
A QoS-Aware Middleware for Fault Tolerant
Web Services

Zibin Zheng and Michael R. Lyu

Department of Computer Science & Engineering
The Chinese University of Hong Kong

Hong Kong, China

ISSRE 2008, Seattle, USA, 11-14 November, 2008

2

Outlines

1. Introduction
2. A QoS-Aware Middleware
3. Fault Tolerance Strategies
4. Dynamic Strategy Selection Algorithms
5. Experiments
6. Conclusion and Future Work

3

1. Introduction
• Web services are becoming popular.
• Reliability of the service-oriented applications becomes

difficult to be guaranteed.
– Remote Web services may contain faults.
– Remote Web services may become unavailable.
– The Internet environment is unpredictable.

Service Oriented Application

W eb service 1

W eb service 2

W eb service n

x x
x

x

4

1. Introduction
• Traditional software reliability engineering

– Fault Tolerance is a major approach for building highly reliable
system.

– Expensive.

• Service reliability engineering
– Abundant Web service candidates with identical/similar interface.
– Less expensive & less time-consuming.

• The Internet environment is highly dynamic
– Network condition changes.
– Software/hardware updates of the Web services.
– Server workload changes.

5

1. Introduction

For a service user:

• Design time:
1. Which Web service is the best to choose?
2. What are the available fault tolerance strategies?
3. Which fault tolerance strategy is optimal?

• Run time:
3. How to automatically determine the optimal fault

tolerance strategy in a highly dynamic environment?

Lyric server 1

Lyric server 2

Lyric server n

6

1. Introduction

• A QoS-Aware Middleware for Fault Tolerant (FT)
Web Services.
– A user-collaborated QoS model

• YouTube: sharing videos.
• Wikipedia: sharing knowledge.
• Sharing QoS information of target Web services.

– Record QoS information of target Web services and
exchange it with other service users

– Determine the optimal fault tolerance strategy
dynamically at runtime based on the QoS information

7

2. QoS-Aware Middleware

• The need for overall QoS information (different
locations and access time) of target Web services:
– Service users

• Web service selection and ranking.
• Optimal fault tolerance strategy selection.

– Service providers
• Performance of their own Web service from different users.
• Providing better services.

• The overall QoS information is difficult to obtain
– Time-consuming
– Expensive

8

1. Coordinator address.

2. Replica list and QoS.

3. Optimal FT strategy.

4. Record QoS data.

5. Exchange QoS data.

6. Adjust for the optimal FT
strategy.

User-collaborated QoS-Aware Middleware

2. QoS-Aware Middleware

9

2. QoS-Aware Middleware

• How to obtain functional identical
Web services?
– Machine learning techniques for automatic

identification.
– Service Communities: define a common

interface so that the Web services provided
by different organizations have the same
functionality, although with different levels of
non-functional quality of service (QoS).

10

2. QoS-Aware Middleware

Replica list, Overall performance information

Individual Performance information

Replica list, Overall performance information

Individual Performance information

Replica l ist, Overall performance information

Coordinator

User
Replica list, Overall performance information

Individual Performance information

Replica list, Overall performance information

Individual Performance information

Replica l ist, Overall performance information

• Users share QoS information of the target Web services via the
coordinator of the service community.

• WS-DREAM: Web Service Distributed REliability Assessment Mechanism.
• Middleware: users can close the data exchange functionality.
• BitTorrent: users can close the upload.

11

3. Fault Tolerance Strategies

f: failure rate t: access time
• Retry

• Recovery Block

12

3. Fault Tolerance Strategies

• N-Version Programming (NVP)

• Active

13

3. Fault Tolerance Strategies

• Dynamic sequential strategy (Retry+RB)

• Dynamic parallel strategy (NVP+Active)
: u replicas in parallel, first v for voting.

14

4. Selection Algorithm

the largest RTT that the application can afford.

the largest failure-rate that the application can
tolerate.

the largest resource consumption constraint.

the mode can be set by the service users to
be sequential, parallel, or auto.

User requirements:

15

4. Selection Algorithm
The QoS model:

16

4. Selection Algorithm
• The users may not be willing to store a lot of

historical data.
• Without historical data, it is difficult to make

QoS predictions.
Solution: Store the distribution
• Dividing the time into k timeslots.
• k+2 counters for k timeslots, fl and fn.

• for calculating the probability of a
certain RTT belongs to a certain category.

17

4. Selection Algorithm
RTT Prediction:

18

4. Selection Algorithm

min(Tv): Active strategy.
max(Tv): NVP.
middle(Tv, x): v parallel replicas and employs the first x response for voting.

RTT Prediction:

19

• Sequential or parallel strategy determination:

• Dynamic sequential strategy determination:

• Dynamic parallel strategy determination:
– RTT prediction algorithm
– Combination numbers:

4. Selection Algorithm

Degradation factor

20

5. Experiments
• The experimental system is implemented by JDK6.0,

Eclipse3.3, Axis2.0, and Tomcat6.0.

• Developed six Web services following an identical
interface to simulate replicas in a same service
community.

• The six Web services and the community coordinator are
deployed on seven PCs.
– Pentium(R) 4 CPU 2.8 GHz, 1G RAM;
– 100Mbits/sec Ethernet card;
– Windows XP operating system.

21

5. Experiments

• The new Dynamic approach gets
the best overall performance.

• Similar to the Active strategy.
• With good RTT performance for

User 1.

22

5. Experiments

23

5. Experiments

1. Traditional static fault tolerance strategies do not get good results
consistently.

2. The proposed dynamic strategy obtains the best overall
performance for all the six users in the experiments.

24

6. Conclusion and Future Work

Conclusion
An innovative QoS-aware middleware approach
was proposed for reliable Web services

Dynamic fault tolerance replication strategies.
Dynamic replication strategy selection algorithm.

Encouraging experimental results were obtained.

Future work
Investigating more QoS properties.
Evaluation of stateful Web services.

A QoS-Aware Middleware for Fault Tolerant
Web Services

Zibin Zheng and Michael R. Lyu

The Chinese University of Hong Kong
Hong Kong, China

Questions?

ISSRE 2008, Seattle, USA, 11-14 November, 2008

