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Abstract

We consider the problem of Semi-supervised Learning
(SSL) from general unlabeled data, which may contain ir-
relevant samples. Within the binary setting, our model man-
ages to better utilize the information from unlabeled data
by formulating them as a three-class (−1,+1, 0) mixture,
where class 0 represents the irrelevant data. This distin-
guishes our work from the traditional SSL problem where
unlabeled data are assumed to contain relevant samples
only, either +1 or −1, which are forced to be the same
as the given labeled samples. This work is also different
from another family of popular models, universum learning
(universum means “irrelevant” data), in that the universum
need not to be specified beforehand. One significant con-
tribution of our proposed framework is that such irrelevant
samples can be automatically detected from the available
unlabeled data, even though they are mixed with relevant
data. This hence presents a general SSL framework that
does not force “clean” unlabeled data. More importantly,
we formulate this general learning framework as a Semi-
definite Programming problem, making it solvable in poly-
nomial time. A series of experiments demonstrate that the
proposed framework can outperform the traditional SSL on
both synthetic and real data.

1 Introduction

Learning classifiers from data has been a popular and im-
portant topic in machine learning and data mining. Given a
sufficiently large quantity of labeled instances called train-
ing data, one can exploit the traditional Supervised Learning
(SL) algorithms to handle this task [23, 8, 10]. However, in
many real world applications, the labeled data may be very
few due to the expensive cost of manual labeling. On the
other hand, the number of unlabeled instances could be very
large since they are generally much easier to obtain. SL,
taking only advantages of the labeled data, might not work

appropriately in these cases. In contrast, Semi-supervised
Learning (SSL), making use of both labeled data and unla-
beled data, proves to be an effective solution in addressing
this problem [29, 4]. Undoubtedly, SSL has achieved a great
success in many domains involving machine learning and
data mining. To guarantee good performance, SSL usually
assumes that the unlabeled data should share the same labels
as the labeled training samples. Although this assumption
can be well satisfied in some cases, it appears still strong in
certain other domains. In fact, it is very common that unla-
beled data are collected by using automatical tools. This is
actually frequently seen in the earlier stages of data collec-
tion. It is usually inevitable that those collected unlabeled
data contain irrelevant samples. Feeding such “corrupted”
unlabeled data to SSL may significantly affect the overall
performance and incur severe problems consequently.

To attack this problem, we aim to build up a general
SSL framework capable of learning from general unlabeled
data systematically, where the unlabeled data may contain
irrelevant samples. Our model manages to better utilize the
information from unlabeled data by formulating them as a
three-class (−1,+1, 0) mixture.1 This hence distinguishes
our work from the traditional SSL problem where unlabeled
data are assumed to contain the same labels as the labeled
training samples [28, 7].

The benefits of taking the irrelevant data into account
can be seen in Figure 1 and Figure 2. In both Figures,
all the filled points (•’s and �’s) are unlabeled data, while
the ◦’s and �’s are the two classes of labeled training sam-
ples. Clearly, Figure 1(a) illustrates that SSL can outper-
form the boundary given by the Support Vector Machines
(SVM) [3, 23], the current state-of-the-art SL algorithm.
However, SSL may encounter problems if the unlabeled
data contain the “irrelevant” data. This can be observed in
Figure 1(b): The boundary of SSL is obviously unreason-
able. A more reasonable decision plane should pull away

1In this paper, we only consider the binary cases while multi-way prob-
lems can be easily approached via standard techniques, e.g., the one vs
others technique [9].
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Figure 1. The “irrelevant” data �’s can increase the performance of the SSL. The filled points (•’s and
�’s) are unlabeled data, while the ◦’s and �’s are the two classes of labeled training samples. The
filled �’s describe the irrelevant unlabeled data. The decision planes of the SL and SSL are given by
the SVMs.

the “relevant” data (maximizing the margin among the neg-
ative and positive data) while predicting the values of the
“irrelevant” data as close to zero as possible (clustering the
“0”-data around the decision line). Such a boundary (the
dashed red line) can be observed in Figure 1(b).

Exploiting the unlabeled data neither positive nor nega-
tive can actually remedy the negative impact when both the
unlabeled data and the labeled data are limited. Such a case
can be seen in Figure 2. Assume the ground truth bound-
ary is given as the dashed line in Figure 2(a). However, due
to the limited training data (including both the labeled and
relevant unlabeled data), the learned SSL boundary may be
deviated from the actual one (as observed in Figure 2(a)).
Sometimes, there are perhaps some “irrelevant” instances
(�’s in Figure 2(b)), being neither positive nor negative,
mixed into the unlabeled data. By appropriately detecting
and using these irrelevant data (trying to cluster such irrel-
evant unlabeled data around the decision plane), one can
actually learn a more reasonable boundary as seen in Fig-
ure 2(b).

The idea of learning with the irrelevant data is similar
to the work proposed in [19, 24], where the irrelevant data
are called universum. However, they designed their system
only within the Supervised Learning framework. In addi-
tion, these universum data need to be specified beforehand
and are merely used as the labeled third class of samples.
In other words, one needs to know which instances are uni-
versum data in advance so as to build a decision boundary.
In comparison, we propose to exploit such irrelevant data
in the semi-supervised context. More importantly, we do
not need to specify which samples belong to the universum.
Instead, we can learn from general unlabeled data, which
means those relevant data or irrelevant data are mixed in the
unlabeled data. Our novel model can output a more rea-

sonable decision boundary, while simultaneously detecting
the relevant data and irrelevant data automatically after the
learning is finished.

Indeed, as far as we know, this work presents a novel
study on how to perform learning from general unlabeled
data consisting of both relevant and irrelevant instances.
When the irrelevant data are known as prior knowledge by
the user, this is the idea of “SSL with universum” proposed
in [27]. In contrast, our work presents a more difficult and
general SSL framework, where irrelevant data are mixed
with the relevant unlabeled data, without any knowledge on
which samples are relevant or irrelevant beforehand. As a
major contribution, we successfully formulate such a diffi-
cult problem as a Semi-definite Programming (SDP) prob-
lem [13, 6, 21], making the framework solvable in polyno-
mial time. Both theoretical analysis and empirical inves-
tigations demonstrate that the proposed framework outper-
forms the traditional SSL in many cases.

The rest of this paper is organized as follows. In the next
section, we discuss the related work. In Section 3, we detail
the proposed framework including the model definition, the
theoretical analysis, and the practical solving method. In
this section, we will demonstrate how the proposed model
can be formulated in a Mixed Integer Programming (MIP)
problem [16] and finally relaxed to be an SDP problem. In
Section 4, we conduct a series of experiments to validate
our novel approach. Finally, we set out the conclusion with
final remarks.

2 Related Work

Researchers have devoted a lot of efforts on how to uti-
lize unlabeled data via the effective semi-supervised learn-
ing [4, 28]. One assumption for SSL is that unlabeled data
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Figure 2. The “irrelevant” data �’s can increase the performance when only a limited number of
relevant unlabeled data is available. The filled points (•’s and �’s) are unlabeled data, while the
◦’s and �’s are the two classes of labeled training samples. The filled �’s describe the irrelevant
unlabeled data. The decision plane of the SSL is given by the SVM.

are required to share the same distribution as the labeled
data. The above assumption is relaxed in [2], where the
distribution of training data is allowed to be arbitrarily dif-
ferent from the distribution of the unlabeled data. Unfor-
tunately, although tolerating different distributions, it still
requires the unlabeled data share the same class categories
as the labeled training data. In fact, such requirement is
enforced in most of SSL algorithms [28].

Alternatively, [24] studied the universum data, a special
kind of unlabeled data that do not belong to any classes of
the problem at hand, and showed that the universum data
could boost the classification performance by encoding the
prior knowledge of the domain. However, this interesting
work is conducted in the context of Supervised Learning.
The universum data need to be specified beforehand and
are just used as the third class of samples. [17] proposed a
Self-taught Learning (STL) and showed that weakly-related
unlabeled data sharing a little structural information with
the current task could also benefit the classification perfor-
mance. The problem is that those weakly-related data are
only exploited for extracting feature patterns and they are
not involved in optimizing the decision boundary. Empir-
ical study shows that STL sometimes extracts misleading
patterns and hence might hurt the performance.

In addition, [11] and [27] studied the case that unlabeled
data are a mixture of both relevant data, which are from the
same domain of the current task, and irrelevant data, which
are from a different task or the background. More specifi-
cally, [27] assumed that the prior knowledge about the com-
position of the mixture, i.e., the universum data and the data
from the same distribution as the training data, is clear be-
fore learning a semi-supervised classification model. How-

ever, the application of the above methods requires the as-
sumption that the prior knowledge of the composition of
data should be known before learning. In contrast, this pa-
per leverages the above requirement by learning from gen-
eral unlabeled data which we do not know are relevant or
not.

As a brief summary, our proposed framework presents a
novel SSL framework that can learn from general unlabeled
data. Such unlabeled data could consist of both relevant
and irrelevant data. More importantly, we do not need to
know which instances are relevant or irrelevant data. Based
on solving an SDP problem, the proposed algorithm is able
to automatically detect them, and consequently outputs a
classification boundary that can exploit the unlabeled data
more appropriately and more reasonably.

3 SSL from General Unlabeled Data

In this section, we first present the problem definition
and the notation used in the paper. We then introduce the
model definition, the theoretical analysis and the practical
solving method in turn.

3.1 Problem Formalism

Given a training data set D, consisting of l labeled sam-
ples {(x1, y1), (x2, y2), . . . , (xl, yl)} drawn i.i.d. from a
certain distribution S. Here xi ∈ Rn (i = 1, 2, . . . , l) de-
scribes an input feature vector, and yi ∈ {−1,+1} is the
category label for xi. In addition, assume that m (m � l)
unlabeled data samples {xl+1,xl+2, . . . ,xl+m} are also
available (for brevity, we denote n = l+m). The unlabeled
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data contain both the relevant data sharing the same labels
i.e., {−1,+1} as the labeled data, and the irrelevant data
which are different from the labeled data. Moreover, there
are no prior knowledge on which instances are relevant or
irrelevant.

The basic task here can be informally described as seek-
ing a hypothesis h : Rn → {−1,+1} that can predict
the label y ∈ {−1,+1} for the future input data sample
z ∈ Rn sampled from S by appropriately exploiting both
the labeled data and the general unlabeled data. The hy-
pothesis usually takes the linear form of h = sign(f(z)),
where f(z) = w · z + b (w ∈ Rn, b ∈ R). Note that the
linear form can be easily extended to the non-linear form
based on the standard kernelization trick [18].

3.2 Framework

The novel framework is introduced in the following. We
first present the model definition followed by the theoreti-
cal analysis showing the inner justifications of our model.
Finally, we show how to transform the problem to an SDP
problem.

3.2.1 Model Definition

The novel model is formulated as the following Problem I:
Problem I:

min
w,b,ξ,η,yl+1:n

1
2
||w||2 + CL

l∑
i=1

ξi + CU

n∑
j=l+1

min(ηj , ξj)

s.t. yi(wi · xi + b) ≥ 1 − ξi, i = 1, . . . , l, (1)

yj(wj · xj + b) ≥ 1 − ξj , (2)

|wj · xj + b| ≤ ε + ηj , (3)

ηj ≥ 0, j = l + 1, . . . , n,

ξk ≥ 0, k = 1, . . . , n,

where xi, i = 1, . . . , l are the labeled training samples.
Namely, yi ∈ {−1,+1} i = 1, . . . , l is known before-
hand. xj , j = l + 1, . . . , n are the unlabeled data, where
the associated labels are unknown, but restricted in the set
of {−1, 0,+1}. CL and CU are two positive penalty para-
meters used to trade-off the margin and the training loss. ε
is a small positive parameter describing the insensitiveness
level.

Constraint (1) describes the loss for the labeled data.
Constraint (2) provides the loss if xj is judged as the ±1
(i.e., the relevant data), while (3) presents the loss if xj is
judged as the class of 0 (i.e., the irrelevant class). The loss
incurred by the unlabeled sample xj is finally given by the
minimum loss that it is judged as the class of ±1 or 0. This
can be seen in the objective function of Problem I. Intu-
itively, the above model attempts to maximize the margin

among the positive relevant data and negative relevant data,
while predicting the values of the irrelevant data as close to
zero as possible simultaneously. In addition, our model can
automatically detect or assign the unlabeled samples to ei-
ther ±1 (relevant classes) or 0 (irrelevant class) by choosing
the smaller cost associated with the assigned label.

Note that two types of loss functions are adopted in Prob-
lem I. The loss function for the relevant data is the hinge
loss H−ε = max{0, t − ε} as seen in (2), where t = 1. On
the other hand, the loss function of the irrelevant data is de-
fined as the ε-insensitive loss U [t] = H−ε[t] + Hε[t]. Both
loss functions are plotted in Figure 3. When a data point is
judged as a relevant instance, we should push it as faraway
as possible from the margin f(z) = ±1. Hence a hinge loss
is more appropriate for such a setting. When the data point
belongs to the irrelevant class, it should be around the de-
cision plane f(z) = 0. In this sense, an ε-insensitive loss
function is more suitable. An analogy can also be seen in
choosing the loss functions for SVM (using hinge loss) and
Support Vector Regression (using ε-insensitive loss) [20].

It is not easy to directly optimize Problem I because of
the operator of min. However, by introducing an integer

variables dj =
{

0 if yj = ±1
1 if yj = 0 , ∀j, l + 1 ≤ j ≤ n ,

we can transform Problem I to the following problem:
Problem II:

min
w,b,ξ,η,yl+1:n,d

1
2
||w||2 + CL

l∑
i=1

ξi

+ CU

n∑
j=l+1

(ηj + ξj), (4)

s.t.

yi(wi · xi + b) ≥ 1 − ξi, i = 1, . . . , l (5)

yj(wj · xj + b) + ξj + M(1 − dj) ≥ 1, (6)

|wj · xj + b| ≤ ε + ηj + Mdj , (7)

dj = {0, 1} j = l + 1, . . . , n,

ηj ≥ 0, j = l + 1, . . . , n,

ξk ≥ 0, k = 1, . . . , n.

In the above, M is a large positive constant. When dj

is equal to 0, M(1 − dj) = M is a big value. Hence
(6) will naturally be satisfied, leading ξi = 0 and further
min(ξj , ηj) = ξj + ηj . A similar analysis can be obtained
when dj = 1. Therefore, we can know that Problem II is
strictly equivalent to Problem I, provided that M is set to a
sufficiently large value. Problem II is a Mixed Integer Pro-
gramming problem [1, 16].

In the literature, there are a lot of proposals which can
solve the MIP problem. In the following, we will first de-
rive a theorem showing the justification of our proposed al-
gorithm. We then revisit the optimization and propose our
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Figure 3. Hinge loss and ε-insensitive loss

practical solving method.

3.2.2 Analysis

In this section, we conduct some analysis showing that the
utilization of irrelevant data has a nice theoretical justifica-
tion. For clarity, we slightly modify Problem II to the fol-
lowing optimization problem. Based on the modified prob-
lem, we then derive the analysis. Problem II is changed as
follows:

min
w,b,ξ,η,yl+1:n,d

1
2
||w||2 + CL

l∑
i=1

ξi + CrU

n∑
j=l+1

ξj

+CiU

n∑
j=l+1

ηj (8)

s.t. yi(wi · xi + b) ≥ 1 − ξi, i = 1, . . . , l

yj(wj · xj + b) + ξj + M(1 − dj) ≥ 1,

|wj · xj + b| ≤ ε + ηj + Mdj ,

dj = {0, 1} j = l + 1, . . . , n.

ηj ≥ 0, j = l + 1, . . . , n,

ξk ≥ 0, k = 1, . . . , n.

CrU represents the penalty parameter for the relevant sam-
ples, while CiU describes the penalty imposed on the irrel-
evant data points. We first present the following theory.

Theorem 1 The above learning machine with CiU = ∞
and ε = 0 is equivalent to training a standard Transductive
SVM [5] with the training points projected onto the orthog-
onal complement of span {zj − z0, zj ∈ U}, where z0 is
an arbitrary element of the space spanned by the irrelevant
samples denoted by U .

Sketch of Proof: CiU = ∞ and ε = 0 implies that any w
yielding the optimal solution of (8) satisfies w · z + b = 0

for any z judged as irrelevant samples. Hence, we have
w · (z− z0) = 0, implying w is orthogonal to the subspace
spanned by all the irrelevant samples. Hence the optimiza-
tion of (8) intends to find a traditional transductive SVM in
a subspace which contains only the relevant samples, while
the irrelevant samples are suppressed. In addition, from the
previous argument, the space U spanned by the irrelevant
samples can also benefit the classification, since it is U that
decides the optimization subspace. �

Theorem 1 shows that the optimization of our proposed
algorithm actually tries to find the most suitable subspace
in which the margin can be maximized while the overall er-
ror can be minimized. The irrelevant data do not contribute
to the final accuracy directly. However, it determines the
subspace where the resultant decision boundary is derived
and will consequently affect the final performance. Theo-
rem 1 clearly shows how the irrelevant data can affect and
eventually improve the overall performance.

3.2.3 Practical Solving Method

We now revisit the optimization of Problem II. Although
there are softwares that are able to deal with MIP involved
in Problem II, the computational complexity is usually high.
It is even difficult to perform optimization with more than
50 {0, 1} integer variables. Hence we would like to re-
lax the problem to other solvable optimization forms. To
achieve this purpose, we first reformulate Problem II to its
dual form.
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Problem III:

max
λ,z+,z−

min
yl+1:n,d

−βT Kβ + 2
n∑

i=1

λi

−2M

n∑
j=l+1

(1 − dj)λj

−2M
n∑

j=l+1

dj(z−j + z+
j )

s.t. 0 ≤ λi ≤ CL, i = 1, . . . , l (9)

0 ≤ λj ≤ CU , (10)

z−j + z+
j ≤ CU , (11)

z−j , z+
j ≥ 0, (12)

dj = {0, 1}, j = 1 + 1, . . . , n (13)

In the above, βj is defined as βj ={
λjyj j ≤ l
λjyj + (z−j − z+

j ) l + 1 ≤ j ≤ n
. λj is the La-

grangian multiplier for (5) and (6) associated with xj , and
z−j and z−j correspond the Lagrangian multipliers for (7)
when the abs operator is expanded. And K is the kernel
matrix defined as Ki,j = xi · xj .

Before proceeding to re-organized Problem III, we
present some notation first. We denote a new vec-
tor α = (λ; z−; z+). We further define P1 =
(XDiag(y),Xl+1:n,−Xl+1:n)T , where X represents the
matrix (x1,x2, . . . ,xn), Xk1:k2 represents the matrix con-
sisting of the columns of X from k1 to k2, and X ◦Diag(y)
represents the element-wise matrix multiplication of X
and Diag(y). We further define a = (1l;1m − M(1 −
d);−Md;−Md), where 1k represents a k-dimension col-
umn vector with all the elements as 1. We denote the matrix

B =
(

In×n, 0n×2m

0m×n, Qm×2m

)
, Qm×2m = (Im×m, Im×m),

C = (CLl;CU2m). Here In×n is an n × n unit matrix,
0k1×k2 describes a k1 × k2 matrix with all the elements as
0, CLl defines an l-dimensional column vector with all the
elements as CL. Other symbols are similarly defined.

We can re-organized Problem III to the following prob-
lem by using the above notation.

max
α

min
yl+1:n,d

−αT P1PT
1 α + 2aT α

s.t. α ≥ 0,

Bα ≤ C,

dj ∈ {0, 1},∀j, l + 1 ≤ j ≤ n.

Once again, the dual form of the above optimization ob-
jective can be written to the following problem:

max
α

min
yl+1:n,d,ν,δ

−αT P1PT
1 α + 2aT α + 2νT α

+2δT (C − Bα), (14)

where ν, δ ≥ 0 are the Lagrangian multipliers.
We can easily obtain the optimal α = (P1PT

1 )−1(a +
ν − BT δ). Substituting the optimum value of α into (14),
we further get the optimization problem as follows:

max
α

min
yl+1:n,d,ν,δ

(a + ν − BT δ)
T
(P1PT

1 )−1(a + ν − BT δ)

+2δT C

s.t. ν ≥ 0, δ ≥ 0,

dj ∈ {0, 1},∀j, l + 1 ≤ j ≤ n.

Finally, the above optimization problem can equivalently
be transformed to a form similar to the Semi-definite Prob-
lem (SDP) by using Schur Complement Lemma [12, 13].
Problem IV:

min
yl+1:n,d,ν,δ,t

t s.t.
(

P a + ν − BT δ
(a + ν − BT δ)T t − 2δT C

)

 0,

dj ∈ {0, 1},
yj ∈ {−1,+1},∀j, l + 1 ≤ j ≤ n.

Here P is defined as⎛
⎝ K ◦ (yyT ) Diag(y)K1:n,l:n −Diag(y)K1:n,l:n

KT
1:n,l:nDiag(y) Kl+1:n,l+1:n −Kl+1:n,l+1:n

−KT
1:n,l:nDiag(y) −Kl+1:n,l+1:n Kl+1:n,l+1:n

⎞
⎠

and a matrix A 
 0 means that A is a Semi-definite matrix.
Similar to the work presented in [13], we relax (yyT )

as rank-one matrix M. We further relax dj ∈ {0, 1} to
0 ≤ dj ≤ 1. We can finally write the optimization problem
as Problem V:

Problem V:

min
M,d,ν,δ,t

t s.t.
(

P a + ν − BT δ
(a + ν − BT δ)T t − 2δT C

)

 0,

0 ≤ dj ≤ 1,

rank(M) = 1,M1:l,1:l = y1:lyT
1:l.

Following most optimization methods in SSL [25, 26, 5,
22], we further remove the rank-one constraint, the above
problem is exactly an SDP problem. Note that Diag(y) ap-
pearing in the matrix P can be represented by the elements
of M. For example, assume y1 = 1, then Diag(y) can
be written as Diag(M11,M12, ...,M1n). This SDP problem
can be solved in polynomial time by some packages such as
Sedumi[21].

4 Experiment

In this section, we evaluate our proposed framework on
both synthetic and real data. A synthetic example will be
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firstly presented in order to illustrate the model clearly.
We then compare our model with the traditional SSL and
the Universum Support Vector Machine (USVM) [24] on
benchmark data sets, USPS 2 and MNIST data3. For brevity,
we name our model as Universum Semi-supervised Learn-
ing, in short, USSL from now on. However, we should keep
in mind that it is significantly different from the work pre-
sented in [27] in that the universum must be known before-
hand in their work, while we do not have such requirement.
Hence our proposed model presents a more general SSL
framework. We implement our model by using a generic
convex programming solver CVX.4 The traditional SSL and
the universum SVM are solved based on the package Uni-
verSVM.5

4.1 Evaluation on Synthetic Data
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(a)

Figure 4. Comparison of SSL and the pro-
posed USSL on the synthetic data

We generate three synthetic data sets to validate our pro-
posed algorithm. In more details, we obtain the training
data for all the three data sets from three two-dimensional
Gaussian distributions, which are centered at −0.3, 0, and
+0.3 respectively. The two types of relevant data are cen-
tered at ±0.3 both with the standard deviations as 0.13 for
each data set, while the irrelevant data are located around 0,
but with standard deviations as 0.1, 0.2, and 0.3 respectively
for three data sets. The number of training samples for the

2The USPS data set can be downloaded from the web site http://www-
stat-class.standford.edu / tibs/ElemStatLearn/data.html.

3The MNIST data set is available at http://yann.lecun.com/exdb/mnist.
4The matlab source codes of the CVX package can be downloaded from

http://www.stanford.edu/ boyd/cvx/.
5The package of UniverSVM can be obtained from

http://www.kyb.tuebingen.mpg.de/bs/people/fabee/universvm.html.

labeled data and the relevant unlabeled data is respectively
set to 5 and 30 for each class in all the three sets. The num-
ber of irrelevant unlabeled data samples for all the three
cases is also set to 30. The test data consists of 500 sam-
ples for each class, generated from the same distributions
as the labeled data. We train our proposed model USSL in
comparison with SSL on the training data consisting of both
irrelevant and relevant data samples, and evaluate its perfor-
mance on the test data sets. In both SSL and USSL, CU and
CL are set to 100. ε is set to 0.2. Note that again, we do
not know which data samples are irrelevant or irrelevant be-
forehand. They are merely input as the unlabeled data for
training in both USSL and SSL. The above process is re-
peated for 20 times and the average accuracy is reported in
Figure 4.

It is obvious that the proposed general framework USSL
demonstrates much better performance than SSL. The mean
error rates of USSL are significantly lower than those of
SSL in all the three cases. On the other hand, when the
standard deviation increases, USSL tends to approximate
the SSL in terms of the error rate, since it is difficult to
detect irrelevant data in such cases.

In order to have a closer examination on the proposed
USSL, we also draw the training set including the labeled
and unlabeled data, the test data, and the decision bound-
aries for one of 20 evaluations in Figure 5. Figure 5(a),
(b), and (c) show the training samples for the three sets,
where the labeled samples are plotted as ◦’s and �’s for +1
and −1 class respectively, while �’s depict the unlabeled in-
stances consisting of both relevant and irrelevant samples.
Figure 5(d), (e), and (f) show the final class labels for the
unlabeled data and the decision boundary given by the tra-
ditional SSL. The filled points represent the unlabeled data,
but their shapes imply their class, i.e., the filled �’s are
judged as −1 class, while the filled ◦’s are classified as +1
class. Similarly, we show the decision boundary given by
USSL and the associated final class labels of the unlabeled
samples for the three cases in Figure 5(g), (h), and (i) re-
spectively. We use the similar symbols to describe different
points. The difference is that our proposed USSL is able
to indicate which samples are irrelevant. Such irrelevant
samples are finally marked as �. It is interesting that al-
most all the irrelevant samples can be correctly detected by
our proposed USSL as observed in these three sub figures.
Moreover, the decision boundaries given by USSL are actu-
ally more reasonable than the ones derived by the traditional
SSL. This can be also observed in Figure 5(j), (k), and (l),
which show the test results for the three cases respectively.

4.2 Evaluation on Real Data

In this section, we evaluate the proposed novel model in
comparison with the traditional SSL and the USVM [24]
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Figure 5. Comparison of SSL and the proposed model USSL on synthetic data. (a)-(c) plots the
training data for the three data sets respectively. (d)-(f) plots the decision boundary given by SSL as
well as the class label of the unlabeled data assigned by SSL. (g)-(i) plot the decision boundary given
by USSL as well as the class label of the unlabeled data assigned by USSL. (j)-(l) show the results
on test data. The proposed USSL generates more reasonable decision boundaries and outperforms
the traditional SSL.
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on real data, the USPS and the MNIST data. We fol-
low [24, 19] and exploit the digits of 5 and 8 as the la-
beled data and use the remaining digits as the irrelevant
data. Hence we have 8 data sets, depending on which cat-
egory of digits is used as the irrelevant data. We randomly
extract 20 labeled samples and 30 random data points as
relevant unlabeled samples from 5 and 8 respectively. We
further obtain 30 samples randomly extracted from a cer-
tain category of digits other than 5 and 8. The test data
set contains 400 digits randomly extracted from the 5 and
8 digits. The parameters involved in SSL and USSL are
searched via cross validation. More specifically, CL and
CU are searched in {1, 10, 100, 1000}, while ε is searched
in {0.1, 0.2, 0.3, 0.4}. The final test accuracy is given as the
result averaged on the 10 random evaluations for both USPS
and MNIST. In addition, as verified by many researches in
Optical Character Recognition [14, 15], especially in hand-
written numeral recognition, kernel based methods are just
slightly better than the linear classifier, but with signifi-
cantly heavier computational cost.6 Hence, we only con-
duct the comparisons based on the linear version of USVM,
USSL and SSL in the following.

The evaluation results are reported in Table 1 and Ta-
ble 2 for USPS and MNIST respectively. Once again,
our proposed USSL outperforms the traditional SSL and
the USVM. More specifically, the proposed USSL demon-
strates significantly better performance than SSL and
USVM in the 0, 1, 2, 3, 6, and 7 data sets of USPS ac-
cording to a t-test at the 5% significance level. Similarly, a
t-test indicates that the result of USSL is also significantly
different from those of SSL and USVM in the 0, 1, 3, 4,
6, 7, and 9 data sets of MNIST at the significant level of
5%. SSL simply regards all the unlabeled data as relevant
data, while USVM considers all the unlabeled data as uni-
versum. Hence it is inappropriate for them to deal with the
general unlabeled data containing both relevant and irrele-
vant data. In comparison, our proposed approach can auto-
matically model the impact caused by the relevant and irrel-
evant data into the final decision boundary. It demonstrates
superior performance and is more appropriate in handling
Semi-supervising Learning from general data.

5 Conclusion

We have proposed a novel framework that can learn from
general unlabeled data. In contrast to the traditional Semi-
supervised Learning that requires unlabeled data to share
the same category labels as the labeled data, the proposed
framework is able to learn from unlabeled data with irrele-
vant samples. Moreover, we do not need the prior knowl-
edge on which data samples are relevant or irrelevant. Con-

6The performance of various methods on MNIST can be seen in the
web site http://yann.lecun.com/exdb/mnist/.

Table 1. Experimental results on USPS data
Data set USVM SSL USSL

0 67.05 ± 2.31 85.05 ± 1.94 89.85 ± 1.47
1 71.45 ± 1.59 83.61 ± 2.52 89.23 ± 1.89
2 69.50 ± 4.29 84.44 ± 2.08 89.81 ± 2.34
3 70.43 ± 1.68 84.75 ± 1.86 89.65 ± 2.24
4 65.80 ± 3.04 85.12 ± 3.91 86.69 ± 2.01
6 64.80 ± 2.36 78.45 ± 2.21 83.70 ± 1.90
7 66.93 ± 3.75 87.37 ± 2.51 90.42 ± 1.75
9 72.37 ± 3.42 82.86 ± 2.39 85.13 ± 2.31

Table 2. Experimental results on MNIST data
Data Set USVM SSL USSL

0 45.25 ± 2.19 53.25 ± 2.84 58.25 ± 2.11
1 52.77 ± 1.42 54.10 ± 2.78 60.25 ± 2.75
2 54.58 ± 2.67 56.92 ± 3.12 57.67 ± 2.97
3 55.14 ± 1.90 52.09 ± 2.30 57.25 ± 1.32
4 56.65 ± 1.22 57.12 ± 2.49 59.25 ± 2.10
6 52.75 ± 2.80 54.50 ± 2.12 57.67 ± 1.27
7 60.51 ± 2.12 58.09 ± 3.01 68.50 ± 2.26
9 59.25 ± 1.15 48.25 ± 2.64 63.00 ± 1.50

sequently it is significantly different from the recent Semi-
supervised Learning with universum or the Universum Sup-
port Vector Machines. As an important contribution, we
have successfully formulated this new learning approach
as a Semi-definite Programming problem, making it solv-
able in polynomial time. We have also presented theoreti-
cal analysis to justify our model. A series of experiments
demonstrate that this novel framework has advantages over
the Semi-supervised Learning on both synthetic and real
data in many facets.
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