo2

1 Department of Computer Science
Beijing Normal University, Beijing 100875, China

xsoar@163.com
2 Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
pguo@ieee.org

Abstract. In this work, we propose to apply support vector regression
(SVR) to build software reliability growth model (SRGM). SRGM is an
important aspect in software reliability engineering. Software reliability
is the probability that a given software will be functioning without failure
during a specified period of time in a specified environment. In order to
obtain the better performance of SRGM, practical selection of parameter
C for SVR is discussed in the experiments. Experimental results with
the classical Sys1 and Sys3 SRGM data set show that the performance
of the proposed SVR-based SRGM is better than conventional SRGMs
and relative good prediction and generalization ability are achieved.

1 Introduction

Software reliability is one of key factors in software qualities. It is one of the
most important problem facing the software industry. There exists an increasing
demand of delivering reliable software products. Developing reliable software is
a difficult problem because there are many factors impacting development such
as resource limitations, unrealistic requirements, etc. It is also a hard problem
to know whether or not the software being delivered is reliable. To solve the
problem, many software reliability models have been proposed over past 30 years,
they can provide quantitative measures of the reliability of software systems
during software development processes [1–3].

Software reliability growth models (SRGMs) have been proven to be suc-
cessful in estimating the software reliability and the number of errors remain-
ing in the software [2]. Using SRGMs, people can assess the current reliability
and predict the future reliability, and further more, conduct the software test-
ing and debugging process. Now there have already existed many SRGMs such
as Goel-Okumoto Model, Yamada Delayed S -Shaped Model, Yamada Weibull-
Type Testing-Effort Function Model, etc. Most of SRGMs assume that the fault
process follows the curve of specific type. Actually, this assumption may not be
realistic in practice and these SRGMs are sometimes insufficient and inaccurate
to analyze actual software failure data for reliability assessment.

J. Wang, X. Liao, and Z. Yi (Eds.): ISNN 2005, LNCS 3496, pp. 925–930, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [439.37 666.142] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

926 Fei Xing and Ping Guo

In recent years, support vector machine (SVM) [4] is a new technique for solv-
ing pattern classification and universal approximation, it has been demonstrated
to be very valuable for several real-world applications [5, 6]. SVM is known to
generalize well in most cases and adapts at modeling nonlinear functional re-
lationships which are difficult to model with other techniques. Consequently,
we propose to apply support vector regression (SVR) to build SRGM and in-
vestigate the conditions which are typically encountered in software reliability
engineering. We believe that all these characteristics are appropriate to SRGM.

2 Support Vector Regression

SVM was introduced by Vapnik in the late 1960s on the foundation of statistical
learning theory [7]. It has originally been used for classification purposes but
its principle can be extended easily to the task of regression by introducing an
alternative loss function. The basic idea of SVR is to map the input data x into a
higher dimensional feature space F via a nonlinear mapping φ and then a linear
regression problem is obtained and solved in this feature space.

Given a training set of l examples {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊂ R
n × R,

where xi is the input vector of dimension n and yi is the associated target. We
want to estimate the following linear regression:

f(x) = (w · x) + b, w ∈ R
n, b ∈ R, (1)

Here we consider the special case of SVR problem with Vapnik’s ε-insensitive
loss function defined as:

Lε(y, f(x)) =
{

0 |y − f(x)| ≤ ε
|y − f(x)| − ε |y − f(x)| > ε

(2)

The best line is defined to be that line which minimizes the following cost
function:

R(w) =
1
2
‖w‖2 + C

l∑
i=1

Lε(f(yi,xi)) (3)

where C is a constant determining the trade-off between the training errors and
the model complexity. By introducing the slack variables ξi, ξ

∗
i , we can get the

equivalent problem of Eq. 3. If the observed point is “above” the tube, ξi is the
positive difference between the observed value and ε. Similar, if the observed
point is “below” the tube, ξ∗i is the negative difference between the observed
value and −ε. Written as a constrained optimization problem, it amounts to
minimizing:

1
2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i) (4)

subject to:
yi − (w · xi) − b ≤ ε + ξi

(w · xi) + b − yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

(5)

Support Vector Regression for Software Reliability Growth Modeling 927

To generalize to non-linear regression, we replace the dot product with a
kernel function K(·) which is defined as K(xi,xj) = φ(xi)·φ(xj). By introducing
Lagrange multipliers αi, α

∗
i which are associated with each training vector to

cope with both upper and lower accuracy constraints, respectively, we can obtain
the dual problem which maximizes the following function:

l∑
i=1

(αi − α∗
i)yi − ε

l∑
i=1

(αi + α∗
i) −

1
2

l∑
i,j=1

(αi − α∗
i)(αj − α∗

j)K(xi,xj) (6)

subject to:

l∑
i=1

(αi − α∗
i) = 0

0 ≤ αi, α
∗
i ≤ C i = 1, 2, . . . , l (7)

Finally, the estimate of the regression function at a given point x is then:

f(x) =
l∑

i=1

(αi − α∗
i)K(xi,x) + b (8)

3 Modeling the Software Reliability Growth

In this section, we present real projects to which we apply SVR for software re-
liability growth generalization and prediction. The data sets are Sys1 and Sys3
software failure data applied for software reliability growth modeling in [2]. Sys1
data set contains 54 data pairs and Sys3 data set contains 278 data pairs. The
data set are normalized to the range of [0,1] first. The normalized successive
failure occurrence times is the input of SVR function and the normalized accu-
mulated failure number is the output of SVR function. We denote the SVR-based
software reliability growth model as SVRSRG.

Here we list the math expression of three conventional SRGMs refered in the
experiments.

– Goel-Okumoto Model:

m(t) = a(1 − ert), a > 0, r > 0 (9)

– Yamada Delayed S-Shaped Model:

m(t) = a(1 − (1 + rt)e−rt) (10)

– Yamada Weibull-Type Testing-Effort Function Model:

m(t) = a[1 − e−rα(1−e−βtγ
)] (11)

The approach taken to perform the modeling and prediction includes follow-
ing steps:

928 Fei Xing and Ping Guo

1. Modeling the reliability growth based on the raw failure data
2. Estimating the model parameters
3. Reliability prediction based on the established model

Three groups of experiments have been performed. Training error and test-
ing error have been used as evaluation criteria. In the tables presented in this
paper, the training error and the testing error are measured by sum-of-square∑l

i=1(xi − x̂i)2, where xi, x̂i are, respectively, the data set measurements and
their prediction. In default case, SVR used in the experiment is ν-SVR and the
parameters ν and C are optimized by cross-validation method.

In the experiment of generalization, we partition the data into two parts:
training set and test set. Two thirds of the samples are randomly drawn from
the original data set as training set and remaining one third of the samples
as the testing set. This kind of training is called generalization training [8].
Fig. 1. (a) and (b) show the experimental result for software reliability growth
modeling trained by using data set Sys1 and Sys3, respectively. It is obvious that
SVRSRG gives a better performance of fitting the original data than the other
models. From Table 1 we can find both the training error and the testing error
of SVRSRG are smaller than the other classical SRGMs.

In the experiment of prediction, we will simulate the practical process of
software reliability growth prediction. It is based on predicting future values
by the way of time series prediction methods. Assuming software have been

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Execution time

N
um

be
r

of
 fa

ilu
re

s

(a)

Original data
SVRSRG
Goel−Okumoto
S−Shaped
Weibull−Type TE Function

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Execution time

N
um

be
r

of
 fa

ilu
re

s

(b)

Original data
SVRSRG
Goel−Okumoto
S−Shaped
Weibull−Type TE Function

Fig. 1. (a) The generalization curve of four SRGMs trained with Sys1 data set (b) The
generalization curve of four SRGMs trained with Sys3 data set

Table 1. The comparison of training error and testing error of four SRGMs for gener-
alization

Data Sys1 Sys3

Models Training error Test error Training error Test error

Goel-Okumoto 0.1098 0.0576 0.1255 0.0672
S-Shaped 0.3527 0.1722 0.1792 0.0916

Weibull-type TE Function 0.0255 0.0137 0.1969 0.1040
SVRSRG 0.0065 0.0048 0.0147 0.0078

Support Vector Regression for Software Reliability Growth Modeling 929

executed for time xi and considering i data pairs (x1, y1), (x2, y2), . . . , (xi, yi),
we calculate predicted number of failures yi+1 at time xi+1 in the following way.
First, use first i data pairs to build model. Second, predict value at time xi+1

using current model. Experiment is processed at each time points and mean
training error and mean testing error are reported. From Table 2, we can find
that in practical process SVRSRG can achieve more remarkable performance
than other four SRGMs.

Table 2. The comparison of training error and testing error of four SRGMs for pre-
diction

Data Sys1 Sys3

Models Training error Test error Training error Test error

Goel-Okumoto 0.0259 0.0038 0.0864 0.0011
S-Shaped 0.0855 0.0110 0.1663 0.0015

Weibull-type TE Function 0.0127 0.0012 0.0761 0.0007
SVRSRG 0.0064 0.0021 0.0138 0.0001

1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

16
x 10

−3

C

E
rr

or

(a)

10 20 30 40 50 60 70 80 90 100
0.012

0.0125

0.013

0.0135

0.014

0.0145

0.015

0.0155

C

E
rr

or

(b)

Fig. 2. The influence of parameter C on model generalization ability. Above line is
training error, bottom line is testing error. (a) with Sys1 data set (b) with Sys3 data
set

Parameter C in SVR is a regularized constant determining the tradeoff
between the training error and the model flatness. The following experiment
demonstrates the influence of parameter C on model generalization ability. It is
conducted as experiment of prediction to simulate the practical process of soft-
ware reliability growth prediction. The results are shown in Fig. 2. (a) and (b).
We can see that with the increase of parameter C, the training error declines
gradually, that is to say, the model fits the training data set better and better.
However, as for testing, first the testing error declines gradually because the
complexity of model is suitable for the need of testing data set more and more.
And then the testing error raises because of overfitting problem. The problem
of tradeoff between the training error and the model flatness can be solved by

930 Fei Xing and Ping Guo

cross-validation technique which divides the training samples into two parts: one
for training and another for validation to obtain satisfied generalization ability.

4 Conclusions

A new technique for software reliability growth modeling and prediction is pro-
posed in this paper. SVR is adopted to build SRGM. From the experiments
we can see that the proposed SVR-based SRGM has a good performance, no
matter generalization ability or predictive ability, the SVRSRG is better than
conventional SRGMs. Experimental results show that our approach offers a very
promising technique in software reliability growth modeling and prediction.

Acknowledgements

This work was fully supported by a grant from the NSFC (Project No. 60275002)
and the Project-sponsored by SRF for ROCS, SEM.

References

1. Musa, J.D.: Software Reliability Engineering: More Reliable Software, Faster De-
velopment and Testing. McGraw Hill (1999)

2. Lyu, M.R.: Handbook of Software Reliability Engineering. IEEE Computer Society
Press and McGraw-Hill Book Company (1996)

3. Guo, P., Lyu, M.R.: A Pseudoinverse Learning Algorithm for Feedforward Neural
Networks with Stacked Generalization Application to Software Reliability Growth
Data. Neurocomputing, 56 (2004) 101–121

4. Cortes, C., Vapnik, V.: Support-vector Network. Machine Learning, 20 (1995)
273–297

5. Joachims, T.: Learning to Classify Text Using Support Vector Machines: Methods,
Theory, and Algorithms. Kluwer (2002)

6. Xing, F., Guo, P.: Classification of Stellar Spectral Data Using SVM. In: Interna-
tional Symposium on Neural Networks (ISNN 2004). Lecture Notes in Computer
Science. Vo. 3173. Springer-Verlag (2004) 616–621

7. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag, New
York (1995)

8. Karunanithi, N., Whitley, D., Malaiya, Y.: Prediction of Software Reliability Using
Connectionist Models. IEEE Transactions on Software Engineering, 18 (1992) 563–
574

	Support Vector Regression for Software Reliability Growth Modeling and Prediction
	1 Introduction
	2 Support Vector Regression
	3 Modeling the Software Reliability Growth
	4 Conclusions
	References

