DiffusionRank: A Possible Penicillin for Web Spamming

Haixuan Yang, Irwin King, and Michael R. Lyu

Department of Computer Science & Engineering
The Chinese University of Hong Kong

SIGIR2007, Amsterdam, Netherlands
July 25, 2007
State of the Web

- Web is easily **manipulated** for commercial gains
 - About 70% of all pages in the .biz domain are spam [Alexandros Ntoulas et al., 2006]
 - About 35% of the pages in the .us domain belong to spam category [Alexandros Ntoulas et al., 2006]
- Web spamming techniques
 - Link Stuffing
 - Keyword Stuffing
- PageRank becomes the target of many spamming techniques
State of the Web

- Web is easily *manipulated* for commercial gains
 - About 70% of all pages in the .biz domain are spam [Alexandros Ntoulas et al., 2006]
 - About 35% of the pages in the .us domain belong to spam category [Alexandros Ntoulas et al., 2006]

- Web spamming techniques
 - Link Stuffing
 - Keyword Stuffing

- PageRank becomes the target of many spamming techniques
State of the Web

- Web is easily manipulated for commercial gains
 - About 70% of all pages in the .biz domain are spam [Alexandros Ntoulas et al., 2006]
 - About 35% of the pages in the .us domain belong to spam category [Alexandros Ntoulas et al., 2006]

- Web spamming techniques
 - Link Stuffing
 - Keyword Stuffing

- PageRank becomes the target of many spamming techniques
Spam, Spam, Spam Everywhere

State of the Web

- Web is easily manipulated for commercial gains
 - About 70% of all pages in the .biz domain are spam [Alexandros Ntoulas et al., 2006]
 - About 35% of the pages in the .us domain belong to spam category [Alexandros Ntoulas et al., 2006]

- Web spamming techniques
 - Link Stuffing
 - Keyword Stuffing
 - PageRank becomes the target of many spamming techniques
State of the Web

- Web is easily **manipulated** for commercial gains
 - About 70% of all pages in the .biz domain are spam [Alexandros Ntoulas et al., 2006]
 - About 35% of the pages in the .us domain belong to spam category [Alexandros Ntoulas et al., 2006]

- Web spamming techniques
 - **Link Stuffing**
 - **Keyword Stuffing**

- PageRank becomes the **target** of many spamming techniques
State of the Web

- Web is easily manipulated for commercial gains
 - About 70% of all pages in the .biz domain are spam [Alexandros Ntoulas et al., 2006]
 - About 35% of the pages in the .us domain belong to spam category [Alexandros Ntoulas et al., 2006]
- Web spamming techniques
 - Link Stuffing
 - Keyword Stuffing
 - PageRank becomes the target of many spamming techniques

Haixuan Yang, Irwin King, and Michael R. Lyu
DiffusionRank: A Possible Penicillin for Web Spamming
SIGIR2007, Amsterdam
Web is easily manipulated for commercial gains

- About 70% of all pages in the .biz domain are spam [Alexandros Ntoulas et al., 2006]
- About 35% of the pages in the .us domain belong to spam category [Alexandros Ntoulas et al., 2006]

Web spamming techniques

- Link Stuffing
- Keyword Stuffing

PageRank becomes the target of many spamming techniques
PageRank

- Calculate the importance of a Web page based on the link structure
- Recursively defined by the in-coming links

\[x_i = \sum_{(j,i) \in E} a_{ij} x_j \quad a_{ij} = \frac{1}{d^+(j)} \]

\[x = Ax \quad x = [(1 - \alpha)g1^T + \alpha A]x \]

Issues

Haixuan Yang, Irwin King, and Michael R. Lyu

DiffusionRank: A Possible Penicillin for Web Spamming
PageRank

- Calculate the importance of a Web page based on the link structure
- Recursively defined by the in-coming links

\[x_i = \sum_{(j,i) \in E} a_{ij} x_j \quad a_{ij} = 1/d^+(j) \]

\[x = Ax \]

\[x = [(1 - \alpha)g1^T + \alpha A]x \]
PageRank

- Calculate the importance of a Web page based on the **link structure**
- Recursively defined by the **in-coming links**

\[x_i = \sum_{(j,i) \in E} a_{i,j} x_j \quad a_{ij} = 1/d^+(j) \]

\[x = Ax \quad x = [(1 - \alpha)g1^T + \alpha A]x \]
PageRank

- Calculate the importance of a Web page based on the link structure
- Recursively defined by the in-coming links

\[x_i = \sum_{(j,i) \in E} a_{i,j} x_j \quad a_{ij} = \frac{1}{d^+(j)} \]
\[x = Ax \]
\[x = [(1 - \alpha)g1^T + \alpha A]x \]

- Issues
 - Incomplete information of the Web structure (previous work)
 - Susceptible to Web spamming
PageRank

- Calculate the importance of a Web page based on the link structure
- Recursively defined by the in-coming links
 \[x_i = \sum_{(j,i) \in E} a_{ij} x_j \quad a_{ij} = 1/d^+(j) \]
 \[x = Ax \]
 \[x = [(1 - \alpha)g1^T + \alpha A]x \]

- Issues
 - Incomplete information of the Web structure (previous work)
 - Susceptible to Web spamming
PageRank

- Calculate the importance of a Web page based on the link structure
- Recursively defined by the in-coming links

\[x_i = \sum_{(j,i) \in E} a_{i,j} x_j \quad a_{ij} = 1/d^+(j) \]
\[x = Ax \]

- Issues
 - Incomplete information of the Web structure (previous work)
 - Susceptible to Web spamming
An Example of Web Manipulation

Perfect World

\[
\begin{align*}
 x_i &= \sum_{(j,i) \in E} 0.85 a_{ij} x_j + 0.15/n \\
 a_{ij} &= 1/d^+(j)
\end{align*}
\]

PageRank Results:

2 > 5 > 3 > 4 > 1 > 6

Real World

Node 1’s value can be increased greatly!

PageRank Results:

1 > 2 > 5 > 3 > 4 > 6

Haixuan Yang, Irwin King, and Michael R. Lyu

DiffusionRank: A Possible Penicillin for Web Spamming

SIGIR2007, Amsterdam
Spam, Spam, Spam Everywhere

Why Spamming Is Easy?

- Web is overly democratic—All pages are treated equal
- Input independent—For any given non-zero initial input, the iteration will converge to the same stable distribution

Web Spam Is Easy
PageRank can be easily manipulated by having link stuffing!
Why Spamming Is Easy?

- Web is overly **democratic**—All pages are treated equal.
- Input **independent**—For any given non-zero initial input, the iteration will converge to the same stable distribution.

Web Spam Is Easy

PageRank can be easily manipulated by having link stuffing!
Variations of PageRank

- PageRank [L. Page et al., 1998]
- Ranking the Web frontier [N. Eiron et al., 2004]
- Generalize PageRank by damping functions [R. A. Baeza-Yates et al., 2006]
- TrustRank [Z. Gyöngyi et al., 2004]
Variations of PageRank

- PageRank [L. Page et al., 1998]
- Ranking the Web frontier [N. Eiron et al., 2004]
- Generalize PageRank by damping functions [R. A. Baeza-Yates et al., 2006]
- TrustRank [Z. Gyöngyi et al., 2004]
Variations of PageRank

- PageRank [L. Page et al., 1998]
- Ranking the Web frontier [N. Eiron et al., 2004]
- Generalize PageRank by damping functions [R. A. Baeza-Yates et al., 2006]
- TrustRank [Z. Gyöngyi et al., 2004]
Variations of PageRank

- PageRank [L. Page et al., 1998]
- Ranking the Web frontier [N. Eiron et al., 2004]
- Generalize PageRank by damping functions [R. A. Baeza-Yates et al., 2006]
- TrustRank [Z. Gyöngyi et al., 2004]
TrustRank

Main characteristics

- The seed set is selected according to the inverse PageRank.
- The biased PageRank is employed by setting g to be the distribution shared by all the trusted pages found in the first part.
- Advantage—it can combat Web spam.
- Disadvantage—it does not follow the actual users’ behaviors by setting a biased g.

$$x = [(1 - \alpha)g1^T + \alpha A]x \ (1 - \alpha)g1^T + \alpha A$$
TrustRank

- **Main characteristics**
 - The seed set is selected according to the inverse PageRank
 - The biased PageRank is employed by setting \(g \) to be the distribution shared by all the trusted pages found in the first part

- **Advantage**—can combat Web spam
- **Disadvantage**—it does not follow the actual users’ behaviors by setting a biased \(g \)

\[
x = [(1 - \alpha)g1^T + \alpha A]x \quad (1 - \alpha)g1^T + \alpha A
\]
TrustRank

- Main characteristics
 - The seed set is selected according to the inverse PageRank
 - The biased PageRank is employed by setting g to be the distribution shared by all the trusted pages found in the first part

- Advantage—can combat Web spam

- Disadvantage—it does not follow the actual users’ behaviors by setting a biased g

$$x = [(1 - \alpha)g1^T + \alpha A]x \ (1 - \alpha)g1^T + \alpha A$$

Haixuan Yang, Irwin King, and Michael R. Lyu

DiffusionRank: A Possible Penicillin for Web Spamming
TrustRank

- **Main characteristics**
 - The seed set is selected according to the inverse PageRank.
 - The biased PageRank is employed by setting g to be the distribution shared by all the trusted pages found in the first part.

- **Advantage**—can combat Web spam
 - **Disadvantage**—it does not follow the actual users’ behaviors by setting a biased g

\[
x = [(1 - \alpha) g^T + \alpha A] x \quad (1 - \alpha) g^T + \alpha A
\]
TrustRank

- Main characteristics
 - The seed set is selected according to the inverse PageRank
 - The biased PageRank is employed by setting g to be the distribution shared by all the trusted pages found in the first part

- Advantage—can combat Web spam

- Disadvantage—it does not follow the actual users’ behaviors by setting a biased g

$$\mathbf{x} = [(1 - \alpha)\mathbf{g}\mathbf{1}^T + \alpha\mathbf{A}]\mathbf{x} \quad (1 - \alpha)\mathbf{g}\mathbf{1}^T + \alpha\mathbf{A}$$
Heat Diffusion Model

Assumptions

- Pages are not equal
- Different initial temperature distributions will give rise to different temperature distributions after a fixed time period

Haixuan Yang, Irwin King, and Michael R. Lyu
DiffusionRank: A Possible Penicillin for Web Spamming
SIGIR2007, Amsterdam
Variations of PageRank

Heat Diffusion Model

Assumptions

- Pages are **not equal**
- Different initial temperature distributions will give rise to **different temperature distributions** after a fixed time period

Haixuan Yang, Irwin King, and Michael R. Lyu
SIGIR2007, Amsterdam

DiffusionRank: A Possible Penicillin for Web Spamming
Our Contributions

- Propose a novel DiffusionRank
 - Provide a new viewpoint on ranking problems
 - Use random graphs
- Theoretically we show that DiffusionRank generalizes PageRank
 - When the thermal conductivity tends to infinity, DiffusionRank becomes PageRank
 - A finite thermal conductivity setting makes DiffusionRank have the effect of anti-spam
Our Contributions

- Propose a novel DiffusionRank
 - Provide a new viewpoint on ranking problems
 - Use random graphs
- Theoretically we show that DiffusionRank generalizes PageRank
 - When the thermal conductivity tends to infinity, DiffusionRank becomes PageRank
 - A finite thermal conductivity setting makes DiffusionRank have the effect of anti-spam
Our Contributions

- Propose a novel DiffusionRank
- Provide a new viewpoint on ranking problems
- Use random graphs
- Theoretically we show that DiffusionRank generalizes PageRank
 - When the thermal conductivity tends to infinity, DiffusionRank becomes PageRank
 - A finite thermal conductivity setting makes DiffusionRank have the effect of anti-spam
Our Contributions

- Propose a novel DiffusionRank
 - Provide a new viewpoint on ranking problems
 - Use random graphs

- Theoretically we show that DiffusionRank generalizes PageRank
 - When the thermal conductivity tends to infinity, DiffusionRank becomes PageRank
 - A finite thermal conductivity setting makes DiffusionRank have the effect of anti-spam
Our Contributions

- Propose a novel DiffusionRank
 - Provide a new viewpoint on ranking problems
 - Use random graphs
- Theoretically we show that DiffusionRank generalizes PageRank
 - When the thermal conductivity tends to infinity, DiffusionRank becomes PageRank
 - A finite thermal conductivity setting makes DiffusionRank have the effect of anti-spam
Our Contributions

- Propose a novel DiffusionRank
 - Provide a new viewpoint on ranking problems
 - Use random graphs
- Theoretically we show that DiffusionRank generalizes PageRank
 - When the thermal conductivity tends to infinity, DiffusionRank becomes PageRank
 - A finite thermal conductivity setting makes DiffusionRank have the effect of anti-spam
On DiffusionRank

DiffusionRank Defined

- **Undirected Graph**—the amount of the heat flow from \(j \) to \(i \) is proportional to the heat difference between \(i \) and \(j \)

\[
f(1) = e^{\gamma H} f(0), \quad H_{ij} = \begin{cases}
-d(v_j), & j = i, \\
1, & (v_j, v_i) \in E, \\
0, & \text{otherwise}.
\end{cases}
\]

- **Directed Graph**—there is extra energy imposed on the link \((j, i)\) such that the heat flow only from \(j \) to \(i \) if there is no link \((i, j)\)

\[
f(1) = e^{\gamma H} f(0), \quad H_{ij} = \begin{cases}
-1, & j = i, \\
1/d_j, & (v_j, v_i) \in E, \\
0, & \text{otherwise}.
\end{cases}
\]

- **Randomized Directed Graph**—the heat flow is proportional to the probability of the link \((j, i)\)

\[
f(1) = e^{\gamma R} f(0), \quad R_{ij} = \begin{cases}
-1, & j = i, \\
p_{ji}/RD^+(v_j), & \text{otherwise},
\end{cases}
\]
On DiffusionRank

DiffusionRank Defined

- **Undirected Graph**—the amount of the heat flow from \(j \) to \(i \) is proportional to the heat difference between \(i \) and \(j \)

\[
\mathbf{f}(1) = e^{\gamma \mathbf{H}}\mathbf{f}(0), \quad H_{ij} = \begin{cases}
-d(v_j), & j = i, \\
1, & (v_j, v_i) \in E, \\
0, & \text{otherwise}.
\end{cases}
\]

- **Directed Graph**—there is extra energy imposed on the link \((j, i)\) such that the heat flow only from \(j \) to \(i \) if there is no link \((i, j)\)

\[
\mathbf{f}(1) = e^{\gamma \mathbf{H}}\mathbf{f}(0), \quad H_{ij} = \begin{cases}
-1, & j = i, \\
1/d_j, & (v_j, v_i) \in E, \\
0, & \text{otherwise}.
\end{cases}
\]

- **Randomized Directed Graph**—the heat flow is proportional to the probability of the link \((j, i)\)

\[
\mathbf{f}(1) = e^{\gamma \mathbf{R}}\mathbf{f}(0), \quad R_{ij} = \begin{cases}
-1, & j = i, \\
p_{ji}/RD^+(v_j), & \text{otherwise}.
\end{cases}
\]
DiffusionRank Defined

- **Undirected Graph**—the amount of the heat flow from j to i is proportional to the heat difference between i and j

$$f(1) = e^{\gamma H}f(0), \quad H_{ij} = \begin{cases} -d(v_j), & j = i, \\ 1, & (v_j, v_i) \in E, \\ 0, & \text{otherwise}. \end{cases}$$

- **Directed Graph**—there is extra energy imposed on the link (j, i) such that the heat flow only from j to i if there is no link (i, j)

$$f(1) = e^{\gamma H}f(0), \quad H_{ij} = \begin{cases} -1, & j = i, \\ 1/d_j, & (v_j, v_i) \in E, \\ 0, & \text{otherwise}. \end{cases}$$

- **Randomized Directed Graph**—the heat flow is proportional to the probability of the link (j, i)

$$f(1) = e^{\gamma R}f(0), \quad R_{ij} = \begin{cases} -1, & j = i, \\ p_{ji}/RD^+(v_j), & \text{otherwise}. \end{cases}$$
Issues on DiffusionRank

- Temperature distribution $f(1)$ is the ranking vector

$$f(1) = e^{\gamma R}f(0)$$

$$P = \alpha \cdot A + (1 - \alpha) \cdot g \cdot 1^T$$

$$R = -I + P$$

- Initial temperature $f(0)$ setting:
 - Select L trusted pages with highest inverse PageRank score
 - The temperatures of these L pages are 1, and 0 for all others
Issues on DiffusionRank

- Temperature distribution $f(1)$ is the ranking vector

$$f(1) = e^{\gamma R} f(0)$$

$$R_{ij} = \begin{cases}
-1, & j = i, \\
p_{ji} / RD^+(v_j), & \text{otherwise.}
\end{cases}$$

$$P = \alpha \cdot A + (1 - \alpha) \cdot g \cdot 1^T$$

$$g = \frac{1}{n} \cdot 1$$

- Initial temperature $f(0)$ setting:
 - Select L trusted pages with highest inverse PageRank score
 - The temperatures of these L pages are 1, and 0 for all others
Issues on DiffusionRank

Temperature distribution $f(1)$ is the ranking vector

$$f(1) = e^{\gamma}Rf(0)$$

$$P = \alpha \cdot A + (1 - \alpha) \cdot g \cdot 1^T$$

$$R = -I + P$$

Initial temperature $f(0)$ setting:

- Select L trusted pages with highest inverse PageRank score
- The temperatures of these L pages are 1, and 0 for all others
Issues on DiffusionRank

- Temperature distribution $f(1)$ is the ranking vector

 $$f(1) = e^{\gamma R}f(0)$$

 $$P = \alpha \cdot A + (1 - \alpha) \cdot g \cdot 1^T$$

 $$R = -I + P$$

- Initial temperature $f(0)$ setting:
 - Select L trusted pages with highest inverse PageRank score
 - The temperatures of these L pages are 1, and 0 for all others
Summary of DiffusionRank

- It is not over-democratic—Some pages will be born with a high temperature while others with a low temperature.
- It is not input-independent—Different initial temperature distribution will result in a different temperature distribution after a fixed time period.
- It models actual users’ behaviors—Heat diffusion model is established on a random graph describing actual users’ behaviors.
- It has the advantage of anti-manipulation.
Summary of DiffusionRank

- **It is not over-democratic**—Some pages will be born with a high temperature while others with a low temperature.
- **It is not input-independent**—Different initial temperature distribution will result in a different temperature distribution after a fixed time period.
- **It models actual users’ behaviors**—Heat diffusion model is established on a random graph describing actual users’ behaviors.
- **It has the advantage of anti-manipulation**.
Summary of DiffusionRank

- **It is not over-democratic**—Some pages will be born with a high temperature while others with a low temperature.

- **It is not input-independent**—Different initial temperature distribution will result in a different temperature distribution after a fixed time period.

- **It models actual users’ behaviors**—Heat diffusion model is established on a random graph describing actual users’ behaviors.

- **It has the advantage of anti-manipulation**.
Summary of DiffusionRank

- It is not over-democratic—Some pages will be born with a high temperature while others with a low temperature.
- It is not input-independent—Different initial temperature distribution will result in a different temperature distribution after a fixed time period.
- It models actual users’ behaviors—Heat diffusion model is established on a random graph describing actual users’ behaviors.
- It has the advantage of anti-manipulation.
Computational Considerations

- Approximation of the heat kernel $e^{\gamma R}$

$$f(1) = (I + \frac{\gamma}{N} R)^N f(0) \quad f(1) = e^{\gamma R} f(0)$$

$$(I + \frac{\gamma}{N} R)^N \rightarrow e^{\gamma R} \quad \text{when} \quad N \rightarrow \infty$$

- How to set N?

When $\gamma = 1$, $N \geq 30$, the absolute value of real eigenvalues of $(I + \frac{\gamma}{N} R)^N - e^{\gamma R}$ are less than 0.01

When $\gamma = 1$, $N \geq 100$, they are less than 0.005

We use $N = 100$ in the paper
Computational Considerations

- Approximation of the heat kernel $e^{\gamma R}$

$$f(1) = (I + \frac{\gamma}{N} R)^N f(0)$$

$$f(1) = e^{\gamma R} f(0)$$

$(I + \frac{\gamma}{N} R)^N \rightarrow e^{\gamma R}$ when $N \rightarrow \infty$

- How to set N?

Haixuan Yang, Irwin King, and Michael R. Lyu

DiffusionRank: A Possible Penicillin for Web Spamming

SIGIR2007, Amsterdam
Computational Considerations

- Approximation of the heat kernel $e^{\gamma R}$

$$f(1) = (I + \frac{\gamma}{N} R)^N f(0) \quad f(1) = e^{\gamma R} f(0)$$

$$(I + \frac{\gamma}{N} R)^N \to e^{\gamma R} \quad \text{when} \ N \to \infty$$

- How to set N?

Haixuan Yang, Irwin King, and Michael R. Lyu

DiffusionRank: A Possible Penicillin for Web Spamming
On DiffusionRank

Computational Considerations

- Approximation of the heat kernel $e^{\gamma R}$

$$f(1) = (I + \frac{\gamma}{N} R)^N f(0)$$

$$f(1) = e^{\gamma R} f(0)$$

$$(I + \frac{\gamma}{N} R)^N \rightarrow e^{\gamma R} \quad \text{when } N \rightarrow \infty$$

- How to set N?
 - When $\gamma = 1$, $N \geq 30$, the absolute value of real eigenvalues of $(I + \frac{\gamma}{N} R)^N - e^{\gamma R}$ are less than 0.01
 - When $\gamma = 1$, $N \geq 100$, they are less than 0.005
 - We use $N = 100$ in the paper

Haixuan Yang, Irwin King, and Michael R. Lyu

DiffusionRank: A Possible Penicillin for Web Spamming

SIGIR2007, Amsterdam
Computational Considerations

- Approximation of the heat kernel $e^{\gamma R}$

\[
\begin{align*}
 f(1) &= \left(I + \frac{\gamma}{N} R \right)^N f(0) \\
 (I + \frac{\gamma}{N} R)^N &\to e^{\gamma R} \quad \text{when } N \to \infty
\end{align*}
\]

- How to set N?
 - When $\gamma = 1$, $N \geq 30$, the absolute value of real eigenvalues of $(I + \frac{\gamma}{N} R)^N - e^{\gamma R}$ are less than 0.01
 - When $\gamma = 1$, $N \geq 100$, they are less than 0.005
 - We use $N = 100$ in the paper
Computational Considerations

- Approximation of the heat kernel $e^{\gamma R}$

$$
\begin{align*}
\mathbf{f}(1) &= (\mathbf{I} + \frac{\gamma}{N} \mathbf{R})^N \mathbf{f}(0) \\
\mathbf{f}(1) &= e^{\gamma R} \mathbf{f}(0) \\
(\mathbf{I} + \frac{\gamma}{N} \mathbf{R})^N &\rightarrow e^{\gamma R} \quad \text{when } N \rightarrow \infty
\end{align*}
$$

- How to set N?
 - When $\gamma = 1$, $N \geq 30$, the absolute value of real eigenvalues of $(\mathbf{I} + \frac{\gamma}{N} \mathbf{R})^N - e^{\gamma R}$ are less than 0.01
 - When $\gamma = 1$, $N \geq 100$, they are less than 0.005
 - We use $N = 100$ in the paper
Computational Considerations

- Approximation of the heat kernel $e^{\gamma R}$

$$f(1) = (I + \frac{\gamma}{N} R)^N f(0) \quad f(1) = e^{\gamma R} f(0)$$

$$(I + \frac{\gamma}{N} R)^N \to e^{\gamma R} \quad \text{when } N \to \infty$$

- How to set N?
 - When $\gamma = 1$, $N \geq 30$, the absolute value of real eigenvalues of
 $$(I + \frac{\gamma}{N} R)^N - e^{\gamma R}$$
 are less than 0.01
 - When $\gamma = 1$, $N \geq 100$, they are less than 0.005
 - We use $N = 100$ in the paper
The Thermal Conductivity, γ

1. $\gamma = 0$
 The ranking value is most robust to manipulation since no heat is diffused, but the Web structure is completely ignored.

2. $\gamma = \infty$
 DiffusionRank becomes PageRank, it can be manipulated easily.

3. $\gamma = 1$
 DiffusionRank works well in practice.
Importance of γ

1. $\gamma = 0$
 - The ranking value is most robust to manipulation since no heat is diffused, but the Web structure is completely ignored.

2. $\gamma = \infty$
 - DiffusionRank becomes PageRank, it can be manipulated easily.

3. $\gamma = 1$
 - DiffusionRank works well in practice.
Importance of γ

1. $\gamma = 0$
 The ranking value is most robust to manipulation since no heat is diffused, but the Web structure is completely ignored.

2. $\gamma = \infty$
 DiffusionRank becomes PageRank, it can be manipulated easily.

3. $\gamma = 1$
 DiffusionRank works well in practice.
Applications of DiffusionRank

On DiffusionRank

Applications of DiffusionRank

Group-to-group Relations

Classification

The amount of heat flow from all pages in one department to another

Temperature distribution at time 1:
(0.17, 0.16, 0.17, 0.16, 0.16, 0.12, 0.02,
−0.07, −0.18, −0.22, −0.24, −0.24)

Haixuan Yang, Irwin King, and Michael R. Lyu

DiffusionRank: A Possible Penicillin for Web Spamming

SIGIR2007, Amsterdam
Applications of DiffusionRank

Group-to-group Relations

The amount of heat flow from all pages in one department to another

Classification

Temperature distribution at time 1:
(0.17, 0.16, 0.17, 0.16, 0.16, 0.12, 0.02, −0.07, −0.18, −0.22, −0.24, −0.24)
Experimental Set-Up

- Dataset
 - A toy graph (6 nodes)
 - A middle-size graph (18,542 nodes)
 - A large-size graph crawled from CUHK (607,170 nodes)

- Normalize the rank scores: the sum is the number of nodes

- Parameter settings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td># iterations</td>
<td>100</td>
</tr>
<tr>
<td>γ</td>
<td>thermal conductivity</td>
<td>1 (best)</td>
</tr>
<tr>
<td>L</td>
<td># trusted pages</td>
<td>1</td>
</tr>
<tr>
<td>g</td>
<td>random jump distribution</td>
<td>uniformly (w/o a priori)</td>
</tr>
<tr>
<td>α</td>
<td>probability following actual links</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Experiment I

- Tendency of DiffusionRank
 Rank value difference between \(\{A_i\} \) and \(\{B_i\} \): \(\sum |A_i - B_i| \)

- Compare with TrustRank and PageRank on variation of rank values
 When the number of newly added nodes for manipulation is increased

- Compare with TrustRank and PageRank on variation of order difference
 Order difference between \(\{A_i\} \) and \(\{B_i\} \) is measured by the number of all occurrences of the following cases:
 \[|A_i - A_j| > 0.1 \& (A_i - A_j) \times (B_i - B_j) < 0 \]
 \[|B_i - B_j| > 0.1 \& (A_i - A_j) \times (B_i - B_j) < 0 \]
Experiment II

- Inverse PageRank scores:

 \[4 > 3 > 1 > 2 > 6 > 5 \]

- If node 4 has not been manipulated, then node 4 can be trusted, otherwise node 3 should be trusted.
Variation of Rank Values on the Toy Data Set
Experiments

Variation of Rank Values on Two Larger Datasets

Haixuan Yang, Irwin King, and Michael R. Lyu
DiffusionRank: A Possible Penicillin for Web Spamming

SIGIR2007, Amsterdam
Variation of Order Difference on the Larger Dataset

Haixuan Yang, Irwin King, and Michael R. Lyu
DiffusionRank: A Possible Penicillin for Web Spamming
SIGIR2007, Amsterdam
Variation of Order Difference on the Larger Dataset

Haixuan Yang, Irwin King, and Michael R. Lyu

DiffusionRank: A Possible Penicillin for Web Spamming

SIGIR2007, Amsterdam
Conclusion

- DiffusionRank combats Web spamming
- DiffusionRank is a generalization of PageRank when $\gamma = \infty$
- DiffusionRank can be employed to detect group-to-group relations
- DiffusionRank can be used for classification

Future Work

- Investigate the actual users' behaviors for random jumps, g
- What are the optimal values for L
- Commercial applications $\$$

Haixuan Yang, Irwin King, and Michael R. Lyu

DiffusionRank: A Possible Penicillin for Web Spamming

SIGIR2007, Amsterdam
Looking Into the Crystal Ball...

Conclusion

- DiffusionRank combats *Web spamming*
- DiffusionRank is a *generalization* of PageRank when $\gamma = \infty$
- DiffusionRank can be employed to detect *group-to-group relations*
- DiffusionRank can be used for *classification*

Future Work

- Investigate the actual users' behaviors for random jumps, g
- What are the optimal values for L
- Commercial applications $\$$
Looking Into the Crystal Ball...

Conclusion
- DiffusionRank combats **Web spamming**
- DiffusionRank is a **generalization** of PageRank when $\gamma = \infty$
- DiffusionRank can be employed to detect **group-to-group relations**
- DiffusionRank can be used for **classification**

Future Work
- Investigate the actual users’ behaviors for random jumps, g
- What are the optimal values for L
- Commercial applications $$

Haixuan Yang, Irwin King, and Michael R. Lyu
SIGIR2007, Amsterdam
DiffusionRank: A Possible Penicillin for Web Spamming
Conclusion

- DiffusionRank combats Web spamming
- DiffusionRank is a generalization of PageRank when $\gamma = \infty$
- DiffusionRank can be employed to detect group-to-group relations
- DiffusionRank can be used for classification

Future Work

- Investigate the actual users' behaviors for random jumps, g
- What are the optimal values for L
- Commercial applications $\$$

Haixuan Yang, Irwin King, and Michael R. Lyu

DiffusionRank: A Possible Penicillin for Web Spamming

SIGIR2007, Amsterdam
Looking Into the Crystal Ball...

Conclusion

- DiffusionRank combats Web spamming
- DiffusionRank is a generalization of PageRank when $\gamma = \infty$
- DiffusionRank can be employed to detect group-to-group relations
- DiffusionRank can be used for classification

Future Work

- Investigate the actual users’ behaviors for random jumps, g
- What are the optimal values for L
- Commercial applications $$
Conclusion

- DiffusionRank combats Web spamming
- DiffusionRank is a generalization of PageRank when $\gamma = \infty$
- DiffusionRank can be employed to detect group-to-group relations
- DiffusionRank can be used for classification

Future Work

- Investigate the actual users’ behaviors for random jumps, g
- What are the optimal values for L
- Commercial applications $$
DiffusionRank combats Web spamming
DiffusionRank is a generalization of PageRank when $\gamma = \infty$
DiffusionRank can be employed to detect group-to-group relations
DiffusionRank can be used for classification

Future Work
- Investigate the actual users’ behaviors for random jumps, g
- What are the optimal values for L
- Commercial applications $\$$

Haixuan Yang, Irwin King, and Michael R. Lyu
DiffusionRank: A Possible Penicillin for Web Spamming
SIGIR2007, Amsterdam