
Optimization of Reliability Allocation and Testing Schedule for Software Systems

Michael R. Lyu
Sampath Rangarajan

Aad P. A. van Moorsel
Bell Laboratories, Lucent Technologies

600 Mountain Avenue, Murray Hill, NJ 07974
flyu,sampath,aadg@research.bell-labs.com

Abstract

To ensure an overall reliability of an integrated software
system, software components of the system have to meet cer-
tain reliability requirements, subject to some testing sched-
ule and resource constraints. The system testing activity
can be formulated as a combinatorial optimization prob-
lem with known cost, reliability, effort, and other attributes
of the system components. In this paper we consider the
software component reliabilityallocation problem for a sys-
tem with multiple applications. The failure rate of compo-
nents used to build the applications are related to the test-
ing cost through various types of reliability growth curves.
We achieve closed-form solutions to problems where there
is one single application in the system. Analytical solutions
are not readily available when there are multiple applica-
tions; however, numerical solutions can be obtained using
a non-linear programming tool. To ease the specification
of the optimization problem, we develope a GUI front-end
to existing mathematical software. We present a systematic
outline of the problem formulation and solution, and apply
this to an example of a telecommunication software system.

1. Introduction

Modern complex software systems are often developed
with components supplied by contractors or independent
teams under different environments. For systems inte-
grated with such modules or components, the system testing
problem can be formulated as a combinatorial optimization
problem with known cost, reliability, effort, and other at-
tributes of the system components. The best known sys-
tem reliability problem of this type is the series-parallel re-
dundancy allocation problem, where either system reliabil-
ity is maximized or total system testing cost/effort is min-
imized. Both formulations generally involve system level

constraints on allowable cost, effort, and/or minimum sys-
tem reliability levels. This series-parallel redundancy al-
location problem has been widely studied for hardware-
oriented systems with the approaches of dynamic program-
ming [7, 16], integer programming [8, 3, 13], non-linear
optimization [19], and heuristic techniques [17, 4]. In [5]
the optimal apportionment of reliability and redundancy is
considered for multiple objectives using fuzzy optimization
techniques.

Some researchers also address the reliability allocation
problem for software components. The software reliability
allocation problem is addressed in [21] to determine how
reliable software modules and programs must be to max-
imize the user’s utility, subject to cost and technical con-
straints. Optimization models for software reliability allo-
cation for multiple software programs are further proposed
in [2] using redundancies. These papers, however, do not
take testing time of software components and the growth
of their reliability into consideration. Optimal allocation of
component testing times in a software system based on a
particular software reliability model is addressed in [12],
but it assumes a single application in the system, and the
reliability growth model is limited to the Hyper-Geometric
Distribution (“S-shaped”) Model [20].

In this paper we discuss a generic software component
reliability allocation problem based on several types of soft-
ware reliability models in a multiple application environ-
ment. This is the first effort to apply reliability growth
models for guiding component testing based on multiple
applications. We will also give the solution procedure for
the single application environment, for general continuous
distributions, thus generalizing [12]. We examine the sit-
uation where software components may interact witheach
other, a condition not considered by other studies. We also
include scenarios for fault-tolerant attributes of a system
where some component failures can be tolerated. The prob-
lem specification and solution seeking procedure, as well as
a software tool for the automatic application of this proce-

dure, are presented in this paper as an innovative mecha-
nism to handle the difficult yet important reliability alloca-
tion problem.

Several real projects motivate us for this investigation.
These projects are described in the following case studies.

Distributed Software Systems. Distributed telecom-
munication systems often serve multiple application types,
which execute different software modules, and have dif-
ferent reliability requirements. For instance, in telephone
switches, 1-800 calls require processing different from stan-
dard calls, and similar examples exists in call centers, PBXs
or voice mail systems.

During the testing of such systems, reliability is a prime
concern, and adequate test and resource allocation are there-
fore very important. In the example we discuss in Section
6.2 it will become clear that trustworthy reliability growth
curves can help considerably in efficient testing and debug-
ging planning of such systems.

Fault-Tolerant Systems. Figure 1 shows a layered soft-
ware architecture model that can be applied to many sys-
tems. Each layer can include several software components.
Not all systems will necessarily include all the layers.

We conjecture that error propagation between layers
only occurs in one direction, namely upwards. Thus, faults
in the hardware that are not contained can propagate up to
the operating system or to the application software; how-
ever, faults not contained in the middle-ware layer will not
propagate to the operating system but can propagate to the
application software layer.

Error propagation occurs from layeri to layer i + 1 if
layer i has no fault tolerance mechanisms, i.e., the layer
does not exhibit fail-silent behavior. From a modeling per-
spective, this layer would contribute higher failure rate to
the overall system than a layer with error detection and re-
covery mechanisms. Note that error detection and recovery
software can reside in some or all of the layers.

In Section 5.2 we will see how fault-tolerant mechanisms
can be included in the reliability allocation problem formu-
lation, provided that coverage factors are available.

Object-Oriented Software. Object-oriented software
often allows for a clear delineation between different soft-
ware components. If object-oriented software methods are
being used, the relation between components and applica-
tions can be assessed, and testing time can be assigned in
the most efficient way.

Another optimization problem in object-oriented soft-
ware testing arises when the best combination of objects
must be selected to make an application as reliable as
possible. This optimization problem is an example of
a ‘structure-oriented’ optimization problem, and can be

Figure 1. Layered software architecture
model.

solved by using methods presented in, e.g., [21, 2]. Our
intent in this paper is to optimize with respect to software
development and testing, not with respect to software struc-
ture. The combination of structure-oriented optimization
methods in [21, 2] and the development-oriented methods
in this paper can provide powerful tools in software system
design.

The remaining sections of this paper are organized as
follows: Section 2 specifies the optimal reliability alloca-
tion as two related problems: a problem with fixed target
failure rate, and a problem with fixed debugging time. The
analytical solutions to these two problems are presented for
the single application environment in Section 3: Section 3.1
for the exponential distribution, and Section 3.2 for general
distributions. Section 4 discusses how the solutions for the
problems in multiple application environment can be ob-
tained. Our results are extended in Section 5.1 to consider
software failure dependencies, and in Section 5.2 to incor-
porate fault-tolerant systems. Section 6 proposes the reli-
ability allocation problem specification and solution proce-
dure into a step-by-step framework, and applies it to a case
study. Section 7 describes the design and implementation of
a software tool for systematic application of the reliability
allocation framework. Conclusions are presented in Section
8.

2. Problem Specification

The above case studies can be described by a general
problem of assigning failure-rate requirements (at the time
of release) to software components that will be used to
build various applications, given that the applications have

pre-specified reliability requirements. Consider the situa-
tion where a set ofN software componentsC1; � � � ; CN ;

can be used in various combinations for different appli-
cations. Let there beM such applicationsA1; � � � ; AM ,
and let each application have a pre-specified reliability
requirementR1(t); � � � ; RM(t). By investing develop-
ment/testing/debugging time in components, component
failure rates can be made such that all applications meet
their reliability requirement.

Therefore, the goal in reliability allocation is to assign
failure-rate requirements to theN components, such that all
the pre-specified reliability requirements of theM applica-
tions are satisfied, at the minimal cost. In what follows, we
will characterize the cost in terms of the component test-
ing (including debugging) time. The optimization criterion
thus is the minimization of this testing time. Furthermore,
to relate the failure rate of components with the amount of
testing time, we use reliability growth models.

A variation to the above problem formulation arises if a
fixed amount of testing time is available foreach applica-
tion. This requirement may occur because of the constraint
on the cost incurred by the component developer and tester.
In that case we take as objective function minimization of
the failure rate of all the components.

In what follows we will continuously discuss these two
variations of the optimization problem, and they will be re-
ferred to as the ‘fixed failure rate constraint’ problem and
‘fixed testing budget’ problem, respectively.

2.1. Fixed Failure Rate Constraint

In the fixed failure rate case, we assign testing time to
components such that the applications meet their reliability
requirements, and the testing time is minimized. Through-
out this paper, we assume that the failure rates of compo-
nents relate to the reliability of applications through the
exponential relationRi(t) = e��it, where�i is the sum
of failure rates of the components in applicationAi; i =
1; : : : ;M . Furthermore, we assume that the testing timeDi

invested in componenti decreases the failure rate�i accord-
ing to some reliability growth model. Note that we assume
that once the software components are released, their failure
rates stay constant. This is reasonable given that the appli-
cation developer does not debug or change the component
that is used. In this context, we can formulate the allocation
problem as follows.
The objective function is:

Minimize D = D1 +D2 + � � �+DN ;

subject to the constraints:
�11�1+�12�2+� � �+�1N�N � �1 (for applicationA1),
�21�1+�22�2+� � �+�2N�N � �2 (for applicationA2),

� � �

�M1�1+�M2�2+ � � �+�MN�N � �M (for application
AM),
where�ij = 1 if Ai uses componentCj, and�ij = 0
otherwise. Note�1; : : : ; �N � 0; D1; : : : ; DN � 0; and
�1; : : : ; �M � 0: For the sake of notational simplicity, we
assume that the testing timesDi are equally ’important’
(costly) among theN components. If this is not the case
one can apply weight!i to each component testing timeDi

in the objective function.
Since a reliability growth curve can be very complex, the

objective function is non-linear, and hence this is a general
non-linear programming problem. In Section 3.1.1 we con-
sider the closed-form solution for the problem with a single
application, and in Section 4 we discuss the numerical so-
lution of the general case. Note also that we assume inde-
pendence of components with respect to their failure behav-
ior. This assumption may not be appropriate when software
components may interact witheach other, potentially caus-
ing additional failures.

2.2. Fixed Testing Budget

In the fixed testing budget case, we distribute per ap-
plication a specified amount of testing time over its com-
ponents, such that the application reliability is maximized.
Consequently, the total failure rate of the components is the
objective function to be minimized, leading to the following
formulation as a mathematical programming problem.
The objective function is:

Minimize � = �1 + �2 + � � �+ �N ;

subject to the constraints:
�11D1 + �12D2 + � � �+ �1NDN � d1 (for application

A1),
�21D1 + �22D2 + � � �+ �2NDN � d2 (for application

A2),
� � �

�M1D1+ �M2D2+ � � �+ �MNDN � dM (for applica-
tionAM),
whered1; d2; � � � ; dM are the fixed amount of testing times
that are available for components used by applications
A1; A2; � � � ; AM , respectively. As in the previous problem,
all variables are positive. Weight functions for the failure
rates�i can be introduced in the objective function to re-
flect their impact.

Of special interest is the single application case. This
case corresponds to the optimization problem where all ap-
plications together have a budget restriction on the testing
time. The fixed testing budget problem is a variant of the
fixed failure rate problem, and can be solved by similar
means. In Section 3.1.2 and Section 4, we discuss the case
of single and multiple applications, respectively.

3. Solutions for Single Application Environ-
ment

When there is only a single application in the system,
an explicit solution of the reliability allocation problem can
usually be found. In this section we give the general solu-
tion for a large class of reliability growth models (see Sec-
tion 3.2). To explain the solution procedure, we first provide
in Section 3.1 the solution assuming an exponential reliabil-
ity growth model.

3.1. Exponential Reliability Growth Model

The exponential reliability growth model [9, 15] relates
the failure rate�i (for componenti) with the invested testing
timeDi through:

�i = �i0e
��iDi :

�i0 is the initial failure rate at time0, and�i is the decay
parameter. Over an infinite time interval�i0

�i
faults will be

found. Note that�i is a function of time, although we do not
explicitly express it in the notation. This reliability growth
model is in common use, and we will now determine the
solution for the allocation problem in the single application
environment.

3.1.1 Fixed Failure Rate Constraint

The fixed failure rate constraint problem can be formulated
in the single application environment, assuming exponential
reliability growth curves, as:

Minimize D =

NX
i=1

1

�i
ln

�
�i0

�i

�
;

subject to:

�1 + �2 + � � �+ �N � �:

To solve this, one can use the Lagrange method as follows
[1]. The optimization problem is equivalent to finding the
minimum of:

F (�1; � � � ; �N) = D + �((�1 + � � �+ �N)� �);

where� is a Lagrange multiplier. The necessary conditions
[1] for the minimum to exist are:

1. �(F (�1; � � � ; �N)) = 0 where � is the partial
derivative operator,

2. � > 0,

3. �1 + �2 + � � �+ �N = �.

If we expand the equation from the first condition and
take the partial derivatives w.r.t�1, �2, � � �, �N , we can get
the following equations, respectively.

�1

�1�1
+ � = 0;

�1

�2�2
+ � = 0;

� � �

�1

�N�N
+ � = 0:

Given that the� and the� values are all positive, it is clear
that� > 0, satisfying the second condition. From the above
equations we also note that�1�1 = �2�2 = � � � = �N�N .
Together with this observation and the third condition, we
get the following solution for the obtained failure rates.

�1 =
�

1 + �1
�2

+ � � �+ �1
�N

;

�2 =
�1

�2
�1;

� � �

�N =
�1

�N
�1:

The testing times that should be allotted to the software
components now follows from substituting the above values
into the equations forD1, D2, � � �, DN . For example,D1 is
equal to

D1 =
1

�1
ln

�
�10
�

1+
�1
�2

+���+
�1
�N

�
:

Note thatD1 is positive if�1 � �10: To assure that no im-
possible solutions arise, we present in Section 3.2 a proce-
dure that checks for validity conditions and guarantees that
the optimal solution follows a valid strategy.

Example 1: Consider an example where a system has
three componentsC1, C2, andC3 and one applicationA
which uses all the components. All the three components
have an initial failure rate of5 failures/year (�10 = �20 =
�30 = 5=yr). Assume that the application requirement
states that the failure rate of the application (�) cannot be
more than6=yr. Also assume that all the� values are the
same and equals1. In this case, we note that�1 = �2 =
�3 = 2=yr andD1 = D2 = D3 = ln(2:5). That is, when
the initial failure rates and the rate of reduction in failure
rates with debugging is the same for all the components,
then anaverage testing policy, where all the components’
failure rates are brought down to the same value, provides a
solution that meets the application requirement with mini-
mum testing time spent; the testing time spent on each com-
ponent is the same.

Example 2: Now consider an example where the three
components have initial failure rates which are different
(say,�10 = 5=yr, �20 = 6=yr, �30 = 7=yr). Assume
that� = 6=yr. Also assume that the� values are all iden-
tical and equal to1. In this case, again we find that the
required� values are the same and equal2. Here again,
anaverage testing policyprovides a solution that meets the
application requirement with minimum testing time spent.
But now, the testing time spent on each component is dif-
ferent because the initial failure rates are different. In this
case,D1 = ln(5

2
), D2 = ln(6

2
) andD3 = ln(7

2
). The test-

ing time spent on each component is now proportional to
the logarithm of the initial failure rate.

Example 3: Let us now assume that the three compo-
nents have initial failure rates which are the same (�10 =
�20 = �30 = 5=yr), and that the� values are different (say,
�1 = 1, �2 = 2, �3 = 3). Again, assume that� = 6.
Now, computation tells us that to minimize the testing time,
we require�1 = 6

1:834
= 3:273, �2 = 3

1:834
= 1:636 and

�3 = 2

1:834
= 1:091. The optimal testing policy that leads

to the above failure rates will require a total testing time of
ln(5�1:834

6
) + 1

2
ln(5�1:834

3
) + 1

3
ln(5�1:834

2
) = 1:49. An

average testing policywhich assigns�1 = �2 = �3 = 2
leads to a total testing time ofln(5

2
) � 1:834 = 1:68 which

is more than that of the optimal testing policy.

3.1.2 Fixed Testing Budget

The fixed testing budget problem can be formulated in the
single application environment, assuming exponential reli-
ability growth curves, as:

Minimize � = �1 + �2 + � � �+ �N ;

subject to the constraint

D1 +D2 + � � �+DN � D:

Again, this can be solved using the Lagrange method, which
uses that the optimization problem is equivalent to finding
the minimum of

F (D1; � � � ; DN) = � + �((D1 +D2 + � � �+DN)�D);

where� is the Lagrange multiplier. Again, the necessary
conditions for a minimum to exist are:

1. �(F (D1; D2; � � � ; DN)) = 0 where� is the partial
derivative operator,

2. � > 0,

3. D1 +D2 + � � �+DN = D.

If we expand the equation from the first condition and
take partial derivatives with respect toDi, we get:

�i0(��ie
��iDi) + � = 0:

Given that�i is positive, we note that� is positive and
hence the second condition is satisfied. Thus, from the
above equation, we get

�10(��1e
��1D1) = �20(��2e

��2D2)

= � � � = �N0(��N e
��NDN):

Using the above equation together with the constraint that
D1 +D2 + � � �+DN = D, we get

D1 =
D � [1

�2
ln(�20�2

�10�1
) + 1

�3
ln(�30�3

�10�1
) + � � �+ 1

�N
ln(�N0�N

�10�1
)]

1 + �1
�2

+ � � �+ �1
�N

;

D2 =
1

�2
ln

�
�20�2

�10�1

�
+

�1

�2
D1;

� � �

DN =
1

�N
ln

�
�N0�N

�10�1

�
+

�1

�N
D1:

The above equations determine how the testing times
should be allocated to the different components. The mini-
mum� value that is obtained follows directly from the val-
ues for the testing times.

It is interesting to note that only if the initial failure rates
�i0’s and the�i values are the same, anaverage testing
policy where the available testing time is equally divided
among the components will provide an optimal solution. If
either the�i0’s or the�i values are different, then we need
to compute the above expressions to obtain an optimal allo-
cation of the testing time.

Example 4: Consider the parameters from Example3
where the initial failure rates are the same (�10 = �20 =
�30 = 5=yr), and the� values are different (say,�1 = 1,
�2 = 2, �3 = 3). Assume that the available testing time
is 1yr. Then,D1 computes to0:1567, D2 computes to
0:4249 andD3 computes to0:4184. The optimized failure
rate evaluates to�1 = 4:27=yr, �2 = 2:14=yr and�3 =
1:43=yr for a total failure rate of7:84=yr. If an average al-
location policy is used, thenD1 = D2 = D3 = 0:333 and
the failure rates evaluate to�1 = 3:58=yr, �2 = 2:57=yr
and�3 = 1:84=yr for a total failure rate of7:99=yr which
is worse than the optimal allocation. Let us try another al-
location. Assume an allocation whereD1 = 0:4,D2 = 0:4
andD3 = 0:2. In this case, we note that�1 = 3:35=yr,
�2 = 2:25=yr and�3 = 2:74=yr for a total failure rate of
8:34=yr.

3.2. General Reliability Growth Models

In this section we provide the procedure to obtain the
closed-form solution for generic reliability growth model.
The only restriction to the growth models is with respect
to the first and second derivatives. The solution procedure
follows directly from the solution of the Lagrange method,
except that impossible solutions must be prevented. It gen-
eralizes the procedure for the hyper-geometric model given
in [12] to general continuous distributions.

We consider the fixed failure rate constraint case. Let
the relation between the failure rate and the testing time be
given by some functionf , that is:

Di = fi(�i):

Now, without loss of generality, theN components can be
reordered according to the absolute values of the derivatives
at the beginning of the debugging interval, at which�i =
�i0: That is:

abs(
d

d�i
fi(�i)j�i=�i0) > abs(

d

d�i+1
fi+1(�i+1)j�i+1=�(i+1)0);

for i = 1; 2; : : :N � 1: Using this ordering, the procedure
to obtain the closed-form solution is as follows:

1. K = N ;
2. For i = 1 to K

express �i as a function
gi(�K) of �K ; by equating
d
d�i

fi(�i) =
d

d�K
fK(�K);

3. Solve �K from
PK

i=1 gi(�K) = �;
4. If �K > �K0 then

K = K � 1 and goto step 2;
else

For i = 1 to K

Compute �i from gi(�K) and the
solution of �K in step 3;

The important feature in the algorithm is the ability to
determine which component should be assigned zero testing
time if an impossible solution is obtained (an impossible
solution arises if�i > �i0 for some component). If the
first derivatives d

d�i
fi(�i) are less than zero for alli, and

the second derivativesd
d�2

i

fi(�i) are greater than zero for
all i, then it can be shown that the component ranked lowest
according to the derivatives at time zero can be discarded.
This happens in step 4 of the algorithm. In other words, the
sufficient conditions on the derivatives say that the failure
rate decreases over time, and that the rate of decrease gets
smaller if time increases. Note that if the derivatives of the
growth curve are less regular, specific conditions must be
established to determine which components should not be
assigned testing time.

The above procedure can be similarly formulated for the
fixed testing budget problem. We will not do so here.

Pareto Growth Model As an illustration, let us con-
sider the Pareto distribution and consider the fixed fail-
ure rate constraint problem. The failure rate is given by
�i(t) = �i0(�i1 + t)��i2 , where�i0, �i1 and �i2 are con-
stants. Hence, we have for the testing time:

Di =

�
�i0

�i

��i2
� �i1:

The Pareto class of failure-rate distributions is useful be-
cause it is a generalization of the exponential, Weibull and
gamma classes [11, 14].

One can show that the first derivative is less than zero,
and the second derivative is greater than zero, provided
�i0, �i1 and �i2 are all positive. Hence, taking the partial
derivative ofDi w.r.t. �i, we get in step 2 of the algorithm
(K = N in the first iteration):

�
�

1
�i2

i0

�i2
�
�(1

�i2
+1)

i = �
�

1
�K2

K0

�K2

�
�(1

�K2
+1)

K :

In step 3, we have to equate the total failure rate to�:

In this case, we have to do that numerically, since a closed-
form expression using the Pareto distribution is too intri-
cate. As soon as we obtain a possible solution for�K , we
compute the individual failure rate using the relationship

�i =

�i2

�K2

�
1

�K2

K0

�
1
�i2

i0

�
�(1

�K2
+1)

K

!�(1
1
�i2

+1
)

:

Example 5: Assume the following parameters with
Pareto distribution.�10 = 5, �11 = 1, �12 = 3, �20 = 2,
�21 = 1, �22 = 6, �30 = 4, �31 = 1, �32 = 5. The
optimal policy requires the following failure-rate values:
�1 = 3:395, �2 = 1:556, �3 = 2:047. The total testing
time is0:3236.

4. Solutions for Multiple Application Environ-
ment

When there are multiple applications in the system, the
reliability allocation problem becomes too intricate to solve
explicitly. However, in this case its solution can be obtained
using non-linear programming software such as AMPL [6].
Let us here show how this procedure works for an example
of a 3-component, 3-application system, by specifying and
solving it using the RAT tool presented in Section 7.

Example 6: There are three componentsC1, C2 andC3

which can be used to build three applicationsA1, A2 and
A3. A1 is built usingC1 andC2,A2 is built usingC2 andC3

andA3 is built usingC1, C2, andC3. Thus, there are mul-
tiple applications, each with a failure-rate constraint. The

fixed failure rate constraint problem can thus be formulated
as:

Minimize D = D1 +D2 + � � �+DN ;

under the constraints:
�1 + �2 � �1 (for applicationA1),
�2 + �3 � �2 (for applicationA2),
�1 + �2 + �3 � �3 (for applicationA3).

The fixed testing budget problem can be formulated as:

Minimize � = �1 + �2 + � � �+ �N ;

under the constraints:
D1 +D2 � d1;

D2 +D3 � d2;

D1 +D2 +D3 � d3:

Assume the parameters from Example 3 where the ini-
tial failure rates for the three components are the same
(�10 = �20 = �30 = 5=yr), and the� values are different
(say,�1 = 1, �2 = 2, �3 = 3). Assume that the failure-
rate requirements for the three applications are�1 = 6,
�2 = 5, �3 = 7. Modeling this as a non-linear optimization
problem with multiple constraints in AMPL and using the
MINOS solver, we get the following result:�1 = 3:818,
�2 = 1:909 and�3 = 1:273. The total testing time for
this failure-rate allocation evaluates to1:207 yrs; (the indi-
vidual testing times can be computed using the failure-rate
allocation for each component). It is interesting to note that
the failure-rate constraint forA3 is strictly satisfied; forA1

with the failure-rate requirement of6=yr, it is not strictly
satisfied (�1 + �2 = 5:73), similarly forA2 whose require-
ment is5=yr (�2 + �3 = 3:18). Now consider anaverage
testing policy where the constraint for the applicationA3

is strictly satisfied without violating the other constraints.
That is,�1 = 2:333, �2 = 2:333 and�3 = 2:333. The total
testing time based on this average testing policy evaluates
to 1:39 yrs, much larger than that obtained with the optimal
testing policy.

5. Software Failure Dependencies and Fault-
Tolerant Systems

The basic reliability allocation problem formulation can
be extended in various ways. Here we discuss two exten-
sions, software failure dependencies in Section 5.1 and fault
tolerance aspects in Section 5.2.

5.1. Software Failure Dependencies

In the above discussions we assume software compo-
nents fail independently. In reality, this may not be the

case. For example, the feature interaction problem[10]
describes many incidents where independently developed
software components interact witheach other unexpectedly,
thus causing unanticipated failures. We incorporate this ex-
tra failure incidence by introducingpair-wisefailure rates.
Specifically,�ij represents the failure rate due to the inter-
action of componentsCi andCj, wherei � j.

The constraints of the original problem are then modified
as:

�11�1 + �12�2 + � � � + �1N�N +P
f8(i;j)j�1i=1;�1j=1g

�ij � �1 (for application A1);

�21�1 + �22�2 + � � � + �2N�N +P
f8(i;j)j�2i=1;�2j=1g

�ij � �2 (for application A2);

� � �

�M1�1 + �M2�2 + � � � + �MN�N +P
f8(i;j)j�Mi=1;�Mj=1g

�ij � �M (for application AM):

Subject to the above constraint we need to minimize

D = D1 +D2 + � � �+DN :

The fixed testing-time problem can be obtained by
adding the pair-wise failure rates in the objective function.

5.2. Fault-Tolerant Systems

In the situation where the system possesses fault toler-
ant attributes, we can introducecoverage factors[18] into
the original problem. Coverage is defined as the condi-
tional probability that when a fault is activated, it will be de-
tected and recovered without causing system failure. With
ci denoting the coverage measure for the componentCi; we
can reformulate the fixed failure rate constraint case, using
�i = 1� ci, as:

Minimize D = D1 +D2 + � � �+DN ;

subject to:
�11�1�1 + �12�2�2 + � � �+ �1N�N�N � �1 (for appli-

cationA1),
�21�1�1 + �22�2�2 + � � �+ �2N�N�N � �2 (for appli-

cationA2),
� � �

�M1�1�1 + �M2�2�2 + � � � + �MN�N�N � �M (for
applicationAM).

6. Reliability Allocation Solution Framework

We have discussed the reliability allocation problem in
terms of two constraints: fixed failure rates or fixed test-
ing budgets. We also discussed the problem toaccount

for component interactions. The fault tolerant attributes in
the system to tolerate component failures are also incorpo-
rated. In this section we describe a framework for specify-
ing and solving a general reliability allocation problem, and
describe how this procedure is applied to a specific applica-
tion.

6.1. The Problem Specification and Solution Proce-
dure

The following procedure specifies the reliability alloca-
tion problem, and obtains solutions either analytically or us-
ing numerical methods.

1. Determine if it is a fixed failure rate constraint prob-
lem or a fixed testing budget problem.

2. Determine if there is single application or multiple
applications in the system.

3. Set the constraints on the failure rates or testing bud-
gets.

4. Obtain parameters of the reliability growth curves of
the components.

5. Determine if the components interact witheach other.
If so, obtain pair-wise failure rates.

6. Determine if there are fault tolerance features in the
system. If so, obtain coverage measures for each
component.

7. Format the problem as a non-linear programming
problem with appropriate parameters.

8. If the solution is analytically available, obtain it. Oth-
erwise, use the reliability allocation tool (see Sec-
tion 7), based on the mathematical programming tool
AMPL and solver MINOS, to obtain the results.

In the following sub-section we examine a case study
where a required reliability allocation problem is specified.
We illustrate how the above procedure is applied to the
project to obtain numerical solutions for various scenarios.

6.2. A Hypothetical Example

Let us consider a distributed software architecture that is
used for switching telephone calls. Different call types will
exercise different software modules, and we break up the
system in components such that reliability growth models
are available for all components. Of course, prerequisite to
our analysis is the availability of reliable growth models, but
the example will clearly show that it is beneficial to make
decisions based on such models.

Table 1 shows the data input in this example. Neither
the example nor the data corresponds to existing systems
or numbers. We consider 4 types of calls (two types of
standard calls, and two type of 1-800 calls), and 5 com-
ponents (basic processing, scheduling, call processing, and
two signal processing modules). The terms ‘in’ and ‘not in’
in Table 1 denote which components the applications use.
For instance, the standard calls of type 1 use all software
modules except the call processing module. The reliability
growth curves for the components are exponential, and have
parameters� and�, as specified in the table.

With the results obtained for this example, we want
to show two things: the necessity to use mathematical
optimization techniques to establish an optimal allocation
scheme, and the importance of selecting and parameteriz-
ing adequate reliability growth models.

0

10

20

30

40

50

60

70

80

2 4 8 16 32 64 128 256

T
es

tin
g

T
im

e
pe

r
C

om
po

ne
nt

Total Testing Time

basic
scheduling

call proc.
signaling I

signaling II

Figure 2. Total available testing time versus
the optimal allocation for the components.

Figure 2 shows the total amount of testing time available,
versus the time allocated to the individual components. Fol-
lowing the framework in Section 6.1 we solved it as a fixed
testing budget problem with multiple applications. We as-
sumed, however, that the testing time is shared by all ap-
plications, that is, we consider the special case mentioned
in Section 2.2 where the constraints map to a single con-
straint. Furthermore, applications are weighted based on
their relative frequency of occurrence given in Table 1 (the
RAT tool described in Section 7 automatically converts this
to weights on the component failure rates in the objective
function.) Using weights we thus include parts of the op-
erational profile (see, e.g., Chapter 5 in [11]) in the model
(see Table 1 for the relative frequencies of the different call
applications). We obtained solutions for the testing time
ranging from 2 to 256, and assumed no failure dependency
or explicit fault-tolerant mechanisms. We input the problem

Component �i0 �i standard I standard II 1-800 I 1-800 II
basic 10 1.0 in in in in
scheduling 20 1.0 in in in in
call proc. 200 0.2 not in in in in
signal I 200 0.5 in in in not in
signal II 20 1.0 in in not in in
frequency 0.5 0.3 0.1 0.1

Table 1. System components with corresponding parameters growth curve, and applications that
use the component.

in the RAT tool, and solved it using AMPL and MINOS.
Figure 2 shows very clearly the dependence of the opti-

mal schedule on the total testing time. For instance, while
the scheduling component should not be assigned debug-
ging time if a small budget is available, it takes the largest
chunk if the testing budget is large.

The irregular assignment of testing time to individ-
ual components in Figure 2 cannot be obtained easily by
means other than mathematical modeling. With back-of-
the-envelop calculations, one cannot expect to get such pre-
cise results, and one would be bound to make inefficient
decisions.

0.01

0.1

1

10

100

1000

10000

0.001 0.01 0.1 1 10 100

T
es

tin
g

T
im

e
pe

r
C

om
po

ne
nt

Parameter Growth Curve Scheduling

basic
scheduling

call proc.
signaling I
signaling II

Figure 3. Parameter � in growth curve of
scheduling software, versus the optimal al-
location for all components.

Figure 3 shows the parameter� of the reliability growth
curve corresponding to the scheduling software, versus the
allocation of testing time to the components. In this case,
we took the allowed failure rates per application to be 4,
and solved the fixed failure rate constraint problem.

Clearly, the parameter value greatly influences the op-

timal solution. If the decay parameter of the reliability
growth model of the scheduling component is small, it takes
enormous investments in debugging time to reach the de-
sired failure rates. If the decay parameter is relatively large,
it takes minor effort for the scheduling component to obey
to the failure rate restrictions.

The correlation between the optimal testing time and the
parameters of the reliability growth curve shows the im-
portance of data collection to establish trustworthy growth
models. Without such models, decisions about reliability
allocation are bound to be sub-optimal.

7. RAT: The Reliability Allocation Tool

We have designed and built a reliability allocation tool
(RAT) with a GUI based on a Java Applet. The tool allows
multiple applications to be specified and allows optimiza-
tions to be performed both under the fixed failure rate and
fixed testing budget constraints. The user inputs the model
using the GUI and the input is converted into AMPL files
and is solved using the MINOS solver, called by AMPL.
Figure 4 shows the GUI. The tool chooses the optimization
criteria, where optimizing failure rate implies that the con-
straint is fixed testing budget and optimizing testing time
implies that the constraint is fixed failure rate. Compo-
nents can be specified in the field named “Components” and
applications can be specified in the field named “Applica-
tions.” The reliability growth distribution can be chosen for
each components independently; parameters for these dis-
tributions can be specified in the box named “Parameters.”
At present exponential and Pareto distributions are allowed,
but we plan to extend the options to specifying other dis-
tributions. In case of a fixed-failure rate constraint, the al-
lowed failure rate for the applications can be specified in
the field named “Allowed Failure Rate”; similarly, if testing
time is fixed, then this can be specified in the field named
“Allowed Debugging Time.” Information about the compo-
nents that have been specified and the applications that have
been input are shown in two separate areas.

Figure 4. The reliability allocation tool.

As an example of the use of this tool, we consider the
fixed-failure rate problem with multiple applications that we
considered in Example6. Figure 4 shows the interface after
the components have been chosen and the configurations of
the applications have been specified. In Example6, there
were three componentsC1, C2 andC3; each of which fol-
lows an exponential reliability growth model with� = 5
and� values of1, 2 and3 respectively. This is shown in
the area titled “Your Choice of Components so far.” Three
applications are configured where applicationA1 uses com-
ponentsC1, C2, applicationA2 usesC2,C3 and application
A3 usesC1,C2 andC3. The applications have a failure-rate
requirement of6, 5 and7 respectively. This is shown in the
area titled “Your Choice of Applications so far.” This model
when solved produces the result as shown in the ”Message”
area in Figure 5. As presented in Example6, the results
show that the failure rates ofC1, C2 and C3 should be
brought down to3:818, 1:909 and1:273 respectively. This
will minimize the total testing time used, while at the same
time satisfying the failure rate requirements of all the appli-
cations. The “Message” area also shows the testing times
that need to be spent on each of the components to bring the
failure rates of the components down to the above values. It
is seen that the total testing time for the three components
is as computed in Example6.

8. Conclusions

We consider the software component reliability alloca-
tion problem for a system with single or multiple applica-
tions, each with a pre-specified reliability requirement. The
system testing activity is formulated as a combinatorial op-
timization problem for overall system failure rate or testing
time and cost. The relation between failure rates of compo-
nents and cost to decrease this rate is modeled by various
types of reliability growth curves.

We achieve closed-form solutions to problems with only
one single application in the system, and we describe how
to solve the multiple application problem using non-linear
programming techniques. We also examine the interactions
between the components in the system, and include inter-
component failure dependencies into our modeling formula.
In addition to regular systems, we extend the technique to
address fault-tolerant systems. We further develop a proce-
dure for a systematic approach to the reliability allocation
problem, and describe its application in a case study. Fi-
nally, we present the design and implementation of a relia-
bility allocation tool for an easy specification of the problem
and an automatic application of the technique.

The presented methodology gives the basic solution ap-
proach to the optimization of testing schedules, subject to

Figure 5. Display of reliability allocation results.

reliability constraints. This adds interesting new optimiza-
tion opportunities in the software testing phase to the exist-
ing optimization literature that is concerned with structural
optimization of the software architecture. Merging these
two approaches will further improve the planning opportu-
nities in software design and testing.

9. Acknowledgement

We wish to thank Chandra M. Kintala of Lucent Bell
Labs. for many of his valuable suggestions and comments
for this work.

References

[1] M. Avriel, ”Nonlinear Programming,” inMathemat-
ical Programming for Operations Researchers and
Computer Scientist,A. G. Holzman (Ed.), Chapter 11,
Marcel Dekker Inc., New York, 1981.

[2] O. Berman and N. Ashrafi,“Optimization Models
for Reliability of Modular Software Systems,”IEEE
Transactions on Software Reliability, vol. 19, no. 11,
November 1993, pp. 1119–1123.

[3] R.L. Bulfin and C.Y. Liu, “Optimal Allocation of Re-
dundant components for Large Systems,”IEEE Trans-
actions on Reliability, vol. R-34, 1985, pp. 241–247.

[4] D.W. Coit and A.E. Smith, “Reliability Optimiza-
tion of Series-Parallel Systems Using A Genetic Al-
gorithm,” IEEE Transactions on Reliability, vol. 45,
1996.

[5] A.K. Dhingra, “Optimal Apportionment of Reliabil-
ity and Redundancy in Series Systems Under Multiple
Objectives,”IEEE Transactions on Reliability, vol. 41,
no. 4, December1992, pp.576–582.

[6] R. Fourer et. al., “AMPL: A Modeling Language For
Mathematical Programming,” The Scientific Press,
1993.

[7] D.E. Fyffe, W.W. Hines, and N.K. Lee, “System Re-
liability Allocation and a Computational Algorithm,”
IEEE Transactions on Reliability, vol. R-17, 1968, pp.
64–69.

[8] P.M. Ghare and R.E. Taylor, “Optimal Redundancy for
Reliability in Series System,”Operational Research,
vol. 17, 1969, pp. 838–847.

[9] A.L. Goel and K. Okumoto, “Time-Dependent Error
Detection Rate Model for Software and other Perfor-
mance Measures,”IEEE Transactions on Reliability,
vol. R-28, no. 3, August 1979, pp.206–211.

[10] N. Griffeth and Y.-J. Lin (ed.),IEEE Communica-
tions Magazine, Special Issue on Feature Interactions
in Telecommunications Systems, August 1993.

[11] M. Lyu (ed.), “Handbook of Software Reliability En-
gineering,” McGraw-Hill and IEEE Computer Society
Press, 1996.

[12] R.-H. Hou, S.-Y. Kuo, and Y.-P. Chang, “Efficient Al-
location of Testing Resources for Software Module
Testing Based on the Hyper-Geometric Distribution
Software Reliability Growth Model,”Proceedings of
the 7th International Symposium on Software Relia-
bility Engineering, October/November 1996, pp. 289–
298.

[13] K.B. Misra and U. Sharma, “An Efficient Algorithm to
Solve Integer Programming Problems Arising in Sys-
tem Reliability Design,”IEEE Transactions on Relia-
bility, vol. R-40, 1991, pp. 81–91.

[14] J. Musa, A. Iannino, and K. Okumoto, “Software
Reliability: Measurement, Prediction, Application,”
McGraw-Hill, 1987.

[15] J. Musa, “Validity of Execution-Time Theory of Soft-
ware Reliability,” IEEE Transactions on Reliability,
vol. R-28, no. 3, August 1979, pp. 181–191.

[16] Y. Nakagawa and S. Miyazaki, “Surrogate Constraints
Algorithm for Reliability Optimization Problems with
Two Constraints,” IEEE Transactions on Reliability,
R-30, 1981, pp. 175–181.

[17] L. Painton and J. Campbell, “Genetic Algorithms in
Optimization of System Reliability,”IEEE Transac-
tions on Reliability, vol. 44, 1995, pp. 172–178.

[18] D.P. Siewiorek and R.S. Swarz,Reliable Computer
Systems: Design and Evaluation, Digital Press, 2nd
edition, 1992.

[19] F.A. Tillman, C.L. Hwang, and W. Kuo, “Determining
Component Reliability and Redundancy for Optimum
System Reliability,”IEEE Transactions on Reliability,
vol. R-26, 1977, pp. 162–165.

[20] Y. Tohma, K. Tokunaga, S. Nagase, and Y. Murata,
“Structural Approach to the Estimation of the Num-
ber of Residual Software Faults Based on the Hyper-
Geometric Distribution,”IEEE Transaction on Soft-
ware Engineering, vol. 15, no. 3, March 1989, pp.
345–355.

[21] F. Zahedi and N. Ashrafi, “Software Reliability Allo-
cation Based on Structure, Utility, Price, and Cost,”
IEEE Transactions on Software Engineering, vol. 17,
no. 4, April 1991, pp. 345–355.

