
Design and Evaluation of A Fault Tolerant

Mobile Agent System

Michael R. Lyu, Xinyu Chen and Tsz Yeung Wong

Abstract

Improving the survivability of mobile agents in the presence of agent server failures with unreliable

underlying networks is a challenging issue. In this paper, we address a fault tolerance approach of

deploying cooperating agents to detect server and agent failures as well as to recover services in mobile

agent systems. Three types of agents are involved, which are theactual agent, the witness agentand

the probe. We introduce a failure detection and recovery protocol by employing a message-passing

mechanism among these three kinds of agents. Different failure scenarios and their corresponding

recovery procedures are discussed. Further, Stochastic Petri Net models for the proposed approach

are developed and survivability evaluations through simulation are conducted.

Index Terms

Mobile agent, Witness agent, Probe, Witnessing dependency, Fault tolerance, Stochastic Petri Net

1

Design and Evaluation of A Fault Tolerant

Mobile Agent System

I. I NTRODUCTION

Mobile agents are autonomous software objects capable of actively migrating from one server

to another in a computer network and executing on behalf of a network user. When an agent

travels to another server, its code, data as well as execution state are captured and transferred

to the next server. Because a mobile agent moves to resource-containing servers to access them

locally, it is not required to transfer multiple requests and responses across congested network

links, thus the overall performance becomes more efficiently. Consequently, mobile agents create

a new paradigm for data exchange and resource sharing in rapidly growing and continuously

changing computer networks. It has being exploited in electronic commerce, information retrieval,

network and workflow management, etc. Many academic and commercial systems provide mobile

agent execution environments, such as Aglets, Agent TCL, Concordia, Grasshopper, Mole,

Odyssey and Voyager.

In a distributed system any software or hardware components may be subject to failures. A

mobile agent is lost when its hosting agent server crashes during its execution, or it may be

dropped in congested networks. Therefore, survivability as well as fault tolerance are vital issues

for the deployment of mobile agent systems. A number of research work has been done in these

areas. Pleischet al. adopt the utilization ofreplicationas well asmasking[1]. The proposed idea

employs replicated servers to mask failures. Dalmeijeret al. [2] utilize a checkpoint manager

to monitor all agents, which is responsible to keep track of all the agents and to restart the

lost agents. Osmanet al. [3] analyze the execution model of agent platforms to develop a

pragmatic framework for agent systems fault tolerance, which deploys a communication-pair-

independent checkpointing strategy. Pearset al. [4] utilize two exception handling approaches

to maintain the availability of mobile agents, which operate at different servers. Silvaet al. [5]

present a set of fault tolerance techniques, such as fault detection, checkpointing and restart,

software rejuvenation, and reconfigurable itinerary. The authors also discuss the issues of network

partitions.

2

Our approach [6] is rooted from the approach suggested in [7]. We distinguish three types

of agents. One type is the common mobile agent which performs the required computations for

its owners. We name it theactual agent. The second type of agent monitors the actual agent

and detects whether it is lost. We call this type of agent thewitness agent. The last type is the

probe who is responsible to recover the failed actual agent and witness agents. A peer-to-peer

message passing mechanism stands between the actual agent and the witness agents to perform

failure detection and recovery through time-bounded information exchange. In addition to the

introductions of the witness agent, the probe and the messages passing mechanism, we need to

log the actions performed by the actual agent. Because when failures occur, we need to abort

uncommitted actions when we performrollback recovery[8]. Moreover, we employcheckpointed

data [2] to recover the lost actual agent.

II. SYSTEM ARCHITECTURE ANDPROTOCOLDESIGN

Different server failure detection and recovery strategies have been exploited in the literature,

which could bring the failed server back to work; however, it cannot recover the lost agent if

the actual agent resides on the failed server when the failure occurs. Therefore, we need a more

advanced approach to re-initialize the lost agent.

Fig. 1 shows the overall design of the agent server architecture which is capable of recover a

lost agent. The agent server should provide three types of stable storage for logs, checkpoints and

messages, respectively. First, every server logs the actions performed by an agent. The logged

information is vital for failure detection as well as recovery. Also, the hosting servers log which

objects have been updated. When a server failure occurs, we should recover the lost agent due

to the failure; however, an agent contains its internal data, which may be lost due to the failure.

Moreover, if we allow the agent to renew its computation from the starting point of its itinerary,

theexactly-onceproperty will be violated. Therefore, we have to checkpoint the data of an agent,

thus require a permanent storage to store the checkpointed data. Furthermore, our agent failure

detection and recovery protocol is based on message passing as well as message logging. In

order to detect and recover the failures of an actual agent, we designate another type of agent,

namely the witness agent, to monitor whether the actual agent is alive or dead. When the actual

agent completes its dedicated work on a server and starts to continue its journey to the next

server, it spawns a witness agent at the current server. In addition to the witness agent, we design

3

Place

MessagesCheckpoints Logs

Server Si-1

Place

MessagesCheckpoints Logs

Witness WitnessAgent

(2)(5)
(3) (1)(4)

(6)

Server Si

i
arrive

i
arrive

(1) log entry log

(2) send message msg

(3) after computation, checkpoint the data

(4) log entry log

(5) send message msg

i
leave

i
leave

(6) spawn a witness agent

to server Si-1

to server Si-1

Fig. 1. Fault tolerant mobile agent server framework

a communication mechanism between agents and servers.

Assume that, currently, the actual agent has just arrived at serverSi while the witness agent

has been spawned at serverSi−1 before the actual agent leaves serverSi−1 . We denote the

actual agent asα and the witness agent asωi−1.

As the actual agent plays an active role in our proposed protocol, we discuss its activity first.

Fig. 1 shows the action flow performed by the actual agentα at serverSi. After α has arrived

at Si, it immediately writes an arrival entry,logi
arrive, into the logs on the permanent storage in

Si [Step (1)]. The purpose of this log entry is to provide an evidence thatα has successfully

landed on this server. Next,α informsωi−1 that it has arrived atSi safely by sending a message,

msgi
arrive, to Si−1 [Step (2)]. Si−1 keeps the received message in its message box. Then,α

performs its dedicated tasks atSi. When it finishes, it immediately checkpoints its internal data

[Step (3)]. We assume that the checkpointing action is one of the computations of the actual agent.

That is, if the checkpointing action fails, the actual agent will abort the whole transaction. This

is an important step since this property guarantees that the checkpointed data will be available

if the actual agent has already finished computing. Moreover, it is essential for the recovery of

the lost actual agent. After thatα logs another entrylogi
leave in Si [Step (4)]. This log entry

expresses thatα has completed its computation and is ready to travel to the next serverSi+1. In

4

waiting for msgiarrive
waiting for msgileave

time

waiting for msgialive

and sending msgi-1alive

(1)

(2)

(3)

witness
agent’s
state

spawned at Si-1

msg i
arrive arrives

msg i
leave arrives

Fig. 2. Life scenario of witness agentωi−1

the next step,α sendsωi−1 another message,msgi
leave, in order to informωi−1 that α is ready

to leaveSi [Step (5)]. After sending the leave message,α spawns a new witness agent at the

current server [Step (6)]. At last,α leavesSi and travels toSi+1. The procedure goes on until

α reaches the last destination in its itinerary.

On the other hand, the witness agentωi−1 is more passive than the actual agent in this protocol.

It does not send any messages to the actual agent. Instead, it simply waits to receive messages

from the local mailbox first. Two messages are expected: one ismsgi
arrive and the other is

msgi
leave. One advantage of receiving these two types of messages through a mailbox is that the

mailbox provides a history record that these messages have arrived at this server. Additionally, the

mailbox provides a mechanism to shuffle messages and only letsmsgi
arrive pass beforemsgi

leave.

Therefore, if the messages are out-of-order,msgi
leave will be kept in the permanent storage and

will not be consumed byωi−1. The message record in the mailbox will be utilized in recovering

the lost witness agent and actual agent. After receiving these two indirect messages,ωi−1 waits

for the direct heartbeat message,msgi
alive, which is sent by the witness agent at serverSi. This

message testifies the liveness ofωi. Therefore, a witness agent will undergo three states after

being spawned, shown in Fig. 2.

III. A GENT FAILURE DETECTION AND RECOVERY

The purpose of the introductions of the log entries,logi
arrive and logi

leave, and the messages,

msgi
arrive andmsgi

leave, is to guarantee that the actual agent has finished up to a certain point of

5

its execution. If a server failure occurs between a log entry and its corresponding message, we

can determine when and where the actual agent fails. We assume that there will be no hardware

failures such that the log entries cannot be recorded in the permanent storage. However, other

kinds of failures like software faults in the mobile agents or in the mobile agent platforms may

occur. In the following subsections, we will cover different types of failures including the loss

of the actual agent and the loss of the witness agents.

A. ωi−1 fails to receivemsgi
arrive

The cases that the witness agent at serverSi−1, ωi−1, fails to receivemsgi
arrive include:

(a) The message is lost due to an unreliable network;

(b) The message arrives after the timeout period ofωi−1;

(c) α is dead when it is ready to leaveSi−1 and heading forSi;

(d) α is dead when it has just arrived atSi without logging;

(e) α is dead when it has just arrived atSi with logging.

By utilizing the arrival entry logged inSi, logi
arrive, we can solve the first two problems. In

these two cases, the actual agent does not die andlogi
arrive is a proof for the existence ofα

insideSi. The witness agent can then send out aprobeρi, another agent, to search forlogi
arrive

in Si. If found, ρi re-transmitsmsgi
arrive in order to recover the lost or delayed message.

If ωi−1 fails to receivemsgi
arrive because of the loss of the actual agent, we may have

the problem ofmissing detectionwhen, in case (e), the probe can findlogi
arrive and wrongly

determines that the actual agent is still alive, and thus terminates itself prematurely. This case

will be discussed in the next subsection.

If the failure is caused by cases (c) or (d), the probe will not be able to findlogi
arrive in Si.

Then, we should recover the lost actual agent by utilizing the checkpointed data stored inSi−1.

Therefore, the probe is required to carry along the checkpointed data when it travels toSi.

Fig. 3 shows the execution steps to detect agent failures when the witness agent fails to

receivemsgi
arrive. ωi−1 waits for the messagemsgi

arrive with a configurable timeout period. If

the timeout period is reached, it creates the probeρi. ρi then travels toSi [Step (1)]. Since it

may be required to recover a lost agent, it travels with the checkpointed data [Step (2)]. Upon

arriving atSi, it searches the log file inSi for the entrylogi
arrive [Step (3)]. If logi

arrive is found,

it re-transmitsmsgi
arrive [Step (4)]. If the log entry is not found,ρi will recoverα in Si by using

6

(1) the witness agent spawn a probe,which travels to Si

(2) the probe is carrying the checkpointed data

(3) the probe inspects the log in Si

(4) if log

(5) if not, recover the agent from the checkpointed data

i
arrive is found, then msg is re-transmitted to Si-1 i

arrive

Place

MessagesCheckpoints Logs

Server Si-1

Place

MessagesCheckpoints Logs

Witness Probe

(3)

(5)

Server Si

Agent(2)

(1)

(4)

Fig. 3. Recovery steps whenωi−1 fails to receivemsgi
arrive

the piggyback checkpointed data [Step (5)]. Finally, the recovered actual agent atSi will send

the messagemsgi
arrive. Note that we recover the lost actual agent inSi instead ofSi−1 because

whenρi detects that a recovery is required, we can immediately recover that actual agent inSi.

If we perform the recovery inSi−1, ρi has to send a message toSi−1 in order to informωi−1

that an agent recovery is required. This introduces a risk of losing the critical message.

Whenωi−1 sends outρi, it waits for another timeout period. This is important since probeρi

may lose, the message that is re-transmitted fromSi may be lost again, or another successive

failure may strikeSi. Such a failure may terminate both the probeρi and the just-recovered

actual agent. Therefore,ωi−1 should wait until the messagemsgi
arrive arrives.

Note that it is possible thatρi reachesSi while α is still on the way. However, the occurrence

probability of this case should be low. Since bothα andρi have to travel fromSi−1 to Si in the

same network, they suffer from more or less the same network latency. Although there may be

many routes fromSi−1 to Si, we can set the timeout ofωi−1 to be large enough to overcome

the difference of speeds among these routes.

B. ωi−1 fails to receivemsgi
leave

The reasons thatωi−1 fails to receivemsgi
leave are listed as follows:

(a) The message is lost due to an unreliable network;

7

(b) The message arrives after the timeout period ofωi−1;

(c) α is dead when it has just sent the messagemsgi
arrive;

(d) α is dead when it has just logged the entrylogi
leave;

(e) α is dead when it has spawned the witness agentωi.

If the failure occurs because of the first two reasons, it can be solved in a similar way as

that in the previous subsection.ωi−1 will send a probe, again denoted asρi, with a different

task to search forlogi
leave in the log file ofSi. We may also face the missing detection problem

if the reason of the failures is cases (d) or (e). The solution to case (d) will be discussed

in the subsection III-C by utilizing the witness agent monitoring mechanism. For case (e), it

becomes the same case asωi cannot receivemsgi+1
arrive, which has been discussed in the previous

subsection.

For case (c), we handle it by detecting whetherlogi
leave exists or not. Iflogi

leave is absent, it

implies that the actual agent is lost while performing its computation. Case (e) of the previous

subsection can be categorized as this case. Because we could expect that the witness agentωi−1

will not receive msgi
leave after the loss ofα. In this case, since the actual agent is lost, its

partially-completed task should be undone. Therefore, it is required to rollback those operations

by the method proposed in [8] in order to preserve the data consistency inSi. We treat the

whole computation process as a single transaction. Since the transaction is not committed, we

have to abort all the actions which have been executed in this transaction. We employ the log

in Si to recover the data insideSi. The rollback recovery is not done by the probeρi. Instead,

it is performed during the recovery of the server. Therefore, when the probe cannot find the log

entry logi
leave, it can immediately use the checkpointed data to recover the actual agent. After

the recovery is completed, the recovered actual agent continues to perform its computation in

Si. This simplifies the implementation of the agent failure detection mechanism. The execution

steps of the probe whenmsgi
leave is missing is very similar to the steps in Fig. 3. Note again

the recovery of the actual agent takes place in the server where the actual agent is expected to

be hosted, i.e.,Si.

C. Failures of witness agents and the recovery strategy

The witness agent at serverSi, ωi, is spawned by the actual agentα after it logs the entry

logi
leave and before it moves to the next serverSi+1. The reason of engaging this witness agent

8

spawning strategy instead of letting the the lagged witnessωi−1 moves forward to serverSi is

to reduce the network communication, thus minimizing the chances of agent loss introduced by

link failures, and to create a chain of witness agents.

Before the actual agent completes its itinerary, there are witness agents spawned along the

itinerary of the actual agent. The most recently created witness agent is monitoring the actual

agent; on the other hand, the older witness agents are responsible for monitoring the witness

agent that is just one server closer to the actual agent in its itinerary. That is

ω0 → ω1 → ω2 → . . . → ωi−1 → ωi → α,

where “→” represents the monitoring relation. We introduce a server calledhome, i.e., the

machine of the agent owner. The home server is responsible for transmitting agents when the

agents start travelling as well as for receiving agents when they finish travelling on the network.

This home server is denoted asS0. Therefore,ω0 denotes the witness agent resides at the home

server. We name the above dependency thewitnessing dependency. This dependency cannot

be broken, otherwise, no witness agent will monitor the actual agent eventually. In order to

preserve the witnessing dependency, the witness agents that are not monitoring the actual agent

periodically receive heartbeat messages from its forward witness agent. That is,ωi sends a

periodic message,msgi
alive, to ωi−1 in order to letωi−1 know thatωi is alive. Whenωi−1 cannot

receivemsgi
alive from ωi, the reasons may be:

(a) The network is congested or unreliable;

(b) The system load ofSi is too high;

(c) ωi is not created or is dead.

No matter what the reason of the failure is,ωi−1 can always assume thatωi is dead. These

cases have included case (d) in Subsection III-B. After timeout,ωi−1 will send a probeρi to Si

to spawn a new witness agent in order to replace the lost witness agent inSi. Since there is no

special data stored in the witness agent except the agent itinerary, this type of probe does not

need to carry the checkpointed data. Because there exists a probability of false detection due to

cases (a) and (b), whenρi arrives atSi, it first checks whether the witness agent is still alive.

If no witness agent exists, it initializes a new witness agent. This newly-created witness agent

will re-send the messagemsgi
alive to ωi−1; otherwise,ρi just disposes itself.

Fig. 4 illustrates a recovery procedure of witness agent failure. Ifα is in Si, then ωi−1 is

9

(1) a failure strikes Si-1 and the witnessing dependency is broken

(2) a failure strikes Si and the actual agent is terminated

(3) witness agent at Si-2 recovers witness agent at Si-1

(4) withness agent at Si-1 recovers the actual agent at Si

Server Si-2 Server Si-1 Server Si

(3) (4)

(1) (2)

Witness Witness Agent

Fig. 4. Witness agent failure scenario

monitoringα, andωi−2 is monitoringωi−1. Assuming we have the following failure sequence:

Si−1 crashes first and thenSi crashes. SinceSi−1 crashes,ωi−1 is lost, hence no one monitors

α. If no one recoversωi−1, then no one can recoverα after Si crashes. This is not desirable.

Therefore, we need a mechanism to monitor and recover the failed witness agents. This is

achieved by preserving the witnessing dependency: the recovery ofωi−1 can be performed by

ωi−2, so that eventuallyα can be recovered byωi−1. Note that there are other more complex

scenarios, but as long as the witnessing dependency is preserved, the agent failure detection and

recovery can always be achieved.

D. Simplification of the witnessing dependency

To keep the witnessing dependency, witness agents are created in the itinerary and heartbeat

messages are exchanged between witness agents. This procedure consumes a lot of resources

along the itinerary of the actual agent. If, however, we assume that nok or more servers can

fail at the same period of time, we can simplify our mechanism by shortening the witnessing

dependency through keeping the witness length less than or equal tok. If the actual agentα is

now at serverSi, the simplified dependency then becomes:

if (i ≤ k) ω0 → ω1 → . . . → ωi−1 → α

else ωi−k → ωi−k+1 → . . . → ωi−1 → α,

where “→” represents the monitoring relation. Since no more thank servers can fail simultane-

ously, k witness agents are sufficient to guarantee the availability of the actual agent. When a

failure occurs inSi, ωi−1 can recoverα after the server is restarted. When a failure strikesSj,

10

i−k < j < i, ωj−1 will recoverωj. When a failure occurs inSi−k, asωi−k cannot be recovered,

the length of witnessing dependency is reduced by1. However, whenα travels toSi+1, a new

witness agentωi will be created and a new dependency involvingωi−1, ωi, andα will be formed,

thus the witnessing dependency resumes its length ofk. Finally, whenα successfully logs the

entry logi+1
arrive, we can terminateωi−k by sending a message,msgi+1

kill , from Si+1 to Si−k.

IV. STOCHASTIC PETRI NET MODELS AND EXPERIMENTAL RESULTS

With the proposed agent failure detection and recovery mechanism, we evaluate its improve-

ment on agent survivability through Stochastic Petri Net (SPN) and simulation [9]. We denote

a mobile agent system without any fault tolerance as Level0. For comparison, we introduce

a server failure detection and recovery mechanism. Before the actual agent leaves the current

server, it tests whether or not its next destination server is alive. If yes, it moves to it; otherwise, it

will stay at the current server until the next server comes back to work. If a mobile agent system

engages this server failure detection and recovery strategy, it is at Level1. If it additionally

embeds the agent failure detection and recovery, it goes up to Level2. We define the metric,

the agent survivability, as the successful ratio of actual agents in completing their scheduled

round-trip journeys in a network of agent servers.

A. SPN models

Fig. 5 shows the SPN that models the mobile agent system at Level2. SPNs for Levels0 and

1 are subsets of the SPN for Level2, so we omit them. The right dashed-line box manifests the

state transitions of the actual agent at a server. Transitionst a m, t l a, t a p, t l l and t w n

are timed transitions, which model the time spent on travelling between two servers, the time to

log the arrival entry, the required computation time inside a server, the time to log the leave entry

and the time to spawn a witness agent, respectively. The right un-boxed places and transitions are

for the server itself.t s f models the time to a failure andt s r is the time required to perform a

recovery. Here instant failure detection is assumed. A more realistic round-robin failure detection

approach could also be modelled [6]. When atokenis inside placep s u, the server is available;

however, if there is no token inside that place, the server fails, and all agents inside that server

are lost. We utilize inhibitor arcs and guard arcs to model these phenomena. The guard arc from

p s u to t a m prevents the actual agent from moving to the server when it fails. The upper-left

11

t_a_m

p_a_a

t_a_p

p_a_d

p_s_u

t_s_f

t_s_r

p_s_dp_a_p

t_l_a

p_a_l

t_l_l

p_l_a
p_c_a

p_s_a

p_l_l

p_c_l

p_s_l

p_m_ap_w_a

p_m_l
p_w_l

t_b_a

p_w_h
p_m_h

p_p_wp_s_h

t_b_l

t_b_h

p_p_a

p_p_l

p_w_n

t_w_n

input/out arc

guard arc

inhibitor arc

Fig. 5. SPN model for Level 2

dashed-line box shows the witness agent’s state transitions. Three states, waiting for the arrival,

leave and heartbeat messages, are clearly represented. The middle non-boxed area is for the

probe. Three types of probes will be dispatched, which are for retrieving the arrival message,

for retrieving the leave message, and for recovering a witness agent. The places in the lower-left

dashed-line box represent sending the arrival and leave messages to a witness agent, which are

shared by the actual agent and the probe. After a server recovers from a failure, placesp l a,

p l l, p m a andp m l will be initialized with a token if their corresponding logs and messages

are present.

Fig. 5 only shows different agents’ behaviors in one server. We can put several servers together

to form a chain, which represents the itinerary of an actual agent and the witnessing dependency.

B. Experimental results

Our experiments are carried out by simulations developed with C-Sim [10]. Some parameters

are given here: the network transmission rate for all agents is100, and for messages is200;

12

the server repair ratet s r = 0.1; all message log rates are100; the arrival, leave and heartbeat

messages bound times are1, 100, and 20, respectively; and the heartbeat interval is5. We

carry out the experiments by using different itineraries with various number of servers. These

experiments illustrate how the agent survivability is improved.

The results of using the C-Sim implementation with different server failure rates and job

completion rates are shown in Fig. 6. For each parameter pair, we conduct six simulations, one

for Level 0, one for Level1, and the other four for Level2 with different k, the length of

witness agents. All sub-figures (a) show that the agent survivability decreases progressively as

the number of servers increases. It is reasonable since the chance of waiting for the recovery of

a failed server increases, the agent loss probability will also go up while the agent is waiting.

The agent failure detection and recovery mechanism achieves relatively higher survivability than

other two levels. The improvement becomes more significant as the number of servers and the

length of witness agents increase. Therefore, to achieve high percentage of successful round-trip

agent travels with more servers, we should increase the number of witness agent correspondingly.

An unexpected result is that after engaging the server failure detection and recovery approach,

the completed agents percentage is, however, less than that of without engaging any fault

tolerance mechanisms. We know that in both these levels, when the actual agent is lost, no

way is provided to recover it. Therefore, if the agent finishes its journey more quickly, its loss

probability is less. After engaging the server failure detection and recovery, the actual agent

spends more time in the system because it should wait at its current server when its next server

is unavailable. Consequently, its loss chance becomes higher. Even the agent failure detection

and recovery with small number of witness agent is employed, this statement is also true. By

comparing Fig. 6(I-a) and (II-a), we note that the higher the failure rate is, the higher the agent

loss probability is. However, if an agent could complete its dedicated work at each server more

quickly (Fig. 6(III-a)), the survivability will increase. This implies that under unreliable systems,

the actual agent should complete its task as fast as it can.

We know that Level2 is achieved by engaging witness agents and probes. All sub-figures

(b) and (c) show what the cost it has to pay. All sub-figures (b) show the number of created

witness agent with Level2, which increases linearly with the number of servers. The higher the

number of required witness agentsk is, the more witness agents will be created. Sub-figures (c)

show the number of probes generated during agent execution. Note that the higher percentage of

13

0 5 10 15 20
0

5

10

15

20

25

Number of Servers

N
um

be
r

of
 C

re
at

ed
 W

A
s

0 5 10 15 20
0

20

40

60

80

100

120

Number of Servers

N
um

be
r

of
 P

ro
be

s

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of Servers

A
ge

nt
 S

ur
vi

va
bi

lit
y

Level 0
Level 1
k = 1
k = 2
k = 3
k = 4

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of Servers

A
ge

nt
 S

ur
vi

va
bi

lit
y

0 5 10 15 20
0

10

20

30

40

50

Number of Servers

N
um

be
r

of
 C

re
at

ed
 W

A
s

0 5 10 15 20
0

50

100

150

Number of Servers

N
um

be
r

of
 P

ro
be

s

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of Servers

A
ge

nt
 S

ur
vi

va
bi

lit
y

0 5 10 15 20
0

5

10

15

20

25

Number of Servers

N
um

be
r

of
 C

re
at

ed
 W

A
s

0 5 10 15 20
0

10

20

30

40

Number of Servers

N
um

be
r

of
 P

ro
be

s

(I − a)

(I) The server failure rate is 0.001 and the job completion rate is 0.01

(I − b) (I − c)

(II) The server failure rate is 0.005 and the job completion rate is 0.01

(II − a) (II − b) (II − c)

(III − a) (III − b) (III − c)

(III) The server failure rate is 0.005 and the job completion rate is 0.05

Fig. 6. Simulation results with different server failure rates and job completion rates

completed agent is achieved at the cost of more witness agents and probes spawned. It indicates

that as the itinerary becomes longer, more extra witness agents and probes will be required, and

consequently the complexity of the system is increased. With these simulation results, we also

note there exists a trade-off between the achieved survivability and the overhead cost.

V. CONCLUSION

Enhancing the agent survivability in a failure-prone mobile agent system should be exploited

in order to create a more reliable agent deployment environment. Different approaches have been

14

studied, such as server replication, checkpointing and rollback recovery, as well as message-based

mechanisms. We propose a fault tolerant mobile agent framework which not only integrates those

traditional fault tolerance strategies but also employs witness agents and probes to detect and

recover server and agent failures. Spawned witness agents form a witnessing dependency which

is maintained by heartbeat messages sent backward. Failures of agents are recovered through

utilizing probes. An SPN model for the proposed mechanism is constructed and simulations are

conducted to evaluate the agent survivability and the numbers of witness agents and probes cre-

ated for failure recovery. Simulation results show that our proposed agent detection and recovery

approach improves the agent survivability. However, the improvement in agent survivability is

achieved by spending more time and space resources. Therefore, how to achieve the expected

agent survivability with affordable cost is a trade-off issue and should be investigated in the

future.

REFERENCES

[1] S. Pleisch and A. Schiper, “Fault-tolerant mobile agent execution,”IEEE Trans. Comput., vol. 52, no. 2, pp. 209–222, Feb.

2003.

[2] M. Dalmeijer, E. Rietjens, D. Hammer, A. Aerts, and M. Soede, “A reliable mobile agents architecture,” inProc. of the

1st International Symposium on Object-Oriented Real-Time Distributed Computing, Kyoto, Japan, Apr. 1998, pp. 64–72.

[3] T. Osman, W. Wagealla, and A. Bargiela, “An approach to rollback recovery of collaborating mobile agents,”IEEE Trans.

Syst., Man, Cybern. C, vol. 34, no. 1, pp. 48–57, Feb. 2004.

[4] S. Pears, J. Xu, and C. Boldyreff, “Mobile agent fault tolerance for information retrieval applications: An exception handling

approach,” inProc. the 6th International Symposium on Autonomous Decentralized Systems, Pisa, Italy, Apr. 2003, pp.

115–122.

[5] L. M. Silva, V. Batista, and J. G. Silva, “Fault-tolerant execution of mobile agents,” inProc. of International Conference

on Dependable Systems and Networks, New York, June 2000, pp. 135–143.

[6] M. R. Lyu and T. Y. Wong, “A progressive fault tolerant mechanism in mobile agent systems,” inProc. of the 7th World

Multiconference on Systemics, Cybernetics and Informatics, vol. IX, Orlando, Florida, July 2003, pp. 299–306.

[7] D. Johansen, K. Marzullo, F. B. Schneider, K. Jacobsen, and D. Zagorodnov, “NAP: Practical fault-tolerance for itinerant

computations,” inProc. of the 19th IEEE International Conference on Distributed Computing Systems, Austin, USA, June

1999, pp. 180–189.

[8] M. Strasser and K. Pothernel, “System mechanisms for partial rollback of mobile agent execution,” inProc. of the 20th

IEEE International Conference on Distributed Computing Systems, Taipei, Taiwan, Apr. 2000, pp. 20–28.

[9] R. Sahner, K. S. Trivedi, and A. Puliafito,Performance and Reliability Analysis of Computer Systems: An Example-Based

Approach Using the SHARPE Software Package. Kluwer Academic Publishers, 1996.

[10] R. Jokl and S. Racek, “C-Sim version 5.1,” Univ. of Wet Bohemia in Pilsen, Tech. Rep. DCSE/TR-2003-17, May 2003.

15

Michael R. Lyu received the B.S. degree in electrical engineering from National Taiwan University, Taipei,

Taiwan, in 1981, the M.S. degree in computer engineering from University of California, Santa Barbara,

in 1985, and the Ph.D. degree in computer science from University of California, Los Angeles, in 1988.

He is currently a Professor in the Department of Computer Science and Engineering, The Chinese

University of Hong Kong, Shatin, Hong Kong. He was with the Jet Propulsion Laboratory as a Technical

Staff Member from 1988 to 1990. From 1990 to 1992, he was with the Department of Electrical and

Computer Engineering, The University of Iowa, Iowa City, as an Assistant Professor. From 1992 to 1995, he was a Member of

the Technical Staff in the applied research area of Bell Communications Research (Bellcore), Morristown, New Jersey. From

1995 to 1997, he was a Research Member of the Technical Staff at Bell Laboratories, Murray Hill, New Jersey. His research

interests include software reliability engineering, distributed systems, fault-tolerant computing, wireless communication networks,

Web technologies, digital libraries, and E-commerce systems. He has published over 170 refereed journal and conference papers

in these areas. He received Best Paper Awards in ISSRE’98 and ISSRE’2003. He has participated in more than 30 industrial

projects, and helped to develop many commercial systems and software tools. He was the editor of two book volumes: Software

Fault Tolerance (New York: Wiley, 1995) and The Handbook of Software Reliability Engineering (Piscataway, NJ: IEEE and

New York: McGraw-Hill, 1996).

Dr. Lyu initiated the First International Symposium on Software Reliability Engineering (ISSRE) in 1990. He was the program

chair for ISSRE’96, and has served in program committees for many conferences, including ISSRE, SRDS, HASE, ICECCS,

ISIT, FTCS, DSN, ICDSN, EUROMICRO, APSEC, PRDC, PSAM, ICCCN, ISESE, and WWW. He was the General Chair for

ISSRE2001, and the WWW10 Program Co-Chair. He has been frequently invited as a keynote or tutorial speaker to conferences

and workshops in U.S., Europe, and Asia. He served on the Editorial Board of IEEE Transactions on Knowledge and Data

Engineering, and has been an Associate Editor of IEEE Transactions on Reliability and Journal of Information Science and

Engineering. Dr. Lyu is a fellow of IEEE.

Xinyu Chen received the B.E. degree in mechanical engineering from Beijing Institute of Technology,

Beijing, China, in 1997 and the M.E. degree in signal and information processing from Peking University,

Beijing, China, in 2000. Now he is a Ph.D. candidate in the Department of Computer Science and

Engineering at The Chinese University of Hong Kong, Hong Kong, China. His research interests include

fault-tolerant distributed systems and mathematical modelling.

Tsz Yeung Wongreceived the B.S. and M.Phil. degrees in computer science from The Chinese University

of Hong Kong, Hong Kong, China, in 2000 and 2002, respectively. Now he is a Ph.D. candidate in the

Department of Computer Science and Engineering at The Chinese University of Hong Kong, Hong Kong,

China. His research interests include distributed algorithms, graph algorithms, networking, and computer

and network security.

