

Abstract
Many studies have been performed on the subject of
software reliability, but few explicitly consider the impact
of software testing on the reliability process. This paper
presents two important issues on software reliability
modeling and software reliability economics: testing effort
and efficiency. First, we will discuss on how to extend the
logistic testing-effort function into a general form. The
generalized logistic testing-effort function has the
advantage of relating the work profile more directly to the
natural flow of software development. Therefore, it can be
used to describe the actual consumption of resources
during software development process and get a
conspicuous improvement in modeling testing-effort
expenditures. Furthermore, we will incorporate the
generalized logistic testing-effort function into software
reliability modeling and its fault-prediction capability is
evaluated through four numerical experiments on real
data. Then, we will address the effects of automated
techniques or tools on increasing the efficiency of software
testing. New testing techniques will usually increase test
coverage. We propose a modified software reliability cost
model to reflect these effects. From the simulation results,
we obtain a powerful software economic policy which
clearly indicates the benefits of applying new automated
testing techniques and tools during software development
process.

1. Introduction

 When computer applications permeate our daily life,
reliability becomes a very important characteristic of a
computer system. In modern society, computer-controlled
and computer-embedded systems heavily depend on the

Sy-Yen Kuo is with AT&T Labs-Research, New Jersey. He is on leave
from National Taiwan University, Taipei, Taiwan.

correct performance of software. Software reliability is
one of the most important features for a critical system
which can affect human’s life. Therefore, it is necessary to
measure and control the reliability of a software system. A
number of Software Reliability Growth Models (SRGMs)
have been proposed [12, 26]. Among these models, Goel
and Okumoto considered an NHPP as the stochastic
process to describe the fault process [11]. Yamada et al.
[1-3] modified the G-O model and incorporated the
concept of testing-effort in an NHPP model to get a better
description of the software fault phenomenon. Later, we
[7-8] also proposed a new software reliability growth
model with the logistic testing-effort function. In this
paper, we extend the logistic testing-effort function to a
generalized form. The generalized logistic testing-effort
function has the advantage of relating a work profile more
directly to the natural structure of the software
development. Therefore, it can be used to pertinently
describe the resource consumption during the software
development process and get a conspicuous improvement
in modeling the distribution of testing-effort expenditures.
 In general, we will have more confidence in the
measured software reliability with more software tests.
Unfortunately, testing with ineffective or redundant test
cases may lead to excessive cost. To avoid such
phenomenon, we need to know when to stop testing. One
alternative is to restrict the test data such that testing will
stop when the odds of detecting additional faults
(estimated by SRGMs) are very low. But this may not be
realistic since testers typically want to test for all possible
valuable failure data, even the cost of testing is significant.
Okumoto and Goel [11] first discussed the software
optimal release policy from the cost-benefit viewpoint and
proposed a software reliability cost model. It was shown
that the optimal software release time can be obtained
based on a cost criterion when minimizing the total
expected cost. Recently, many papers discussed such
optimal software release time problem based on the
cost-reliability relationship [4-6, 8-11, 113, 18-19, 21, 24].
In

 Software Reliability Modeling and Cost Estimation Incorporating
 Testing-Effort and Efficiency

Chin-Yu Huang1, Jung-Hua Lo1, Sy-Yen Kuo1, and Michael R. Lyu2
-+

1Department of Electrical Engineering 2Computer Science & Engineering Department
 National Taiwan University The Chinese University of Hong Kong
 Taipei, Taiwan Shatin, Hong Kong
 sykuo@cc.ee.ntu.edu.tw lyu@cse.cuhk.edu.hk

fact, to detect additional faults during the test phase of a
software development process, the testers or debuggers
may use some new automated tools or methods that are just
discovered and become available. These tools, techniques
or methods can greatly help the developers and testers to
create tests and eliminate some redundant test cases. As
time progresses, they can detect additional faults during
testing, which saves the greater expense of correcting
faults during the operational phase. These approaches have
improved software testing and productivity recently,
allowing project managers to maximize software
reliability. Hence the extra cost trade-off based on new
techniques and tools can be considered in software
reliability cost model and viewed as the investment
required to improve long-term competitiveness and to
speed up the software product release in the commercial
market. In this paper, we propose a new reliability cost
model that provides a means of assessing whether the
software cost is under control and the software quality is
improving with time. The methods we propose allow the
software testers and software quality assurance (SQA)
engineers to decide when the software is likely to be of
adequate quality for release.

2. Relationship between SRGM and
testing-effort function

 In this section we propose a set of generalized software
reliability growth models incorporating testing-effort
functions. The mathematical relationship between
reliability models and testing effort expenditures is
explicitly described in detail. Numerical results are given
to illustrate the advantage of this new approach.

2.1 Software reliability modeling descriptions

2.1.1 Review of SRGM with Logistic testing-effort
function

 A typical software reliability model is based on the
following assumptions [12]:

1. The fault removal process is modeled by a Non
Homogeneous Poisson Process (NHPP).

2. The software system is subject to failures at random
times caused by manifestation of remaining faults in the
system.

3. The mean number of faults detected in the time interval
(t, t+? t] to the current testing-effort is proportional to
the mean number of remaining faults in the system at
time t.

4. The proportionality is a constant over time.
5. Testing effort expenditures are described by a Logistic

testing-effort function.

6. Each time a failure occurs, the fault that caused it is
immediately removed and no new faults are introduced.

Based on the third assumption, we obtain the following
differential equation:

)]([
)(

1)(
tmar

twdt

tdm
???? (1)

Solving the above differential equation under the boundary
condition m(0)=0 (i.e., the mean value function m(t) must
be equal to zero at time 0), we have

 m(t)=a(1-exp[-r(W(t)-W(0))])=a(1-exp[-rW*(t)]) (2)

where m(t) is the expected mean number of faults detected
in time (0, t], w(t) is the current testing-effort consumption
at time t, a is the expected number of initial faults, and r>0
is the error detection rate per unit testing-effort at time t.

 Eq. (2) is an NHPP model with mean value function
considering the testing-effort consumption. From the
above description, we know that w(t) represents the current
testing-effort consumption (such as�volume of test cases,
human power, CPU time, and so on) at time t during the
software testing/debugging phase. The consumed
testing-effort can indicate how effective the faults are
detected in the software. Therefore, this function plays an
important role in modeling software reliability and it can
be described by different distributions. From the studies in
[1-5, 14], several testing-effort pattern expressions, such as
Exponential, Rayleigh, and Weibull-type curves, can be
applied. Moreover, we [7-8] proposed a Logistic�
testing-effort function to describe the possible test effort
patterns, in which the current testing-effort consumption is

? ? 2

2

])exp[](exp[]exp[1

]exp[
)(

22

tt
A

NA

tA

tNA
tw

??

?

?

??

??
?

??

??
? (3)

where N is the total amount of testing effort to be
eventually consumed, ? ?is?the consumption rate of
testing-effort expenditures, and A is a constant. �

 The cumulative testing effort consumption of Logistic
testing-effort function in time (0, t] is

]exp[1

)(
tA

N
tW

???
?

(4)

and ?? dwtW t?? 0)()((5)

Besides,�the testing effort w(t) reaches its maximum value
at time

?

A
t

ln
max ?

(6)

2.1.2 A generalized Logistic testing-effort function

 From the previous studies in [7-8], we know that the
Logistic testing-effort function (i.e. the Parr model [14]) is
based on a description of the actual software development
process and can be used to describe the work profile of
software development. In addition, this function can be
used to consider and evaluate the effects of possible
improvements on software development methodology,
such as top-down design or stepwise refinement.
Therefore, if we relax some assumptions when deriving the
original Parr model and take into account the structured
development effort, we obtain a generalized Logistic
testing-effort function as:

?

?
??

??
/1

1

/)1(
)(???

?
???

?
??

?
??

tAe
NtW (7)

where ?? is a structuring index with a large value for
modeling well-structured software development efforts,
and ? ?? is a constant.
If ? =1, the above equation becomes

???
2

1
)(?

?
?

? tAe

N
tW

(8)
If ? is viewed as a normalized constant and ? ?????the above
equation is reduced to Eq. (4).
Similarly, if ? =2, we have

???
3

1
)(

2 tAe

N
tW

??
?

(9)

Similarly, if we set ? ????, we get a more generalized and
plain solution for describing the cumulative testing effort
consumption in time (0, t]:

? ??? t

Ae

N
tW

??
?

1
)((10)

In this case,�the testing effort w(t) reaches its maximum
value at time

 ??
?

?
/)ln(max

A
t ?

(11)

2.2 Numerical examples

2.2.1 Numerical example 1
 The first data set is from Ohba [17] where the testing
time is measured in CPU hours. The Maximum Likelihood
Estimation and Least Squares Estimation are used to
estimate the parameters of Eq. (2), Eq. (4), and Eq. (10),
and we substitute the calculated normalizing value for ? .
The estimated values of parameters for the generalized

logistic testing-effort function are listed in Table 1. From
Table 1, ??=2.63326 is the real estimated value for the first
data set and the other possible values of ??are
pre-calculated. Figure 1 depicts the fitting of the
estimated current testing effort by using generalized
logistic testing-effort function, in which we find that the
peak work rate occurs when about half of the work on the
project has been done. This phenomenon can be
interpreted as that in a well-structured software
development environment, the slope of the testing-effort
consumption curve may grow slowly initially, but a
compensating reduction will happen later. Table 2 shows
the estimated values of parameters by using different
SRGMs and two comparison criteria, Accuracy of
Estimation (AE) and Mean of Square Fitting Faults (MSF)
[7-8]. The smaller MSF and AE indicate fewer number of
fitting faults and better performance. From Table 2, we
know that when the value of ??varies from 1 to 3, both
MSF and AE will be less than other existing SRGMs;
therefore, it is conceivable that the proposed model has a
better goodness-of-fit.

 Table 1: Parameters of generalized logistic
 testing-effort function for the first
 data set.

N A ????????? ????????? ??????????????????
54.8364 13.0334 0.226337 1
52.0072 40.6042 0.188809 1.5
50.2178 115.228 0.170001 2

49.00 126.00 0.158763 2.5
48.7768 429.673 0.158042 2.63326
48.1368 833.105 0.151344 3
48.1693 2188.22 0.144234 3.5
47.8507 5709.29 0.139933 4
47.6561 14839.3 0.136507 4.5

�

0 2.5 5 7.5 10 12.5 15 17.5

0

1

2

3

4

Time(Weeks)

Testing Effort(CPU Hours)

�

Figure 1: Observed/estimated testing-effort
 vs. time for the first data set.

Table 2: Comparison results for the first

 data set.
Model a r AE(%) MSF

 K=1
 K=2
 K=2.63326
 K=3
 Actual

Proposed
Model (?=1)

394.076 0.042722 10.06 118.29

 (?=1.5) 384.707 0.045037 7.46 114.32
 (?=2) 377.157 0.047815 5.35 112.41

 (?=2.6332) 369.029 0.050955 3.08 110.73

(?=3) 367.829 0.051905 2.75 105.91
 (?=3.5) 412.871 0.039938 15.32 820.76
 (?=4) 414.426 0.039861 15.76 889.21

 (?=4.5) 416.114 0.039732 16.23 952.38
G-O Model 760.00 0.032268 112.29 139.82
G-O with

Weibull fun
565.35 0.019659 57.91 122.09

G-O with
Rayl. Fun.

459.08 0.027336 28.23 268.42

G-O with
Exp. fun.

828.252 0.011783 131.35 140.66

Inflection S
Model

389.1 0.093549 8.69 133.53

Delayed S
Model

374.05 0.197651 4.48 168.67

Exp. Model 455.371 0.026736 27.09 206.93
Delayed S

Model with
Ray. fun.

333.18 0.100415 6.93 798.49

 S-Shaped
Model with
logistic fun.

338.136 0.10004 5.54 242.79

HGDM 387.71 NA 8.3 138.12
HGDM with
linear factor

387.709 NA 8.30 138.11

HGDM with
Exp. factor

385.132 NA 7.56 111.24

Musa Log.
Poisson

NA * * 171.23

2.2.2 Numerical example 2
 The second data set is cited from Musa et al. [4-5]. The
software were tested for 21 weeks (25.3 CPU Hours were
used) and 136 faults were detected. The Maximum
Likelihood Estimation and Least Squares Estimation are
used to estimate the parameters of the Eq. (2), Eq. (4), and
Eq. (10) and we substitute the calculated normalizing value
for ? . The estimated values for the parameters are listed in
Table 3. In fact, from Table 3, ? =1.27171 is the real
estimated value for the second data set and other possible
values of ? are pre-calculated. Figure 2 depicts the fitting
of the estimated current testing effort by using generalized
logistic testing-effort function. Table 4 shows the
estimated values of parameters and the comparison results
between the observed and the estimated values obtained by
the other SRGMs. Similarly, smaller AE and MSF indicate
less fitting errors and better performance. We find that
when the value of ??varies from 1.5 to 4.5, both MSF and

AE will be less than other existing SRGMs. Hence, we
still can conclude that the proposed model is good enough
to give a more accurate description of resource
consumption during the software development phase and
gives a better fit in this experiment.

Table 3: Parameters of generalized logistic
 testing-effort function for the
 second data set.

N A ????????? ????????? ??????????????????
29.1095 4624.89 0.493515 1
28.153 20903.9 0.44470 1.27171

28.1513 45843.8 0.39737 1.5
28.1458 260550 0.33307 2
28.0464 3784150 0.257234 3
27.5626 5329270 0.221165 3.5
27.0202 7428092 0.195207 4
26.0532 22955900 0.186095 4.5

�

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

3.5

Time(Weeks)

Testing Effort(CPU Hours)

�

Figure 2: Observed/estimated testing-effort
 vs. time for the second data set. �

Table 4: Comparison results for the second

 data set.
Model a r AE (%) MSF

Proposed
Model (?=1)

138.026 0.145098 26.58 62.41

 (? =1.27171) 140.013 0.137916 25.52 53.79
 (? =1.5) 139.191 0.141159 25.96 35.04

(? =2) 142.505 0.12406 24.19 17.62
 (? =3) 147.808 0.103272 21.37 9.17

 (? =3.5) 154.144 0.089175 18.01 18.58

 (? =4) 162.235 0.077407 13.70 32.38
 (? =4.5) 168.265 0.072116 10.49 36.58

G-O Model 142.32 0.1246 24.29 2438.3
G-O with

Rayleigh fun.
866.94 0.009624 361.13 89.24

Exp. Model 137.2 0.156 27.12 3019.66
Delay

S-shaped
Model

237.196 0.096344 26.16 245.25

 K=1
 K=1.27171
 K=2
 Actual

Delayed S
with Exp. fun.

688.593 0.019762

266.27 235.19

Delayed S
with Logistic

function.

137.49 0.330611

26.86 207.37

2.2.3 Numerical example 3
 The third set of real data is the pattern of discovery of
faults in the software that supported Space Shuttle flights
STS2, STS3, STS4 at the Johnson Space Center [22]. The
system is also a real-time command and control
application. A weekly summary of software test hours and
the faults of various severity discovered is given in [22].
The cumulative number of discovered faults up to
thirty-eight weeks is 227. Similarly, the Maximum
Likelihood Estimation and Least Squares Estimation are
used to estimate the parameters of the Eq. (2), Eq. (4), and
Eq. (10), and we substitute correct normalizing value for ? .
The estimated values of parameters for the generalized
logistic testing-effort function are listed in Table 5. In fact,
from Table 5, ? =1.25262 is real estimated value for this
data set and the other possible values of ? are
pre-calculated. Figure 3 depicts the fitting of the
estimated current testing effort by using generalized
logistic testing-effort function. Table 6 shows the
estimated values of parameters by using different SRGMs
and the comparison criteria. Therefore, the estimation
results of individual models show that the proposed model
gives the better AE.

Table 5: Parameters of generalized logistic
 testing-effort function for the third
 data set.

N A ????????? ????????? ??????????????????
2828.88 10.5057 0.0988842 1
2626.32 18.3734 0.093100622 1.25262
2664.54 30.3765 0.082482 1.5
2570.80 80.3661 0.074041 2
2507.67 203.404 0.0689604 2.5
2463.20 503.125 0.0655753 3
2460.83 1229.1 0.063166 3.5

0 10 20 30

0

20

40

60

80

100

120

Time(Weeks)

Testing Effort(CPU Hours)

Figure 3: Observed/estimated testing-effort

 vs. time for the third data set.

Table 6: Comparison results for the third
 data set.

Model a r AE (%)
Proposed Model

(?=1)
241.325 0.000907 75.5

 (?=1.25262) 240.842 0.000908 63.4065
 (?=1.5) 234.686 0.000983 71.9053

 (?=2) 229.605 0.001078 71.9443
 (?=2.5) 227.027 0.001108 73.6626

G-O Model 597.887 0.000209 78.87
G-O with Rayleigh

Function
245.017 0.0007158 183.366

2.2.4 Numerical example 4
 The fourth set of real data is the pattern of discovery of
faults by Thoma in [23]. The debugging time and the
number of detected faults per day are reported. The
cumulative number of discovered faults up to twenty-two
days is 86 and the total consumed debugging time is 93
CPU hours. All debugging data are used in this
experiment. Similarly, we can estimate each parameter by
the Maximum Likelihood Estimation and Least Squares
Estimation in the proposed SRGM and they are shown in
Table 7. In fact, from Table 7, ? =1.76033 is real estimated
value for this data set and the other possible values of ? are
pre-calculated. Figure 4 depicts the fitting of the estimated
current testing effort by using generalized logistic
testing-effort function. Table 8 shows the estimated values
of parameters by using different SRGMs and the
comparison criteria. Therefore, in this data set, we
conclude that our proposed model gets a reasonable
prediction in estimating the number of software faults and
fits this data set better than others.

Table 7: Parameters of generalized logistic
 testing-effort function for the fourth
 data set.

N A ????????? ????????? ??????????????????
99.9028 28.0091 0.257426 1
95.6453 109.068 0.2148526 1.5

95.00 231.00 0.2055126 1.76033
94.90 389.026 0.1936605 2
93.20 1336.10 0.1811212 2.5

 K=1
 K=1.25262
 K=2
 K=3
 Actual

0 5 10 15 20

0

2.5

5

7.5

10

12.5

15

Time(Weeks)

Testing Effort(CPU Hours)

Figure 4: Observed/estimated testing-effort

 vs. time for the fourth data set.

Table 8: Comparison results for the fourth
 data set.

Model a r AE (%)
Proposed Model

(?=1)
88.8931 0.0390591 55.015

 (?=1.5) 88.699 0.0385438 22.2717
 (?=1.76033) 90.354 0.0371217 29.4215

(?=2) 90.4078 0.0373532 28.4941

 (?=2.5) 90.6226 0.0373478 28.2564
G-O Model 137.072 0.0515445 25.33

HGDM 88.3 * 33.6812

3. Optimal release time incorporating test
efficiency

 In the last section we describe a generalized approach to
incorporate testing effort into software reliability models.
In this section we will identify the efficiency of testing and
study its impact on software reliability. In particular, we
discuss how to incorporate testing efficiency into
reliability models and how to determine the optimal
software release time.

3.1 Impact of new tools/techniques on software
testing efficiency

 As soon as software coding is completed, the necessary
but expensive testing phase starts. During the testing
phase, the developers will need to make a software
reliability evaluation and determine when to stop testing.
If the results meet the requirement specifications and the
reliability criteria are also satisfied, then the software
product is ready for release. Therefore, adjusting specific
parameters in an SRGM and adopting the corresponding
actions appropriately can help to achieve the goal of
determining the software release time. Several approaches
can be applied. For example, we have discussed the
applications of testing-effort control and management
problem in our previous study [7]. Using the proposed
methods, we can easily control the modified consumption

rate of testing-effort expenditures and detect more faults in
a specified time interval. This means that the developers
and testers can devote their time and resource to complete
their testing tasks based on well-controlled expenditures.
 In addition to controlling the testing-effort expenditures,
we can achieve a given operational quality at a specified
time by introducing new automated testing tools and
techniques. That is, through the adoption of new testing
techniques and tools, we can detect and remove more
additional faults (i.e. those faults that are not easily
exposed during the testing phase). These new methods,
however, will impose extra software development cost.
For example, professional experts can help developers to
assess the original software development process, to meet
their quality goals, and to reduce risks. In general, these
external personnel can offer efficient and effective
approaches to test planning, module-level unit testing, or
testing strategies. Moreover, many automated testing tools
and techniques are available to increase test coverage and
replace traditional manual testing. The benefits of
applying new techniques and tools include increased
software quality, reduced testing costs, improved release
time to market, repeatable test steps, and improved testing
productivity [5, 12, 15, 20]. Consequently, it is desirable
that these experts and automated testing tools/techniques
can greatly help the developers in detecting additional
faults that are difficult to find during regular testing and
usage, in identifying and correcting faults effectively, and
in improving their software development processes.
 An important step toward these new approaches, then,
is to offer enough information about these approaches to
software developers and reliability engineers. Before
adopting the automated techniques and tools, we should
get quantitative information from the industrial data
relative to these methods’ past performance (i.e. the
previous testing experience), or get qualitative information
from the evaluation on the methods’ attributes. Basically,
these methods’ past performance should be evaluated in
determining whether they will be successful in managing
reliability growth [20]. In addition, they can be evaluated
by performing various simulations based on actual data
sets. Finally, the test team’s capacity in applying these
techniques and tools and the related operational profiles
also play an important role. We discuss how the software
reliability modeling process can include these testing
methods, and how a new optimal software release time
problem can be formulated and solved.

3.2 Optimal software release time problem

 Okumoto and Goel [11] first discussed the software
optimal release policy from the cost-benefit viewpoint.
The total cost of testing-effort expenditures at time T,
C1(T), can be expressed as [1-3, 7, 9-11, 13, 18-19, 24]:

 K=1
 K=1.76033
 K=2
 K=2.5
 Actual

?????? T
LC dxxwCTmTmCTmCTC 0321)()]()([)()(1

 (12)
where TLC=software life-cycle length
 C1=cost of correcting an error during testing
 C2=cost of correcting an error during operation
 C3=cost of testing per unit testing-effort
 expenditures.

 From the work by B. Boehm [16], we know C2>C1 as
C2 is usually an order of magnitude greater than C1. In
order to detect additional faults during testing, the testers
and debuggers may use new automated tools or techniques.
The cost trade-off of these new tools and techniques,
therefore, should be considered in the software cost model,
including their expenditures and benefits. Consequently,
we modify the overall software cost model as follows [24]:

)1()([)()1()()(2 210 PTmCTmPCTCTC LC ???????? ������������

����� ???? T dxxwCTm 03)()](��������������(13)

where C0(T) is the cost function for developing and
acquiring the automated tools and techniques that detect an
additional fraction P of faults during testing.

 We note that the cost for developing and acquiring new
tools or techniques, C0(T), does not have to be a constant
during the testing. Moreover, the testing cost for C0(T) can
be parameterized and estimated based on actual data.
From our experience, we found that C0(T) may have
different forms as time progresses, which depends on the
characteristics of a tool’s performance, testing effort
expenditures, effectiveness, and so on. We can formulate
this cost function as simple linear functions or simple
non-linear functions. In general, the longer the software is
tested, the more the testing cost C0(T). Under the
cost-benefit considerations, the automated tools or
techniques will pay for themselves if

 0)(2)(1 ?? TCTC (14)

That is, ?????? T
LC dxxwCTmTmCTmC 0321)()]()([)(

??????? 3210)]()1()([)()1()(CTmPTmCTmPCTC LC

?T dxxw0)(0? �

Rearranging the above equation, we obtain

�����������)()()(120 CCTmPTC ???? ���������(15)

 Eq. (15) is used to decide whether the new automated
tools or techniques are effective or not. If C0 (T) is low
enough or if the new methods are effective in detecting
additional faults, this investment is worthwhile. Usually
appropriate automated tools or techniques are best selected
depending on how thoroughly failure data are collected
and faults are categorized [15]. Sometimes incorporating
new automated tools and techniques into a software
development process may introduce excessive, that is,

0)(2)(1 ?? TCTC . This phenomenon usually occurs

infrequently, but if it can really shorten the testing period
under the same software reliability requirements, we may
still consider applying the new techniques. By
differentiating Eq. (13) with respect to the time T we have:

????? 210))()1(()()(2 CTmP
dT

d
CTC

dT

d
TC

dT

d

)())()1((3 TwCTmP
dT

d
??? (16)

If we let Eq. (16) be equal to zero and use the mean value
function in Eq. (2), we can get a finite and unique solution
T0 for the determination of an optimal software release
time problem based on the new cost criterion.
From Eq. (16), if we let C1 (1+P)= C1

* and C2 (1+P)= C2
*,

then we have

)(
*

)(
*

)()(2 210 Tm
dT

d
CTm

dT

d
CTC

dT

d
TC

dT

d
???

� ������)(3 TwC ?? �

(17) �
If the mean value function is given in Eq. (2), we obtain

????)](
*

exp[)(
*

)()(2 10 TrWTarwCTC
dT

d
TC

dT

d

������)()](
*

exp[)(
*

32 TwCTrWTarwC ???? �������(18)

Without loss of generally, we consider several possibilities
for C0(T) in order to interpret the cost consumption:
(1) C0(T) is a constant.
(2) C0(T) is proportional to the testing-effort expenditures.
(3) C0(T) is exponentially related to the testing-effort

expenditures.
�

A. C0(T)= C0 , sTT ? ; C0(T)= 0, T<Ts

�� ??????)(((exp[)
**

([)()(2 12 TWrarCCTwTC
dT

d
�

������������]))]0(3CW ? � ��������������

(19)�

Since w(t)>0 for ??? T0 , 0)(2 ?TC
dT

d
�if�

������� 312))]0()((exp[)
**

(CWTWrarCC ???? �����

(20)
The left-hand side in Eq. (20) is a monotonically
decreasing function of T. Here we let Ts be the starting
time of adopting new techniques/tools. If

312))]0()((exp[)
**

(CWTWrarCC s ???? , then

 312))]0()((exp[)
**

(CWTWrarCC LC ???? for Ts<T <TLC.

Therefore, the optimal software release time T*=Ts since

0)(2 ?TC
dT

d
 for Ts<T<TLC. Similarly, if

312))]0()((exp[)
**

(CWTWrarCC s ???? �and

312))]0()((exp[)
**

(CWTWrarCC LC ???? , there exists a

finite and unique solution T0 satisfying Eq. (20). That is,

 ???

?
???

?
??

?
?? ??

?

? N

A
T ln

1
0 minimizes C2(T) (21)

where
? A

N

C

CC
ar

r ?
?

?
?? ?

?

?

?
?
?

?

?

?
?

?

?
?
?

?

?

1

**

ln
1

3

12

since 0)(2 ?TC
dT

d
 for Ts<T<T0 and)(2 TC

dT

d
>0 for

T0<T<TLC .

If 312))]0()((exp[)
**

(CWTWrarCC LC ???? , then

312))]0()((exp[)
**

(CWTWrarCC ???? �for Ts<T<TLC.

Therefore, the optimal software release time T*=TLC since

0)(2 ?TC
dT

d
 for Ts<T <TLC.

Theorem 1:
Assume C0(T)= C0 (constant), C0>0, C1>0, C2>0, C3>0,
C2>C1, we have

CASE 312))]0()((exp[)
**

(CWTWrarCC s ???? and�����

������))]0()((exp[)
**

(12 WTWrarCC LC ??? 3C? :

 there exists a finite and unique solution T0
 satisfying Eq. (20) and the optimal software
 release time is T* = T0.

CASE 312))]0()((exp[)
**

(CWTWrarCC s ???? : T* =Ts.

CASE 312))]0()((exp[)
**

(CWTWrarCC LC ???? :

���� T*= TLC.

B. ??? T
Ts dttwCCT)()(C 0010 , sTT ? ; C0(T)= 0, T<Ts

where C01 is an nonnegative real number that indicates the
basic cost of adopting new techniques/tools, and Ts is the
start time of adopting new techniques/methods.

????)](
*

exp[)(
*

)()(2 10 TrWTarwCTwCTC
dT

d

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����)()](
*

exp[)(
*

32 TwCTrWTarwC ??? ���

���

���

���

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����))]0()(((exp[)
**

[()(21 WTWrarCCTw ????? ����

����

����

����

����������]03 CC ?? (22)

Since w(t)>0 for ??? T0 , 0)(2 ?TC
dT

d
�if�

��� 0312))]0()((exp[)
**

(CCWTWrarCC ????? ����(23)

As the left-hand side in Eq. (23) is a monotonically
decreasing function of T, therefore, if

0312))]0()((exp[)
**

(CCWTWrarCC s ???? ? and

0312))]0()((exp[)
**

(CCWTWrarCC LC ???? ? , there

exists a finite and unique solution T0 satisfying Eq. (23).

 ???

?
???

?
??

?
?? ??

?

? N

A
T ln

1
0 minimizes C2(T) (24)

where
? A

N

CC

CC
ar

r ?
?

?

?
?? ?

?

?

?
?
?

?

?

?
?
?

?
?
?
?

?

1

**

ln
1

03

12

Theorem 2:

Assume ??? T
Ts dttwCCT)()(C 0010 , C01,�C0>0, C1>0,

C2>0, C3>0, C2>C1, we have

CASE ????? 312))]0()((exp[)
**

(CWTsWrarCC 0C �

������and))]0()((exp[)
**

(12 WTWrarCC LC ??? �C3+ C0:�

������there exists a finite and unique solution T0
 satisfying Eq. (23) and the optimal software release
 time is T* =T0.

CASE ????? 312))]0()((exp[)
**

(CWTWrarCC s 0C :

 T*= Ts.

CASE ????? 312))]0()((exp[)
**

(CWTWrarCC LC 0C :

 T* = TLC.

C. mT
Ts dttwCCT))(()(C 0010 ???? , sTT ? ;C0(T)=0,

T<Ts

????? ? *
))(()()(2 1

1

00 CdttwCTmwCTC
dT

d mT
Ts

���������� ???)(
*

)](
*

exp[)(2 TarwCTrWTarw �

����������)()](
*

exp[3 TwCTrW ??? �

�������� ?????)](
*

exp[)
**

[()(21 trWarCCtw C3+�

����������]))((
1

00

?
?? mT
Ts dttwCmC

Because w(t)>0 for ??? T0 , 0)(2 ?TC
dT

d
�if��

� ?????? 0012 ()](
*

exp[)
**

[()(CmCtrWarCCTP

������� 3

1
]))(Cdttw

mT
Ts ??

?
� ������������������

(25) �

The left-hand side in Eq. (25) is a monotonically
decreasing function of T. Therefore, if

312))]0()((exp[)
**

(CWTWrarCC s ???? and P(TLC)<C3,

 it means that there exists a finite and unique solution T0
satisfying Eq. (25), which can be solved by numerical

methods. It is noted that 0)(2 ?TC
dT

d
 for ??? TTs0

0
T and)(2 TC

dT

d
0? for T>T0. Thus, T=T0 minimizes

C2(T) for T0 <TLC. Similarly, we can get the following
theorem.

Theorem 3:

Assume mT
Ts dttwCCT))(()(C 0010 ??? , C01, C0>0, C1 >0,

C2>0, C3>0, C2>C1, we have

CASE 312))]0()((exp[)
**

(CWTWrarCC s ???? and�

 P(TLC)<C3: there exists a finite and unique solution
 T0 satisfying Eq. (25) and the optimal software
 release time is T* =T0.

CASE 312))]0()((exp[)
**

(CWTWrarCC s ???? : T*= Ts .

CASE P(TLC)>C3 : T
* = TLC .

D.)1])((exp[)(C 0010 ? ???? T
Ts dttwmCCT , sTT ? ;

C0(T)= 0, T<Ts .

????)(
*

])(exp[)()(2 10 TarwCdttwmTmwCTC
dT

d T
Ts ���������

��������� ????)](
*

exp[)(
*

)](
*

exp[2 TrWTarwCTrW �

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����)(3 TwC ? ����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

���� ?????)](
*

exp[)
**

{()(21 TrWarCCtw ����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

���� }])(exp[03 ?? ?
T
Ts dttwmmCC ����

����

����

����

Since w(t)>0 for ??? T0 , 0)(2 ?TC
dT

d
if����

� ?????? mCtrWarCCTQ 012)](
*

exp[)
**

()(�

������� 3])(exp[Cdttwm T
Ts

?? � �����������������

(26)

The left-hand side in Eq. (26) is a monotonically
decreasing function of T. Therefore, if

3012))]0()((exp[)
**

(CmCWTWrarCC s ????? and Q(TLC)

<C3 , it means that there exists a finite and unique solution
T0 satisfying Eq. (26), which can be solved by numerical

methods [26]. It is noted that 0)(2 ?TC
dT

d
 for

00 TTsT ??? and)(2 TC
dT

d
 >0 for T>T0 . Thus, T=T0

minimizes C2(T) for T0 <TLC. Similarly, we can get the
following theorem.

Theorem 4:

Assume)1])((exp[)(C 0010 ? ???? T
Ts dttwmCCT , C01>0 ,

C0>0, C1>0, C2>0, C3>0, C2>C1, we have

CASE mCWTWrarCC s 012))]0()((exp[)
**

(???? 3C? �

������and Q(TLC)<C3 : there exists a finite and unique
 solution T0 satisfying Eq. (26) and the optimal
 software release time is T* = T0 .

CASE 3012))]0()((exp[)
**

(CmCWTWrarCC s ????? :

 T*=Ts .
CASE Q(TLC)>C3, : T

* = TLC .

3.3 Numerical example

 We have considered several different cases of
minimizing the software cost in which the new automated
tools and techniques are introduced during testing. Due to
the limitation of space, we choose Eq. (10) as the
testing-effort function for a software development project.
Other logistic testing-effort functions with different ?
values can be similarly applied based on the same
procedure. From the previously estimated parameters for
the first data set in Table 2, we get N=48.7768, A=429.673,
? =0.158042, ?=2.63326, a=369.029, r=0.0509553. We
further set C01=$1000, C1=$10 per error, C2=$50 per error,
C3=$100 per unit testing-effort expenditures, and TLC=100
weeks. We will consider the following two types of cost
function C0(T):

1. mT
Ts dttwCCT))(()(C 0010 ???

2.)1])((exp[)(C 0010 ? ???? T
Ts dttwmCCT

Here we assume C0=$10, Ts=19, TLC=100, and m=1, that

is, ??? 100
190)(101000)(C dttwT . From Theorem 3, the

relationship of the cost optimal release time with different
P is given in Table 9. From Table 9, we find that if the P
value is larger, the optimal release time is larger and the
total expected software cost is smaller. This reflects that
when we have better testing performance, we can detect

more latent faults through additional techniques and tools.
Therefore, we can shorten testing time and release
software soon. Compared with the estimated values of
traditional software cost model (i.e. Eq. (12)) where
T*=24.2828, C(T*)=4719.66, we can see that in Table 9,
same optimal release time is achieved when P=0.10 (i.e.,
T*=24.2839), then C(T*)= 4130.91. It means that the
C2(T) is smaller than C1(T) with equal optimal release
time; that is, the assumption 0)(2)(1 ?? TCTC is

satisfied. Besides, the Operational Quality Index (OQI) is
increased from 89.15% to 98.062% [7]. Similarly, the
relationships of the optimal release time with various P
values based on different cost functions are shown in Table
10-14. From these tables we conclude the following facts:
1) As P increases, the optimal release time T* increases

but the total expected software cost C(T*) decreases.
This is because we can detect more faults and reduce
the cost of correcting faults during operational phase.

2) Under the same P value and with different cost

functions (such as mT
Ts dttwCCT))(()(C 0010 ??? or

)1])((exp[)(C 0010 ? ???? T
Ts dttwmCCT), the larger

the cost function is, the smaller the optimal release time
is. However, the difference in estimating the total
expected software cost is insignificant.

 Table 9: Relationship between the cost optimal
 release time T*, C(T*), and P based on
 the cost function

 ???? 100
19 w(t)dt101000(T)C0

 P T* C(T*) P T* C(T*)
0.01 19.7381 5574.05 0.07 21.8541 4613.69
0.02 20.0016 5414.5 0.08 22.4464 4452.94
0.03 20.2887 5254.74 0.09 23.2027 4292.02
0.04 20.6072 5094.77 0.10 24.2839 4130.91
0.05 20.965 4934.6 0.11 26.1106 3969.62
0.06 21.9747 4774.24

Table 10: Relationship between the cost optimal
 release time T*, C(T*), and P based on
 the cost function

 1.2100
19)w(t)dt(101000(T)C0 ????

P T* C(T*) P T* C(T*)
0.01 19.1465 5574.88 0.07 19.6383 4620.26
0.02 19.2013 5415.96 0.08 19.7589 4460.84
0.03 19.2669 5256.98 0.09 19.8915 4301.32
0.04 19.3433 5097.93 0.10 20.0358 4141.69
0.05 19.4307 4938.8 0.11 20.1936 3981.95
0.06 19.5289 4779.57

Table 11: Relationship between the cost optimal
 release time T*, C(T*), and P based on

 the cost function

)1w(t)dt](exp[1000(T)C 100
190 ? ???

P T* C(T*) P T* C(T*)
0.01 21.3447 5565.5 0.07 23.0113 4601.14
0.02 21.5892 5405.0 0.08 23.3608 4440.12
0.03 21.8434 5244.41 0.09 23.747 4279.03
0.04 22.1096 5083.72 0.10 24.1866 4117.88
0.05 22.3909 4922.94 0.11 24.682 3956.67
0.06 22.6902 4762.08

Table 12: Relationship between the cost optimal
 release time T*, C(T*), and P based on
 the cost function

)1w(t)dt](exp[1.21000(T)C 100
190 ? ????

P T* C(T*) P T* C(T*)
0.01 20.8548 5565.97 0.07 21.8278 4603.35
0.02 21.0159 5405.72 0.08 21.9943 4442.68
0.03 21.1771 5245.39 0.09 22.163 4281.96
0.04 21.3384 5084.98 0.10 22.3349 4121.18
0.05 21.5003 4924.5 0.11 22.5104 3960.35
0.06 21.6634 4763.96

Table 13: Relationship between the cost optimal
 release time T*, C(T*), and P based on
 the cost function

)1w(t)dt](exp[51000(T)C 100
190 ? ????

P T* C(T*) P T* C(T*)
0.01 19.775 5572.13 0.07 20.3058 4613.99
0.02 19.8669 5412.61 0.08 20.3903 4454.09
0.03 19.9572 5253.02 0.09 20.4739 4294.13
0.04 20.0461 5093.36 0.10 20.5568 4134.12
0.05 20.1338 4933.63 0.11 20.639 3974.06
0.06 20.2203 4773.84

Table 14: Relationship between the cost optimal
 release time T*, C(T*), and P based on
 the cost function

)1w(t)dt](exp[1.251000(T)C 100
190 ? ?????

P T* C(T*) P T* C(T*)
0.01 19.545 5573.23 0.07 19.9397 4616.49
0.02 19.6152 5413.91 0.08 20.0002 4456.85
0.03 19.6834 5254.54 0.09 20.0594 4297.17
0.04 19.7499 5095.11 0.10 20.1175 4137.45
0.05 19.8147 4935.62 0.11 20.1745 3977.68
0.06 19.8779 4776.08

4. Summary and conclusions

 In this paper we study the impact of software testing
effort and efficiency on the modeling of software
reliability, including the reliability measure and the cost
for optimal release time. We propose a generalized logistic
testing-effort function which relates work profile directly
to the natural flow of software development. This function
is used to describe the actual consumption of resources
during software testing which provides more accurate
information for reliability modeling purpose. We also
describe the effects of applying new tools and techniques
for increased efficiency of software testing and studied the
related optimal software release time problem from the
cost-benefit viewpoint. New reliability problems are
formulated to incorporate software testing effort and
efficiency. Finally, numerical examples are provided to
demonstrate these new approaches.

5. Acknowledgments

 We would like to express our gratitude for the support
of the National Science Council, Taiwan, R.O.C., under
Grant NSC 87-TPC-E-002-017. The work described in
this paper was also partially supported by a grant from the
Research Grant Council of the Hong Kong Special
Administrative Region (Project No. CUHK4432/99E).
The authors are pleased to thank Professor Y. K. Malaiya
for his many constructive and insightful suggestions for
improving the details of this manuscript. Besides, we also
thank several anonymous referees for their critical review
and comments. �

References

[1] S. Yamada, J. Hishitani, and S. Osaki, "Software Reliability

Growth Model with Weibull Testing Effort: A Model and
Application," IEEE Trans. on Reliability, Vol. R-42, pp.
100-105, 1993.

[2] S. Yamada, H. Ohtera, and H. Narihisa, "Software
Reliability Growth Models with Testing Effort", IEEE
Trans. on Reliability, vol. R-35, No. 1, pp. 19-23, April
1986.

[3] S. Yamada and S. Osaki, " Cost-Reliability Optimal Release
Policies for Software Systems’’, IEEE Trans. on Reliability,
Vol. 34, No. 5, pp. 422-424, 1985.

[4] J. D. Musa, A. Iannino, and K. Okumoto (1987). Software
Reliability, Measurement, Prediction and Application.
McGraw Hill.

[5] J. D. Musa (1999). Software Reliability Engineering: More
Reliable Software, Faster Development and Testing.
McGraw-Hill.

[6] M. E. Helander, M. Zhao, and N. Ohisson, "Planning
Models for Software Reliability and Cost," IEEE Trans. on
Software Engineering, Vol. 24, No. 6, pp. 420-434, June
1998.

[7] C. Y. Huang, J. H. Lo and S. Y. Kuo, "A Pragmatic Study of
Parametric Decomposition Models for Estimating Software

Reliability Growth," Proceedings of the 9th International
Symposium on Software Reliability Engineering (ISSRE’98),
pp. 111-123, Nov. 4-7. 1998, Paderborn, Germany.

[8] C. Y. Huang, S. Y. Kuo and I. Y. Chen, "Analysis of a
Software Reliability Growth Model with Logistic
Testing-Effort Function," Proceedings of the 8th
International Symposium on Software Reliability
Engineering (ISSRE’97), pp. 378-388, Nov. 1997,
Albuquerque, New Mexico. U.S.A.

[9] R. H. Huo, S. Y. Kuo, and Y. P. Chang, "Optimal Release
Times for Software Systems with Scheduled Delivery Time
Based on HGDM," IEEE Trans. on Computers, Vol. 46, No.
2, pp. 216-221, Feb. 1997.

[10] R. H. Huo, S. Y. Kuo, and Y. P. Chang, "Optimal Release
Policy for Hyper-Geometric Distribution Software
Reliability Growth Model," IEEE Trans. on Reliability, Vol.
45, No. 4, pp. 646-651, Dec. 1996.

[11] K. Okumoto and A. L. Goel, "Optimum Release Time for
Software Systems Based on Reliability and Cost Criteria’’,
Journal of Systems and Software, Vol. 1, pp. 315-318, 1980.

[12] M. R. Lyu (1996). Handbook of Software Reliability
Engineering. McGraw Hill.

[13] S. R. Dalal and C. L Mallows, "When Should One Stop
Testing Software, " Journal of the American Statistical
Association, Vol. 83, No. 403, pp. 872-879, September
1988.

[14] F. N. Parr, "An Alternative to the Rayleigh Curve for
Software Development Effort," IEEE Trans. on Software
Engineering, SE-6, pp. 291-296, 1980.

[15] M. Lipow, "Prediction of Software Failures, " Journal of
Systems and Software, Vol. 1, pp. 71-75, 1979.

[16] B. Boehm (1981). Software Engineering Economics.
Prentice-Hall, Englewood Cliffs, NJ.

[17] M. Ohba, " Software Reliability Analysis Models, ’’ IBM J.
Res. Develop., Vol. 28, No. 4, pp. 428-443, July 1984.

[18] Y. W. Leung, "Optimum Software Release Time with a
Given Budget’’, Journal of Systems and Software, Vol. 17,
pp. 233-242, 1992.

[19] S. Yamada, H. Narihisa, and S. Osaki, " Optimum Release
Policies for a Software System with a Scheduled Delivery
Time,’’ Int. J. of Systems Science, Vol. 15, pp. 905-914,
1984.

[20] J. Farquhar and A. Mosleh, "An Approach to Quantifying
Reliability-Growth Effectiveness," Proceedings Annual
Reliability and Maintainability Symposium, pp. 166-173,
1995.

[21] S. S. Gokhale, M. R. Lyu, and K. S. Trivedi, "Software
Reliability Analysis Incorporating Fault Detection and
Debugging Activities,’’ Proceedings of the 9th International
Symposium on Software Reliability Engineering (ISSRE’98),
pp. 202-211, November 4-7 1998, Paderborn, Germany.

[22] P. N. Misra, "software reliability analysis,’’ IBM Systems
Journal, Vol. 22, No. 3, pp. 262-279, 1983.

[23] Y. Tohma, R. Jacoby, Y. Murata, and M. Yamamoto,
"Hyper-Geometric Distribution Model to Estimate the
Number of Residual Software Faults,’’ Proc. COMPSAC-89,
Orlando, pp. 610-617, 1989.

[24] C. Y. Huang, S. Y. Kuo, and M. R. Lyu, " Optimal Software
Release Policy Based on Cost, Reliability and Testing
Efficiency," The Twenty-Third Annual International
Computer Software and Applications Conference
(COMPSAC’99), October 27-29, 1999, Phoenix, Arizona,

U.S.A. (accepted for publication)
[25] M. R. Lyu and A. Nikora, " Using Software Reliability

Models More Effectively,’’ IEEE Software, pp. 43-52, July
1992.

[26] Xie, M., Software Reliability Modeling, World Scientific
Publishing Company, 1991.

