
A Phase-Based Approach to Creating Highly Reliable Software

Michael R. Lyu
Computer Science & Engineering Department

The Chinese University of Hong Kong
Shatin, Hong Kong

lyu@cse.cuhk.edu.hk

1. Introduction

Our demand for complex hardware/software systems has
increased more rapidly than our ability to design, imple-
ment, test, and maintain them. When the requirements for
and dependencies on computers increase, the crises of com-
puter failures also increases. The impact of these failures
ranges from inconvenience (e.g., malfunctions of home ap-
pliances), economic damage (e.g., interruptions of banking
systems), to loss of life (e.g., failures of flight systems or
medical software). The reliability of computer systems has
become a major concern for our society.

Within the computer revolution progress has been un-
even: software assumes a larger burden while based on a
less firm foundation than hardware. In stark contrast with
the rapid advancement of hardware technology, proper de-
velopment of software technology has failed to keep pace in
all measures, including quality, productivity, cost, and per-
formance. Software has become the bottleneck of system
development, and its delay and cost overrun have often put
modern complex projects in jeopardy.

To this end, many software companies see a major share
of project development costs identified with the design, im-
plementation, and assurance of reliable software, and they
recognize a tremendous need for systematic approaches to
assure software reliability within a system. Clearly, devel-
oping the required techniques for software reliability engi-
neering is a major challenge to computer engineers, soft-
ware engineers, and engineers of various disciplines for
now and the decades to come.

2. Phase-based approach: an overview

Software reliability engineering is centered around a
very important software attribute: reliability. Software re-
liability is defined as the probability of failure-free soft-
ware operation for a specified period of time in a speci-
fied environment. It is one of the attributes of software

quality, a multi-dimensional property including other fac-
tors like functionality, usability, performance, serviceabil-
ity, capability, installability, maintainability, and documen-
tation. Software reliability engineering therefore includes:

(1) software reliability measurement, which includes es-
timation and prediction, with the help of software reliability
models established in the literature;

(2) the attributes and metrics of product design, devel-
opment process, system architecture, software operational
environment, and their implications on reliability; and

(3) the application of this knowledge in specifying and
guiding system software architecture, development, testing,
acquisition, use, and maintenance.

My position is that we should attack the problem of soft-
ware reliability engineering in three phases: (1) Modeling
and Analysis Phase, (2) Design and Implementation Phase,
and (3) Testing and Measurement Phase. All these phases
deal with the management of software faults and failures.
In the Modeling and Analysis Phase, reliability of the soft-
ware system is being modeled according to the structure
of the system and possible fault scenarios. The key topic
of this phase is to provide fault modeling of the system,
and ask the ”what if” questions. The available modeling
approaches include system reliability modeling block dia-
grams, reliability models by Markov chains, fault tree anal-
ysis, and stochastic Petri-nets. In the Design and Imple-
mentation Phase, reliability of the software system is be-
ing achieved by reliable components built into the system.
The key topic of this phase is to provide fault avoidance
and fault tolerance. The available techniques we empha-
size include reusable software fault tolerance routines, and
software fault tolerance by design diversity. In the Testing
and Measurement Phase, reliability of the software system
is being evaluated and verified by measurement and evalu-
ation techniques. The key topic of this phase is to provide
fault removal and fault prediction. The available techniques
include data flow testing, reliability measurement tasks, and
software reliability tools. We discuss the details of these
techniques in the following three sections.



3. Phase 1: modeling and analysis phase

To provide reliability modeling and analysis of a soft-
ware system during the pre-design phase, the overall sys-
tem architecture based on requirement can be modeled by
several techniques. The available modeling approaches in-
clude system reliability modeling block diagrams, Makov-
chains reliability modeling, fault tree analysis, and stochas-
tic Petri-nets. These approaches can be used to establish
system reliability and performance model for the study of
system behavior under various scenarios. The reliability of
the system, for example, can be predicted in a coarse ba-
sis for the overall system given its architectural options are
defined. Sensitivity analysis can then be performed to lo-
cate important parameters of the system, and critical com-
ponents of the system can be identified for enforcement of
each component’s individual reliability. Note that the re-
liability model established in this phase can be refined and
revised for evaluation purpose in a post-design phase for the
purpose of a fine prediction and estimation.

We first perform reliability modeling and analysis using
block diagrams for an actual project. It is shown that soft-
ware reliability has become a major critical factor in system
reliability. We further show how fault tree models can be
used for the qualitative and quantitative analysis of the fail-
ure modes of critical systems. A fault tree provides a mathe-
matical and graphical representation of the combinations of
events which can lead to system failure. The construction
of a fault tree model can provide insight into the system by
illuminating potential weaknesses with respect to reliability
of the system. The usage of software tools is a must in the
modeling and analysis phase. We consider SHARPE and
UltraSAN as two leading tools in this arena.

4. Phase 2: design and implementation phase

In the Design and Implementation Phase, reliability of
the software system is being achieved within the system.
The key topic of this phase is to provide fault avoidance
and fault tolerance. Fault avoidance is the subject of many
software engineering techniques and is beyond the scope of
this paper. Fault tolerance, on the other hand, is the focus of
our discussion. We examine fault tolerance techniques used
in single-version as well as multiple-version environments.

Software fault tolerance in single-version software envi-
ronment is achieved by introducing special fault detection
and recovery features, including modularity, system clo-
sure, atomicity of actions, decision verification, and excep-
tion handling. One successful approach is accomplished by
reusable software fault tolerance routines.

A middleware platform containing a set of reusable soft-
ware components watchd, libft, REPL, libckp,
and addrejuv) to perform these reactive and pro-active

software fault tolerance tasks will be described. The hard-
ware platform for using these reusable software components
is a network of standard computers where each computer
provides a back-up facility for another one on the network.
The components provide mechanisms to checkpoint, log
messages, watch, detect, rollback, restart, and recover from
failures and rejuvenate to avoid failures.

In addition, we will show the evolution of techniques for
building fault-tolerant software out of simplex units, and a
design paradigm in achieving multi-version software fault
tolerance systems.

5. Phase 3: testing and measurement phase

In this phase the reliability of the software system should
be evaluated and verified, and testing and measurement
techniques are available to achieve this goal. Testing tech-
niques are for fault removal purpose, and reliability assess-
ment techniques are for fault prediction purpose. This in-
cludes schemes and tools for software testing and software
reliability measurement.

There are many ways of testing software. The terms
functional, regression, integration, product, unit, coverage,
user-oriented, are only a few of the characterizations we en-
counter. White-box, or coverage, testing uses the structure
of the software to measure the quality of testing. This struc-
tural coverage and its measurement is believed to be con-
nected with reliability estimation. These testing schemes
include statement coverage testing, decision coverage test-
ing, data-flow coverage testing, and fault-injection testing.
We will address these testing schemes in detail. In partic-
ular, we demonstrate the usage of ATAC for data-flow cov-
erage testing schemes, and the procedure applied for fault-
injection testing.

Software reliability measurement, on the other hand, is
the application of statistical inference procedures to failure
data taken from software testing and operation to determine
software reliability. We have established a framework for
software reliability measurement purpose, including four
major components in this software reliability measurement
process, namely,

(1) reliability objective, (2) operational profile, (3) reli-
ability modeling and measurement, and (4) reliability vali-
dation.

We designed and implemented a software reliability
modeling tool, called Computer-Aided Software Reliability
Estimation (CASRE) system, for an automatic and system-
atic approach in estimating software reliability. This tool
will also be illustrated and demonstrated.


