A QoS-Aware Middleware for Fault Tolerant
Web Services

Zibin Zheng and Michael R. Lyu

Department of Computer Science & Engineering
The Chinese University of Hong Kong
Hong Kong, China

ISSRE 2008, Seattle, USA, 11-14 November, 2008

Outlines

Introduction

A QoS-Aware Middleware

Fault Tolerance Strategies

Dynamic Strategy Selection Algorithms
Experiments

Conclusion and Future Work

o 0k bR

1. Introduction

 Web services are becoming popular.

« Reliablility of the service-oriented applications becomes
difficult to be guaranteed.
— Remote Web services may contain faults.
— Remote Web services may become unavailable.
— The Internet environment is unpredictable.

W

Service Oriented lication Web service 2
:
]
]
1
1
1

Web service n

(A

1. Introduction

* Traditional software reliability engineering

— Fault Tolerance is a major approach for building highly reliable
system.

— EXxpensive.
« Service reliability engineering
— Abundant Web service candidates with identical/similar interface.
— Less expensive & less time-consuming.
* The Internet environment is highly dynamic
— Network condition changes.

— Software/hardware updates of the Web services.
— Server workload changes.

1. Introduction

For a service user: -

5 b

2. TA i.///ol/
-8 @

N n

e Design time:
1. Which Web service is the best to choose?
2. What are the available fault tolerance strategies?
3. Which fault tolerance strategy is optimal?

e Runtime:

3. How to automatically determine the optimal fault
tolerance strategy in a highly dynamic environment?

<
s (77

g >
3

5

1. Introduction

A QoS-Aware Middleware for Fault Tolerant (FT)
Web Services.

— A user-collaborated QoS model
e YouTube: sharing videos.
* Wikipedia: sharing knowledge.
« Sharing QoS information of target Web services.

— Record QoS information of target Web services and
exchange it with other service users

— Determine the optimal fault tolerance strategy
dynamically at runtime based on the QoS information

2. QoS-Aware Middleware

The need for overall QoS information (different
locations and access time) of target Web services:

— Service users
* Web service selection and ranking.
« Optimal fault tolerance strategy selection.

— Service providers
 Performance of their own Web service from different users.
* Providing better services.

The overall QoS information is difficult to obtain
— Time-consuming
— EXpensive

2. QoS-Aware Middleware

)

Application Logic

QoS-Aware Middleware

Dynamic
Selector

Auto-
updater

| Communicator

4

Y

UDDI Registry|

A

y

App2 |e===- Appn ‘ Service Community Broker ‘

A

A A

@

Communication Bus

Service Community A I

Service Community B

Web Service A2 -~

_w{ Coordinator A _w{ Coordinator B
tVeb Service A1 * tveb Service B1 } _

Web Service An |/

Web Service B2 -~

Web Service Bm |/

1. Coordinator address.
2. Replica list and QoS.
3. Optimal FT strategy.
4. Record QoS data.

5. Exchange QoS data.

6. Adjust for the optimal FT
strategy.

User-collaborated QoS-Aware Middleware

2. QoS-Aware Middleware

e How to obtain functional identical
Web services?

— Machine learning techniques for automatic
identification.

— Service Communities: define a common
Interface so that the Web services provided
by different organizations have the same
functionality, although with different levels of
non-functional quality of service (Qo0S).

2. QoS-Aware Middleware

% Coordinator

Replica list, Overall performance information

- - - - - -

Users share*QoS information of the target Web services via the
coordinator of the service community.

WS-DREAM: Web Service Distributed REliability Assessment Mechanism.
Middleware: users can close the data exchange functionality.
BitTorrent: users can close the upload. 10

3. Fault Tolerance Strategies

f: fallure rate t: access time
 Retry

m

f=rm = k()
1=1

 Recovery Block

m m

i1
f:Hfi§ tzztink
i=1

1=1 k=1

11

3. Fault Tolerance Strategies

e N-Version Programming (NVP)

f = Z F(i); t = max({t;};_)

e Active

Crr. .. [min(T.):|T. >0
f= 1:[1 Jiit = { max(7) : [1T| =0

12

3. Fault Tolerance Strategies

 Dynamic sequential strategy (Retry+RB)

my

f Hfm f— Tfflefm

?1)1

« Dynamic parallel strategy (NVP+Active)

middle(v,T,) :ureplicas in parallel, first v for voting.

= _l,-"'ll 2 —+ 1

—~ -m-zdzf_(Lo = v
Z Fi)it = { max (7 \T | < v

13

4. Selection Algorithm

User requirements:

IL?'.I'IEIJ'

Jll: Taxr.

Vmnmar -

.*Hmfr*:

the largest RTT that the application can afford.

the largest failure-rate that the application can
tolerate.

the largest resource consumption constraint.

the mode can be set by the service users to
be sequential, parallel, or auto.

14

4. Selection Algorithm

The QoS model:

e 1,4 : the average RTT of the target replica.

e 7.+q : the standard deviation of RTT of the target
replica.

e f/ :the logic failure-rate of the target replica.

e fn :the network failure-rate of the target replica.

15

4. Selection Algorithm

 The users may not be willing to store a lot of
historical data.

e Without historical data, it is difficult to make
QoS predictions.

Solution: Store the distribution
e Dividing the time 1., Into k timeslots.
e k+2 counters for k timeslots, fl and fn.

C;

. "7 YH7. for calculating the probability of a

certain RTT belongs to a certain category.

16

4. Selection Algorithm

RTT Prediction:

Problem 1 Given:

{ws;}i_: a set of target replicas for prediction.

{pi }ﬁ“ff for replica i (1 < ¢ < v), the probability of

an RTT belonging to different categories.
{t;}¥_,: the RTT value of the time slot 4, which can be
calculated by t; = (tmax X 1)/k — tmaz/(2 X k).

T, = {rtt;};_,: aset of RTT of the v replicas, where
the probability of rtt; belonging to the time slot £ 1s
provided by p; 1.

Find out:

E(min(7,)): the average response time by invoking
all the v replicas in parallel for many times, where
function min(7;,) stands for the minimal RTT value
of all the {rtt;}5_.

17

4. Selection Algorithm

RTT Prediction:

K
E(min(7,)) = Z{P[min[ﬂ;j ——t;) X ;)
i=1

P(min(7,) ==1t;) = P(min(7,) <t;) — P(min(7,) < t;,_1)

P(min(7,) <t;) =P(rtt, <t;)) +P(rtt, > t;) x P(mn(7,_¢) < t;)

;
P(rtt; < t;) = ZP@',A:
k=1

min(Tv): Active strategy.
max(Tv): NVP.
middle(Tv, x): v parallel replicas and employs the first x response for voting.

18

4. Selection Algorithm

e Sequential or parallel strategy determination:

ti fi T
Pi = - -+
IL".nr'.m:a.‘tr f Tar Tmax

 Dynamic sequential strategy determination:

. f —f ',: - "',
Degradation factor . = — X (F— + fi1 fl)

m ‘max f?n azx

 Dynamic parallel strategy determination:
— RTT prediction algorithm
— Combination numbers: ¢ = ™

vIx(n—uv)!

19

5. Experiments

 The experimental system is implemented by JDK6.0,
Eclipse3.3, Axis2.0, and Tomcat6.0.

* Developed six Web services following an identical
Interface to simulate replicas in a same service
community.

* The six Web services and the community coordinator are
deployed on seven PCs.
— Pentium(R) 4 CPU 2.8 GHz, 1G RAM,;
— 100Mbits/sec Ethernet card,;
— Windows XP operating system.

20

5. Experiments

Table 1. Service Users and Requirements

Users | tmas |

fmax | Pma | Focus

User 1 1000
User 2 2000
User 3 4000
User4 | 10000
User 5 | 15000
User 6 | 20000

0.1
0.01
0.03
0.02

0.005
0.0001

50
20
2
1
3
80

RTT
RTT, Fail

Res
Fail, Res
Fail

RTT, Fail, Res

Table 3. Experimental Results of User 1

| U || Strategies ‘ All ‘ RIT ‘ Fail ‘ Res | Perf ‘ °

Retry
RB

L nvp
Active
Dynamic

50000
50000
50000
50000
50000

420
420
839
251
266

2853 1
2808 1
2 5
110 6
298 | 2.34

1.011
1.002
0.939
0.393
0.372

Table 2. Parameters of Experiments

| ‘ Parameters | Setting
| | Number of replicas 6
2 | Network fault probability (.01
3 | Logic fault probability (.0025
4 | Permanent fault probability (.05
5 | Number of time slots 20
6 | Performance degradation threshold (a) | 2
7 | Replica number of NV P 5
& | Parallel replica number of Active 6
9 | Dynamic degree 20

The new Dynamic approach gets
the best overall performance.

Similar to the Active strategy.

With good RTT performance for
User 1.

21

5. Experiments

Table 1. Service Users and Requirements

| Users | twax | fmaz | Pmax | Focus |
User 1 1000 0.1 50 | RIT
User 2 2000 0.01 20 | RTT, Fail
User 3 4000 0.03 2 | RTT, Fail, Res
User4 | 10000 0.02 1 | Res
User 5 | 15000 0.005 3 | Fail, Res
User 6 | 20000 | 0.0001 80 | Fail

Table 5. Experimental Results of User 3

U || Strategies All ETIT | Fail | Res | Perf
Retry 50000 | 438 | 155 1 0717
FB 50000 | 457 | 149 1| 0713
3|l NvP 50000 | 845 1 51 272
Active 50000 | 248 | 138 6] 3.134
Drymamuc 50000 | 436 | 141 1 0.708
Table 6. Experimental Results of User 4

| U || Strategies | All | RTT | Fail | Res [Perf |
Fetry 50000 | 498 | 145 1| 1.194
FB 50000 | 483 | 131 1| 1.180
= || NVP 50000 | 8562 1 5| 5.087
Active 50000 | 251 | 119 6] 614
Drmamic 50000 | 4984 | 109 1| 1.158

Table 4. Experimental Results of User 2

| U || Strategies | Al | RTT | Fail | Res | Perf |
Retry 50000 | 471 | 285 1 | 5.985
RB 50000 | 469 | 283 1| 5.944
2 || NVP 50000 | 835 0 510677
Active 50000 | 253 | 126 6 | 2.946
Dynamic 50000 395 3 403 | 0.459
Table 7. Experimental Results of User 5
U || Strategies All BETT | Fail | Res Perf
Retry 0000 454 | 113 1| 0.823
i RB 0000 450 21 1| 0.847
2 || NWP 50000 779 0 51 1718
Active 0000 249) 123 g | 2.516
Dyvnamie 0000 | 489 60 | 1.46 | 0.759

Table 8. Experimental Results of User &

| U | Strategies | Al | RTT | Fail | Res | Parf |

Retry 30000 | 470 [146 20236
EB 30000 | 468 [119 1 [23.835
& || nvp 30000 | 838 1 50 0304
Active 30000 | 248 [132 § | 26487
Dynamme | 30000 | 473 1| 3.56 | 0.2682

22

5. Experiments

30 T
I -ty
o = _
| |
[Aci
I 0 amic
20
.
T 15fF
e
3
o - £ p r
i fi i
pi = ——+ +
5 f??lﬂ--l-’ fTT?-{I o ? TrLor

Figure 3. Overall Performance of Strategies

1. Traditional static fault tolerance strategies do not get good results
consistently.

2. The proposed dynamic strategy obtains the best overall

performance for all the six users in the experiments. -

6. Conclusion and Future Work

® Conclusion

An innovative QoS-aware middleware approach
was proposed for reliable Web services
Dynamic fault tolerance replication strategies.
Dynamic replication strategy selection algorithm.

Encouraging experimental results were obtained.

® Future work

Investigating more QoS properties.
Evaluation of stateful Web services.

24

A QoS-Aware Middleware for Fault Tolerant
Web Services

Zibin Zheng and Michael R. Lyu

The Chinese University of Hong Kong
Hong Kong, China

Questions?

ISSRE 2008, Seattle, USA, 11-14 November, 2008

