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ABSTRACT

In this paper, we propose a novel video summarization method
that combines video structure analysis and graph optimiza-
tion. First, we analyze the structure of the video, find the
boundaries of video scenes, then we calculate each scene’s
skimming length based on its structure and content entropy.
Second, we define a spatial-temporal dissimilarity function
between video shots and model each video scene as a graph,
then find each scene’s optimal skimming in the graph with
dynamic programming. Finally, the whole video’s skim-
ming is obtained by concatenating the skimmings of the
scenes. Experimental results show that our approach pre-
serves the scene level structure and ensures balanced cover-
age of the major contents of the original video.

1. INTRODUCTION

The amount of video data on today’s network is growing
rapidly, thus giving rise to serious problems for efficient
video browsing and management. To solve these problems,
video summarization, which engages in creating a short sum-
mary of the original video to present its major content, has
received more and more attentions in these days. Basically
there are two kinds of video summaries: static video sum-
mary, which is composed of a set of salient images extracted
or synthesized from the original video, and dynamic video
skimming, which is a shorter version of the original video
made up of several short video clips.

Compared with the static video summary, the dynamic
video skimming makes more sense and is more attractive
to the user. Recently much work has been conducted on
dynamic video skimming generation. The Informedia sys-
tem [1] selects the video segments according to the occur-
rence of important keywords in the corresponding caption
text. Later work employs perceptually important features
to summarize video. In [2] the authors construct a user at-
tention curve to simulate the user’s attention toward differ-
ent video contents. [3] proposes a utility function for each

video shot, and video skimmings are generated by utility
maximization. [?] assigns different weight scores on sev-
eral important features of the video then selects the video
skimming that maximizes the feature score summation. [4]
analyzes video structure by graph modelling then the video
skimming is generated according to this structure and the
motion attention values for video shots.

Edited videos have their intrinsic structures. In [5], the
video is decomposed into a hierarchical V-TOC (Video Ta-
ble Of Contents) tree structure. In [6], a scene transition
graph is constructed by video shot clustering. [4] uses a
graph to model the video and obtains the video structure
by normalized graph cut.

A video summary should be able to cover the major
video contents with balance. Although many video skim-
ming generation techniques have been proposed, few of them
have stressed on preserving the structure of the video. In
this paper, we describe a novel video summarization ap-
proach that combines video structure analysis and graph op-
timization. We analyze the structure of the original video,
find the scene boundaries, and determine each video scene’s
target skim length. We then model each scene into a graph,
create video skimming for each video scene with graph op-
timization, and concatenate each local video skimming to
obtain the final video skimming. Our approach preserves
balanced structural coverage for the major video contents.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe our video summarization method. In
Section 3 we show experimental results and make some dis-
cussions. Finally, in Section 4 we draw a conclusion and
discuss our future work.

2. VIDEO SUMMARIZATION PROCEDURE

2.1. Video structure analysis

A video narrates a story just like an article does. From a nar-
rative point of view, a video is composed of several video
scenes {Sc1...Scn}, each of which depicts an event like a



paragraph does in the articles. A video scene is composed
by several semantic-related video shots {sh1...shn}, each
of which is an unbroken image sequence captured continu-
ously by a camera. A video shot’s role is just like a sentence
in articles. The visual content of a video shot can be repre-
sented by its key frames. A video shot group Sgi is the
intermediate entity between video scenes and video shots,
which is composed of several visually similar and tempo-
rally adjacent video shots. Thus from top to down, a video
has a 4-level hierarchical structure: Video, Video scenes,
Video shot groups, and Video shots [5]. Fig. 1 shows the
hierarchical structure of a video.
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Fig. 1. Hierarchical video structure

In the remaining part of this paper, we use lshi
, lSgj

and
lSci

to represent the length of video shot shi, video shot
group Sgj , and video scene Sci, which is the total number
of images containing in them respectively.

The structure of video is built in a bottom-up manner.
First, we decompose the original video into video shots.
Our shot detection method is similar to the method in [7],
while we improve the filtering step for more accuracy. Then
we continue to build up the hierarchical structure with the
windowed-sweeping method in [5].

The detected video scenes can be classified into two
types: loop scenes and progressive scenes, as shown in Fig 2.
A loop scene is composed of more than one video shot
groups, while a progressive scene is composed of a series
of dissimilar video shots. Loop scenes are often used to
depict an event happening in a place that needs detailed de-
scription, e.g., a conversation, while the progressive scenes
are often used to depict changes between two events. Nor-
mally the loop scenes contain more important contents that
need repeated illustrations.

Obviously, longer and more complex video scenes should
be more important. For progressive scenes, we simply use
their length to measure their importance. For loop scenes,
however, since they are composed of several video shot groups,
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Fig. 2. Example of loop and progressive scenes

we define the content entropy of a scene Sci as:

Entropy(Sci) =
∑

Sgj∈Sci

−

lSgj

lSci

log2(
lSgj

lSci

).

With the above definition, given the target video skim-
ming length Lvs and the length of the video Lv , the skim
ratio rs is thus Lvs

Lv
. We determine the skim length Sl of

each scene and each group in the video as follows:

1. For each progressive scene Scx, Slx = lScx
× rs. If

Sx is less than the preset threshold t1, we discard this
progressive scene as too short skim does not make
sense to people.

2. Suppose that after the first round, the left skim length
is L′

vs, for the loop scenes {Sc1...Scn}, Sli = L′

vs ×
Entropy(Sci)×lSci∑

n
j=1

Entropy(Scj)×lScj

. In a similar manner, we dis-
card Sci if Sli is less than the preset threshold t2.

3. For the remaining loop scenes {Sc′1...Sc′m}, we set

Sli = L′

vs ×
Entropy(Sc′

i)×lSc′

i∑
m
j=1

Entropy(Sc′

j
)×lSc′

j

.

The above skim length assignment algorithm ensures that
more important scenes are assigned with more skim length.

2.2. Graph modelling and optimization

With each scene’s skimming length determined, we need
to select several video shots according to the skim length
of each video scene and generate the final skimming. The
selected video shots should cover both the visual diversity
and the temporal distribution of the original video scene. To
achieve this, we model each video scene into a graph based
on the video shots contained in it, then we select the optimal
skimming by performing optimization on that graph.

The spatial-temporal dissimilarity function between two
video shots is defined as:

Dis(shi, shj) = 1− V isualSim(shi, shj)× e
−k×dT (shi,shj)

,

Here V isualSim(shi, shj) can be any similarity measure
between video shots, and here we use the color histogram
correlation between video shot key frames. dT (shi, shj) is
the temporal distance between the middle frames of video



shot shi and shj , in terms of frame number. k is the param-
eter to control the slope of the exponential function, also in
terms of frame number. To allow for a good coverage of
both the visual and temporal contents of the video scene,
we define the dissimilarity function such that it changes lin-
early with the visual similarity, but exponentially with the
temporal distance.

With the shot pairwise spatial-temporal dissimilarity func-
tion, we define the spatial-temporal relation graph as fol-
lows:

The spatial-temporal relation graph G(V,E) is a graph
defined on a video shot set Ssh = {sh1, ....shn} such that:

1. G(V,E) is a complete graph.

2. Each vertex vi in the vertex set V is corresponding to
a video shot shi in Ssh and vise versa. On each vi

there is a weight wi which is equal to the length of
video shot shi.

3. On each edge eij , there is an edge weight weij
which

is equal to the spatial-temporal dissimilarity function
Dis(shi, shj) between video shots shi and shj . The
direction of edge eij is from the earlier shot to the
later video shot. Thus G is acyclic.

A simple example of the spatial-temporal relation graph
on a scene is shown in Fig. 3.
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Fig. 3. Spatial temporal dissimilarity graph on 5 shots

Given the target skimming length Lvs, we can search a
path in the spatial-temporal graph then use the video shots
in that path as the video skimming for the video shot set.
A path p = {vx1

, ...vxn
} in the spatial-temporal graph con-

sists of a set of video shots {shx1
, ...shxn

}, which is a video
skimming whose total length is the summation of the weights
on the vertexes vx1

, ...vxn
in the path. We use V WS(pi) to

represent the vertex weight summation of the path pi. The
length of the path is the summation of the spatial-temporal
dissimilarity function between consecutive video shot pairs.

For this path ps, we have two goals to meet: first, we
want to maximize the length of the path Lps

, which is the
summation of dissimilarity function between consecutive
video shots; second, we want V WS(ps) to be as close to
Lvs as possible, but not to exceed it. We combine these two
goals in the objective function fobj , described in the follow-
ing video skimming generation problem:

Problem 2.1 Given a set of video shots Ssh = {sh1...shn},
the spatial-temporal graph G(V,E) built on Ssh, the tar-
get video skimming length Lvs, and a weight parameter w,
search the path ps = {vs1

...vsn
} such that it maximizes the

object function fobj(ps, Lvs) = Lps
+ w × (V WS(ps) −

Lvs), and V WS(ps) ≤ Lvs.

2.3. Solution and algorithm

Problem 2.1 is a constrained optimization problem. Brute
force searching is feasible but inefficient; however, the prob-
lem has an optimal substructure [8] and can be solved with
dynamic programming.

Suppose there are n video shots in the video shot set.
We add a virtual vertex v0 such that w0 = 0 and we0j

= 0
for all 0 < j ≤ n. We use pi

vx,lr
= {vx, ...} to denote a

path in the spatial-temporal relation graph such that it be-
gins with vertex vx, and its vertex weight summation is up-
per bounded by lr. We then use po

vx,lr
to denote the opti-

mal path among all such paths, which means fobj(p
o
vx,lr

) =

maxi fobj(p
i
vx,lr

). Thus po
v0,Lvs

is the path we want to find.
Then we have the following optimal substructure:

1. fobj(p
o
vn,lr

) = w × (lshn
− Lvs), for all lr ≤ Lvs;

2. fobj(p
o
vx,lr

) = maxn
y=x+1[Dis(shx, shy) +

fobj(p
o
vy,lr−lshy

) + w × lshx
] × τ(lr, y), for x < n.

Here τ(lr, y) = 1 if lr − lshy
≥ 0,

otherwise τ(lr, y) = 0.

With the above optimal-substructure we can calculate
the object function value of the optimal path fopt(p

o
v0,Lvs

)
and all optimal sub-solutions. Then we can easily trace back
and find the global optimal path as well as the skimming
shots of the scene. In the case there are multiple global op-
timal pathes, the trace back algorithm will also find all of
them. We concatenate the skimmings of each video scene
then get the whole video skimming. Note that the algorithm
might generate a video skimming that is a little shorter than
the target length Lvs. This will not affect much about the
content coverage of our video skim, in any case, we ran-
domly select some video shots to fill that length.

The time complexity of this dynamic programming al-
gorithm is O(n2 × Lvs), while the spatial complexity is
O(n × Lvs). For most video scenes, n and Lvs would not
be very large and the algorithm completes quite quickly.

3. EXPERIMENTS AND DISCUSSIONS

We implemented the video summarization algorithms then
applied them to some video clips. We employed a PC with
2.0G hz P4 CPU on the Win2000 OS for the experiments.
The exponent control parameter k in the spatial-temporal
dissimilarity function is set to 250, and the weight factor w



in the objective function is set to 0.01. The threshold param-
eters t1, t2 are set to 3 seconds and 4 seconds, respectively.
The selected video clips are from movies and sitcom videos
described in Table 1. An example for a scene’s key frames
(shown as video shot groups) and the selected skimming
video shots’ key frames are shown in Fig. 4.

Skimming video shots

Original video shots

Fig. 4. Summarized scene key frames

In our experiments, ten people were invited as test users
to watch the video skimming generated with two compress
rates 0.15 and 0.30 then answer several questions about the
video contents. Suppose there are N key event scenes in the
video, we use the question “What?” to ask the test users to
tell how many key events they can perceive by watching the
video skimming. Then the score for the question “What?”
is calculated as the average event number that the users can
find divided by N . Similarly, question “Who?” deals with
the key actors in the video. All scores are scaled to 10.

Table 1 shows the numerical results for the user test.
From the table we conclude that the video skimmings’ con-
tent coverage is still quit good at a skim rate of 0.15. More-
over, when the skim rate is 0.30, the skimming content cov-
erage is even better.

Video Clip Duration Actors Events Skim Rate Who? What?

Movie1 1403 sec. 9 7
0.15 8.34 8.23
0.30 9.42 9.56

Movie2 1230 sec. 7 8
0.15 8.22 8.44
0.30 9.34 9.29

Movie3 477 sec. 6 4
0.15 7.78 8.05
0.30 9.07 9.50

Sitcom1 1183 sec. 8 9
0.15 8.23 7.11
0.30 8.89 8.43

Sitcom2 1202 sec. 7 10
0.15 8.43 6.84
0.30 8.72 8.17

Table 1. User test results

4. CONCLUSION AND FUTURE WORK

Video summarization is an important technique for efficient
video browsing and management. In this paper, we formu-
late the video skimming generation problem as a two-stage
optimization problem. We obtain the video scene bound-
aries, determine each video scene’s skim length, then we
model each scene into a spatial-temporal relation graph, and
employ dynamic programming to find each scene’s optimal
skimming. The whole video skimming is concatenated by
each scene’s skimming. We implemented the proposed al-
gorithm and obtained encouraging experimental results.

In the future, we will further incorporate audio channel
analysis to help our skimming generation. Moreover, intra-
shot compression will be studied to shorten the video shots’
length in order to further magnify the content coverage.
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