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Face Annotation Using Transductive Kernel Fisher
Discriminant
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Abstract— Face annotation in images and videos enjoys many
potential applications in multimedia information retriev al. Face
annotation usually requires many training data labeled by
hand in order to build effective classifiers. This is particularly
challenging when annotating faces on large-scale collections
of media data, in which huge labeling efforts would be very
expensive. As a result, traditional supervised face annotation
methods often suffer from insufficient training data. To attack
this challenge, in this paper, we propose a novel Transductive
Kernel Fisher Discriminant (TKFD) scheme for face annotation,
which outperforms traditional supervised annotation methods
with few training data. The main idea of our approach is to solve
the Fisher’s discriminant using deformed kernels incorporating
the information of both labeled and unlabeled data. To evaluate
the effectiveness of our method, we have conducted extensive
experiments on three types of multimedia testbeds: the FRGC
benchmark face dataset, the Yahoo! web image collection, and
the TRECVID video data collection. The experimental results
show that our TKFD algorithm is more effective than traditio nal
supervised approaches, especially when there are very few
training data.

Index Terms— Face Annotation, Image Annotation, Multi-
media Information Retrieval, Supervised Learning, Transduc-
tive Learning, Kernel Fisher Discriminant, Transductive Kernel
Fisher Discriminant.

I. I NTRODUCTION

Image annotation enables traditional text based search en-
gines to index and retrieve large collections of media data
effectively which has received a rapid growth of research
attention in recent years [1], [2], [3], [4], [5], [6]. Although
numerous research efforts have been devoted to content-
based image annotation and retrieval [7], the general image
annotation problem is still a very challenging research issue
due to the semantic gap between low-level visual features and
high-level semantic concepts [8], [9]. We are still a long way
from achieving a practical solution of general image annotation
for web-scale applications.

In general, image annotation can be considered a typical
object detection and recognition problem, in which a variety
of concept detectors can be developed and applied. Among
various concept detectors, face annotation, may be one of the
most important and so far the most effective components for
image annotation tasks. Face annotation is a task to label the
facial images, which has recently received a surge of research
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attention in the multimedia retrieval community due to its
numerous potential applications [10], [11], [12], [13]. One
such application is to support the manual insertion of name
labels into photo albums, which can facilitate photo manage-
ment and search tasks [14]. Another significant application
is the annotation of faces on web images or photos, such
as web news images [11]. This would enable current text
based search engines to retrieve the content of facial images
effectively by text based indexing and searching ways, which
can facilitate traditional content-based image retrieval[15],
[7], [16]. Face annotation also has some important applications
in the video domain. For example, detecting important persons
in video data, such as news videos, can help content-based
video retrieval tasks significantly [17], [18]. These potential
applications are often very large-scale, making the face anno-
tation tasks very challenging in practice.

Face annotation is often regarded as a supervised classifica-
tion problem, in which traditional face recognition methods
are directly applied to solve the problem. Traditional face
recognition methods are usually based on supervised learning
techniques, which typically require a large number of training
faces in order to achieve satisfactory performance. In large-
scale applications, it is excessively costly to manually label
large amount of training data. Therefore, it is critically impor-
tant to develop an effective annotation method which is able
to annotate faces effectively with small numbers of training
examples. Since there are usually large amounts of unlabeled
data available in a given face annotation task, taking advantage
of these unlabeled data would offer a worthwhile advantage.
This motivates us to explore transductive learning or semi-
supervised learning techniques for face annotation tasks [19],
[20].

Although transductive learning and semi-supervised learn-
ing techniques have already been actively studied in ma-
chine learning communities [20], the problem of choosing
an appropriate classification method for face annotation re-
mains unsolved. The choice of classification method is of
great importance for achieving satisfactory annotation per-
formance. In traditional face recognition problems, Fisher’s
linear discriminant analysis [21] and its kernel variants [22]
are generally regarded as the state-of-the-art methods in face
recognition tasks. Considering that face annotation is closely
related to face recognition, developing transductive techniques
of Fisher’s linear discriminant analysis is likely to be a
promising solution for face annotation. To this end, we propose
a novel Transductive Kernel Fisher Discriminant (TKFD)
scheme, which takes advantages of both labeled and unlabeled
data for face annotation tasks. The main idea of our solution
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is to convert the traditional Kernel Fisher Discriminant (KFD)
into a transductive technique, which still has no straightfor-
ward solution available in the literature. As we know, for
Kernel Fisher Discriminant (KFD), the kernel function has an
essential impact on the classification performance. Therefore,
in our TKFD solution, we propose to first induce a new
transductive kernel by employing kernel deformation tech-
niques to incorporate information from unlabeled data intothe
original kernel, and then apply the new kernel to classification
tasks based on the Kernel Fisher Discriminant. Compared
with traditional KFD methods, our TKFD approach is more
effective particularly when there are only a small number
of labeled data. We have conducted extensive experiments
to evaluate the performance of our algorithm on three kinds
of testbeds, namely the Face Recognition Grand Challenge
(FRGC) benchmark dataset [23], the Yahoo! news images from
WWW [11], and the TRECVID 2005 video dataset [24].

The rest of this paper is organized as follows. Section II
reviews the existing work on face annotation. Section III
presents the main methodology of our face annotation solution.
We first introduce the Kernel Fisher Discriminant, which is
considered the state-of-the-art approach for traditionalface
recognition. We then discuss how to induce a transductive
kernel using the kernel deformation principle for incorpo-
rating information from unlabeled data into an input kernel.
Finally, we give the algorithm of the Transductive Kernel
Fisher Discriminant for face annotation. Section IV presents
the experimental evaluations of TKFD on the three kinds of
testbeds. Section V discusses the limitation of our solution and
some future directions. Section VI sets out our conclusion.

II. RELATED WORK

Considerable research effort has been devoted to face anno-
tation problems in the multimedia community recently [10],
[11], [12], [13], [25], [26]. Most previous studies usually
assume textual information is available and there exist cor-
respondences between visual image content and texts, such
as between web images and surrounding texts [11], or video
frames and closed-captions [10], [12], [13]. Consequently,
face annotation has previously been regarded as a problem
of finding the correlations between the texts and the image
contents. S. Satoh et al. [10] proposed the first approach
to associate names with faces in news videos by measuring
the frequency of faces and names occurring at the same
time. However, without a prior face-name association set, this
method may suffer significantly from noise, especially for low-
quality images.

Tamara L. Berg et al. [11], [26] collected a large number
of face images from Yahoo! News channel and labeled them
using some language models and clustering methods. Their
approach tried to find the correspondences between faces and
names in news picture-caption pairs during the clustering
procedure. Encouraging results were reported on their dataset
with a variety of poses, illuminations, expressions and en-
vironmental conditions. One disadvantage of their clustering
approaches is that a single identity may become associated
with different names in the clusters due to text noise, limiting
the retrieval performance.

There is no doubt that textual information can be beneficial
for face annotation tasks when it is available. However, in
some situations, textual information may not always be avail-
able and may be quite noisy in real-world situations. Hence,
it is important to study effective ways of exploring the visual
information for face annotation tasks. To date, the research
community has developed few solutions using only visual
information.

In general, face annotation can be regarded as an extended
face detection and recognition problem if one is considering
only the visual information. Face detection and recognition
has already been studied extensively in the past decade [27].
A recent survey can be found in [28].

Recently, several research studies have been proposed to
explore visual information for face annotation by applyingface
recognition techniques. These approaches are often regarded
as supervised learning problems. For example, authors in [26]
suggested Fisher’s linear discriminant analysis for face annota-
tion. In [12], Support Vector Machines (SVM) were employed
to train and predict the probabilities of names in the transcript
matching faces in the videos. However, due to the high cost
of manually labeling the data, supervised learning methods
usually suffer from a shortage of labeled data. Recently Yang
et al. [13] proposed a multiple instance learning approach to
alleviate the problem of limited labeled data. In this paper, we
suggest addressing this issue by exploring transductive kernel
learning techniques.

The key of our proposed transductive learning solution
is to incorporate the information of unlabeled data into the
annotation tasks. More specifically, in contrast to the linear
discriminant in [26], we suggest the Kernel Fisher Discrim-
inant technique that solves the Fisher’s linear discriminant
in a deformed kernel feature space. Since our algorithm
includes information from both labeled and unlabeled data,it
is more reliable for building effective classifiers with limited
amounts of labeled data than traditional supervised learning
techniques. In addition, we develop an effective face detection
and alignment scheme to detect the facial regions and extract
effective features for face representation from the robustGabor
wavelets features. All of these make our scheme effective in
exploring the available visual information for large-scale face
annotation.

III. T RANSDUCTIVE KERNEL FISHER DISCRIMINANT

A. Overview

In this section, we propose a Transductive Kernel Fisher
Discriminant algorithm for face annotation. We adopt the
Kernel Fisher Discriminant as the basis of our method, since
it is the state-of-the-art method for traditional face recognition
tasks. The main idea of our solution is to transform the
supervised KFD approach into a Transductive KFD learning
method via kernel transformation techniques. To induce an
effective transductive kernel, we propose to employ the kernel
deformation principle, which is able to effectively incorporate
information from unlabeled data into a new kernel. In the
subsequent parts of this paper, we first give our formulation
of Kernel Fisher Discriminant and then introduce the kernel
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deformation principle, which has a solid theoretical basisfor
learning nonparametric data-dependent kernels. Based on the
kernel deformation principle, we finally present our propose
TKFD algorithm for solving face annotation tasks.

B. Kernel Fisher Discriminant

Fisher’s linear discriminant analysis [21] and its vari-
ants [22] are generally regarded as a state-of-the-art method
to deal with high-dimensional facial image data [28]. Kernel
Fisher Discriminant (KFD) [29], [30], [31] has been suggested
to solve the problem of Fisher’s linear discriminant in a kernel
feature space, thereby yielding a nonlinear discriminant in
the input space. Comparing with other supervised learning
methods such as SVMs [32], KFD enjoys the merits of outputs
with natural probabilistic interpretations and better solutions
for multi-class classification problems.

Let {xi|i = 1, . . . , l} denote the labeled data in the
input space and assume the annotation task is anm-class
classification problem. LetK be anl× l kernel matrix whose
elements are defined as:

Kij = k(xi,xj) = Φ(xi) · Φ(xj)

whereΦ is a nonlinear mapping function to form the kernel
function k(·, ·) in the Reproducing Kernel Hilbert Space
(RKHS).

Let X = [Φ(x1)Φ(x2) · · ·Φ(xl)] represent the data matrix
in the feature space; then the kernel matrixK can be calculated
as follows:

K = X⊤X

For a Kernel Fisher Discriminant problem, the total scatter
matrix St and between-class scatter matrixSb in the feature
space are defined as follows:

St =
1

l
XX⊤ (1)

Sb =
1

l
XWX⊤ (2)

where the weight matrixW is an l × l positive symmetric
matrix, whose elements are defined as follows:

Wij = Wji =

{ 1
|C(xi)|

, C(xi) = C(xj)

0, otherwise
(3)

whereC(xi) denotes the class of data instancexi and |C(xi)|
denotes the total number of data instances in the class ofxi.

Remark. Our definition of the weight matrixW is more
general and flexible than conventional block diagonal repre-
sentation. Moreover, the samples that belong to the same class
are no longer required to be kept in order.

Given the above definitions, instead of maximizing the
typical Fisher’s discriminant criterionJ = tr(S−1

w Sb), where
Sw is the within-class scatter matrix, we consider a variant [33]
that can deal with small sample size problems in high dimen-
sional input space as follows:

max
V

|V⊤SbV|

|V⊤StV|
(4)

whereV is a projection matrix.

There are several ways to solve the above optimization
problem. One approach is to solve the following equivalent
generalized eigen-decomposition problem:

λStV =SbV (5)

and then to form the projection matrixV by selecting the
eigenvectors with maximal eigenvaluesλ. From the theory
of reproducing kernels, the solutionV lies in the span of
[Φ(x1)Φ(x2) · · ·Φ(xl)] in feature space:

V =
l

∑

i=1

BiΦ(xi) = XB (6)

whereB = [B1,B2, . . . ,Bl]
⊤. Substituting Eqn.(1), (2), (6)

into Eqn.(5), we obtain

λXX⊤XB = XWX⊤XB

Multiplying both sides byX⊤, we then have

λX⊤XX⊤XB = X⊤XWX⊤XB

SinceK = X⊤X , we can turn Eqn. (5) into the following
equivalent form:

λKKB = KWKB (7)

To ensure numerical stability of matrix inversion, we can
add a regularization term in Eqn. (7). Consequently, the KFD
problem becomes one of solving the following equivalent
eigen-decomposition problem:

λB = (KK + γI)−1(KWK)B (8)

whereγ is the regularization parameter, andI is an identity
matrix.

Since the purpose of the Kernel Fisher Discriminant is to
project input data into the optimal feature space, letx denote a
data example in the input space. We can then project the high-
dimensional vectorΦ(x) into a lower dimensional space:

u = V · Φ(x) =
l

∑

i=1

Bi(Φ(x) · Φ(xi)) =
l

∑

i=1

Bik(xi,x)

Let kx ∈ Rl denote(k(x1,x) . . . k(xl,x))⊤; then the pro-
jected feature vectoru can be represented by the following
formula:

u = B⊤kx (9)

C. The Kernel Deformation Principle

In face annotation, conventional supervised learning meth-
ods usually require a large number of labeled data to train the
model. Previous approaches attempted to solve this problem
by multiple instance learning. We tackle this problem by
engaging transductive learning techniques, which can exploit
the unlabeled data effectively. The kernel deformation tech-
nique [20] provides a framework for learning a data-dependent
nonparametric kernel from unlabeled data. It can effectively
turn a supervised learning algorithm into transductive or semi-
supervised learning settings.

The main idea of the kernel deformation principle is to
estimate the geometry of the underlying marginal distribution
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from unlabeled data, then incorporate them into the kernel
deformation procedure. Thus, the resulting new kernel can
take advantage of information from unlabeled data. When an
input kernel is deformed according to the data distribution,
the resulting kernel method may be able to achieve better
performance than the original input kernel.

Basically, the kernel deformation technique aims to deform
the original RKHSH into a new RKHSH̃ that can estimate
the underlying marginal distribution of both labeled and un-
labeled data. Working with̃H, the new kernel̃k is computed
explicitly in terms of unlabeled data, and a supervised kernel
method can be employed for semi-supervised inference. Given
an input kernelk, the new kernel̃k in H̃ can be explicitly
computed by:

k̃(x,y) = k(x,y) + κ
⊤
y
c(x) ,

where κy = (k(x1,y) . . . k(xn,y))⊤, and the coefficients
c(x) = (c1(x) . . . cn(x))⊤ depend onx. Both κy and c are
n-dimensional vectors, wheren is the total number of data,
both labeled and unlabeled. LetG ∈ Rn×n be a symmetric
positive semi-definite matrix, as discussed in the next section.
Now, c(x) can be computed as follows:

c(x) = −(I + GK)−1Gκx ,

where K ∈ Rn×n is the kernel matrix with both la-
beled data and unlabeled data, andκx is defined as
(k(x1,x) . . . k(xn,x))⊤. Consequently, the explicit form of
the new kernel̃k can be formulated as follows:

k̃(x,y) = k(x,y) − κ
⊤

y
(I + GK)−1Gκx . (10)

D. Transductive Kernel Fisher Discriminant

The idea of our Transductive Kernel Fisher Discriminant ap-
proach is to solve the Fisher’s discriminant on the new RKHS,
which is constructed by warping the structure in exploiting
the underlying distribution of the data. To estimate the new
RKHS, we consider the kernel deformation method described
in Section III-C. By using the deformed kernels, we are able
to transform the supervised Kernel Fisher Discriminant into
transductive or semi-supervised learning forms.

It can be observed that our KFD formulation separates
the kernel matrixK from the label information through the
definition of the matrixW in Eqn. (8). Therefore, only kernel
k on labeled data is required to solve the Kernel Fisher
Discriminant optimization problem, which is only a portion
of the deformed kernel̃k. Moreover, it can be found from
Eqn. (10) that the deformed kernelk̃ works with both labeled
and unlabeled data in the new RKHS. Thus, we replaceK

with the corresponding part in the deformed kernelK̃, which
conveys the information of the unlabeled data. Therefore, by
applying similar methodology to that used in the supervised
Kernel Fisher Discriminant, we can solve the problem more
effectively than supervised approaches by taking advantage of
the unlabeled data. Note that Eqn. (10) can be used to compute
either the semi-supervised kernel or the transductive kernel.
For the proposed Transductive Kernel Fisher Discriminant

approach, the new deformed kernel matrix̃K ∈ Rn×n can
be derived as:

K̃ = K −K(I + GK)−1GK (11)

It can be simplified through the Kailath Variant:

K̃ = (I + KG)−1K

Moreover, the above equation is equal to

K̃ = K(I + GK)−1 (12)

It is interesting to note that the representation in Eqn. (12)
is more concise and computationally more efficient than the
original one in Eqn. (11).

There are several choices for the symmetric positive semi-
definite matrixG. As suggested in [20], the graph Laplacian
method is used in this work.G is defined byLp, whereL is
the Laplacian matrix of a graph andp is a degree parameter.
The graph Laplacian is defined asL = D − Q, where

Qij = Qji =

{

e−
‖xi−xj‖2

2σ2 , xi andxj are adjacent
0, otherwise,

andD is a diagonal matrix whereDii =
∑

i Qij .
Then, we employ the deformed kernel to find the optimal

projection in the new RKHSH̃ . Let K̃tr ∈ Rl×l denote the
matrix part of the “training-data block” in the deformed kernel
matrix K̃; substituting it into Eqn.(8):

λB̃ = (K̃trK̃tr + γI)−1(K̃trWK̃tr)B̃

Therefore, the feature vector projected from the new RKHS is
derived as:

ũ = B̃⊤k̃x (13)

where k̃x = (k̃(x1,x) . . . k̃(xl,x))⊤. The complete TKFD
algorithm is summarized in Fig. 1.

After feature vectors are extracted by this TKFD algorithm,
the next step is to measure the similarity for nearest neighbor
(NN) classification. The NN classifier is a nonparametric
classification method, which works by finding the neighbor
with the minimum distance between the query instanceu

and all labeled data instances. The query instanceu will be
classified into the class of the closest labeled instance. Since
the cosine similarity△cos yields better results in the empirical
evaluation, it is selected as the distance measure for the NN
classification schemes using Kernel Fisher Discriminant, and
is also used for the proposed Transductive Kernel Fisher
Discriminant:

△cos =
u⊤v

‖ u ‖ · ‖ v ‖
, (14)

where u and v are the extracted feature vectors. Note that
the methodology discussed above can be applied to solve
other general multi-class classification problems. In thispaper,
however, we restrict its application to face annotation tasks.
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Fig. 2

FRGCIMAGE EXAMPLES WITH CONTROLLED AND UNCONTROLLED ENVIRONMENT. THE CROPPED FACES ARE PLACED TO THE RIGHT SIDE OF EACH

ORIGINAL IMAGE . EACH CROPPED IMAGE IS INTERPOLATED TO THE SIZE OF128 × 128.

Algorithm 1 Transductive Kernel Fisher Discriminant
Input

• X: input data
• k: input kernel function
• γ: regularization parameter

Output
• K̃: transductive kernel matrix
• B̃: projection matrix

Procedure
1: Calculate initial kernel matrixK: Kij = k(xi,xj)
2: Calculate transductive kernel matrix̃K:

K̃ = K(I + GK)−1

3: Calculate weight matrixW :

Wij =

{

1
|C(xi)|

, C(xi) = C(xj)

0, otherwise

4: Find B̃ by solving the following eigen-decomposition:

λB̃ = (K̃trK̃tr + γI)−1(K̃trWK̃tr)B̃

5: Return (K̃, B̃)
End

Fig. 1

TRANSDUCTIVEKERNEL FISHERDISCRIMINANT ALGORITHM

IV. EXPERIMENTAL RESULTS

A. Overview

In this section, we report empirical evaluations of the
Transductive Kernel Fisher Discriminant algorithm with ap-
plications to face annotation tasks. To make evaluations com-
prehensive, we have collected three different kinds of datasets
as our experimental testbeds. One is the Face Recognition
Grand Challenge (FRGC) dataset [23], which was originally
designed for benchmark evaluation of face recognition. The
second dataset is the Yahoo! News facial images dataset,
which was derived from the web [11]. The third facial image
dataset is selected from the TRECVID 2005 dataset, which
was originally used for benchmarking video retrieval tasks.

For performance comparison, we also implement four ap-
proaches for face annotations, i.e., Linear Discriminant Analy-
sis (LDA), Kernel Fisher Discriminant (KFD), Support Vector
Machine (SVM) and Transductive SVM. Both LDA and KFD
are two typical methods for face recognition tasks. For a
performance metric, average accuracy of annotation results is
used for the evaluations. Precision and recall curves are also
provided for comparisons. In the following text, we first show
the details of our testbeds. Then we discuss our preprocessing

approaches for face extraction and feature representation.
Finally we present and discuss our experimental results.

B. Experimental Testbeds

1) FRGC Dataset:The FRGC dataset [23]1 is the state-of-
the-art benchmark protocol for performance evaluation of face
recognition techniques. We adopt the FRGC version 1 data set
(Spring 2003) in evaluating our face annotation algorithms.
This dataset contains5660 images of either1704×2272 pixels
or 1200× 1600 pixels. Since we consider the face annotation
task rather than biometric identification, the standard FRGC
experimental protocol is not directly applied for performance
evaluation. The dataset used in our experiment consists of
1920 images, corresponding to80 individuals selected from
the original collection. Each individual has24 controlled
or uncontrolled color images. The faces are automatically
detected and normalized through a face detection and ex-
traction method, which will be detailed in Section IV-C.
Fig. 2 shows geometrically normalized face images cropped
from the original FRGC images, with the cropped regions
resized to the size of128 × 128. Moreover, some image
processing operations are performed on these face images,
such as histogram equalization, lighting correction, etc.

2) Yahoo! News Face Dataset:The Yahoo! News Face
dataset was constructed by Berg et al. [11] from about half
a million captioned news images collected from the Yahoo!
News web site. It consists of large number of photographs
taken in real life conditions, rather than in the controlled
environments widely used in face recognition evaluation. As
a result, there are a large variety of poses, illuminations,
expressions and environmental conditions. After applyinga
face detection algorithm and processing the resulting faces,
there is a total of 31,586 large well detected faces available
for clustering. Each image in this set is associated with a
set of names. Discarding face clusters with a small number
of elements, a subset of 1,248 face clusters is obtained.
In addition, there are several individuals having more than
one cluster each; we merged them so that one individual
corresponds to one cluster. 1940 images, corresponding to the
97 largest face clusters, are selected to form our experimental
dataset, in which each individual has 20 images. As with the
FRGC dataset, faces are cropped from selected images using
the same face detection and extraction method in Section IV-C.
Only the relevant face image is retained when there are

1Accessible fromhttp://www.frvt.org/FRGC

http://www.frvt.org/FRGC


IEEE TRANSACTIONS ON MULTIMEDIA, DRAFT 2007 6

Fig. 3

YAHOO! NEWS FACE IMAGES USED IN OUR EXPERIMENTS. THE CROPPED FACES ARE PLACED TO THE RIGHT SIDE OF EACH ORIGINALIMAGE . EACH

CROPPED IMAGE IS INTERPOLATED TO THE SIZE OF128 × 128.

Fig. 4

TRECVID VIDEO DATASET USED IN OUR EXPERIMENTS. THE CROPPED FACES ARE PLACED TO RIGHT SIDE OF EACH ORIGINAL IMAGE.

multiple faces in one image. Fig. 3 presents examples selected
Yahoo! News images and the extracted faces. All these faces
are geometrically normalized.

3) TRECVID Video data:The third dataset used in our
experimental testbeds is from the TREC Video Retrieval
(TRECVID) 2005 dataset [24]. The original dataset contains
277 broadcast news videos of 171 hours from 6 channels
in 3 languages (English, Chinese, and Arabic). The original
dataset is designed for benchmarking video retrieval tasks. In
our experiment, we extract the facial regions from the key
frames in the original dataset. Among the detected faces, we
select 31 individuals to form our face annotation dataset, which
contains 867 face images in total. Fig. 4 shows examples of
video frames and the extracted faces.

C. Facial Image Detection and Extraction

Fig. 5

AAM S FITTING RESULT ON TWO SAMPLE IMAGES

The major task of facial image extraction is to locate and
crop the face region from the input image, then to normalize
the cropped image geometrically and photometrically. In order
to enable an automatic face annotation scheme, we cascade

a state-of-the-art face detector [34] with Active Appearance
Models (AAMs) [35], [36] to locate faces and facial features
in the input images. More specifically, we employ the face
detector roughly locate the facial region which is employedto
initialize AAMs fitting. The image is aligned to the predefined
template using the estimated centers of the eyes provided by
the AAMs facial feature locator. Finally, the facial region
without hair is cropped from the original image. If there are
multiple faces in an image, we iteratively extract each face
from those images. Fig. 5 shows two sample resulting images
with two faces using the face extractor employed in this study.
Note that any false detection by the face detector can be
inspected by thresholding the AAMs fitting error. Fig. 2 and
Fig. 3 depict some cropped sample faces using our proposed
facial image extractor. The performance in terms of correct
registration is greatly dependent on the image conditions.In
fact, the proposed method successfully crops 99% images on
the FRGC dataset. Similarly, the correct registration rateis
around 80% for the Yahoo! News Face dataset, and around
85% for the TRECVID dataset.

D. Feature Representation

Once facial images are extracted, the next step is to extract
features and then represent them effectively in classification
tasks. The feature representation techniques have been ex-
tensively studied for face detection and recognition in recent
years. Many effective feature extraction methods have been
proposed to address the task, such as Local Binary Pattern [37]
and Gabor Wavelets Transform. Among those methods, Ga-
bor wavelets representation of facial image has been widely
accepted as a successful approach [22]. From past studies in
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Fig. 6

A FACE IMAGE REPRESENTED BY40 SUBIMAGES OF THE MAGNITUDE

PART OF THEGABOR WAVELET TRANSFORM.

the area of signal processing, Lades et al. [38] empirically
surmised that good performance can be achieved by extracting
Gabor wavelet features of 5 different scales and 8 orientations.
In our experiments, we employ a similar approach by applying
Gabor wavelet transform on each image (scaled to128×128)
at 5 scales and 8 orientations. Fig. 6 shows an example of
40 resulting subimages after Gabor wavelet transformation.
Finally, we normalize each subimage to form a feature vector
x ∈ Rn with the sample scale reduced to 64, which results in
a 10240-dimensional feature vector for each facial image.

E. Experimental Settings and Implementation Details

In our experiments, three datasets are used for performance
evaluations. Table I summarizes the details of these testbeds.
In the experimental evaluations, each dataset is partitioned
into a labeled set and an unlabeled set. For each transductive
learning setting, the training set comprisesl+u data examples
for each class, wherel is the number of labeled data and
u is the number of unlabeled data for the class. For each
supervised learning setting, the training set only considers l

labeled examples for each class.
The LDA algorithm is used as the baseline method for

evaluating the performance of the proposed face annotation
approach. The implemented baseline method2 is similar
to the Fisherfaces method [21], which applies LDA after
PCA dimensionality reduction. We also implement SVM and
Transductive SVM (TSVM) for comparison. As mentioned
in [39], finding an exact optimal solution for TSVM is NP-
hard; a great deal of research effort has been devoted to the
approximation algorithm. We consider the LapSVM [20] as
the reference TSVM method, which has demonstrated better
performance than the other popular approaches, such as the
TSVM in SVMlight [40] and the Low Density Separation
(LDS) [41].

It is worth noting that LDA is a feature extraction method
rather than a classifier itself. It is often followed by some
simple classifiers, such as k-NN, to solve the pattern classifi-
cation problems. Other sophisticated classification techniques
can also be engaged as the classifiers on the extracted features.
Similarly, the extracted features by KFD and TKFD could also
be used by other kernel-based classifiers.

2A regularization term is added into the LDA optimization(Sb+γI)−1Sw

in order to ensure numerical stability, whereγ = 0.001. In addition, Euclidean
distance is employed as the similarity measurement.

TABLE I

THE FACE IMAGE DATASETS USED IN THE EXPERIMENTS.

Dataset # total images # classes # images per class

FRGC 1920 80 24
Yahoo! News 1940 97 20
TRECVID 2005 867 31 11∼111

We set up the following experimental protocol for all tests.
The number of labeled examples of each class,l, is gradually
increased from 1 to 7, and the rest examples are considered as
the unlabeled data. A variation of the 10-fold cross validation
approach is performed in the experiments. For each evaluation
round, the labeled data are randomly selected. We use the
same kernel and regularization parameters for both KFD and
TKFD. The linear kernel is used for all the experiments.
The regularization parameterλ = 0.001 is fixed for all
experiments to enable an objective comparison and reduce
the complexity in choosing model parameters. For SVM and
TSVM, the linear kernel is also used in the experiment, and
the regularization parameterC is set to 100. For TSVM
and TKFD, the Laplacian graph is constructed based on the
Euclidean nearest neighborhood. For selecting the eigenspaces
of KFD and TKFD, we choose the eigenvectors corresponding
to 98% of the total variations.

In our experiments, all the compared methods were imple-
mented in Matlab and evaluated on a PC with a 3.0GHz single
processor and 2GB memory.

F. Experiment-I: Evaluation on FRGC Face Dataset

Table II presents the experimental results of different set-
tings. From the experimental results, we first observe that
all the kernel methods, SVM, TSVM, KFD and TKFD,
outperform the baseline LDA method significantly on different
features. For example, when the number of labeled example
is equal to5, the LDA method only achieved overall43.9%
accuracy on intensity and71.3% on Gabor features, while
four other kernel methods are able to achieve significantly
better performance. These results show that kernel techniques
are generally much powerful than the linear ones in face
annotation tasks. Second, we can observe that the Gabor
features are more efficient than the intensity features in all
cases. Further, comparing the two kernel methods, KFD and
TKFD, we found that the proposed TKFD method performs
better than the supervised KFD method given the same number
of labeled data in most cases. The improvements are particu-
larly significant when there are smaller numbers of labeled
examples. More impressively, for the cases with1 and 2
labeled examples, the TKFD method is able to outperform the
supervised KFD method with96% and15% improvements, re-
spectively. Finally, the proposed TKFD approach outperforms
TSVM in most cases except for the single example case. This
is because there is no intra-class information for KFD and
TKFD methods when there is only one sample in a class.
Therefore, the KFD and TKFD may not work effectively in
this case.

In order to look into the details of the empirical comparison,
we also plot the precision-recall curve of the annotation results
in Fig. 7. These experimental results show that the TKFD
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TABLE II

AVERAGE ACCURACY OF ANNOTATION PERFORMANCE ON THEFRGCDATASET (%).

Label Intensity Gabor
Size LDA SVM TSVM KFD TKFD LDA SVM TSVM KFD TKFD

1 13.3± 4.8 12.5± 1.3 21.3± 1.8 12.2± 1.4 22.5± 1.5 16.5± 8.7 33.2± 1.5 43.4± 2.0 18.4± 1.8 36.1± 1.5
2 20.3± 6.6 36.0± 1.7 39.4± 2.0 36.5± 1.1 40.4± 1.3 34.0± 11.3 49.7± 1.5 60.4± 1.7 53.1± 2.2 60.9± 1.3
3 34.1± 2.8 46.7± 2.8 49.2± 2.5 47.3± 1.4 49.3± 1.7 53.9± 6.1 62.2± 1.9 71.1± 2.0 69.0± 1.5 72.4± 1.1
4 36.8± 3.2 53.2± 2.2 55.3± 2.0 52.9± 2.1 55.2± 1.8 62.8± 7.2 71.6± 1.0 77.9± 0.9 77.7± 1.4 79.6± 1.2
5 43.9± 4.0 57.2± 1.9 59.0± 1.9 59.0± 1.9 59.4± 1.6 71.3± 3.1 75.7± 1.7 80.8± 1.4 81.7± 1.2 82.4± 1.3
6 45.6± 4.9 60.7± 2.0 62.6± 1.8 62.3± 1.1 63.8± 1.0 73.4± 3.4 80.0± 1.2 83.1± 1.1 84.3± 1.0 84.5± 0.9
7 50.5± 3.3 63.0± 1.5 64.3± 1.8 64.4± 1.9 65.1± 1.8 78.3± 0.9 83.0± 1.1 85.6± 1.4 87.0± 1.0 87.3± 1.0
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PRECISION-RECALL CURVES OF ANNOTATION RESULTS WITH2 LABELED EXAMPLES PER PERSON ON THEFRGCDATASET

approach consistently outperforms the supervised KFD and
SVM methods. In contrast to the other state-of-the-art semi-
supervised method, TKFD is comparable to TSVM in the
performance of retrieval precision, and better than TSVM
in the performance of retrieval recall. This verifies that our
proposed TKFD algorithm is effective to improving traditional
supervised KFD methods over the challenge of insufficient
training samples.

G. Experiment-II: Evaluation on Yahoo! News Image Dataset

Using the Yahoo! News image dataset, we conduct eval-
uations similar to the FRGC approach. Table III shows the
experimental results of overall annotation accuracy. Fromthe
results, we found that the annotation task on Web images is
more challenging than the FRGC faces. Specifically, given the
setting of 5 labeled examples per class, the TKFD method
achieved only53.9% average accuracy on the Yahoo! News
image dataset of96 classes, while it achieved82.4% average
accuracy on the FRGC dataset of80 classes. This is because
the images in the FRGC dataset are usually taken in some
controlled environment, while the images collected in the
Yahoo! News image dataset have more variants of different
lighting conditions and orientations. Looking into the perfor-
mance comparison, we also found the two kernel methods
are considerably better than the LDA method in most cases,
and the TKFD method outperforms the supervised KFD in
most cases. For the cases with1 and2 labeled examples per
class, the TKFD method is able to respectively outperform
the KFD method by77.5% and 10.0%. To examine the
retrieval performance of precision and recall, we also plotthe

corresponding curves in Fig. 8, in which the proposed TKFD
is significantly better than the supervised methods, SVM and
KFD, and is slightly better than the other semi-supervised
method, i.e., TSVM.

H. Experiment-III: Evaluation on TRECVID Video Dataset

The final experimental evaluation is on the TRECVID 2005
video dataset. Similar evaluations are conducted. Table IV
and Fig. 9 show the experimental results. From the empirical
results, we can see that the overall annotation performanceis
rather promising in this dataset. Specifically, for the caseof
5 labeled examples per class, the TKFD method achieves an
average accuracy of83.0%, which is better than the results
achieved on the other two datasets. One reason is because the
number of classes used in the TRECVID dataset is smaller
than with the other two datasets. Thus, the annotation task
becomes relatively easy. In comparison with other annotation
methods, we found similar results to those observed on the
previous datasets.

Based on the promising empirical results on the three
datasets, we can conclude that our proposed TKFD algorithm
is more effective than the traditional supervised KFD and SVM
methods for face annotation when dealing with a small number
of labeled examples, which is a critical advantage for large-
scale face annotation applications.

V. D ISCUSSIONS ANDFUTURE WORK

We have proposed a comprehensive scheme for face annota-
tion by a novel Transductive Kernel Fisher Analysis algorithm.
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TABLE III

AVERAGE ACCURACY OF ANNOTATION PERFORMANCE ON THEYAHOO! NEWS FACE DATASET (%).

Label Intensity Gabor
Size LDA SVM TSVM KFD TKFD LDA SVM TSVM KFD TKFD

1 8.3 ± 1.1 7.2± 0.9 9.6± 1.1 7.2± 1.1 10.3± 1.2 11.5± 0.9 18.1± 1.6 23.1± 1.9 10.7± 1.0 19.0± 1.2
2 13.0± 1.5 17.6± 0.6 19.2± 0.6 17.8± 1.2 19.4± 1.0 24.4± 0.7 28.8± 1.2 34.0± 1.1 29.9± 1.2 32.9± 1.6
3 16.1± 1.2 22.4± 1.4 24.2± 1.6 21.6± 1.2 23.1± 1.2 32.0± 2.0 35.3± 1.3 41.2± 1.1 41.1± 1.4 42.4± 1.3
4 18.0± 2.3 24.8± 1.1 26.5± 1.4 25.2± 1.3 26.7± 1.3 36.8± 1.9 40.4± 1.2 47.0± 1.4 47.5± 1.1 48.2± 1.4
5 19.8± 1.7 26.8± 1.2 28.1± 1.1 27.2± 1.4 28.2± 1.1 41.5± 1.6 44.8± 1.1 51.1± 1.8 53.8± 1.3 53.9± 1.2
6 21.2± 1.7 30.1± 1.2 30.7± 1.4 29.7± 1.5 31.1± 1.3 45.2± 1.3 48.2± 1.0 54.9± 0.9 57.2± 1.5 57.3± 1.2
7 22.8± 2.0 30.4± 0.7 31.5± 0.9 31.4± 1.5 31.6± 1.3 48.4± 1.0 50.9± 0.9 57.9± 1.4 60.5± 0.9 61.6± 1.2
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TABLE IV

AVERAGE ACCURACY OF ANNOTATION PERFORMANCE ON THETRECVID 2005 FACE DATASET (%).

Label Intensity Gabor
Size LDA SVM TSVM KFD TKFD LDA SVM TSVM KFD TKFD

1 35.8± 3.4 41.3± 2.3 44.2± 2.7 34.3± 2.9 40.0± 3.4 46.3± 1.3 51.3± 2.9 55.0± 4.4 45.9± 3.7 54.1± 4.0
2 48.8± 3.7 51.2± 2.7 54.0± 3.2 49.8± 4.1 55.4± 2.6 60.7± 1.9 59.1± 1.1 65.6± 3.8 61.4± 2.2 68.2± 2.5
3 56.8± 2.8 57.3± 2.3 60.0± 2.4 56.7± 2.7 60.1± 2.7 68.7± 3.3 68.6± 3.4 74.8± 3.5 69.6± 2.5 74.4± 2.2
4 64.5± 2.3 61.6± 4.2 63.6± 3.9 64.0± 0.8 68.3± 0.8 74.0± 3.0 73.7± 2.1 76.7± 2.3 74.6± 2.4 79.2± 2.0
5 65.0± 1.6 64.6± 2.3 66.9± 2.2 66.5± 3.0 69.7± 3.3 79.4± 1.7 77.6± 2.0 80.4± 1.4 79.5± 2.3 83.0± 1.8
6 68.6± 2.3 67.7± 2.0 69.7± 2.4 67.9± 2.7 71.4± 2.1 80.1± 2.2 81.1± 2.2 82.3± 1.7 81.4± 2.4 84.6± 2.0
7 70.7± 1.8 70.0± 3.1 72.4± 3.3 70.5± 2.3 73.1± 2.2 83.7± 1.7 83.5± 1.8 84.3± 1.7 84.3± 1.4 87.1± 0.9
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Although the promising experimental results validated theef-
fectiveness of our methodology, we should address limitations
and future directions to improve our current approach. First

of all, we focused our attention only on exploring the visual
information for the face annotation task. In future work, we
can combine other annotation approaches studied in the textual
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domain [10], [25] for improving the annotation performanceif
the textual information is available. Second, we employed the
kernel deformation principle for learning transductive kernels
in the TKFD algorithm. In future work, we can extend the
TKFD algorithm to other kernel learning techniques [42], [43],
[44]. For example, we may consider the kernel alignment
techniques for combining multiple input kernels instead of
using only a single input kernel as in the current solution [42].
We may also study spectral kernel learning techniques to
achieve better transductive kernels for annotation tasks [43].
Finally, to minimize the human effort of labeling training data,
we can study active learning techniques to provide users the
most informative examples for labeling during the annotation
tasks [45], [46], [47], [48].

VI. CONCLUSION

In this paper we proposed a novel transductive learning
algorithm for face annotation. In contrast to traditional ap-
proaches using supervised learning methods, we proposed the
Transductive Kernel Fisher Discriminant (TKFD) algorithm,
which employs the kernel deformation techniques to exploit
both labeled and unlabeled data effectively for annotation
tasks. The TKFD algorithm is more effective than traditional
supervised annotation methods with a small set of training
data, since it can take advantage of information from unlabeled
data. To apply the TKFD to face annotation tasks effec-
tively, we developed a comprehensive face annotation scheme
using state-of-the-art face detection and feature extraction
techniques. We conducted extensive evaluations on three kinds
of testbeds. The promising experimental results showed that
our method is more effective than conventional approaches,
especially for dealing with the cases having only a limited
amount of labeled data, which is critical for large-scale face
annotation tasks.
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