
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002100

Regularization Parameter Estimation for

Feedforward Neural Networks

Ping Guo, Michael R. Lyu and C.L. Philip Chen

P. Guo is with the Department of Computer Science, Beijing Normal University, Beijing, 100875, P. R. China.

E-mail: pguo@elec.bnu.edu.cn.

M.R. Lyu is with the Department of Computer Science & Engineering, The Chinese University of Hong Kong,

Shatin, NT, Hong Kong. E-mail: lyu@cse.cuhk.edu.hk.

C.L.P. Chen is with the Department of Computer Science & Engineering, Wright State University, Dayton, OH,

45435, USA. E-mail: pchen@cs.wright.edu.

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002101

Abstract

Under the framework of the Kullback-Leibler distance, we show that a particular case of Gaussian

probability function for feedforward neural networks reduces into the first order Tikhonov regularizer.

The smooth parameter in kernel density estimation plays the role of the regularization parameter. Under

some approximations, an estimation formula is derived for estimating regularization parameters based on

training data sets. The similarity and difference of the obtained results are compared with other’s work.

Experimental results show that the estimation formula works well in the sparse and small training sample

cases.

Keywords

Tikhonov Regularizer, Regularization Parameter Estimation, Small Training Data Set.

I. Introduction

It is well known that the goal of training neural networks is not to learn an exact repre-

sentation of the training data itself, but rather to build a statistical model of the process

which generates the data. In practical applications of a feedforward neural network, if the

network is over-fit to the noise on the training data, especially for the small-number train-

ing samples case, it will memorize training data and give poor generalization. To control

an appropriate complexity of the network can improve generalization. There are two main

approaches for this purpose: model selection and regularization. Model selection for a

feedforward neural network requires choosing the number of hidden neurons and thereof

connection weights. The common statistical approach to model selection is to estimate the

generalization error for each model and to choose the model minimizing this error[1],[2].

Regularization involves constraining or penalizing the solution of the estimation problem

to improve network generalization ability by smoothing the predictions[3],[4]. Most com-

mon regularization methods include weight decay[5] and addition of artificial noise to the

inputs during training[6],[7].

Regularization method is widely used for smoothing output[8],[9]. A value of the reg-

ularization parameter is determined by using the statistical techniques such as cross-

validation[10], bootstrapping[11], and Bayesian method[12]. Most work uses a validation

set to select the regularization parameter[13],[14],[15],[16]. This requires to split a given

data set into training and validation sets. The optimal selection of the regularization pa-

rameter on the validation set sometimes depends on how to partition the data set. For a

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002102

small-number data set, we usually use leave-one-out cross-validation method. However, a

recent study shows that cross-validation performance is not always good in the selection

of linear models[17].

In this paper, under the framework of the Kullback-Leibler (KL) distance[18],[19] we

show that a particular case of the system entropy reduces into the first order Tikhonov

regularizer. The smoothing parameter in the kernel density function plays the role of

the regularization parameter. Under some approximations, an estimation formula can

be derived for estimating the regularization parameter based on the training data set.

There is a lot of research work in smoothing parameter estimation of kernel density func-

tion[21],[22],[23]; however, in this paper we only focus on comparing the obtained result

with the maximum a posteriori (MAP) framework[12]. Experimental results show that

the newly derived estimation formula works well in the sparse and small training sample

cases.

II. System Probability Function

When given a data set D = {xi, zi}Ni=1, we consider that the data can be modelled by a

probability function. In one particular design, we can let kernel density of the given data

set D be ph(x, z), and on the other hand, the mapping architecture is denoted as a joint

probability function P (x, z) on the data set D. The relative entropy or Kullback-Leibler

distance for this particular system is denoted by J(h,Θ) cost function, where Θ stands for

a parameter vector, then the quantity of interest is the “distance” of these two probability

functions, which can be measured as follows[18],[19]:

J(h,Θ) =

∫∫
ph(x, z) ln

ph(x, z)

P (x, z)
dxdz

= −
∫∫

ph(x, z) lnP (z|x,Θ)dxdz

+

∫∫
ph(x, z) ln

ph(x, z)

P0(x)
dxdz, (1)

where we use the notation of Bayes theorem,

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002103

P (x, z) = P (z|x,Θ)P0(x). (2)

P (z|x,Θ) is a parameter conditional probability and P0(x) is a prior probability function.

We define

J1(h,Θ) ≡ −
∫∫

ph(x, z) lnP (z|x,Θ)dxdz, (3)

J2(h) ≡
∫∫

ph(x, z) ln ph0(x, z)dxdz,

ph0(x, z) ≡ ph(x, z)

P0(x)
. (4)

J1(h,Θ) is related to network parameter vector Θ, and smoothing parameter h =

{hx, hz}. J2(h) can be considered as the negative cross entropy of data distribution func-

tions, and it is only related to the smoothing parameter h.

Now Eq. (1) becomes

J(h,Θ) = J1(h,Θ) + J2(h). (5)

We can assign a prefixed kernel function K(·) and smoothing parameters hx, hz for

nonparametric density estimation[20],[21] of ph(x, z) for a given discrete training data set

D, where the kernel density function[21] is

phx(x) =
1

N

∑

xi∈D
Khx(x− xi),

Khx(x− xi) =
1

hdx
K(

x− xi
hx

), (6)

where N represents the number of samples in the data set D, d is the dimension of a

random variable x, and the joint distribution ph(x, z) in this work is designed as

ph(x, z) =
1

N

∑

xi,zi∈D
Khx(x− xi)Khz(z− zi). (7)

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002104

The mostly used kernel density function is Gaussian kernel,

Kh(r) = G(r, 0, hId) =
1

(2πh)d/2
exp{−||r||

2

2h
}. (8)

In the kernel density function, Id is a d× d dimensional identity matrix. In this paper,

we use {dx, dz} to represent the dimension of input x and output z vector, respectively.

According to the principle of minimum description length (MDL)[25],[26], the best model

class for a set of observed data is the one whose representative permits the shortest coding

of the data, then the system should be optimized with optimal or ideal codelength. The

parameters hx, hz should be chosen with minimized Kullback–Leibler distance function

based on the given data set according to

{hx, hz} = arg minhJ(h,Θ∗), (9)

where Θ∗ is the learned neural network parameter and J(h,Θ) is represented by Eq. (1).

In the following sections we will discuss the regularization problem with a finite training

data set D.

III. Tikhonov Regularizer

When estimating network parameter by Maximum Likelihood (ML) learning, we mini-

mize the function J(h,Θ) to find the network parameter Θ with a fixed parameter h. For

a particular design, the conditional probability function can be written in the form

P (z|x,Θ) = P (z|f(x,Θ)) (10)

where f(x,Θ) is a function of input variable x and parameter Θ.

In the network parameter learning procedure, only J1 is involved because J2 does not

contain the parameter Θ.

To evaluate the function J1, one of the techniques is the well-known Monte Carlo in-

tegration[27],[28]. In the Monte Carlo integration approximation, when substituting Eqs.

(7) and (10) into Eq. (3), integration can be approximated by summation, and we obtain

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002105

J1(h,Θ) = − 1

N ′

N ′∑

i=1

lnP (z′i|f(x′i,Θ)), (11)

where

x′i = xi + ex, z′i = zi + ez. (12)

ex, ez are data points drawn from distribution ph(x, z). In this case, J1(h,Θ) is equiv-

alent to a negative likelihood function of the system.

In the Monte Carlo integration approximation, we need to generate a number of data

sets, which is very computation-intensive.

Another method is the Taylor expansion approximation for an integral, which we use in

this paper,

J1(h,Θ) = −
∫∫

ph(x, z) lnP (z|f(x,Θ))dxdz. (13)

When we consider one special case, P (z|f(x,Θ)) = G(z, g(x,W), σ2Idz) is Gaussian

density function,

G(z, g(x,W), σ2Idz) =
1

(2πσ2)dz/2
exp[− 1

2σ2
||z− g(x,W)||2]

J1(h,Θ) = −
∫∫

ph(x, z) lnG(z, g(x,W), σ2Idz)dxdz

=

∫∫
ph(x, z)[

1

2σ2
||z− g(x,W)||2]dxdz

+
dz
2

ln 2πσ2 (14)

where g(x,W) is a neural network mapping function. For example, in three-layer feedfor-

ward neural network with k hidden neurons case,

g(x,W) = S(Wz|y · S(Wy|x · x)). (15)

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002106

W = {Wz|y,Wy|x} is a network weight parameter vector, Wy|x is a dx × k matrix which

connects the input space Rx and the hidden space Ry, Wz|y is a k × dz matrix which

connects the hidden space Ry and the output space Rz. S(·) is a sigmoidal function,

S(x) =
1

1 + e−x
. (16)

Eq. (14) will result in the traditional sum-square-errors function in the maximum like-

lihood learning case at the limit of h → 0, when we omit some factors irrelevant to the

network weight parameter W .

Based on consideration of that random noise is added to the input data only during

training, Bishop[29] proved that in ML estimation case, Eq. (11) can be reduced to the

first order Tikhonov regularizer[30] for feedforward neural network with approximations.

On the other hand, addition of random noise to the input data is equivalent to smoothing

in kernel density estimation, thus we can also obtain the same result directly from Eq.

(13).

Let f(x, z, w) = ||z− g(x,W)||2, f(x, z, w) is a scale function of vector variable x and

z. When we expand f(x, z, w) as a Taylor series in powers of ∆x = x− xi, ∆z = z− zi

and denote f ′(xi, z, w) = ∇xf(xi, z, w). When taking only up to the second order term,

then we obtain

f(x, z, w) ≈ f(xi, zi, w) + (f ′x)
T∆x

+
1

2
(∆x)Tf ′′x∆x + (∆x)Tf ′′x,z∆z

+(f ′z)
T∆z +

1

2
(∆z)Tf ′′z ∆z (17)

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002107

Eq. (14) becomes

J1(h,Θ) =

∫∫
ph(x, z)[

1

2σ2
f(x, z, w)]dxdz

+
dz
2

ln 2πσ2

≈ 1

2Nσ2

N∑

i=1

∫∫
G(x,xi, hxIdx)G(z, zi, hzIdz)

×[f(xi, zi, w) + (f ′x)
T∆x +

1

2
(∆x)Tf ′′x∆x

+(f ′z)
T∆z + (∆x)Tf ′′x,z∆z

+
1

2
(∆z)Tf ′′z ∆z]dxdz +

dz
2

ln 2πσ2 (18)

Notice that for any density function, the integration in the whole space should be equal

to one, i.e.,

∫∫
G(x,xi, hxIdx)G(z, zi, hzIdz)dxdz = 1 (19)

∫∫
G(x,xi, hxIdx)G(z, zi, hzIdz)f(xi, zi, w)dxdz

= f(xi, zi, w) = ||zi − g(xi,W)||2 (20)

For Gaussian type function integrals[6], we can obtain

∫∫
G(x,xi, hxIdx)G(z, zi, hzIdz)

×[(f ′x)
T∆x + (f ′z)

T∆z]dxdz = 0,∫∫
G(x,xi, hxIdx)G(z, zi, hzIdz)

×[(∆x)T f ′′x,z∆z]dxdz = 0. (21)

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002108

∫∫
G(x,xi, hxIdx)G(z, zi, hzIdz)

×[
1

2
(∆x)Tf ′′x∆x]dxdz

=
hx
2

trace[f ′′x] (22)

= hx{||g′(x,W)||2 − ||[zi − g(xi,W)]g′′(xi,W)||}

∫∫
G(x,xi, hxIdx)G(z, zi, hzIdz)

×[
1

2
(∆z)Tf ′′z ∆z]dxdz

=
hz
2

trace[f ′′z] = dzhz (23)

With the above results, the integration becomes

J1(h,Θ) =

∫∫
ph(x, z)[

1

2σ2
f(x, z, w)]dxdz

+
dz
2

ln 2πσ2

≈ 1

2Nσ2

N∑

i=1

{||zi − g(xi,W)||2

+hx[||g′(x,W)||2

−||(zi − g(xi,W))g′′(xi,W)||]}

+hz
dz

2σ2
+
dz
2

ln 2πσ2 (24)

Because the term hzdz/2σ
2 in the above equation is not implicitly related to the network

weight parameter W , we can omit this term in weight parameter learning. This also

illustrates that smoothing on output cannot improve network generalization, thus we can

let hz → 0 without loss of generality. The last term in the above equation is irrelevant to

the weight parameter, and can be neglected too[6]. Now the equation becomes

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002109

J1(h,Θ) ≈ 1

2Nσ2

N∑

i=1

{||zi − g(xi,W)||2

+hx[||g′(x,W)||2

−||(zi − g(xi,W))g′′(xi,W)||]} (25)

Rewrite the equation in the form

J1 ≈ Js + hxJr (26)

where

Js =
1

2Nσ2

N∑

i=1

||zi − g(xi,W)||2

Jr =
1

2Nσ2

N∑

i=1

{||g′(xi,W)||2

−||(zi − g(xi,W))g′′(xi,W)||} (27)

In the above equation, Js represents the traditional sum-square-error function, while Jr

stands for a regularization term.

In Eq. (27), the second derivative term is the Hessian term. Reed[31] described it as

an approximate measure of the difference between the average surrounding values and the

precise value of the filed at a point, and assumed it to be zero. Bishop[29],[32] considered

that when minimizing the cost function, the second term in Jr involving the second deriva-

tives of the network function g(x,W) vanishes to O(hx). For sufficiently small values of

the smooth parameter hx, this leads to

J1 ≈ Js + hxJr (28)

=
1

2Nσ2

N∑

i=1

{||zi − g(xi,W)||2 + hx||g′(xi,W)||2}

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002110

¿From the above we can easily see that under some approximation one special case

J(h,Θ) function is reduced to the first order Tikhonov regularizer in the sense of maximum

likelihood learning.

Furthermore, from the above results it is easy to see that the parameter hx controls the

degree of smoothness of the network mapping, just the same as the problem of controlling

the degree of smoothing in a nonparametric estimation. The optimum value of hx is

problem-dependent. Using the traditional sum-square-error function cannot select this

parameter completely with a given data set. Instead, it needs to use separated training

and validation data sets, and to be optimized by the cross-validation method or another

validation data set.

In the next section we develop a formula to estimate this regularization coefficient based

on the training data set.

IV. Estimation of Regularization Parameter

When h 6= 0, according to the principle of MDL, the regularization coefficient h can be

estimated according to Eq. (9) with the minimized KL distance.

In implementation, we can give a fixed hx value, run optimizing algorithm such as back-

propagation to obtain a series of network parameter Θ∗, then give another hx value, so

on and so forth. We choose h∗x such that its corresponding value of J(h∗x, hz,Θ
∗) is the

smallest. This is an exhaustive search method which is computation-expensive, but it can

give an exact solution for regularization parameter.

From practical implementation consideration, in the following we will derive the formula

which is approximately the estimation regularization parameter based on training data in

the network parameter learning processing.

For some problems, e.g., function mapping, in special cases we can assume that P0(x)

is a uniformly distributed function and regard it as h independent. With this assumption,

from Eq. (1) with respect to ∂
∂hx

J(h,Θ) = 0, we can obtain the formula for estimating

regularization parameter.

To find the minimization of Eq. (1) corresponding to hx, we conduct the following

derivation. Considering J1(h,Θ) approximation, from Eq. (5) we obtain,

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002111

∂

∂hx
J(h,Θ) =

∂

∂hx
J1(h,Θ) +

∂

∂hx
J2(h)

≈ Jr +
∂

∂hx
J2(h). (29)

¿From Eq. (4), when J2(h) is a continuous and differentiable function, the last term of

the above equation becomes

∂

∂hx
J2(h) =

∫∫
∂ph(x, z)

∂hx
[1 + ln ph(x, z)]dxdz (30)

Note it can be proved that

∫∫
∂ph(x, z)

∂hx
dxdz = 0. (31)

Proof: Because the joint kernel density ph(x, z) in this work is designed as Gaussian

kernel function,

ph(x, z) =
1

N

N∑

i=1

G(x,xi, hxIdx)G(z, zi, hzIdz). (32)

We can compute the partial derivative of ph(x, z),

∂

∂hx
ph(x, z) = − dx

2hx
ph(x, z) (33)

+
1

2Nh2
x

[
N∑

i=1

G(x,xi, hxIdx)G(z, zi, hzIdz)||x− xi||2]

∫∫
∂ph(x, z)

∂hx
dxdz = − dx

2hx

∫∫
ph(x, z)dxdz

+
1

2Nh2
x

∫∫ N∑

i=1

G(x,xi, hxIdx)G(z, zi, hzIdz)

×||x− xi||2dxdz (34)

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002112

The first term in the above equation is

− dx
2hx

∫∫
ph(x, z)dxdz =

− dx
2Nhx

N∑

i=1

∫∫
G(x,xi, hxIdx)G(z, zi, hzIdz)dxdz

= − dx
2hx

. (35)

As the second term is also Gaussian type integration, it can be evaluated to

1

2Nh2
x

∫∫ N∑

i=1

G(x,xi, hxIdx)G(z, zi, hzIdz)

×||x− xi||2dxdz

=
dx
2hx

. (36)

Then we have

∫∫
∂ph(x, z)

∂hx
dxdz = − dx

2hx
+

dx
2hx

= 0. (37)

With the above results, Eq. (30) reduces to

∂

∂hx
J2(h) =

∫∫
∂ph(x, z)

∂hx
ln ph(x, z)dxdz (38)

That is,

∂

∂hx
J2(h) = − dx

2hx

∫∫
ph(x, z) ln ph(x, z)dxdz (39)

− 1

2Nh2
x

N∑

i=1

∫∫
G(x,xi, hxIdx)

×G(z, zi, hzIdz)||x− xi||2 ln ph(x, z)dxdz

For parameter optimization, the δ learning rule with learning factor being one be-

comes[33]

δhx = −∂J(h,Θ)

∂hx
. (40)

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002113

When minimizing J(h,Θ) with respect to hx, the following gradient descent equation

can be obtained

δhx = −Jr +
dx
2hx

Ea(h), (41)

or let δhx = 0, we get

hx =
dxEa(h)

2Jr
(42)

where

Ea(h) =

∫∫
ph(x, z) ln ph(x, z)dxdz (43)

− 1

Ndxhx

N∑

i=1

∫∫
G(x,xi, hxIdx)G(z, zi, hzIdz)

×||x− xi||2 ln ph(x, z)dxdz.

This is a formula for estimating regularization parameter based on training data. It can

be used to optimize hx iteratively. The integration in the above equation can be evaluated

by Monte Carlo integration.

In practical implementation, especially for the small training data set case, we can use

sparse data approximation (SDA) in Eq. (43). That is, if data i is not correlated with

data j for sparse data distribution, we can consider integration at x around xi, z around zi

only, and ignore other data. With this approximation, now let us evaluate the integration

in Ea(h), in which the first term is

∫∫
ph(x, z) ln ph(x, z)dxdz

=
1

N

N∑

i=1

{
∫∫

G(x,xi, hxIdx)G(z, zi, hzIdz)

× ln
N∑

j=1

G(x,xj, hxIdx)G(z, zj, hzIdz)dxdz}

− lnN (44)

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002114

Applying sparse data approximation and considering small h, we obtain

G(x,xi, hxIdx)G(z, zi, hzIdz)

× ln
N∑

j=1

G(x,xj, hxIdx)G(z, zj, hzIdz)

≈ G(x,xi, hxIdx)G(z, zi, hzIdz)

× ln{G(x,xi, hxIdx)G(z, zi, hzIdz)}

= G(x,xi, hxIdx)G(z, zi, hzIdz)

×{−||x− xi||2
2hx

− ||z− zi||2
2hz

−dx
2

ln(2πhx)−
dz
2

ln(2πhz)} (45)

With above approximation, Eq. (44) is reduced to

∫∫
ph(x, z) ln ph(x, z)dxdz (46)

≈ −dx
2

[1 + ln(2πhx)]−
dz
2

[1 + ln(2πhz)]− lnN.

The second term in Eq. (43) is reduced to

1

Ndxhx
[
N∑

i=1

∫∫
G(x,xi, hxIdx)G(z, zi, hzIdz)

×||x− xi||2 ln ph(x, z)]dxdz

≈ 1

Ndxhx

N∑

i=1

∫∫
G(x,xi, hxIdx)G(z, zi, hzIdz)

×||x− xi||2[−||x− xi||2
2hx

− ||z− zi||2
2hz

−dx
2

ln(2πhx)−
dz
2

ln(2πhz)]dxdz− lnN

= −dx − dx(dx − 1)2 − dx
2

[1 + ln(2πhx)]

−dz
2

[1 + ln(2πhz)]− lnN (47)

Then Eq. (43) becomes

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002115

Ea(h) =

∫∫
ph(x, z) ln ph(x, z)dxdz

− 1

Ndxhx

N∑

i=1

∫∫
G(x,xi, hxIdx)G(z, zi, hzIdz)

×||x− xi||2 ln ph(x, z)dxdz

≈ −dx
2

[1 + ln(2πhx)]−
dz
2

[1 + ln(2πhz)]− lnN

−[−dx − dx(dx − 1)2 − dx
2

[1 + ln(2πhx)]

−dz
2

[1 + ln(2πhz)]− lnN]

= dx[1 + (dx − 1)2] (48)

Notice that in maximum likelihood estimation,

σ2 =
1

N

N∑

i=1

||zi − g(xi,W)||2 (49)

¿From the above discussion, with Eqs. (48) and (49), in sparse data approximation

case, from Eq. (42) we can obtain the following equation for rough estimation of hx:

hx ≈ d2
x[1 + (dx − 1)2]

∑N
i=1 ||zi − g(xi,W)||2∑N
i=1 ||g′(xi,W)||2

(50)

This is an approximate estimation of hx by using the sum-square-error and penalty term,

which is quite different from the equation obtained in Ref.[24]. In implementation, we need

to find hx and weight W by some adaptive learning algorithms. For example, we can first

make some initial guess for a small non-zero value of hx, and use this value to evaluate

W by the well-known back-propagation algorithm[36], then periodically re-estimate the

value of hx by Eq. (50) in training processing. The advantage of this result is that only

applying training data can be sufficient in estimating regularization coefficients, and hx

can be optimized on-line with minimized generalization error.

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002116

V. Discussion

In fact, the equation with regularization resulting from KL distance for feedforward net-

works is not completely equivalent to Tikhonov regularizer. Moreover, the starting point

of deriving the regularization parameter estimation equation is different from the Mackey’s

Bayesian evidence or MAP for hyper-parameters[12],[35]. For example, Mackey assumes

the prior distribution of weight is Gaussian with hyper-parameter as the regularization

parameter, and the penalty term is in the weight decay form. While we use nonpara-

metric kernel density distribution, a particular approximation is equivalent to Tikhonov

regularizer. The penalty term is the first derivation of sum-square-errors of a network

mapping function. This form is reduced to weight decay when the mapping function is in

a generalized linear network, gj(x,W) =
∑dx

l=1wj,lxl. Therefore,

N∑

i=1

||g′(xi,W)||2 = N
M∑

j=1

w2
j (51)

where M represents the number of network weight parameters and wj is an element of the

matrix W in a vector expression.

With the generalized linear network assumption, Eq. (50) becomes

hx ≈ d2
x[1 + (dx − 1)2]

∑N
i=1 ||zi − g(xi,W)||2

N
∑M

j=1w
2
j

(52)

Now let us see the similarity of MAP approximation with our result in estimating the

regularization parameter.

The cost function in Mackey’s Bayesian inference is[12],[35]

S(w) =
β

2

N∑

i=1

||zi − g(xi,W)||2 +
α

2

M∑

j=1

w2
j (53)

In minimizing this cost function to find the network weight parameter W, the effective

value of the regularization parameter depends only on the ratio α/β, since an overall

multiplicative factor is unimportant. This means hx should be equivalent to α/β under

some approximations.

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002117

In Mackey’s results[12],[35], a very rough approximation condition is γ = M and N �
M.

γ ≡
M∑

j=1

λj
λj + α

(54)

where {λj} denotes the eigenvalues of H, the Hessian of unregularized cost function,

H = β∇2
wED, ED =

1

2

N∑

i=1

||zi − g(xi, w)||2 (55)

The matrix A is related to parameter α in the following form,

A = H + αI. (56)

In order to compare with Mackey’s formula, we rewrite the parameters α and β from[12],[35]

in the following:

β = N/2ED = N/
N∑

i=1

{zi − g(xi, w)}2 (57)

α = M/2EW =
M∑M
j=1w

2
j

(58)

Consequently,

α

β
= M

∑N
i=1{zi − g(xi, w)}2

N
∑M

j=1 w
2
j

(59)

Here we can clearly note the similarity between hx in Eq. (52) and α/β in Eq.(59), where

their difference is only the constant coefficient. In hx estimation, the constant coefficient

is dependent on the dimension of input space, while in α/β estimation, the constant

coefficient is the dimension of weight parameter vector. This can be explained by the fact

that Mackey’s result is obtained in parameter space approximation, while our result is in

data space approximation. Compared to the approximation condition, our approximation

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002118

is based on the sparse data set, which is a reasonable approximation for the small-number

training data set case. While in Mackey’s approximation, it requires N � M. In the

following function mapping experiments, we design that N = 30, dx = dz = 1, the hidden

neuron number is k = 15, and M = (dx + 1)× k + k × dz = 45. Because the experimental

condition does not satisfy Mackey’s very rough approximation condition N �M, it cannot

be successful in estimating regularization parameter on-line with Eq. (59). In fact, the

condition N �M means that training sample number should be large enough compared

to network complexity. If we have enough training samples, the generalization is also

improved without regularization[6].

As we know, there is no free lunch for the optimization problem. To get the best reg-

ularization parameter value, the parameter numerical evaluation involves computation of

Hessian matrix and log determinant of A−1, as well as eigenvalues of Hessian in Mackey’s

Bayesian inference. While in our approximation, it involves integration in data space. To

save computational cost and on-line optimizing regularization parameter, a rough approx-

imation is needed, but in this case the parameter value may not be the best one, and

generalization error may not be the smallest with approximations.

VI. Experiments

Several experiments have been done with dynamically adjusting regularization param-

eter hx. The network structure used in the experiments is shown in Figure 1.

In the implementation, we train the three-layer neural network by back-propagation

algorithm. The regularization term used in training processing is Eq. (51) with regular-

ization parameter hx. At the beginning of the training processing a small value of hx is

initialized, then it is periodically re-estimated by Eq. (52). The training processing is

stopped until the total error J1 is minimized, measured by either successive error differ-

ence being less than 10−8 or over 104 training epoch being passed. Followings are the

pseudo-code for the algorithm described above.

/* Initializing weight parameters W and h_x

/* with small random values.

/* Set the BP learning factor Mu and an integer value Icf

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002119

/* for periodically re-estimating h_x.

For t = 1 to 10^(4),

Net_output = S(W_z|y S(W_y|x X)),

Net_error = ||Target_Z - Net_output||^2,

Reg_term = N*Sum(w_i^2),

Js(t) = Net_error/(2N),

W(t) = W(t-1) - Mu* Grad_w[J1(t-1)],

J1(t) = Js(t) + h_x* Reg_term/(2N),

If t MOD Icf == 0,

h_x = Net_error/Reg_term,

Else Continue.

If |J1(t)-J1(t-1)|<10^(-8),

Goto End,

Else Continue.

Next t

End

z1

x1

z2 zdz

x2 bias
"

"

"

Input layer

Hidden layer

Output layer

()S < ()S < ()S < ()S <

Fig. 1. The three-layer neural network architecture schematic map.

Some results are drawn in Figures 2–8. The results show that the optimal regularization

parameter hx can be found by seeking the minimum of J(h,Θ) with the training data set

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002120

only. We also apply the minimal generalization error method to validate the experimental

results, and the same order of hx has been obtained (see Figure 4). This confirms that

the new parameter estimation formula is a good approximation. Unlike early stopping

strategy, this new regularization parameter formula can work for overtrained network and

does not need another validation set to guard when the training should stop.

The function mapping problem was considered in the experiments, and the sine and

exponential functions were applied. In order to represent sufficient network complexity, we

used 15 hidden neurons in a three-layer network. Only 30 training samples were generated

with Gaussian noise added to the output. With this kind of network architecture, if

without regularization, the phenomenon of over-fitting to noise can be observed as shown

in Figure 2. In Figures 2 and 3, it is shown that with regularization, the network output is

smoothed and generalization performance is improved. Figure 4 shows that the minimal

J1 value indicates hx value around 10−4.

Real-world data sets are used in the experiments too. The data sets are software failure

data sys1 and sys3, which are contained in the attached Compact Disk of the Handbook

of software Reliability Engineering [34]. The sys1 data set contains 54 data points. In

order to validate the parameter estimation results, we partition the sys1 data into two

parts: a training set and a validation set. The training set consists of 37 samples which

are randomly drawn from the original data set. The remaining 17 samples comprise the

validation set. The data sets are normalized to the range of values [0,1]. Normalization

is a standard procedure for data preprocessing. In the software reliability investigation

problem, the network input is successive normalized failure occurrence times, and the

network output is the accumulated failure numbers. During the training phase, each

input sample xt at time t is associated with the corresponding output value zt at the

same time t. The experimental results are shown in Figures 5–7. From Figure 6, it

can be observed that with regularization, the validation error is less than that without

regularization. Figure 7 shows that the minimal J1 value indicates hx in the range of 10−8

to 10−10, while dynamically-estimated hx value is 1.17×10−8.

Another data set is sys3, which contains 278 data points. In the experiment, the number

of training data is about 2/3 of the total data number. That is, it consists of 186 randomly-

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002121

drawn samples from the original data set. The remaining 92 samples form the validation

set. Because this data set is a bit large and the noise is small, it makes no obvious

difference in the obtained results with respect to dynamical regularization. The trained

network output is shown in Figure 8.

Experiments have been done for the comparison of regularization parameter estimation

formula Eq. (59) and Eq. (52) performance. From the results we observe that the estimator

is problem-dependent, and it is hard to say that one estimator is better in all cases. For the

case when N > M or N ∼ M , MAP-approximation-based regularization parameter esti-

mation formula performance is good, sometimes better than SDA-based formula. However,

when we use many of hidden neurons, for the case N < M , MAP-approximation-based

formula performance becomes poor.

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

(a) Without regularization

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

(b) With regularization

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

(c) Without regularization

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

(d) With regularization

Fig. 2. The neural network input-output. Dots are training samples, while solid line is network output.

(a, b) are for the sine function approximation problem. After training is stopped, dynamically-estimated

hx = 2.87 × 10−4. (c, d) are for the exponential function approximation problem. After the training is

stopped, dynamically-estimated hx = 1.27× 10−4.

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002122

0 2000 4000 6000 8000 10000

0.005

0.01

0.015

0.02

0.025

0.03

(a) Without regularization

0 2000 4000 6000 8000 10000

0.005

0.01

0.015

0.02

0.025

0.03

(b) With regularization

Fig. 3. Training epoch for the exponential function approximation problem. Upper line represents

validation error, while lower line depicts training error. Without regularization, training error is small

while validation error is large. With regularization, validation error is reduced and training error is

increased a little, illustrating that over-fitting does not occur.

-10 -8 -6 -4 -2 0
log10hx

-3

-2.5

-2

-1.5

-1

E

MSE

J1

Fig. 4. The training mean square error (MSE) on the training data set and J1 on the validation data

set, plotted versus the smooth parameter hx. The network was trained by 30 samples which are drawn

from the exponential function. We use a validation data set with 30 data points to calculate J1 value

again after the training is stopped. For each hx value, the network was trained until the total error J1

(Eq. (28)) was minimized, measured by successive error difference being less than 10−8 or over 104 epoch

being passed. The minimal J1 indicates an optimal log10hx ≈ −4. Dynamically-estimated hx value is

1.27×10−4 in this case.

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002123

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

(a) Without regularization

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

(b) With regularization

Fig. 5. The neural network input-output. Dots are training samples, while solid line is the network

output. Software reliability growth model approximation is applied to data set sys1. After training is

stopped, dynamically-estimated hx = 1.17×10−8. Because the noise is very small, the difference with and

without regularization is not obvious.

0 2000 4000 6000 8000 10000

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

(a) Without regularization

0 2000 4000 6000 8000 10000

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

(b) With regularization

Fig. 6. Training epoch for the software reliability growth model data set sys1. Upper line represents

validation error, while lower line depicts training error. Without regularization, training error is small

while validation error is a bit large. With regularization, validation error is reduced.

VII. Conclusion

In this paper, we show that one particular case of the system entropy with Gaussian

probability density reduces into the first order Tikhonov regularizer for feedforward neu-

ral networks in the maximum likelihood learning case, where the regularization parameter

is the smoothing parameter hx in the kernel density function. Under the framework of

Kullback-Leibler distance, we derive the formula for approximately estimating regulariza-

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002124

-14 -12 -10 -8 -6 -4 -2 0
log10hx

-10

-9

-8

-7

-6

-5

-4

-3

E

MSE

J1

Fig. 7. The training mean square error (MSE) on the training data set and J1 on the validation data set,

plotted versus the smooth parameter hx. The network was trained by 37 samples which are drawn from the

sys1 data set. We use a validation data set with 17 data points to calculate J1 value again after training

is stopped. For each hx value, the network was trained until the total error J1 was minimized, measured

by over 104 epoch being passed. The minimal J1 indicates an optimal value around log10hx ≈ −9.

Dynamically-estimated hx value is 1.17×10−8 in this case.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 8. The neural network input-output. Dots are training samples, while solid line is the network

output. For software reliability growth model data set sys3, regularization does not make a significant

difference.

tion parameter using training data. Experiments show that our estimated regularization

parameter is in the same order as that estimated by validation method. However, our

method requires much less computational resource than the validation search method.

Acknowledgement

The authors would like to thank the anonymous referees for their constructive comments

on this paper. This research work was fully supported by a grant from the Research Grants

Council of the Hong Kong Special Administrative Region (Project No. CUHK4193/00E).

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002125

References

[1] Y. Le Cun, J.S. Denker and S.A. Solla, “Optimal Brain Damage,” in Advanced in Neural Information

Processing Systems, D. S. Touretzky, Ed., San Mateo, CA, 1990, vol. 2, pp. 598–605, Morgan Kaufmann

Publisher.

[2] Lars K. Hansen and Carl E. Rasmussen, “Pruning from Adaptive Regularization,” Neural Computation, vol.

6, no. 6, pp. 1222–1231, 1994.

[3] F. Girosi, M. Jones and T. Poggio, “Regularization Theory and Neural Networks Architectures,” Neural

Computation, vol. 7, pp. 219–269, 1995.

[4] Lizhong Wu and John Moody, “A Smoothing Regularizer for Feedforward and Recurrent Neural Networks,”

Neural Computation, vol. 8, no. 3, pp. 463–491, 1996.

[5] G. E. Hinton, “Learning Translation Invariant Recognition in Massively Parallel Networks,” in Proceedings

PARLE Conference on Parallel Architectures and Languages Europe, A. J. Nijman J.W. de Bakker and P. C.

Treleaven, Eds., Berlin, 1987, pp. 1–13, Springer-Verlag.

[6] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, 1995.

[7] Yves Grandvalet and Stephane Canu, “Noise Injection: Theoretical Prospects,” Neural Computation, vol. 9,

no. 5, pp. 1093–1108, 1997.

[8] Alan M. Thompson, John C. Brown, Jim W. Kay and D. Michael Titterington, “A Study of Methods of

Choosing the Smoothing Paprameter in Image Restoration by Regularization,” IEEE Transaction on Pattern

Analysis and Machine Intelligence, vol. 13, no. 4, pp. 326–339, 1991.

[9] Peter R. Johnston and Ramesh M. Gulrajani, “A New Method for Regularization Parameter Determination

in the Inverse Problem of Electrocardiography,” IEEE Trans. on Biomedical Engineering, vol. 44, no. 1, pp.

19–39, January 1997.

[10] G. Wahba, Spline Models for Observational Data, vol. 59 of CBMS-NSF regional conference series in applied

mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990.

[11] B. Efron and R. Tibshirani, An Introduction to the Bootstrap, Chaoman and Hall, London, 1993.

[12] D. J. C. MacKay, “Bayesian Interpolation,” Neural Computation, vol. 4, no. 3, pp. 415–447, 1992.

[13] J. Larsen, L.K. Hansen, C. Svarer and M. Ohlsson, “Design and Regularization of Neural Networks: the

Optimal Use of a Validation Set,” in Proceedings of the 1996 IEEE Signal Processing Society Workshop on

Neural Networks for Signal Processing, S. Usui, Y. Tohkura, S. Katagiri and E. Wilson, Ed., 1996, vol. VI,

pp. 62–71.

[14] L. Nonboe Andersen, J. Larsen, L.K. Hansen and M. Hintz-Madsen, “Adaptive Regularization of Neural

Classifiers,” in Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing, J.

Principe, L. Gile, N. Morgan and E. Wilson, Ed., 1997, vol. VII, pp. 24–33.

[15] Dingding Chen and M. T. Hagan, “Optimal Use of Regularization and Cross-validation in Neural Network

Modeling,” in Proceedings of the 1999 International Joint Conference on Neural Networks, 1999, vol. 2, pp.

1275–1280.

[16] Katsuyuki hagiwara and Kazuhiro Kuno, “Regularization Learning and Early Stoping in Linear Networks,”

in Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, S-I, Amari, C.L.

Giles, M. Gori and V. Piuri, Ed., 2000, vol. 4, pp. 511–516.

[17] Isabelle Rivals and Leon Personnaz, “On Cross Validation for Model Selection,” Neural Computation, vol.

11, pp. 863–870, 1999.

[18] S. Kullback, Information Theory and Statistics, Wiley, New York, 1959.

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002126

[19] L. Devroye, A Course in Density Estimation, Birhhauser Publisher, Boston, 1987.

[20] D. Bosq, Nonparametric Statistics for Stochastic Processes: Estimation and Prediction, Springer-Verlag Inc.,

New York, 1996.

[21] C. O. Wu,“A Cross-Validation Bandwidth Choice for Kernel Density Estimates with Selection Biased Data”,

Journal of Multivariate Analysis vol. 61, pp. 38–60, 1997.

[22] C. Gu, “Model indexing and smoothing parameter selection in nonparametric function estimation (with

discussion)”, Statistica Sinica, vol. 8, No. 3, pp. 607–646, 1998.

[23] K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, Boston, second edition, 1990.

[24] Lei Xu, “Bayesian Ying-Yang System and Theory as A Unified Statistical Learning Approach (VII): Data

Smoothing,” in Proceedings of Intentional Conference on Neural Information Processing, Kitakyushu, Japan,

1998, 1, pp. 243–248.

[25] J. Rissanen, “Modeling by Shortest Data Description,” Automatica, vol. 14, pp. 465–471, 1978.

[26] Andrew Barron, Jorma Rissanen and Bin Yu, “The Minimum Description Length Prnciple in Coding and

Modeling,” IEEE Trans. on Information Theory, vol. 44, no. 6, pp. 2743–2760, October 1998.

[27] George S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications, Springer-Verlag, New York, 1996.

[28] James E. Gentle, Random Number Generation and Monte Carlo Methods, Springer, New York, 1998.

[29] C. M. Bishop, “Training with Noise is Equivalent to Tikhonov Regularization,” Neural Computation, vol. 7,

no. 1, pp. 108–116, 1995.

[30] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed Problems, V. H. Winston and Sons, Washington

D.C., 1977.

[31] Russell Reed, Robert J. Marks II, and Seho Oh, “Simiarities of Error Regularization, Sigmoid Gain Scaling,

Target Smoothing, and Training with Jitter,” IEEE Trans. Neural Networks, vol. 7, no. 3, pp. 529–538, 1995.

[32] C. M. Bishop, “Regularization and Complexity Control in Feed-forward Networks,” Technical Report

NCRG/95/022, Aston University, Birmingham, UK, 1995.

[33] R. A. Jacobs, “Increased Rates of Convergence through Learning Rate Adaptation,” Neural Networks, vol.

1, pp. 295–307, 1988.

[34] Michael R. Lyu, Handbook of Software Reliability Engineering, IEEE Computer Society Press, McGraw Hill,

1996.

[35] D. J. C. MacKay, “A Practical Bayesian Framework for Backpropagation Networks,” Neural Computation,

vol. 4, no. 3, pp. 448–472, 1992.

[36] D.E. Rumelhurt, G.E. Hinton and R.J. Williams, “Learning internal representations by error propagating,”

in Parallel Distributed Processing, MIT Press (Cambridge), vol. 1, pp. 318–362, 1986.

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002127

photo_guo.jpg

Ping Guo is currently a Professor at the Computer Science Department of the Beijing Normal University. From

1993 to 1994 he was with the Department of Computer Science & Engineering at the Wright State University as

a visiting faculty. From May 2000 to August 2000 he was with the National Laboratory of Pattern Recognition at

Chinese Academy of Sciences as a guest researcher. He received his M.S. degree in physics from Peking University,

his Ph.D degree in Computer Science from the Chinese University of Hong Kong. His current research interests

include neural network, image process, software reliability engineering, optical computing and spectra analysis.

photo_lyu.jpg

Michael R. Lyu is currently a Professor at the Computer Science and Engineering department of the Chinese

University of Hong Kong. He worked at the Jet Propulsion Laboratory as a Technical Staff Member from 1988

to 1990. From 1990 to 1992 he was with the Electrical and Computer Engineering Department at the University

of Iowa as an Assistant Professor. From 1992 to 1995, he was a Member of the Technical Staff in the Applied

Research Area of the Bell Communications Research (Bellcore). From 1995 to 1997 he was a research Member of

the Technical Staff at Bell Labs., which was first part of AT&T and later became part of Lucent Technologies.

Dr. Lyu’s research interests include software reliability engineering, distributed systems, fault-tolerant com-

puting, wireless communication networks, Web technologies, digital library, and E-commerce systems. He has

published over 120 refereed journal and conference papers in these areas. He has participated in more than 30

industrial projects, and helped to develop many commercial systems and software tools. He has been frequently

invited as a keynote or tutorial speaker to conferences and workshops in U.S., Europe, and Asia. He initiated

the first International Symposium on Software Reliability Engineering (ISSRE) in 1990. He was the program

chair for ISSRE’96, and has served in program committees for many conferences, including ISSRE, SRDS, HASE,

ICECCS, ISIT, FTCS, ICDSN, EUROMICRO, APSEC, PRDC, PSAM and ICCCN. He is the General Chair

for ISSRE’2001, and the WWW10 Program Co-Chair. He is the editor for two book volumes: Software Fault

Tolerance, published by Wiley in 1995 and the Handbook of Software Reliability Engineering, published by IEEE

and McGraw-Hill in 1996. He is an associated editor of IEEE Transactions on Reliability, IEEE Transactions on

Knowledge and Data Engineering, and Journal of Information Science and Engineering.

Dr. Lyu received his B.S. in Electrical Engineering from National Taiwan University in 1981, his M.S. in

Computer Engineering from University of California, Santa Barbara, in 1985, and his Ph.D. in Computer Science

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002128

from University of California, Los Angeles, in 1988.

photo_chen.jpg

C.L. Philip Chen received his M.S. degree from the University of Michigan, Ann Arbor, Michigan, in 1985, and

a Ph.D. degree from Purdue University, West Lafayette, Indiana, in Dec. 1988. In 1988-1989, he was a visiting

Assistant Professor at the School of Engineering and Technology, Purdue University, Indianapolis, Indiana. Since

September 1989, he has been at the Computer Science and Engineering Department, Wright State University,

Dayton, Ohio, where he is currently a Professor.

He was a Conference Co-Chairman of the International Conference on Artificial Neural Networks in Engineering

(ANNIE), 1995 and 1996, a Tutorial Chairman of Int’l Conference on Neural Networks, 1994, a Conference Co-

Chairman of the Adaptive Distributed Parallel Computing, 1996, a Technical Committee of ANNIE, 1994-2002,

a Program Committee of the IEEE Int’l Conference on Robotics and Automation, 1996 and 2001, and Int’l Conf.

on IEEE/JRS Intelligent Robotics and Systems (IROS), 1998-2002.

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002129

List of Figures

1 The three-layer neural network architecture schematic map. 119

2 The neural network input-output. Dots are training samples, while solid line

is network output. (a, b) are for the sine function approximation problem.

After training is stopped, dynamically-estimated hx = 2.87× 10−4. (c, d) are

for the exponential function approximation problem. After the training is

stopped, dynamically-estimated hx = 1.27× 10−4. 121

3 Training epoch for the exponential function approximation problem. Upper

line represents validation error, while lower line depicts training error. With-

out regularization, training error is small while validation error is large. With

regularization, validation error is reduced and training error is increased a

little, illustrating that over-fitting does not occur. 122

4 The training mean square error (MSE) on the training data set and J1 on the

validation data set, plotted versus the smooth parameter hx. The network was

trained by 30 samples which are drawn from the exponential function. We use

a validation data set with 30 data points to calculate J1 value again after the

training is stopped. For each hx value, the network was trained until the total

error J1 (Eq. (28)) was minimized, measured by successive error difference

being less than 10−8 or over 104 epoch being passed. The minimal J1 indicates

an optimal log10hx ≈ −4. Dynamically-estimated hx value is 1.27×10−4 in this

case. 122

5 The neural network input-output. Dots are training samples, while solid line

is the network output. Software reliability growth model approximation is

applied to data set sys1. After training is stopped, dynamically-estimated

hx = 1.17 × 10−8. Because the noise is very small, the difference with and

without regularization is not obvious. 123

6 Training epoch for the software reliability growth model data set sys1. Upper

line represents validation error, while lower line depicts training error. With-

out regularization, training error is small while validation error is a bit large.

With regularization, validation error is reduced. 123

May 6, 2002 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS, VOL. XX, NO. Y, MONTH 2002130

7 The training mean square error (MSE) on the training data set and J1 on

the validation data set, plotted versus the smooth parameter hx. The network

was trained by 37 samples which are drawn from the sys1 data set. We use

a validation data set with 17 data points to calculate J1 value again after

training is stopped. For each hx value, the network was trained until the

total error J1 was minimized, measured by over 104 epoch being passed. The

minimal J1 indicates an optimal value around log10hx ≈ −9. Dynamically-

estimated hx value is 1.17×10−8 in this case. 124

8 The neural network input-output. Dots are training samples, while solid line

is the network output. For software reliability growth model data set sys3,

regularization does not make a significant difference. 124

May 6, 2002 DRAFT

