A Distributed Replication Strategy Evaluation and Selection Framework for Fault Tolerant Web Services

Zibin Zheng and Michael R. Lyu

Department of Computer Science & Engineering
The Chinese University of Hong Kong
Hong Kong, China

ICWS 2008, Beijing, China, 24 September, 2008
Outlines

1. Introduction
2. Distributed Evaluation Framework
3. Fault Tolerance Replication Strategies
4. An Optimal Strategy Selection Algorithm
5. Experiments
6. Conclusion
1. Introduction

- Web services are becoming popular.
- Reliability of the service-oriented applications becomes difficult to be guaranteed.
 - Remote Web services may contain faults.
 - Remote Web services may become unavailable.
 - The Internet environment is unpredictable.
1. Introduction

• Traditional software reliability engineering
 – Fault Tolerance is a major approach for building highly reliable system.
 – Expensive.

• Service reliability engineering
 – Web service with identical/similar interface
 – Less expensive & less time-consuming

• A lot of fault tolerance replication strategies
 – Time redundancy
 – Space redundancy

Which fault tolerance replication strategy is optimal?
1. Introduction

 – User-collaborated evaluation
 • YouTube: sharing videos.
 • Wikipedia: sharing knowledge.
 • Sharing evaluation results of target Web services.
 – Evaluation of individual Web service
 – Evaluation of fault tolerance strategies
 – Optimal fault tolerance strategy selection.
2. Distributed Evaluation Framework

- **Service users**
 - Web service selection
 - Overall performance of target Web services
 - Different locations
 - Long time duration
- **Service providers**
 - Providing better services
 - Overall performance of their own Web services
- **Overall performance of Web services is not easy to be obtained**
 - Time-consuming
 - Expensive
2. Distributed Evaluation Framework

1. Evaluation request
2. Load Applet
3. Create test cases
4. Schedule test tasks
5. Assign test cases
6. Client run test cases
7. Send back results
8. Analyze and return final results to client.

- Evaluation results from different locations
- Don’t need good knowledge on FT strategies, test case generation, and so on.
- Don’t need to implement evaluation mechanism.
3. Replication Strategies

• Basic replication strategies.
 1. **Active.** The application sends requests to different replicas at the same time and uses the first properly returned response as final result.
 2. **Time.** The same Web Service will be tried one more time if it fails at first.
 3. **Passive.** Another standby Web Service will be tried in sequence if the primary Web Service fails.

<table>
<thead>
<tr>
<th></th>
<th>Active</th>
<th>Time</th>
<th>Passive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>1. Active</td>
<td>4. Active+Time</td>
<td>6. Active+Passive</td>
</tr>
<tr>
<td>Time</td>
<td>5. Time+Active</td>
<td>2. Time</td>
<td>8. Time+Passive</td>
</tr>
</tbody>
</table>
3. Replication Strategies

4. Active+Time

6. Active+Passive.

8. Time+Passive

5. Time+Active

7. Passive+Active

9. Passive+Time
3. Replication Strategies

<table>
<thead>
<tr>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>r 1 (r = 1 - \prod_{i=1}^{n} (1 - r_i) ;)</td>
</tr>
</tbody>
</table>
| \(t = \begin{cases}
\min\{T_c\} : |T_c| > 0 ; T = \{t_1, ..., t_m\} = T_c \cup T_f \\
\max\{T_f\} : |T_c| = 0
\end{cases} \) |
| **r** 2 \(r = 1 - (1 - r_1)^m ; t = \sum_{i=1}^{m} t_i (1 - r_1)^{i-1} ; \) |
| **r** 3 \(r = 1 - \prod_{i=1}^{m} (1 - r_i) ; t = \sum_{i=1}^{m} t_i \prod_{k=1}^{i-1} (1 - r_k) \) |
| **r** 4 \(r = 1 - (\prod_{i=1}^{n} (1 - r_i))^m ; \) |
| \(t = \sum_{i=1}^{m} t_i (\prod_{j=1}^{v} (1 - r_j))^{i-1} ; t_i = \begin{cases}
\min\{T_c^i\} : |T_c^i| > 0 \\\n\max\{T_f^i\} : |T_c^i| = 0
\end{cases} \) |
| **r** 5 \(r = 1 - \prod_{i=1}^{v} (1 - r_i)^m ; \) |
| \(t = \begin{cases}
\min\{T_c\} : |T_c| > 0 ; t_i \in T = \sum_{j=1}^{m} t_{ij} (1 - r_i)^{j-1} \\
\max\{T_f\} : |T_c| = 0
\end{cases} \) |
| **r** 6 \(r = 1 - \prod_{i=1}^{m} \prod_{j=1}^{v} (1 - r_{ij}) ; \) |
| \(t = \sum_{i=1}^{m} t_i \prod_{k=1}^{i} \prod_{j=1}^{v} (1 - r_{kj}) ; t_i = \begin{cases}
\min\{T_c^i\} : |T_c^i| > 0 \\\n\max\{T_f^i\} : |T_c^i| = 0
\end{cases} \) |
| **r** 7 \(r = 1 - \prod_{j=1}^{v} \prod_{i=1}^{m} (1 - r_{ij}) ; \) |
| \(t = \begin{cases}
\min\{T_c\} : |T_c| > 0 \\\n\max\{T_f\} : |T_c| = 0
\end{cases} \) |
| **r** 8 \(r = 1 - \prod_{i=1}^{u} (1 - r_i)^m ; \) |
| \(t = \sum_{i=1}^{u} (t \prod_{j=1}^{m} (1 - r_i)^{j-1}) \prod_{k=1}^{i} (1 - r_k)^m ; \) |
| **r** 9 \(r = 1 - \prod_{i=1}^{u} (1 - r_i)^m ; \) |
| \(t = \sum_{i=1}^{m} (t \prod_{j=1}^{u} (1 - r_k) (\prod_{j=1}^{u} (1 - r_j))^{i-1}) ; \) |
4. Selection Algorithm

• Objective evaluation results of Web services.
• Subjective requirement of service users
 – *t-user*:
 • represents the user requirement on response time improvement of increasing one parallel replica.
 • designed to facilitate the user to make a tradeoff between the response time performance and resource consuming.
 – *f-user*:
 • the failure-rate requirement provided by users.
4. Selection Algorithm

- Determining parallel replica number: v.
- Determining detailed optimal strategy based on: $p1,p2,p3$.

$$S_i = \frac{t_i}{t_{user}} + \frac{f_i}{f_{user}}.$$

$$W = \{w s_i | s_i \leq a \& \& 1 \leq i \leq n\}$$

$$p_1 = s_2 - s_1$$

$$p_2 = \frac{1}{v} \sum_{i=1}^{v} (s_{i+v} - s_i)$$

$$p_3 = \frac{1}{v} \sum_{i=1}^{v} f_i$$
5. Experiments

- **JDK + Eclipse**
- **Client-side:**
 - Java Applet
- **Server-side:**
 - an HTTP Web site (Apache HTTP Server)
 - a TestCaseGenerator (JDK6.0 + Axis library)
 - a TestCoordinator (Java Servlet + Tomcat 6.0)
 - a MySQL database (Record testing results)
5. Experiments

1. Evaluating the performance of individual Web Services.
2. Evaluating the performance of different fault tolerance strategies employing the six identical Web services provided by Amazon.
3. Determining the optimal fault tolerance strategy.
5.1 Results-individual WS

Table 3. Evaluation Results of the Eight Target Web Services

<table>
<thead>
<tr>
<th>Location</th>
<th>Cases</th>
<th>RTT (ms)</th>
<th>Location</th>
<th>Cases</th>
<th>RTT (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg</td>
<td>Std</td>
<td>Min</td>
<td>Max</td>
<td>Avg</td>
</tr>
<tr>
<td>cn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-us</td>
<td>484</td>
<td>109</td>
<td>22.52</td>
<td>4184</td>
<td>2348</td>
</tr>
<tr>
<td>a-jp</td>
<td>482</td>
<td>128</td>
<td>26.55</td>
<td>3892</td>
<td>2515</td>
</tr>
<tr>
<td>a-de</td>
<td>487</td>
<td>114</td>
<td>23.40</td>
<td>3666</td>
<td>2604</td>
</tr>
<tr>
<td>a-ca</td>
<td>458</td>
<td>111</td>
<td>24.23</td>
<td>4074</td>
<td>2539</td>
</tr>
<tr>
<td>a-fr</td>
<td>498</td>
<td>96</td>
<td>19.27</td>
<td>3654</td>
<td>2514</td>
</tr>
<tr>
<td>a-uk</td>
<td>493</td>
<td>100</td>
<td>20.28</td>
<td>3985</td>
<td>2386</td>
</tr>
<tr>
<td>GW</td>
<td>409</td>
<td>337</td>
<td>82.39</td>
<td>6643</td>
<td>2003</td>
</tr>
<tr>
<td>GIP</td>
<td>540</td>
<td>32</td>
<td>5.92</td>
<td>2125</td>
<td>1927</td>
</tr>
</tbody>
</table>

au															
a-us	1140	0	0	705	210	500	3782	a-us	1895	0	0	561	353	297	4406
a-jp	1143	0	0	577	161	406	2594	a-jp	1120	0	0	503	322	250	3687
a-de	1068	0	0	933	272	672	6094	a-de	1511	0	0	638	409	375	4735
a-ca	1113	0	0	697	177	500	2672	a-ca	1643	0	0	509	249	297	4125
a-fr	1090	0	0	924	214	672	2906	a-fr	1635	0	0	638	310	390	5468
a-uk	1172	3	0.25	921	235	672	3859	a-uk	1615	0	0	650	308	375	4297
GW	1104	5	0.45	503	344	672	9975	GW	1363	0	0	1403	1544	265	9937
GIP	1125	0	0	355	609	234	9360	GIP	1312	0	0	571	878	265	9594

lk															
a-us	21002	81	0.38	448	304	230	9547	a-us	3725	0	0	74	135	31	3171
a-jp	20944	11	0.05	388	321	203	9937	a-jp	3578	0	0	317	224	109	9219
a-de	21130	729	3.45	573	346	343	9360	a-de	3766	0	0	298	271	109	9390
a-ca	21255	125	0.58	440	286	250	9915	a-ca	3591	0	0	239	260	31	9515
a-fr	21091	743	3.52	575	349	343	9703	a-fr	3933	0	0	433	222	187	3906
a-uk	20830	807	3.87	570	348	328	9734	a-uk	3614	0	0	293	260	124	9157
GW	21148	1426	6.74	1563	1560	406	9999	GW	3837	0	0	1290	1346	125	9828
GIP	21007	1263	6.01	849	1582	203	9999	GIP	3621	0	0	675	1348	125	9938

- Timeout: 3865; Unavailable service (http 503): 2456; Bad gateway (http 502): 1
- Failure-rates are vary from location to location
5.1 Results-individual WS

- Response time performance (RTT) are vary from location to location.
5.2 Results-FT strategies

<table>
<thead>
<tr>
<th>Type</th>
<th>Cases All</th>
<th>Fail</th>
<th>R%</th>
<th>RTT(ms) Avg</th>
<th>Std</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21556</td>
<td>6</td>
<td>0.027</td>
<td>279</td>
<td>153</td>
<td>203</td>
<td>3296</td>
</tr>
<tr>
<td>2</td>
<td>22719</td>
<td>0</td>
<td>0</td>
<td>389</td>
<td>333</td>
<td>203</td>
<td>17922</td>
</tr>
<tr>
<td>3</td>
<td>23040</td>
<td>0</td>
<td>0</td>
<td>374</td>
<td>299</td>
<td>203</td>
<td>8312</td>
</tr>
<tr>
<td>4</td>
<td>21926</td>
<td>4</td>
<td>0.018</td>
<td>311</td>
<td>278</td>
<td>203</td>
<td>10327</td>
</tr>
<tr>
<td>5</td>
<td>21926</td>
<td>1</td>
<td>0.004</td>
<td>312</td>
<td>209</td>
<td>203</td>
<td>10828</td>
</tr>
<tr>
<td>6</td>
<td>21737</td>
<td>2</td>
<td>0.009</td>
<td>311</td>
<td>225</td>
<td>203</td>
<td>10282</td>
</tr>
<tr>
<td>7</td>
<td>21737</td>
<td>2</td>
<td>0.009</td>
<td>310</td>
<td>240</td>
<td>203</td>
<td>13953</td>
</tr>
<tr>
<td>8</td>
<td>21735</td>
<td>0</td>
<td>0</td>
<td>411</td>
<td>1130</td>
<td>203</td>
<td>51687</td>
</tr>
<tr>
<td>9</td>
<td>21808</td>
<td>0</td>
<td>0</td>
<td>388</td>
<td>304</td>
<td>203</td>
<td>9360</td>
</tr>
</tbody>
</table>

• Strategy 1 (Active) has the best RTT performance, and the worst fail-rate.

5.3 Optimal strategy selection

Table 5. Scenario 1: Selection Procedure

\[
\begin{align*}
& a = 20; \quad b = 5; \quad c = 5\% \\
& n = 6; \quad g = 21587; \quad t_{user} = 100; \quad f_{user} = 0.1\% \\
& \{ws_i\}_{i=1}^{6} = \{\text{a-jp, a-us, a-ca, a-de, a-fr, a-uk}\}; \\
& \{t_i\}_{i=1}^{6} = \{388, 448, 440, 573, 575, 570\}; \\
& \{f_i\}_{i=1}^{6} = \{0.05\%, 0.38\%, 0.58\%, 3.45\%, 3.52\%, 3.87\%\}; \\
& \{s_i\}_{i=1}^{6} = \{4.38, 8.28, 10.2, 40.23, 40.95, 44.4\}; \\
& \{T(i)\}_{i=1}^{6} = \{321, 285, 282, 281, 280, 279\}; \\
& v = 1; \\
& W = \{ws_i | s_i = \leq 20 & \& 1 \leq i \leq 6\} = \{4.38, 8.28, 10.2\}; \\
& |W| = 3; \\
& p_1 = s_2 - s_1 = 3.9; \\
& v = 1 & \& 1 < |W| < 6 & \& p_1 < 5 \Rightarrow \text{Strategy 9}; \\
\end{align*}
\]

Strategy 9: Passive+Time

\[
S_i = \frac{t_i}{t_{user}} + \frac{f_i}{f_{user}}. \\
W = \{ws_i | s_i \leq a & \& 1 \leq i \leq n\} \\
p_1 = s_2 - s_1 \\
p_2 = \frac{1}{v} \sum_{i=1}^{v} (s_i + v - s_i) \\
p_3 = \frac{1}{v} \sum_{i=1}^{v} f_i
\]
6. Conclusion and future work

● Conclusion
 ○ Distributed evaluation framework
 ○ Fault tolerance replication strategies.
 ○ Optimal replication strategy selection algorithm.
 ○ Experiment
 ● More than 1,000,000 test cases.
 ● Users from six locations.
 ● Web Services located in six countries.

● Future work
 ○ Evaluation of stateful Web services.
 ○ Tuning of the selection algorithm
 ○ Investigating more QoS properties.
A Distributed Replication Strategy Evaluation and Selection Framework for Fault Tolerant Web Services

Zibin Zheng and Michael R. Lyu

Department of Computer Science & Engineering
The Chinese University of Hong Kong
Hong Kong, China

ICWS 2008, Beijing, China, 24 September, 2008