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Abstract When image segmentation is treated as

a problem of clustering color pixels, the �nite mix-

ture model with EM algorithm can be used to cluster

color space samples. With estimated mixture model

parameters, we adopt the BYY model selection cri-

terion to determine how many regions should be

segmented on a given color image. In this paper,

we experimentally investigate the e�ect of choosing

di�erent color space for determining a reasonable

region number based on the BYY criterion.
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1 Introduction

Image segmentation is to partition a given im-

age into some meaningful regions and label

each region by a region type. There are a wide

variety of image segmentation techniques[1].

Feature space clustering is among the most

popular of these methods. A clustering method

is used to group the points in the feature space

into clusters. These clusters are then mapped

back to the original spatial domain to produce

a segmentation of the image.

When image segmentation is viewed as a

clustering process, several techniques exist for

clustering. Among the clustering techniques,

the �nite mixture of distribution, in particular
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normal (Gaussian) mixture, has been used in a

wide variety of important practical situations.

The maximum likelihood approach to the �t-

ting of �nite mixture models has been utilized

extensively[2]. Because of its advantage, the

cluster analysis with �nite mixture model has

attracted considerable interest for image seg-

mentation in recent years[3, 4, 5].

In fact, in the feature-space clustering

method for image segmentation, the number

of segments to be yielded can be considered as

the number of clusters, k, in the feature space.

Usually, k has to be speci�ed in advance. If

k is correctly selected, good clustering result

can be achieved; otherwise, data points can-

not be grouped into appropriate clusters and

image segmentation cannot be performed ap-

propriately. To determine a reasonable region

number is one of the di�cult things in machine

learning. This problem a�ects the ability to

automatically interpret images by a machine,

which has been one of the major challenges in

computer vision. In the past, most of the work

used a pre-assigned number or some heuristics

to determine the number of regions.

A Bayesian-Kullback scheme, called the

Ying-Yang Learning Theory and System

(BYY), or Ying-Yang machine, has been pro-

posed recently to act as a general learning

scheme for unifying the existing major unsu-

pervised and supervised learning[6, 7]. One

special case of the Ying-Yang machine can pro-

vide us the criterion for determining appropri-

ate cluster number in clustering[8]. The exper-

imental simulation results in [8, 9] have shown



that obtained criterion works well in determin-

ing cluster number. If we assume that the

number of regions in image spatial domain is

equal to the number of clusters in color space,

with this BYY model selection criterion we

can determine how many regions should be

segmented[10]. Apparently, the distribution

of clusters depends on the color space selec-

tion, therefore, the determined region number

is variable for di�erent color space. In this

paper, we investigate the e�ect of color space

selection on the region number determination

problem.

2 Background

When an image was given, assuming the image

has N pixels, we use xi to denote the observa-

tion at the ith color pixel. The whole samples

in the image form data set D = fxigNi=1; as-
suming that xi is a sample from a �nite mix-

ture distribution.

In the following we will briey review the

Gaussian �nite mixture model with EM algo-

rithm, and the BYY model selection criterion.

2.1 Finite Mixture Model and EM

Algorithm

Considering a Gaussian �nite mixture model,

the joint density, which consists of k compo-

nent Gaussian density, in feature space is de-

noted by

P (x;�) =
kX

y=1

�yG(x;my;�y);

with �y � 0; and
kX

y=1

�y = 1 (1)

where

G(xi; my;�y) =
exp[�1

2
(xi �my)

T��1y (xi �my)]

(2�)d=2j�yj
1

2

(2)

is a general expression of multivariate Gaus-

sian distribution. xi denotes a random vec-

tor, d is the dimension of x; and the parameter

� = f�y ; my;�ygky=1 is a set of �nite mixture

model parameter vectors. Here �y is the mix-

ing weights, my is the mean vector, and �y is

the covariance matrix of the yth component of

the mixture model. Actually, these parame-

ters are unknown, and using how many Gaus-

sian component densities can best describe the

joint probability density is also unknown. Usu-

ally with a pre-assigned number k, the mixture

model parameters are estimated by maximum

likelihood learning (MLE) with ordinary EM

algorithm [11, 2].

EM algorithm for estimating mixture model

parameters can be described as follows:

E-step:

p(yjxi) =
�yG(xi; my;�y)Pk
y=1 �yG(xi; my;�y)

;

with y = 1; :::; k; (3)

M-step:

�newy =
1

N

NX
i=1

p(yjxi)

mnew
y =

PN
i=1 p(yjxi)xiPN
i=1 p(yjxi)

(4)

�new
y =

PN
i=1 p(yjxi)[(xi �mold

y )(xi �mold
y )T ]PN

i=1 p(yjxi)
:

With this iterative EM algorithm, the mix-

ture parameters can be estimated based on

samples in color space.

Each component of the �nite mixture is re-

garded as one cluster. After parameters learn-

ing, the posterior probability p(yjxi) represent
the probability that data point xi belongs to

cluster y. Now we use Bayes decision y� =

argmaxy p(yjxi) to classify xi into cluster y�.

This procedure is called Bayesian probabilistic

classi�cation.

2.2 Model Selection Criterion

There exist some theoretical information cri-

teria which can be used to select the number

of models, such as AIC[12], AICB [13], CAIC



[14], SIC [15]. In this work, we adopt the BYY

model selection criterion.

As stated in [6, 7], unsupervised and su-

pervised learning problems can be summarized

into the problem of estimating joint distribu-

tion P (x; y) of patterns in the input space X

and the representation space Y. Based on the

situation considered in [8], we have the follow-

ing BYY model selection criterion in the Gaus-

sian mixture model case,

J1(k;�
�) =

1

N

NX
i=1

kX
y=1

p(yjxi) ln p(yjxi)

+
1

2

kX
y=1

��y ln j��yj �
kX

y=1

��y ln�
�

y :

J2(k;�
�) =

1

2

kX
y=1

��y ln j��y j�
kX

y=1

��y ln �
�

y: (5)

With the above J(k;�); we can select

the cluster number k� simply by k� =

argmink J(k;�
�) with MLE obtained ��. In

practice, we usually start with k = 1, estimate

parameter ��, and compute J(k = 1;��).

Then by setting k ! k + 1, we compute

J(k = 2;��) and so on. After getting a series

of J(k;��), we choose the minimal one and get

the corresponding k�. This k� is assumed to

the number of regions where an image should

be segmented.

2.3 Bayesian Probabilistic Classi�-

cation

When an image with N pixels was given, we

use xi to represent a random feature vector in

feature space for pixel i. For example, in RGB

color space, xi = fRi; Gi; Big is a three dimen-
sional vector, and the components of xi stands

for Red, Green, Blue color value of pixel i of

an image respectively, where i = 1; 2; : : : ; N:

These vectors can be regarded as identical in-

dependent distribution. After we got k� with

BYY criterion and the mixture model parame-

ter �� with EM algorithm, we can calculate the

posterior probability that sample xi belongs to

cluster y: From Bayes rule, the posterior prob-

ability is written in the form of equation (3).

For given xi, we can obtain k probability

p(y = 1jxi); p(y = 2jxi); � � � ; p(y = kjxi),
we use the Bayes decision to classify pixel

i into cluster y by the solution if y� =

argmaxy p(yjxi), for y = 1; 2; � � � ; k; pixel i will
be classi�ed to cluster y�: Therefore, the �nite

mixture model image segmentation is a pixel

classi�cation procedure.

2.4 Color Space

A color image is represented by three com-

ponents, such as RGB, XYZ, YIQ, HSI and

so on[16]. Which color space is suitable for

clustering and how it a�ects the proper region

number determination? There is no theoretical

guide for this quite new problem, and we be-

lieve that the probable answer should be based

on experimental testing.

In this paper, we concentrate on the follow-

ing color spaces.

(1) RGB (Original tristimuli Red, Green,

and Blue): this color space is used for display.

(2) YIQ: for color system of TV signal.

(3) XYZ: for C.I.E X-Y-Z color system.

(4) X1X2X3: this color feature is obtained

by Karhunen Lo�eve transformation, also called

PCA. X1, X2, X3 are uncorrelated with each

other.

(5) I1I2I3 : for uncorrelated features.

(6) HSI (Hue, Saturation and Intensity): for

human perception.

Relations of the above color systems with

RGB are as the following. Note the transfor-

mation matrices are not the standard ones[16].

(a) YIQ

Y = 0:299R+ 0:587G+ 0:114B

I = 0:5R� 0:23G� 0:27B

Q = 0:202R� 0:5G+ 0:298B (6)

(b) XYZ

X = 0:618R+ 0:177G+ 0:205B

Y = 2:299R+ 0:587G+ 0:114B

Z = 0:056G+ 0:944B (7)



(c) I1I2I3

I1 = (R+ G+ B)=3

I2 = (G�B)=2

I3 = (2G�R� B)=4 (8)

(d) HSI

H = arctan

 p
3(G�B)

2R�G�B

!

S = 1� min(R;G;B)

R+G+B

I = R+ G+ B (9)

(e) X1X2X3

X1 = wR1R+ wG1G+ wB1B

X2 = wR2R+ wG2G+ wB2B

X3 = wR3R+ wG3G+ wB3B (10)

where Wi = (wRi; wGi; wBi), i = 1; 2; 3 are

three eigenvectors of �; �Wi = �iWi; �i is

eigenvalue, and

m =
1

N

NX
i=1

xi(R;G;B) (11)

� =
1

N

NX
i=1

(xi �m)(xi �m)T (12)

With these relation equations, other color

spaces are transformation of RGB color space.

3 Experiments

In the experiments, we use one synthetic image

and some standard images such as \house" and

\sailboat" to test the e�ect of color space se-

lection on the BYY model selection criterion.

Each image is a 24-bit color map with the size

of 128�128 pixels.
Choosing a di�erent color space will result

in di�erent shape and distribution of clusters,

which leads to an estimated parameter vari-

able, though the EM algorithm and classi�ca-

tion rule is the same for all color spaces. In the

experiments, with the selected color space, we

(a) Synthetic image (b) X1X2X3 color
space

(c) RGB color space
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(d) J2 � k curve for
RGB space, k = 8 is

correct selected.

Figure 1: Synthetic image with 8 regions, as

well as some color spaces, J2 � k curve for de-

termining the segment region number. J2 � k

curves for X1X2X3, XYZ and I1I2I3 color sys-

tems are similar to RGB's.

run the EM algorithm to estimate mixture pa-

rameters and compute J(k;��) curves. In or-

der to eliminate the inuence of EM algorithm

converging to di�erent local minima, we repeat

the experiment with same condition but with

di�erent initial parameter value several times,

then use the most probable results.

Several experiments have been done. Here

only parts of experimental result for synthetic

image are shown in Figure 1. Similar results

are observed for \house" and \sailboat" im-

ages. In the synthetic image, there are 8 colors,

and each color represents one cluster in a color

space. If colors are similar for some classes,

clusters will overlap in the HSI or YIQ color

space. Overlapping has an inuence on proper



(a) Scaled HSI color
space
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(b) J2 � k curve
for HSI space, it

over estimates re-

gion number.

(c) Scaled YIQ color

space
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Figure 2: Some color space for the synthetic

image with 8 regions, as well as J2�k curve for
determining the segment region number. J2�k
curves for X1X2X3, XYZ and I1I2I3 color sys-

tem are similar to RGB's.

clustering: it results in a poor region number

selection.

In the experiments, it is found that using

RGB, XYZ, X1X2X3 and I1I2I3 color spaces

yields the same reasonable region number. In

X1X2X3 or I1I2I3 color space, it is easy to

cluster with EM algorithm and the compu-

tation time is also less than using HSI color

space. Hue is unstable when Saturation is near

zero, in which case, it would be very di�cult

to correctly determine the region number and

segmentation. On the other hand, based on

the experimental testing, the �nal choice of

color space is X1X2X3 or I1I2I3 system. This

is because X1X2X3 or I1I2I3 color coordinates

are almost uncorrelated, and they are e�ective

for region number determination based on the

BYY model selection criterion.

From the experiments, we know that by us-

ing the BYY model selection criterion, as long

as the proper color space is used, in most cases

we can select a reasonable region number, and

make it possible in automatic segmenting a

given image without a priori knowledge.

4 Summary

In this paper, we have investigated the e�ect

of color space selection on determining image

segmentation region number based on the BYY

model selection criterion. Six color spaces have

been tested and compared experimentally. EM

algorithm was used to estimate mixture model

parameters and Bayes decision rule was used

to classify pixels into a proper region.

In conclusion, RGB space is the basic selec-

tion while X1X2X3 or I1I2I3 color space is more

appropriate for clustering in this BYY model

selection criterion application.
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