
   

  

 

 

 

 
 

 
 
 
 

Abstract 
Many studies have been performed on the subject of 
software reliability, but few explicitly consider the impact 
of software testing on the reliability process. This paper 
presents two important issues on software reliability 
modeling and software reliability economics: testing effort 
and efficiency.  First, we will discuss on how to extend the 
logistic testing-effort function into a general form.  The 
generalized logistic testing-effort function has the 
advantage of relating the work profile more directly to the 
natural flow of software development.  Therefore, it can be 
used to describe the actual consumption of resources 
during software development process and get a 
conspicuous improvement in modeling testing-effort 
expenditures.  Furthermore, we will incorporate the 
generalized logistic testing-effort function into software 
reliability modeling and its fault-prediction capability is 
evaluated through four numerical experiments on real 
data.  Then, we will address the effects of automated 
techniques or tools on increasing the efficiency of software 
testing.  New testing techniques will usually increase test 
coverage. We propose a modified software reliability cost 
model to reflect these effects.  From the simulation results, 
we obtain a powerful software economic policy which 
clearly indicates the benefits of applying new automated 
testing techniques and tools during software development 
process. 
 
 
1. Introduction 
 
     When computer applications permeate our daily life, 
reliability becomes  a  very  important  characteristic of  a 
computer system.  In modern society, computer-controlled 
and  computer-embedded  systems  heavily  depend on  the 
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correct performance of software. Software reliability is 
one of the most important features for a critical system 
which can affect human’s life.  Therefore, it is necessary to 
measure and control the reliability of a software system.  A 
number of Software Reliability Growth Models (SRGMs) 
have been proposed [12, 26].  Among these models, Goel 
and Okumoto considered an NHPP as the stochastic 
process to describe the fault process [11].  Yamada et al. 
[1-3] modified the G-O model and incorporated the 
concept of testing-effort in an NHPP model to get a better 
description of the software fault phenomenon.  Later, we 
[7-8] also proposed a new software reliability growth 
model with the logistic testing-effort function.  In this 
paper, we extend the logistic testing-effort function to a 
generalized form.  The generalized logistic testing-effort 
function has the advantage of relating a work profile more 
directly to the natural structure of the software 
development.  Therefore, it can be used to pertinently 
describe the resource consumption during the software 
development process and get a conspicuous improvement 
in modeling the distribution of testing-effort expenditures. 
     In general, we will have more confidence in the 
measured software reliability with more software tests.  
Unfortunately, testing with ineffective or redundant test 
cases may lead to excessive cost.  To avoid such 
phenomenon, we need to know when to stop testing.  One 
alternative is to restrict the test data such that testing will 
stop when the odds of detecting additional faults 
(estimated by SRGMs) are very low.  But this may not be 
realistic since testers typically want to test for all possible 
valuable failure data, even the cost of testing is significant.  
Okumoto and Goel [11] first discussed the software 
optimal release policy from the cost-benefit viewpoint and 
proposed a software reliability cost model.  It was shown 
that the optimal software release time can be obtained 
based  on  a   cost   criterion  when   minimizing  the   total 
expected cost.  Recently, many papers discussed such 
optimal software release time problem based on the 
cost-reliability  relationship [4-6, 8-11, 113, 18-19, 21, 24].   
In 
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fact, to detect additional faults during the test phase of a 
software development process, the testers or debuggers 
may use some new automated tools or methods that are just 
discovered and become available.  These tools, techniques 
or methods can greatly help the developers and testers to 
create tests and eliminate some redundant test cases.  As 
time progresses, they can detect additional faults during 
testing, which saves the greater expense of correcting 
faults during the operational phase. These approaches have 
improved software testing and productivity recently, 
allowing project managers to maximize software 
reliability.  Hence the extra cost trade-off based on new 
techniques and tools can be considered in software 
reliability cost model and viewed as the investment 
required to improve long-term competitiveness and to 
speed up the software product release in the commercial 
market.  In this paper, we propose a new reliability cost 
model that provides a means of assessing whether the 
software cost is under control and the software quality is 
improving with time.  The methods we propose allow the 
software testers and software quality assurance (SQA) 
engineers to decide when the software is likely to be of 
adequate quality for release.  
 
2. Relationship between SRGM and 
testing-effort function 
 
     In this section we propose a set of generalized software 
reliability growth models incorporating testing-effort 
functions.  The mathematical relationship between 
reliability models and testing effort expenditures is 
explicitly described in detail.  Numerical results are given 
to illustrate the advantage of this new approach. 
 

2.1 Software reliability modeling descriptions  
 

2.1.1 Review of SRGM with Logistic testing-effort 
function 

     A typical software reliability model is based on the 
following assumptions [12]: 
  

1. The fault removal process is modeled by a Non 
Homogeneous Poisson Process (NHPP). 

2. The software system is subject to failures at random 
times caused by manifestation of remaining faults in the 
system.     

3. The mean number of faults detected in the time interval 
(t, t+? t] to the current testing-effort is proportional to 
the mean number of remaining faults in the system at 
time t. 

4. The proportionality is a constant over time. 
5. Testing effort expenditures are described by a Logistic 

testing-effort function. 

6. Each time a failure occurs, the fault that caused it is 
immediately removed and no new faults are introduced. 

 

Based on the third assumption, we obtain the following 
differential equation: 
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Solving the above differential equation under the boundary 
condition m(0)=0 (i.e., the mean value function m(t) must 
be equal to zero at time 0), we have  
 
      m(t)=a(1-exp[-r(W(t)-W(0))])=a(1-exp[-rW*(t)])      (2) 
 
where m(t) is the expected mean number of faults detected 
in time (0, t], w(t) is the current testing-effort consumption 
at time t, a is the expected number of initial faults, and r>0 
is the error detection rate per unit testing-effort at  time t. 
  
     Eq. (2) is an NHPP model with mean value function 
considering the testing-effort consumption.  From the 
above description, we know that w(t) represents the current 
testing-effort consumption (such as�volume of test cases, 
human power, CPU time, and so on) at time t during the 
software testing/debugging phase.  The consumed 
testing-effort can indicate how effective the faults are 
detected in the software.  Therefore, this function plays an 
important role in modeling software reliability and it can 
be described by different distributions.  From the studies in 
[1-5, 14], several testing-effort pattern expressions, such as 
Exponential, Rayleigh, and Weibull-type curves, can be 
applied.  Moreover, we [7-8] proposed a Logistic�
testing-effort function to describe the possible test effort 
patterns, in which the current testing-effort consumption is 
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where N is the total amount of testing effort to be 
eventually consumed, ? ?is?the consumption rate of 
testing-effort expenditures, and A is a constant. �
 
     The cumulative testing effort consumption of Logistic 
testing-effort function in time (0, t] is    
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Besides,�the testing effort w(t) reaches its maximum value 
at time 
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2.1.2 A generalized Logistic testing-effort function 

     From the previous studies in [7-8], we know that the 
Logistic testing-effort function (i.e. the Parr model [14]) is 
based on a description of the actual software development 
process and can be used to describe the work profile of 
software development.  In addition, this function can be 
used to consider and evaluate the effects of possible 
improvements on software development methodology, 
such as top-down design or stepwise refinement.  
Therefore, if we relax some assumptions when deriving the 
original Parr model and take into account the structured 
development effort, we obtain a generalized Logistic 
testing-effort function as:     
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where ?? is a structuring index with a large value for 
modeling well-structured software development efforts, 
and ? ?? is a constant. 
If ?  =1, the above equation becomes 
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If ?  is viewed as a normalized constant and ? ?????the above 
equation is reduced to Eq. (4).   
Similarly, if ?  =2, we have 

                        
???
3

1
)(

2 tAe

N
tW

??
?                     

(9) 
 

Similarly, if we set ? ????, we get a more generalized and 
plain solution for describing the cumulative testing effort 
consumption in time (0, t]:     
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In this case,�the testing effort w(t) reaches its maximum 
value at time 
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2.2 Numerical examples    
 
2.2.1 Numerical example 1 
     The first data set is from Ohba [17] where the testing 
time is measured in CPU hours.  The Maximum Likelihood 
Estimation and Least Squares Estimation are used to 
estimate the parameters of Eq. (2), Eq. (4), and Eq. (10), 
and we substitute the calculated normalizing value for ? .  
The estimated values of parameters for the generalized 

logistic testing-effort function are listed in Table 1. From 
Table 1, ??=2.63326 is the real estimated value for the first 
data set and the other possible values of ??are 
pre-calculated.   Figure 1 depicts the fitting of the 
estimated current testing effort by using generalized 
logistic testing-effort function, in which we find that the 
peak work rate occurs when about half of the work on the 
project has been done.  This phenomenon can be 
interpreted as that in a well-structured software 
development environment, the slope of the testing-effort 
consumption curve may grow slowly initially, but a 
compensating reduction will happen later.  Table 2 shows 
the estimated values of parameters by using different 
SRGMs and two comparison criteria, Accuracy of 
Estimation (AE) and Mean of Square Fitting Faults (MSF) 
[7-8]. The smaller MSF and AE indicate fewer number of 
fitting faults and better performance.  From Table 2, we 
know that when the value of ??varies from 1 to 3, both 
MSF and AE will be less than other existing SRGMs; 
therefore, it is conceivable that the proposed model has a 
better goodness-of-fit.                           
 
     Table 1: Parameters of generalized logistic      
                    testing-effort function for the first      
                    data set. 

N A ????????? ????????? ??????????????????
54.8364 13.0334 0.226337 1 
52.0072 40.6042 0.188809 1.5 
50.2178 115.228 0.170001 2 

49.00 126.00 0.158763 2.5 
48.7768 429.673 0.158042 2.63326 
48.1368 833.105 0.151344 3 
48.1693 2188.22 0.144234 3.5 
47.8507 5709.29 0.139933 4 
47.6561 14839.3 0.136507 4.5 
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Figure 1: Observed/estimated testing-effort 
                     vs. time for the first data set. 

 
Table 2: Comparison results for the first 

                      data set. 
Model a r AE(%) MSF 

    K=1
      K=2
      K=2.63326
      K=3
      Actual



   

 

Proposed 
Model (?=1) 

394.076 0.042722 10.06 118.29 

 (?=1.5) 384.707 0.045037 7.46 114.32 
 (?=2) 377.157 0.047815 5.35 112.41 

 (?=2.6332) 369.029 0.050955 3.08 110.73 

(?=3) 367.829 0.051905 2.75 105.91 
 (?=3.5) 412.871 0.039938 15.32 820.76 
 (?=4) 414.426 0.039861 15.76 889.21 

 (?=4.5) 416.114 0.039732 16.23 952.38 
G-O Model  760.00 0.032268 112.29 139.82 
G-O with 

Weibull fun 
565.35 0.019659 57.91 122.09 

G-O with 
Rayl.  Fun. 

459.08 0.027336 28.23 268.42 

G-O with 
Exp. fun. 

828.252 0.011783 131.35 140.66 

Inflection S 
Model  

389.1 0.093549 8.69 133.53 

Delayed S 
Model  

374.05 0.197651 4.48 168.67 

Exp. Model  455.371 0.026736 27.09 206.93 
Delayed S 

Model with  
Ray. fun.  

333.18 0.100415 6.93 798.49 

 S-Shaped 
Model with 
logistic fun.  

338.136 0.10004 5.54 242.79 

HGDM  387.71 NA 8.3 138.12 
HGDM with 
linear factor 

387.709 NA 8.30 138.11 

HGDM with 
Exp. factor 

385.132 NA 7.56 111.24 

Musa Log. 
Poisson 

NA * * 171.23 

 
2.2.2 Numerical example 2 
     The second data set is cited from Musa et al. [4-5].  The 
software were tested for 21 weeks (25.3 CPU Hours were 
used) and 136 faults were detected.  The Maximum 
Likelihood Estimation and Least Squares Estimation are 
used to estimate the parameters of the Eq. (2), Eq. (4), and 
Eq. (10) and we substitute the calculated normalizing value 
for ? .  The estimated values for the parameters are listed in 
Table 3.  In fact, from Table 3, ?  =1.27171 is the real 
estimated value for the second data set and other possible 
values of ?  are pre-calculated.  Figure 2 depicts the fitting 
of the estimated current testing effort by using generalized 
logistic testing-effort function.  Table 4 shows the 
estimated values of parameters and the comparison results 
between the observed and the estimated values obtained by 
the other SRGMs.  Similarly, smaller AE and MSF indicate 
less fitting errors and better performance. We find that 
when the value of ??varies from 1.5 to 4.5, both MSF and 

AE will be less than other existing SRGMs.   Hence, we 
still can conclude that the proposed model is good enough 
to give a more accurate description of resource 
consumption during the software development phase and 
gives a better fit in this experiment. 
                                     

Table 3: Parameters of generalized logistic 
                    testing-effort function for the    
                    second data set. 

N A ????????? ????????? ??????????????????
29.1095 4624.89 0.493515 1 
28.153 20903.9 0.44470 1.27171 

28.1513 45843.8 0.39737 1.5 
28.1458 260550 0.33307 2 
28.0464 3784150 0.257234 3 
27.5626 5329270 0.221165 3.5 
27.0202 7428092 0.195207 4 
26.0532 22955900 0.186095 4.5 
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Figure 2: Observed/estimated testing-effort 
                      vs. time for the second data set.   � 

 
Table 4: Comparison results for the second 

                    data set. 
Model a r AE (%) MSF 

Proposed 
Model (?=1) 

138.026 0.145098 26.58 62.41 

 (?  =1.27171) 140.013 0.137916 25.52 53.79 
 (?  =1.5) 139.191 0.141159 25.96 35.04 

(?  =2) 142.505 0.12406 24.19 17.62 
 (?  =3) 147.808 0.103272 21.37 9.17 

 (?  =3.5) 154.144 0.089175 18.01 18.58 

 (?  =4) 162.235 0.077407 13.70 32.38 
 (?  =4.5) 168.265 0.072116 10.49 36.58 

G-O Model 142.32 0.1246 24.29 2438.3 
G-O with 

Rayleigh fun. 
866.94 0.009624 361.13 89.24 

Exp. Model 137.2 0.156 27.12 3019.66 
Delay 

S-shaped 
Model 

237.196 0.096344 26.16 245.25 

    K=1
      K=1.27171
      K=2
      Actual



   

 

Delayed S 
with Exp. fun. 

688.593 0.019762 
 

266.27 235.19 
 

Delayed S 
with Logistic 

function. 

137.49 0.330611 
 

26.86 207.37 
 

 
2.2.3 Numerical example 3  
     The third set of real data is the pattern of discovery of 
faults in the software that supported Space Shuttle flights 
STS2, STS3, STS4 at the Johnson Space Center [22].  The 
system is also a real-time command and control 
application.  A weekly summary of software test hours and 
the faults of various severity discovered is given in [22].  
The cumulative number of discovered faults up to 
thirty-eight weeks is 227.  Similarly, the Maximum 
Likelihood Estimation and Least Squares Estimation are 
used to estimate the parameters of the Eq. (2), Eq. (4), and 
Eq. (10), and we substitute correct normalizing value for ? .  
The estimated values of parameters for the generalized 
logistic testing-effort function are listed in Table 5.  In fact, 
from Table 5, ?  =1.25262 is real estimated value for this 
data set and the other possible values of ?  are 
pre-calculated.   Figure 3 depicts the fitting of the 
estimated current testing effort by using generalized 
logistic testing-effort function.  Table 6 shows the 
estimated values of parameters by using different SRGMs 
and the comparison criteria.  Therefore, the estimation 
results of individual models show that the proposed model 
gives the better AE. 
 

Table 5: Parameters of generalized logistic 
                    testing-effort function for the third    
                    data set. 

N A ????????? ????????? ??????????????????
2828.88 10.5057 0.0988842 1 
2626.32 18.3734 0.093100622 1.25262 
2664.54 30.3765 0.082482 1.5 
2570.80 80.3661 0.074041 2 
2507.67 203.404 0.0689604 2.5 
2463.20 503.125 0.0655753 3 
2460.83 1229.1 0.063166 3.5 

 

0 10 20 30

0

20

40

60

80

100

120

Time(Weeks)

Testing Effort(CPU Hours)

 
Figure 3: Observed/estimated testing-effort 

                      vs. time for the third data set. 
 

Table 6: Comparison results for the third 
                      data set. 

Model a r AE (%) 
Proposed Model 

(?=1)  
241.325 0.000907 75.5 

 (?=1.25262) 240.842 0.000908 63.4065 
 (?=1.5) 234.686 0.000983 71.9053 

 (?=2) 229.605 0.001078 71.9443 
 (?=2.5) 227.027 0.001108 73.6626 

G-O Model  597.887 0.000209 78.87 
G-O with Rayleigh 

Function 
245.017 0.0007158 183.366 

   
2.2.4 Numerical example 4  
     The fourth set of real data is the pattern of discovery of 
faults by Thoma in [23].  The debugging time and the 
number of detected faults per day are reported.  The 
cumulative number of discovered faults up to twenty-two 
days is 86 and the total consumed debugging time is 93 
CPU hours.  All debugging data are used in this 
experiment.  Similarly, we can estimate each parameter by 
the Maximum Likelihood Estimation and Least Squares 
Estimation in the proposed SRGM and they are shown in 
Table 7.  In fact, from Table 7, ?  =1.76033 is real estimated 
value for this data set and the other possible values of ?  are 
pre-calculated.  Figure 4 depicts the fitting of the estimated 
current testing effort by using generalized logistic 
testing-effort function.  Table 8 shows the estimated values 
of parameters by using different SRGMs and the 
comparison criteria.   Therefore, in this data set, we 
conclude that our proposed model gets a reasonable 
prediction in estimating the number of software faults and 
fits this data set better than others.  
 

Table 7: Parameters of generalized logistic 
                    testing-effort function for the fourth  
                    data set. 

N A ????????? ????????? ??????????????????
99.9028 28.0091 0.257426 1 
95.6453 109.068 0.2148526 1.5 

95.00 231.00 0.2055126 1.76033 
94.90 389.026 0.1936605 2 
93.20 1336.10 0.1811212 2.5 

 

    K=1
      K=1.25262
      K=2
      K=3
      Actual
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Figure 4: Observed/estimated testing-effort 

                      vs. time for the fourth data set. 
 

Table 8: Comparison results for the fourth 
                     data set. 

Model a r AE (%) 
Proposed Model 

(?=1) 
88.8931 0.0390591 55.015 

 (?=1.5) 88.699 0.0385438 22.2717 
 (?=1.76033) 90.354 0.0371217 29.4215 

(?=2) 90.4078 0.0373532 28.4941 

 (?=2.5) 90.6226 0.0373478 28.2564 
G-O Model 137.072  0.0515445 25.33 

HGDM   88.3  * 33.6812 

 
3. Optimal release time incorporating test 
efficiency 

 
     In the last section we describe a generalized approach to 
incorporate testing effort into software reliability models.  
In this section we will identify the efficiency of testing and 
study its impact on software reliability.  In particular, we 
discuss how to incorporate testing efficiency into 
reliability models and how to determine the optimal 
software release time.  

 
3.1 Impact of new tools/techniques on software 
testing efficiency 
  
     As soon as software coding is completed, the necessary 
but expensive testing phase starts.  During the testing 
phase, the developers will need to make a software 
reliability evaluation and determine when to stop testing.  
If the results meet the requirement specifications and the 
reliability criteria are also satisfied, then the software 
product is ready for release.  Therefore, adjusting specific 
parameters in an SRGM and adopting the corresponding 
actions appropriately can help to achieve the goal of 
determining the software release time.  Several approaches 
can be applied.  For example, we have discussed the 
applications of testing-effort control and management 
problem in our previous study [7].  Using the proposed 
methods, we can easily control the modified consumption 

rate of testing-effort expenditures and detect more faults in 
a specified time interval.  This means that the developers 
and testers can devote their time and resource to complete 
their testing tasks based on well-controlled expenditures.   
     In addition to controlling the testing-effort expenditures, 
we can achieve a given operational quality at a specified 
time by introducing new automated testing tools and 
techniques. That is, through the adoption of new testing 
techniques and tools, we can detect and remove more 
additional faults (i.e. those faults that are not easily 
exposed during the testing phase).  These new methods, 
however, will impose extra software development cost.  
For example, professional experts can help developers to 
assess the original software development process, to meet 
their quality goals, and to reduce risks.  In general, these 
external personnel can offer efficient and effective 
approaches to test planning, module-level unit testing, or 
testing strategies.  Moreover, many automated testing tools 
and techniques are available to increase test coverage and 
replace traditional manual testing.  The benefits of 
applying new techniques and tools include increased 
software quality, reduced testing costs, improved release 
time to market, repeatable test steps, and improved testing 
productivity [5, 12, 15, 20]. Consequently, it is desirable 
that these experts and automated testing tools/techniques 
can greatly help the developers in detecting additional 
faults that are difficult to find during regular testing and 
usage, in identifying and correcting faults effectively, and 
in improving their software development processes. 
     An important step toward these new approaches, then, 
is to offer enough information about these approaches to 
software developers and reliability engineers. Before 
adopting the automated techniques and tools, we should 
get quantitative information from the industrial data 
relative to these methods’ past performance (i.e. the 
previous testing experience), or get qualitative information 
from the evaluation on the methods’ attributes. Basically, 
these methods’ past performance should be evaluated in 
determining whether they will be successful in managing 
reliability growth [20].  In addition, they can be evaluated 
by performing various simulations based on actual data 
sets.  Finally, the test team’s capacity in applying these 
techniques and tools and the related operational profiles 
also play an important role.  We discuss how the software 
reliability modeling process can include these testing 
methods, and how a new optimal software release time 
problem can be formulated and solved. 
 

3.2 Optimal software release time problem 
 
     Okumoto and Goel [11] first discussed the software 
optimal release policy from the cost-benefit viewpoint.  
The total cost of testing-effort expenditures at time T, 
C1(T), can be expressed as [1-3, 7, 9-11, 13, 18-19, 24]: 
 

    K=1
      K=1.76033
      K=2
      K=2.5
      Actual
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                                                                                      (12) 
where  TLC=software life-cycle length 
           C1=cost of correcting an error during testing 
           C2=cost of correcting an error during operation 
           C3=cost of testing per unit testing-effort      
                  expenditures. 
 

     From the work by B. Boehm [16], we know C2>C1 as 
C2 is usually an order of magnitude greater than C1.  In 
order to detect additional faults during testing, the testers 
and debuggers may use new automated tools or techniques. 
The cost trade-off of these new tools and techniques, 
therefore, should be considered in the software cost model, 
including their expenditures and benefits.  Consequently, 
we modify the overall software cost model as follows [24]: 
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where C0(T) is the cost function for developing and 
acquiring the automated tools and techniques that detect an 
additional fraction P of faults during testing. 
 

     We note that the cost for developing and acquiring new 
tools or techniques, C0(T), does not have to be a constant 
during the testing.  Moreover, the testing cost for C0(T) can 
be parameterized and estimated based on actual data.  
From our experience, we found that C0(T) may have 
different forms as time progresses, which depends on the 
characteristics of a tool’s performance, testing effort 
expenditures, effectiveness, and so on.  We can formulate 
this cost function as simple linear functions or simple 
non-linear functions.  In general, the longer the software is 
tested, the more the testing cost C0(T).  Under the 
cost-benefit considerations, the automated tools or 
techniques will pay for themselves if  
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Rearranging the above equation, we obtain  
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     Eq. (15) is used to decide whether the new automated 
tools or techniques are effective or not.  If C0 (T) is low 
enough or if the new methods are effective in detecting 
additional faults, this investment is worthwhile.  Usually 
appropriate automated tools or techniques are best selected 
depending on how thoroughly failure data are collected 
and faults are categorized [15].  Sometimes incorporating 
new automated tools and techniques into a software 
development process may introduce excessive, that is, 

0)(2)(1 ?? TCTC .  This phenomenon usually occurs 

infrequently, but if it can really shorten the testing period 
under the same software reliability requirements, we may 
still consider applying the new techniques. By 
differentiating Eq. (13) with respect to the time T we have: 

????? 210 ))()1(()()(2 CTmP
dT

d
CTC

dT

d
TC

dT

d
                      

                )())()1(( 3 TwCTmP
dT

d
???                   (16) 

If we let Eq. (16) be equal to zero and use the mean value 
function in Eq. (2), we can get a finite and unique solution 
T0 for the determination of an optimal software release 
time problem based on the new cost criterion.  
From Eq. (16), if we let C1 (1+P)= C1

* and C2 (1+P)= C2
*, 

then we have   

    )(
*

)(
*

)()(2 210 Tm
dT

d
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d
CTC

dT

d
TC

dT

d
???  

� ������ )(3 TwC ?? �                                

(17)  �
If the mean value function is given in Eq. (2), we obtain 
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Without loss of generally, we consider several possibilities 
for C0(T) in order to interpret the cost consumption: 
(1) C0(T) is a constant. 
(2) C0(T) is proportional to the testing-effort expenditures.  
(3) C0(T) is exponentially related to the testing-effort 

expenditures. 
�

A. C0(T)= C0 , sTT ? ;  C0(T)= 0, T<Ts                                

�� ?????? )(((exp[)
**

([)()(2 12 TWrarCCTwTC
dT

d
�

������������ ]))]0( 3CW ? � ��������������  

(19)�

Since w(t)>0 for ??? T0 , 0)(2 ?TC
dT

d
�if� 

������� 312 ))]0()((exp[)
**

( CWTWrarCC ???? �����

(20) 
The left-hand side in Eq. (20) is a monotonically 
decreasing function of T.  Here we let Ts be the starting 
time of adopting new techniques/tools.  If  

312 ))]0()((exp[)
**

( CWTWrarCC s ???? , then 

 312 ))]0()((exp[)
**

( CWTWrarCC LC ???? for Ts<T <TLC.  

Therefore, the optimal software release time T*=Ts since 



   

 

0)(2 ?TC
dT

d
 for Ts<T<TLC.  Similarly, if  

312 ))]0()((exp[)
**

( CWTWrarCC s ???? �and 

312 ))]0()((exp[)
**

( CWTWrarCC LC ???? , there exists a 

finite and unique solution T0 satisfying Eq. (20).  That is, 
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since 0)(2 ?TC
dT

d
 for Ts<T<T0  and )(2 TC

dT

d
>0 for 

T0<T<TLC . 

If 312 ))]0()((exp[)
**

( CWTWrarCC LC ???? , then 

312 ))]0()((exp[)
**

( CWTWrarCC ???? �for   Ts<T<TLC.  

Therefore, the optimal software release time T*=TLC  since 

0)(2 ?TC
dT

d
 for Ts<T <TLC. 

 
Theorem 1: 
Assume C0(T)= C0 (constant), C0>0, C1>0, C2>0, C3>0, 
C2>C1, we have 

CASE 312 ))]0()((exp[)
**

( CWTWrarCC s ???? and�����

������ ))]0()((exp[)
**

( 12 WTWrarCC LC ??? 3C? : 

   there exists a finite and unique solution T0     
   satisfying Eq. (20) and the optimal software   
   release time is T* = T0. 

CASE 312 ))]0()((exp[)
**

( CWTWrarCC s ???? : T* =Ts. 

CASE 312 ))]0()((exp[)
**

( CWTWrarCC LC ???? : 

����    T*= TLC. 
 

B. ??? T
Ts dttwCCT )()(C 0010 , sTT ? ; C0(T)= 0, T<Ts   

where C01 is an nonnegative real number that indicates the 
basic cost of adopting new techniques/tools, and Ts is the 
start time of adopting new techniques/methods.  
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dT

d
 

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

���� )()](
*

exp[)(
*

32 TwCTrWTarwC ??? ���

���

���

���

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

���� ))]0()(((exp[)
**

[()( 21 WTWrarCCTw ????? ����

����

����

����

���������� ]03 CC ??                                                  (22) 

Since w(t)>0 for ??? T0 , 0)(2 ?TC
dT

d
�if� 

��� 0312 ))]0()((exp[)
**

( CCWTWrarCC ????? ����(23) 

As the left-hand side in Eq. (23) is a monotonically 
decreasing function of T, therefore, if 
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exists a finite and unique solution T0 satisfying Eq. (23). 
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Theorem 2: 

Assume ??? T
Ts dttwCCT )()(C 0010 , C01,�C0>0, C1>0, 

C2>0, C3>0, C2>C1, we have 
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            satisfying Eq. (23) and the optimal software release 
            time is T* =T0. 
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The left-hand side in Eq. (25) is a monotonically 
decreasing function of T.  Therefore, if  

312 ))]0()((exp[)
**

( CWTWrarCC s ???? and P(TLC)<C3, 

 it means that there exists a finite and unique solution T0 
satisfying Eq. (25), which can be solved by numerical 

methods.  It is noted that 0)(2 ?TC
dT

d
 for ??? TTs0  

0
T  and )(2 TC

dT

d
0?  for T>T0.  Thus, T=T0 minimizes 

C2(T) for T0 <TLC.  Similarly, we can get the following 
theorem.  
 
Theorem 3: 

Assume mT
Ts dttwCCT ))(()(C 0010 ??? , C01, C0>0, C1 >0, 

C2>0, C3>0, C2>C1, we have 
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             P(TLC)<C3: there exists a finite and unique solution  
             T0 satisfying Eq. (25) and the optimal software  
             release time is T* =T0. 
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The left-hand side in Eq. (26) is a monotonically 
decreasing function of T.  Therefore, if  

3012 ))]0()((exp[)
**

( CmCWTWrarCC s ????? and  Q(TLC) 

<C3 , it means that there exists a finite and unique solution 
T0 satisfying Eq. (26), which can be solved by numerical 

methods [26].  It is noted that 0)(2 ?TC
dT

d
 for 

00 TTsT ???  and )(2 TC
dT

d
 >0 for T>T0 .  Thus, T=T0 

minimizes C2(T) for T0 <TLC.  Similarly, we can get the 
following theorem. 
 
Theorem 4: 

Assume )1])((exp[)(C 0010 ? ???? T
Ts dttwmCCT , C01>0 , 

C0>0, C1>0, C2>0, C3>0, C2>C1, we have 

CASE mCWTWrarCC s 012 ))]0()((exp[)
**

( ???? 3C? �

������and Q(TLC)<C3 : there exists a finite and unique        
            solution T0 satisfying Eq. (26) and  the optimal  
            software release time is T* = T0 . 

CASE 3012 ))]0()((exp[)
**
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            T*=Ts . 
CASE  Q(TLC)>C3, : T

* = TLC . 
 
3.3 Numerical example  
 
     We have considered several different cases of 
minimizing the software cost in which the new automated 
tools and techniques are introduced during testing.  Due to 
the limitation of space, we choose Eq. (10) as the 
testing-effort function for a software development project. 
Other logistic testing-effort functions with different ?  
values can be similarly applied based on the same 
procedure.  From the previously estimated parameters for 
the first data set in Table 2, we get N=48.7768, A=429.673, 
? =0.158042, ?=2.63326, a=369.029, r=0.0509553. We 
further set C01=$1000, C1=$10 per error, C2=$50 per error, 
C3=$100 per unit testing-effort expenditures, and TLC=100 
weeks.  We will consider the following two types of cost 
function C0(T): 

1. mT
Ts dttwCCT ))(()(C 0010 ???  

2. )1])((exp[)(C 0010 ? ???? T
Ts dttwmCCT  

Here we assume C0=$10, Ts=19, TLC=100, and m=1, that 

is, ??? 100
190 )(101000)(C dttwT .  From Theorem 3, the 

relationship of the cost optimal release time with different 
P is given in Table 9.  From Table 9, we find that if the P 
value is larger, the optimal release time is larger and the 
total expected software cost is smaller.  This reflects that 
when we have better testing performance, we can detect 



   

 

more latent faults through additional techniques and tools.  
Therefore, we can shorten testing time and release 
software soon.  Compared with the estimated values of 
traditional software cost model (i.e. Eq. (12)) where 
T*=24.2828, C(T*)=4719.66, we can see that in Table 9, 
same optimal release time is achieved when P=0.10 (i.e., 
T*=24.2839), then C(T*)= 4130.91.  It means that the 
C2(T) is smaller than C1(T) with equal optimal release 
time; that is, the assumption 0)(2)(1 ?? TCTC  is 

satisfied.  Besides, the Operational Quality Index (OQI) is 
increased from 89.15% to 98.062% [7].  Similarly, the 
relationships of the optimal release time with various P 
values based on different cost functions are shown in Table 
10-14.  From these tables we conclude the following facts: 
1) As P increases, the optimal release time T* increases 

but the total expected software cost C(T*) decreases.  
This is because we can detect more faults and reduce 
the cost of correcting faults during operational phase.   

2) Under the same P value and with different cost 

functions (such as mT
Ts dttwCCT ))(()(C 0010 ???  or 

)1])((exp[)(C 0010 ? ???? T
Ts dttwmCCT ), the larger 

the cost function is, the smaller the optimal release time 
is.  However, the difference in estimating the total 
expected software cost is insignificant.    

                        
 Table 9: Relationship between the cost optimal  
               release time T*, C(T*), and P  based on 
               the cost function         

             ???? 100
19 w(t)dt101000(T)C0  

 P T* C(T*) P T* C(T*) 
0.01 19.7381 5574.05 0.07 21.8541 4613.69 
0.02 20.0016 5414.5 0.08 22.4464 4452.94 
0.03 20.2887 5254.74 0.09 23.2027 4292.02 
0.04 20.6072 5094.77 0.10 24.2839 4130.91 
0.05 20.965 4934.6 0.11 26.1106 3969.62 
0.06 21.9747 4774.24    

 
Table 10: Relationship between the cost optimal 
                release time T*, C(T*), and P based on                                
                the cost function 

              1.2100
19 )w(t)dt(101000(T)C0 ????  

P  T* C(T*) P T* C(T*) 
0.01 19.1465 5574.88 0.07 19.6383 4620.26 
0.02 19.2013 5415.96 0.08 19.7589 4460.84 
0.03 19.2669 5256.98 0.09 19.8915 4301.32 
0.04 19.3433 5097.93 0.10 20.0358 4141.69 
0.05 19.4307 4938.8 0.11 20.1936 3981.95 
0.06 19.5289 4779.57    

 
Table 11: Relationship between the cost optimal  
                release time T*, C(T*), and P  based on  

                the cost function 

              )1w(t)dt](exp[1000(T)C 100
190 ? ???  

P T* C(T*) P T* C(T*) 
0.01 21.3447 5565.5 0.07 23.0113 4601.14 
0.02 21.5892 5405.0 0.08 23.3608 4440.12 
0.03 21.8434 5244.41 0.09 23.747 4279.03 
0.04 22.1096 5083.72 0.10 24.1866 4117.88 
0.05 22.3909 4922.94 0.11 24.682 3956.67 
0.06 22.6902 4762.08    

 
Table 12: Relationship between the cost optimal 
                release time T*, C(T*), and P based on              
                the cost function 

              )1w(t)dt](exp[1.21000(T)C 100
190 ? ????  

P T* C(T*) P T* C(T*) 
0.01 20.8548 5565.97 0.07 21.8278 4603.35 
0.02 21.0159 5405.72 0.08 21.9943 4442.68 
0.03 21.1771 5245.39 0.09 22.163 4281.96 
0.04 21.3384 5084.98 0.10 22.3349 4121.18 
0.05 21.5003 4924.5 0.11 22.5104 3960.35 
0.06 21.6634 4763.96    

 
Table 13: Relationship between the cost optimal   
                release time T*, C(T*), and P based on 
                the cost function 

                )1w(t)dt](exp[51000(T)C 100
190 ? ????  

P T* C(T*) P T* C(T*) 
0.01 19.775 5572.13 0.07 20.3058 4613.99 
0.02 19.8669 5412.61 0.08 20.3903 4454.09 
0.03 19.9572 5253.02 0.09 20.4739 4294.13 
0.04 20.0461 5093.36 0.10 20.5568 4134.12 
0.05 20.1338 4933.63 0.11 20.639 3974.06 
0.06 20.2203 4773.84    

 
Table 14: Relationship between the cost optimal  
                release time T*, C(T*), and P based on 
                the cost function 

               )1w(t)dt](exp[1.251000(T)C 100
190 ? ?????  

P T* C(T*) P T* C(T*) 
0.01 19.545 5573.23 0.07 19.9397 4616.49 
0.02 19.6152 5413.91 0.08 20.0002 4456.85 
0.03 19.6834 5254.54 0.09 20.0594 4297.17 
0.04 19.7499 5095.11 0.10 20.1175 4137.45 
0.05 19.8147 4935.62 0.11 20.1745 3977.68 
0.06 19.8779 4776.08    

 
4. Summary and conclusions 
 



   

 

     In this paper we study the impact of software testing 
effort and efficiency on the modeling of software 
reliability, including the reliability measure and the cost 
for optimal release time. We propose a generalized logistic 
testing-effort function which relates work profile directly 
to the natural flow of software development.  This function 
is used to describe the actual consumption of resources 
during software testing which provides more accurate 
information for reliability modeling purpose. We also 
describe the effects of applying new tools and techniques 
for increased efficiency of software testing and studied the 
related optimal software release time problem from the 
cost-benefit viewpoint.  New reliability problems are 
formulated to incorporate software testing effort and 
efficiency.  Finally, numerical examples are provided to 
demonstrate these new approaches. 
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