
1

A Generic Environment for COTS Testing and
Quality Prediction

Xia Cai1, Michael R. Lyu1, and Kam-Fai Wong2

Dept. of Computer Science and Engineering1,Dept. of Computer Science and
Engineering2,The Chinese University of Hong Kong,Shatin, N.T., Hong Kong,
China

{xcai,lyu}@cse.cuhk.edu.hk,kfwong@se.cuhk.edu.hk

Summary. In this chapter, we first survey current component technologies and dis-
cuss the features they inherit. Quality assurance (QA) characteristics of component
systems, and the life cycle of component-based software development (CBSD) are
also addressed. Based on the characteristics of the life cycle, we propose a QA model
for CBSD. The model covers the eight main processes in component-based software
systems (CBS) development. A Component-based Program Analysis and Reliability
Evaluation (ComPARE) environment is established for evaluation and prediction of
quality of components. ComPARE provides a systematic procedure for predicting
the quality of software components and assessing the reliability of the final system
developed using CBSD. Using different quality prediction techniques, ComPARE
has been applied to a number of component-based programs. The prediction results
and the effectiveness of the quality prediction models for CBSD were outlined in
this paper.

1.1 Introduction

Based on the component-based software development (CBSD) approach[1],
software systems are developed using a well-defined software architecture and
off-the-shelf components (COTS) as building bricks [2]. It is different from the
traditional approach in which software systems are implemented from scratch.
Commercial off-the-shelf (COTS) components are developed by different de-
velopers using different languages and different platforms [3]. Typically, COTS
components are available from a component repository; users select the ap-
propriate ones and integrate them to establish the target software system (see
Figure1.1).

In general, a component has three main features: 1) it is an independent
and replaceable part of a system that fulfills a clear function; 2) it works
in the context of a well-defined architecture; and 3) it communicates with

2 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

������ ������

��� ��� � � � � 	 �

��� ��� � � � � 	

 � � � � � 	 �

��� ��� � � � � 	��

��� ��� � � � � 	 �

� � � � � �

� � � 	 ���
 �
� � 	 � �

� � � � ��� � �

� � �!�!� " � # � � $�% % & � ' � & � ' � � %)(� $�* + ,
� � �!- � . � . � �

Fig. 1.1. Component-based software development

other components by its interfaces [4]. Current component technologies have
been used to implement different software systems, such as object-oriented
distributed component software [5] and Web-based enterprise applications [6].

The system architecture of a component-based software system is layered
and modular [7, 8, 9], see Figure 2.

Fig. 1.2. System architecture of component-based software systems

The top application layer entails information systems designed for various
applications. The second layer consists of components for a specific system or
application domains. Components in this layer are applicable to more than
one single application. The third layer comprises of cross-system middleware
components which includes common software and interfaces to other estab-

1 A Generic Environment for COTS Testing and Quality Prediction 3

lished entities. The fourth layer of system software components includes basic
components that interface with the underlying operating systems and hosting
hardware. Finally, the lowest two layers involves the operating and hardware
systems.

A CBSD-based software system is composed of one or more components,
which may be procured from off-the-shelf, produced in-house or developed
by contracts. The overall quality of the final system depends heavily on the
quality of the components involved. One needs to be able to assess the qual-
ity of a component to reduce the risk of development. Software metrics are
designed to measure different attributes of a software system and the devel-
opment process, and are used to evaluate the quality of the final product [10].
Process metrics (e.g., reliability estimates) [11], static code metrics (e.g., code
complexity) [12] and dynamic metrics (e.g., test thoroughness) [13] are widely
used to predict the quality of software components at different development
phases [10, 14].

Several techniques are used to model the predictive relationship between
different software metrics and for component classification, i.e., classifying
software components into fault-prone and non fault-prone categories [15].
These techniques include discriminant analysis [16], classification trees [17],
pattern recognition [18], Bayesian network [19], case-based reasoning (CBR)
[20], and regression tree models [15]. There are also prototypes and tools
[11, 21], which use such techniques to automate software quality prediction.
However, these tools employ only one metric, e.g., process metrics or static
code metrics. Furthermore, they rely on only one prediction technique for
overall software quality assessment.

The objective of this chapter is to evaluate individual quality of off-the-
shelf components and overall quality of software systems. We integrate differ-
ent prediction techniques and different software metric categories to form a
single environment, and investigate their effectivenss on quality prediction of
components and CBS.

The rest of this chapter is organized as follows: we first give an overview of
the state-of-the-art CBSD techniques in Section 2, and highlight the quality
assurance (QA) issues behind them in Section 3. Section 4 proposes a QA
model which is designed for quality management in CBSD process. In Section
5, we propose ComPARE, a generic quality assessment environment for CBSD.
It facilitates quality evaluation of individual components as well as the target
systems. Different prediction models have been applied to real world CORBA
programs. In Section 6, the pros and cons of these prediction models are
analyzed. Finally, Section 7 concludes this chapter.

4 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

1.2 A Development Framework for Component-Based
Software Systems

A framework can be defined as a set of constraints on components and their
interactions, and a set of benefits that derive from those constraints [22]. To
identify the development framework for component-based software, the frame-
work or infrastructure for components should be identified first, as components
are the basic units in the component-based software systems.

Visual Basic Controls (VBX), ActiveX controls, class libraries, JavaBeans,
etc., make it possible for their corresponding programming languages, i.e.
Visual Basic, C++, Java, and the supporting tools to share and distribute
application fragments. But all these approaches rely on certain underlying
services to provide communication and coordination. The infrastructure of
components (sometimes called a component model) acts as the ”plumbing”
that allows communication among components [4]. Among the component
infrastructure technologies that have been developed, there are three de facto
industrial standards: OMG’s CORBA, Microsoft’s Component Object Model
(COM) and Distributed COM (DCOM), and Sun’s JavaBeans and Enterprise
JavaBeans [23].

1.2.1 Common Object Request Broker Architecture (CORBA)

CORBA is an open standard for interoperability. It is defined and supported
by the Object Management Group (OMG), an organization of over 400 soft-
ware vendor and object technology user companies [24]. CORBA manages
details of component interoperability, and allows applications to communi-
cate with one another despite of different locations and designs. Interface is
the only way, which applications or components communicate.

The most important part of a CORBA system is the Object Request Bro-
ker (ORB). ORB is the middleware that establishes client-server relationship
between components. Using an ORB, a client can invoke a method on a server
object, whose location is completely transparent. ORB is responsible for inter-
cepting a call and finding an object, which can implement the request, pass
its parameters, invoke its method, and return the results. The client does
not need to know where the object is located, its programming language, its
operating system, or any other system aspects, which are not related to the
interface. In this way, ORB supports interoperability among applications on
different machines in heterogeneous distributed environments and can seam-
lessly interconnect multiple object systems.

CORBA is widely used in Object-Oriented distributed systems [5] includ-
ing component-based software systems for it offers a consistent distributed
programming and run-time environment over common programming lan-
guages, operating systems, and distributed networks.

1 A Generic Environment for COTS Testing and Quality Prediction 5

1.2.2 Component Object Model (COM) and Distributed COM
(DCOM)

Component Object Model (COM) is a general architecture for component
software [25]. It supports platform-dependent, based on Windows and Win-
dows NT, and language-independent component-based applications.

COM defines how components and their clients interact. As such, a client
and a component can be connected without the support of an intermediate
system component. In particular, COM provides a binary standard, which
components and their clients must follow to ensure dynamic interoperability.
This enables on-line software update and cross-language software reuse [26].

Distributed COM (DCOM) is an extension of the Component Object
Model (COM). It is a protocol that enables software components to com-
municate directly over a network in a reliable, secure, and efficient manner.
DCOM supports multiple network protocols, including Internet protocols such
as HTTP. When a client and its component reside on different machines,
DCOM simply replaces the local interprocess communication with a network
protocol. Neither the client nor the component is aware of changes in the
physical connections.

1.2.3 Sun Microsystems’s JavaBeans and Enterprise JavaBeans

Sun’s Java-based component model consists of two parts: the JavaBeans for
client-side component development and the Enterprise JavaBeans (EJB) for
the server-side component development. The JavaBeans component architec-
ture supports multiple platforms, as well as reusable, client-side and server-
side components [27].

Java platform offers an efficient solution to the portability and security
problems through the use of portable Java bytecode and the concept of trusted
and untrusted Java applets. Java provides a universal integration and enabling
technology for enterprise application integration (EAI). The technology en-
ables 1) interoperation across multivendor servers; 2) propagation of transac-
tion and security contexts; 3) multilingual clients; and 4) supporting ActiveX
via DCOM/CORBA bridges.

JavaBeans and EJB extend the native strength of Java including portabil-
ity and security to component-based development. The portability, security,
and reliability nature of Java are well suited for developing robust server
objects independent of operating systems, Web servers and database manage-
ment servers.

1.2.4 Comparison among Different Architectures

Comparison bwteen the development technologies for component-based soft-
ware systems can be found in [4, 28, 29]. Table 1.1 summarizes their different
features.

6 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Table 1.1. Comparison of development technologies for component-based software
systems

CORBA EJB COM/DCOM
Development
environment

Underdeveloped Emerging Supported by a wide
range of strong develop-
ment environments

Binary
interfacing
standard

Not binary standards Based on COM;
Java specific

A binary standard for
component interaction is
the heart of COM

Compatibility
and
portability

Particularly strong in
standardizing language
bindings; but not so
portable

Portable by Java
language specification;
but not very compatible.

Not having any con-
cept of source-level stan-
dard of standard lan-
guage binding.

Modification
and
maintenance

CORBA IDL for
defining component
interfaces, need
extra modification and
maintenance

Not involving IDL files,
defining interfaces be-
tween component and
container. Easier modifi-
cation and maintenance.

Microsoft IDL for
defining component
interfaces, need
extra modification
and maintenance

Services
provided

A full set of standard-
ized services; lack of im-
plementations

Neither standardized
nor implemented

Recently supplemented
by a number of key
services

Platform
dependency

Platform independent Platform independent Platform dependent

Language
dependency

Language independent Language dependent Language independent

Implementation Strongest for
traditional enterprise
computing

Strongest in general Web
clients.

Strongest in traditional
desktop applications

1.3 Quality Assurance for Component-Based Software
Systems

1.3.1 The Development Life Cycle of Component-Based Software
Systems

A component-based software system (CBS) is developed by assembling differ-
ent components rather than programming from scratch. Thus the life cycle
of a component-based software system is different from that of a traditional
software system. The cycle can be summarized as follows [2]: 1) Requirements
analysis; 2) Software architecture selection, construction, analysis, and evalu-
ation; 3) Component identification and customization; 4) System integration;
4) System testing; 5) Software maintenance.

The architecture of CBS defines a system in terms of computational com-
ponents and interactions among components. The focus is on composing and
assembling components. Composition and assembly mostly take place sepa-
rately, and even independently. Component identification, customization and
integration are crucial activities in the development life cycle of CBS. It in-
cludes two main parts: 1) evaluation of candidate COTS based on the func-
tional and quality requirements provided by the user; and 2) customization of
suitable candidate COTS prior to integration. Integration involves communi-
cation and coordination among the selected components.

Quality assurance (QA) for CBS targets every stage of the development
life cycle. QA technologies for CBS are currently premature as specific char-

1 A Generic Environment for COTS Testing and Quality Prediction 7

acteristics of component systems are not accounted for. Although some QA
techniques such as reliability analysis model for distributed software systems
[30, 31] and component-based approach to Software Engineering [32] have
been studied, there is still no clear and well-defined standards or guidelines
for CBS. The identification of the QA characteristics, along with the models,
tools and metrics, are all under urgent needs.

1.3.2 Quality Characteristics of Components

QA technologies for component-based software development has to cater for
two inseparable parts: 1) How to ensure the quality of a component? 2) How to
ensure the quality of the target component-based software system? To answer
these questions, models should be defined for quality control of individual
components and the target CBS; metrics should be defined to measure the
size, complexity, reusability and reliability of individual components and the
target CBS; and tools should be designed to evaluate existing components
and CBS.

To evaluate a component, we must determine how to assess the quality
of the component [33, 34]. Here we propose a list of component features for
the assessment: 1) Functionality; 2) Interface; 3) Usability; 4) Testability; 5)
Maintainability; 6) Reliability.

Software metrics can be proposed to measure software complexity [35, 36].
Such metrics are often used to classify components [37]. They include
1) Size. This affects both reuse cost and quality. If it is too small, the benefits
will not exceed the cost of managing it. If it is too large, it is hard to ensure
high quality.
2) Complexity. This also affects reuse cost and quality. A component which is
too-trivial is not worthwhile to modularize. But on the other hand, a compo-
nent which is too complex is hard to ensure high quality.
3) Reuse frequency. The number of times and different domains where a com-
ponent has been used previously is a solid indicator of its usefulness.
4) Reliability. The probability of failure-free operations of a component under
certain operational scenarios [38].

1.4 A Quality Assurance Model for Component-Based
Software Systems

Since component-based software systems are developed on an underlying pro-
cess different from that of traditional software, their quality assurance model
should address both the process of componentization and the process of the
overall system development. Figure 1.3 illustrates this view.

Many standards and guidelines are used to control the quality activities of
traditional software development process, such as ISO9001 and CMM model

8 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Fig. 1.3. Quality assurance model for both components and systems

[39]. In particular, Hong Kong productivity Council has developed the HK-
SQA model to localize the general SQA models [40]. In this section, we propose
a quality assurance model for component-based software development.

In our model, the main practices relating to components and software
systems contain the following phases: 1) Component requirement analysis;
2) Component development; 3) Component certification; 4) Component cus-
tomization; 5) System architecture design; 6) System integration; 7) System
testing; and 8) System maintenance.

1.4.1 Component Requirement Analysis

Component requirement analysis is the process of discovering, understanding,
documenting, validating and managing the requirements of a component. The
objectives of component requirement analysis are to produce complete, consis-
tent and relevant requirements, which a component should realize, as well as
the programming language, platform and interfaces related to the component.

Requirements
Gathering and
Definition

Requirement
Analysis

Component
Modeling

Requirement
Validation

Component
Development

System
Maintenance

Draft User Requirement
 Documentation (URD)

Format &
Structure

Component Requirement
 Document (CRD)

Updated CRD with
 model included

Current URD
 User Requirement
 Changes

Data
Dictionary

 Structure for
naming &
Describing

Current
URD

Requirement
Document
Template

Request for new development
 or change

Initiators (Users, Customers,
Manager etc.)

Fig. 1.4. Component requirement analysis process overview

1 A Generic Environment for COTS Testing and Quality Prediction 9

The component requirement process overview diagram is as shown in Fig-
ure 1.4. Initiated by the users or customers for a new development or changes
to an old system, component requirement analysis consists of four main steps:
requirements gathering and definition, requirement analysis, component mod-
eling, and requirement validation. The output of this phase is the current user
requirement documentation, which should be transferred to the next compo-
nent development phase, the user requirement changes for the system main-
tenance phase, and data dictionary for all the latter phases.

1.4.2 Component Development

Component development is the process of implementing the requirements for a
well-functional, high quality component with multiple interfaces. The objec-
tive of component development is the development of the final component
products, their interfaces, and the corresponding development documents.
Component development should lead to the final components satisfying the
requirements with correct and expected results, well-defined behaviors, and
flexible interfaces.

Developers

Implementation

Self-Testing
(Function)

Self-Testing
(Reliability)

Development
Document

Component
Certification

System
Maintenance

Techniques required

Draft Component

Requirements

Well-Functional Component

Reliable Component

Submit
 For Reference

Existing
Fault

Component
Requirement

Document

 Fig. 1.5. Component development process overview

The component development process overview diagram is shown in Fig-
ure 1.5. Component development consists of four procedures: implementation,
function testing, reliability testing, and development documentation. The in-
put to this phase is the component requirement document. The output should
be the developed component and its documents, ready for the following phases
of component certification and system maintenance, respectively.

10 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

1.4.3 Component Certification

Component certification is the process, which involves: 1) component out-
sourcing: managing a component outsourcing contract and auditing the con-
tractor performance; 2) component selection: selecting the right components
in accordance to the requirements for both functionality and reliability; and
3) component testing: confirm that the component satisfies the requirement
with acceptable quality and reliability.

System Requirements

Component
Outsourcing

Component
Testing

Component
Selecting

Acceptance System
Maintenance

Specific Component
Requirements

 Component Released

Component
Functions

Well-Functional Component

 Component fit for the special
 requirements

Contract Signoffs,
Payments

Reject

Component
Development

Document

Fig. 1.6. Component certification process overview

The objectives of component certification are to outsource, select and test
the candidate components and check whether they satisfy the system require-
ment with high quality and reliability. The governing policies are: 1) compo-
nent outsourcing should be charged by a software contract manager; 2) all
candidate components should be tested to be free from all known defects; and
3) testing should be in the target environment or in a simulated environment.
The component certification process overview diagram is shown in Figure 1.6.
The input to this phase is the component development documents, and the
output is the testing documentation for system maintenance.

1.4.4 Component Customization

Component customization is the process which involves 1) modifying the com-
ponent for specific requirements; 2) making necessary changes to the compo-
nent for running on the local platforms; 3) upgrading the specific component
to get a better performance or a higher quality. The objective of component
customization is to make necessary changes to a developed component so that
it can be used in a specific environment or cooperate with other components
well.

1 A Generic Environment for COTS Testing and Quality Prediction 11

System Requirements & Other
Component Requirements

Component
Customization

Component
Document

Component
Testing

Acceptance System
Maintenance

on

Specific System & Other
Component Requirements

 Component Changed

Component
Document

New Component Document

 Component fit for the special
 requirements

Component
Document

Reject

Component
Development

Document

System
Integration Assemble

Fig. 1.7. Component customization process overview

All components must be customized according to the operational system
requirements or the interface requirements. The component customization
process overview diagram is shown in Figure 1.7. The input to component
customization are the system requirements, the component requirements, and
component development documents. The output are the customized compo-
nents, and documents for system integration and system maintenance.

1.4.5 System Architecture Design

System architecture design is the process of evaluating, selecting and creating
software architecture of a component-based software system. The objectives of
system architecture design are to collect the users requirements, determine the
system specification, select appropriate system architecture, and determine
the implementation details such as platform, programming languages, etc.

System architecture design should compare the pros and cons of differ-
ent system architectures and select the one suitable for the target CBS. The
process overview diagram is shown in Figure 1.8. This phase consists of sys-
tem requirement gathering, analysis, system architecture design, and system
specification. The output of this phase comprises of the system specification
document for system integration, and the system requirements for the system
testing and system maintenance phases.

1.4.6 System Integration

System integration is the process of properly assembling the components se-
lected to produce the target CBS under the designed system architecture. The
process overview diagram is shown in Figure 1.9. The input are the system
requirement documentation and the specific architecture. There are four steps

12 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Initiators

System Requirement
Gathering

System Requirement
Analysis

System Architecture
Design

System
Specification

System
Integration

Requests for New Systems

 Draft System Requirements
 Document

Format &
Structure

System Requirement Document

System Architecure

System Specification
Document

Current
Document

Requirement
Document
Template

System
Testing System

Requirement

System
Maintenance

Fig. 1.8. System architecture design process overview

System

Requirement

System
Integration

Self-Testing

Component
Changing

Final
System

System
Maintenance

Requirements for New
Systems

 Draft System

Architecture

Fault Component

Selecting New Component

System Integration
Document

Current
Component

System
Architecture

System
Testing Final System

Component
Certification

Component
Requirement

 Fig. 1.9. System integration process overview

in this phase: integration, testing, changing component and re-integration (if
necessary). At the end of this phase, the final target system will be ready for
system testing, and the appropriate document for the system maintenance
phase.

1.4.7 System Testing

System testing is the process of evaluating a system to: 1) confirm that the sys-
tem satisfies the specified requirements; 2) identify and correct defects. System
testing includes function testing and reliability testing. The process overview
diagram is shown in Figure 1.10. This phase consists of selecting testing strat-
egy, system testing, user acceptance testing, and completion activities. The

1 A Generic Environment for COTS Testing and Quality Prediction 13

System Design
Document

Testing
Strategy

System
Testing

User Acceptance
Testing

Test Completion
Activities

System
Maintenance

 Testing Requirements

 System Testing Plan

Test
Dependencies

System Tested

User Accepted System

System Integration
Document

System
Maintenance

(Previous
Software Life

Cycle)

Component
Development

Component
Document

System
Integration

Component
Document

System Test
Spec.

User Acceptance
Test Spec.

 Fig. 1.10. System testing process overview

input comprises of the documents from the component development and sys-
tem integration phases. And the output includes the testing documentation
for system maintenance. Note that this procedure must cater for the interac-
tion testing between multiple components, which includes coordination issues,
deadlocks, etc.

1.4.8 System Maintenance

Users

Support
Strategy

Problem
Management

System
Maintenance

 Request and Problem Reports

User Support Agreement

 Documents,
 Strategies

Change Requests

All Previous
Phases

System
Testing

New Version

 Fig. 1.11. System maintenance process overview

System maintenance is the process of providing service and maintenance
activities required to use the software effectively after it has been delivered.
The objectives of system maintenance are to provide an effective product or
service to the end-users while repairing faults, improving software performance
or other attributes, and adapting the system to a changed environment.

14 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

A maintenance organization should be available for every CBS product.
All changes for the delivered system should be reflected in the related docu-
ments. The process overview diagram is shown in Figure 1.11. According to
the outputs from all previous phases as well as requests and problem reports
from users, system maintenance should be performed to determine the setup
support and problem management (e.g., identification and approval) strate-
gies. This phase produces a new version of the CBS, which may be subjected
to further system testing.

1.5 A Generic Quality Assessment Environment for
Component-Based Systems - ComPARE

We propose a Component-based Program Analysis and Reliability Evalua-
tion (ComPARE) to evaluate the quality of software systems in component-
based software development. ComPARE automates the collection of different
metrics, the selection of different prediction models, the formulation of user-
defined models, and the validation of the established models according to
faulty data collected in the development process. Different from other exist-
ing tools [21], ComPARE takes dynamic metrics into account (such as code
coverage and performance metrics), integrates them with process metrics and
other static code metrics (such as complexity metrics, coupling and cohesion
metrics, inheritance metrics) which are adopted from object-oriented software
engineering, and provides different estimation models for overall system as-
sessment.

1.5.1 Overall Architecture

A number of commercial tools are available for the measurement of software
metrics for object-oriented programming. Also there are off-the-shelf tools for
testing and debugging of software components [41]. However, few tools can
measure the static and dynamic metrics of software systems, perform various
quality modeling, and validate such models against actual quality data.

ComPARE aims to provide an environment for quality prediction of soft-
ware components and assess the reliability of the overall system based on
them. The overall architecture of ComPARE is shown in Figure 1.12. First of
all, various metrics are computed for the candidate components, then the users
can select and weigh the metrics deemed important to quality assessment. Af-
ter the models have been constructed and executed (e.g., ”case base” is used in
BBN model), the users can validate the selected models with previous failure
data collections. If the users are not satisfied with the prediction result, they
can go back to the previous step, re-define the criteria and construct a revised
model. Finally, the overall quality prediction can be displayed based on the
architecture of the candidate system. Results from individual components can
also be displayed for sensitivity analysis and system redesign.

1 A Generic Environment for COTS Testing and Quality Prediction 15

Metrics
Computation

Criteria
Selection

Model
Definition

Model
Validation

Result
Display

Case Base

Failure
Data

Candidate
Components

System
Architecture

 Fig. 1.12. Architecture of ComPARE

The objectives of ComPARE are summarized as follows:
1. To predict the overall quality by using process metrics, static code met-

rics as well as dynamic metrics. In addition to complexity metrics, we use pro-
cess metrics, cohesion metrics, inheritance metrics as well as dynamic metrics
(such as code coverage and call graph metrics) as the input to the quality
prediction models. Thus the prediction is more accurate as it is based on data
from every aspect of the candidate software components.

2. To integrate several quality prediction models into one environment
and compare the prediction result of different models. ComPARE integrates
several existing quality models into one environment. In addition to selecting
or defining these different models, the users can also compare the prediction
results of the models on the candidate component and see how good the
predictions are if the failure data of the particular component is available.

3. To define the quality prediction models interactively. In ComPARE, the
user can select from several quality prediction models and select the one most
suitable for this prediction task. Moreover, the user can also define their own
models and validate them in the evaluation stage.

4. To classify components using different quality categories. Once the met-
rics are computed and the models selected, the overall quality of the com-
ponent can be displayed according to the category it belongs to. Program
modules with problems can also be identified.

5. To validate reliability models defined by the user against real failure data
(e.g., change report). Using the validation criteria, the result of the selected
quality prediction model can be compared with failure data in real life. The
user can redefine their models according to the comparison.

6. To show the source code with potential problems at line-level granular-
ity. ComPARE can identify the source code with high risk (i.e., the code that

16 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

is not covered by test cases in the environment) at line-level granularity. This
can help the users locate high risk program modules or portions promptly and
conveniently.

7. To adopt commercial tools in accessing software data related to quality
attributes. We adopt Metamata [42] and Jprobe [43] suites to measure the
different metrics for the candidate components. These two tools, involving
metrics, audits, debugging, as well as code coverage, memory and deadlock
detected, are commercially available.

1.5.2 Metrics Used in ComPARE

Table 1.2. Process Metrics

Metric Description

Time Time spent from design to delivery (months)

Effort Total human resources used (man*month)

Change Report Number of faults found in development

Three different categories of metrics, namely process, static, and dynamic,
are analyzed in CompARE to give the overall quality prediction. We have
chosen proven metrics, i.e., those that are widely adopted by previous soft-
ware quality prediction tools in the software engineering research community
[44, 45]. The process metrics we selected are listed in Table 1.2 [11]. Since we
perceive that Object-Oriented (OO) techniques are essential in component-
based software development, we select static code metrics according to the
most important features in OO programs, i.e., complexity, coupling, inheri-
tance and cohesion. They are listed in Table 1.3 [12, 13, 42, 46]. The dynamic
metrics measuring component features when they are executed. Table 1.4
shows the detailed description of the dynamic metrics.

Sets of process, static, and dynamic metrics can be collected from com-
mercial tools, e.g., Metamata Suite [42] and Jprobe Testing Suite [43]. We
adopt these metrics in ComPARE.

1.5.3 Models Definition

In order to predict the quality of software systems, several techniques have
been developed to classify software components according to their reliability
[15]. These techniques include discriminant analysis [16], classification trees
[17], pattern recognition [18], Bayesian network [19], case-based reasoning
(CBR) [20], and regression tree model [11].

Up to now, there is no good quality prediction models for CBS. Here we
set some evaluation criteria for good quality prediction models [47]: 1)Useful
quantities: the model can make predictions of quantities reflecting software

1 A Generic Environment for COTS Testing and Quality Prediction 17

Table 1.3. Static Code Metrics

Abbreviation Description

Lines of Code
FF(LOC)

Number of lines in the components including statements,
blank lines, lines of commentary, and lines consisting only
of syntax such as block delimiters.

Cyclomatic
Complexity
(CC)

A measure of the control flow complexity of a method or
constructor. It counts the number of branches in the body
of the method, defined by the number of WHILE state-
ments, IF statements, FOR statements, and CASE state-
ments.

Number of
Attri-butes (NA)

Number of fields declared in the class or interface.

Number Of Classes
(NOC)

Number of classes or interfaces, which are declared. This
is usually 1, but nested class declarations will increase this
number.

Depth of Inheritance
Tree (DIT)

Length of inheritance path between the current class and
the base class.

Depth of Interface
Extension Tree
(DIET)

The path between the current interface and the base in-
terface.

Data Abstraction
Coupling (DAC)

Number of reference types, which are used in the field dec-
larations of the class or interface.

Fan Out
(FANOUT)

Number of reference types, which are used in field decla-
rations, formal parameters, return types, throws declara-
tions, and local variables.

Coupling between
Objects (CO)

Number of reference types, which are used in field decla-
rations, formal parameters, return types, throws declara-
tions, local variables and also types from which field and
method selections are made.

Method Calls
Input/Output
(MCI/MCO)

Number of calls to/from a method. It helps analyze the
coupling between methods.

Lack of Cohesion
of Methods (LCOM)

For each pair of methods in the class, the set of fields each
of them accesses is determined. If they have disjoint sets
of field then increase the count P by one. If they share at
least one field then increase Q by one. After considering
each pair of methods,

LCOM = (P −Q) if P > Q

= 0 otherwise

18 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Table 1.4. Dynamic Metrics

Metric Description

Test Case
Coverage

The coverage of the source code when the given test cases
are executed.

Call Graph
metrics

Statistics about a method, including method time (the
amount of time the method spent in execution), method
object count (the number of objects created during the
method execution) and number of calls (how many times
each method is called in you application).

Heap metrics Number of live instances of a particular class/package, and
the memory used by each live instance.

quality. 2)Prediction accuracy: the model can make predictions of quality
which can be accurately observed later. 3)Ease of measuring parameters: the
parameters in the model are easily measured or simulated. 4)Quality of as-
sumptions: the assumptions should be reasonable, rather than too narrow or
limited. 5)Applicability: the model should be widely used in various projects
or experiments. 6)Simplicity: the model should not be too hard to implement
or realize.

In ComPARE, we combine existing quality prediction models according
to the above criteria. Initially, one employs an existing prediction model, e.g.,
classification tree model or BBN model, customizes it and compares the pre-
diction results with different tailor-made models. In particular, we have in-
vestigated the following prediction models and studied their applicability to
ComPARE in our research.

Summation Model

This model gives a prediction by simply adding all the metrics selected and
weighted by the user. The user can validate the result by real failure data, and
then benchmark the result. Later when new components are included, the user
can predict their quality according to their differences from the benchmarks.
The concept of summation model is formulated as follows:

Q =
n∑

i=1

αimi (1.1)

where mi is the value of one particular metric, αi is its corresponding weighting
factor, n is the number of metrics, and Q is the overall quality mark.

Product Model

Similar to the summation model, the product model multiplies all the metrics
selected and weighted by the user. The resulting value indicates the level of

1 A Generic Environment for COTS Testing and Quality Prediction 19

quality of a given component. Similarly, the user can validate the result by real
failure data, and then determine the benchmark for later usage. The concept
of product model is shown as follows:

Q =
n∏

i=1

mi (1.2)

where mi is the value of one particular metric, n is the number of metrics,
and Q is the overall quality mark. Note that mi’s are normalized to a value
close to 1, so that no single metric can dominate the result.

Classification Tree Model

Cm<48.5

Co<1358

3.103 7.699

TC<627.5

BW<1.575

12.500

BW<1.83

50.170

40.170 20.540

Fig. 1.13. An example of the classification tree model

Classification tree model [17] classifies candidate components into different
quality categories by constructing a tree structure. All candidate components
(with certain failure rate) form the leaves of the tree. Each node of the tree
represents a metric (or a composed metric calculated by other metrics) of a
certain value. All children of the left sub tree of a node represent those com-
ponents whose value of the same metric is smaller than the value of the node.
Similarly, all children of the right sub-tree of a node are those components
whose value of the same metric is equal to or larger than the value of the
node. Figure 1.13 gives an example of the classification tree model.

In ComPARE, a user can define the metrics and their value at each node
from the root to the leaves. Once the tree is constructed, a candidate compo-
nent can be directly classified by following the threshold of each node in the
tree until it reaches a leaf node. Again, the user can validate and evaluate the
final tree model after its definition. Figure 1.13 is an example of the outcome of
a tree model, where Cm(number of comments), Co(code characters), Tc(total
line of code) and BW(Belady’s bandwith metric) are sample metrics [15]. At
each node of the tree there are metrics and values, and the leaves represent
the components with certain number of predicted faults in the classification
result.

20 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Case-Based Reasoning Model

Case-based reasoning (CBR) has been proposed for predicting quality of soft-
ware components [20]. A CBR classifier uses previous ”similar” cases as the
basis for prediction. Previous cases are stored in a case base. Similarity is
defined in terms of a set of metrics. The major conjecture behind this model
is that a candidate component which has a similar structure as a component
in the case base will be assigned to a similar quality level.

A CBR classifier can be instantiated in different ways by varying its pa-
rameters. But according to previous research, there is no significant difference
in prediction validity when using any combination of parameters in CBR. For
this reason, we adopt the simplest CBR classifier modeling with Euclidean
distance, z-score standardization [20], and without weighting scheme. Finally,
we select the single, nearest neighbor for prediction.

Bayesian Network Model

Bayesian networks (also known as Bayesian Belief Networks, BBN) is a graph-
ical network that represents probabilistic relationships among variables [19].
BBNs enable reasoning under uncertainty. Besides, the framework of Bayesian
networks offers a compact, intuitive, and efficient graphical representation of
dependence relations between entities of a problem domain. The graphical
structure reflects properties of the problem domain directly, and provides
a tangible visual representation as well as a sound mathematical basis in
Bayesian probability [48]. The foundation of Bayesian networks is based on
the following theorem, which is known as the Bayes’ Lemma:

(H|E, c) =
P (H|c)P (E|H, c)

P (E|c) (1.3)

where H, E, c are independent events. P is the probability of such event under
certain circumstances.

With BBNs, it is possible to integrate expert beliefs about the depen-
dencies between different variables and to propagate consistently the impact
of evidence on the probabilities of uncertain outcomes, such as ”unknown
component quality”. Details of the BBN model for quality prediction can be
found in [19]. Users can also define their own BBN models in ComPARE and
compare the results with other models.

1.5.4 Operations in ComPARE

ComPARE suggests eight functions: File Operations, Metrics Selection, Cri-
teria Selection and Weighting, Model Selection and Definition, Model Valida-
tion, Display Result, Windows Switch, and Help. The details of some of these
key functions are described in the following:

1 A Generic Environment for COTS Testing and Quality Prediction 21

Metrics Selection

Users can select the metrics they want to collect for the component-based
software systems. Three categories of metrics are available: process metrics,
static metrics and dynamic metrics. The details of these metrics are shown in
Section 1.5.2.

Criteria Selection and Weighting

After computing different metrics, the users will select and weigh the criteria
associated to these metrics before using them. Each metric can be assigned a
weight between 0 and 1.

Model Selection and Definition

This operation allows the users to select or define the model they would like
to use in the evaluation. The users are required to provide the probability of
each metric, which affects the quality of the candidate component.

Model Validation

Model validation enables comparison between different models with respect
to actual software failure data. It facilitates users to compare different results
based on a chosen subset of the software failure data under certain validation
criteria. Comparison between different models in their predictive capability are
summarized in a summary table. Model Validation operations are employed
only when software failure data are available.

1.5.5 Prototype

We have developed a ComPARE prototype for QA of Java-based components
and CBS. Java is one of the most popular languages used in off-the-shelf com-
ponents development today. It is a common language binding the three stan-
dard architecture of component-based software development: namely CORBA,
DCOM and Java/RMI.

Figure 1.14 and Figure 1.15 show screen dumps of the ComPARE proto-
type. The computation of various metrics for software components and appli-
cation of quality prediction models can be seen as a straightforward process.
Users also have flexible choices in selecting and defining different models. The
combination of simple operations and a variety of quality models makes it
easy for the users to identify an appropriate prediction model for a given
component-based software system.

22 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Metrics Tree Model Criteria

Fig. 1.14. GUI of ComPARE for
metrics, criteria and tree model

 Statistics Display Source code

Fig. 1.15. GUI of ComPARE for pre-
diction display, risky source code and
result statistics

1.6 Experiment and Discussion

1.6.1 Objective

ComPARE provides a systematic procedure for predicting the quality of soft-
ware components and for assessing their reliability in the final target system.
As there is no existing QA model for CBS, ComPARE adopts existing quality
prediction models.

In this section, we investigate the effectiveness of different existing qual-
ity prediction models and their applicability to CBS. In our experiment, we
use the five models selected in Section 1.5.3 to predict and evaluate the rela-
tionship between the number of faults and software metrics of some CORBA
programs obtained in a component-based software engineering experiment. In
this experiment, all programs were designed according to the same specifica-
tion. The programming teams could choose their own programming languages.
The test cases were designed to assess the functionalities of the final programs
according to the specification. The details of the testing and evaluation of this
experiment is shown in [49]. We applied the selected prediction models to the
final CORBA programs and investigate how well they behave. This informa-
tion is useful for the users in determining which is the appropriate quality
prediction models.

1.6.2 Data Description and Experiment Procedure

In the fall of 1998 we engaged 19 programming teams to design, implement,
test and demonstrate a Soccer Team Management System using CORBA.
This was a class project for students majored in computer science. The du-
ration of the project was 4 weeks. The programming teams (2-3 students for
each team) participating in this project were required to independently design

1 A Generic Environment for COTS Testing and Quality Prediction 23

and develop a distributed system. The system should allow multiple clients
to access a Soccer Team Management Server for 10 different operations. The
teams were free to choose different CORBA vendors (Visibroker or Iona Or-
bix), using different programming languages (Java or C++) for the client or
server programs. These programs had to pass an acceptance test, in which
programs were subjected to two types of test cases for each of the 10 oper-
ations: one for normal operation and the other for operations which would
raise exceptions. In total, 57 test cases were used in the experiment.

Among these 19 programs 12 chose to use Visibroker, and 7 Iona Orbix.
For the 12 Visibroker programs, 9 used Java and 2 used C++ for both client
and server implementation, and 1 used Java and C++ for client and server
respectively. Because Team 1 did not pass the acceptance test, we will not
include it in our evaluations. The metrics collected and the test results for
the 18 different program versions are shown in Table 1.5. The meaning of the
metrics and testing results are listed below:

• Total Lines of Code (TLOC): the total length of whole program, including
lines of codes in the client and server programs;

• Client LOC (CLOC): lines of codes in the client program;
• Server LOC (SLOC): lines of codes in the server program;
• Client Class (CClass): number of classes in the client program;
• Client Method (CMethod): number of methods in the client program;
• Server Class (SClass): number of classes in the server program;
• Server Method (SMethod): number of methods in the server program;
• Fail: the number of test cases that the program failed on;
• Maybe: the number of test cases, which were designed to raise exceptions,

and failed to work as the client side of the program forbid it. In this
situation, we were not sure whether the server was designed properly to
raise the expected exceptions. Thus we put down ”maybe” as the result.

• R: pass rate, defined by Rj = Pj

C , where C is the total number of test cases
applied to the programs (i.e., 57); Pj is the number of ”Pass” cases for
program j, Pj = C - Fail - Maybe.

• R1: pass rate 2, defined by R1j = Pj+Mj

C , where C is the total number of
test cases applied to the programs (i.e., 57); Pj is the number of ”Pass”
cases for program j, Pj = C - Fail - Maybe; Mj is the number of ”Maybe”
cases for program j.

To evaluate the quality of these CORBA programs, we applied the test
cases to the programs and assessed their quality and reliability based on the
test results. We describe our experiment procedures below.

First of all, we collected the different metrics of all the programs. Metamata
[42] and JProbe Suite [43] were used for this purpose. We designed test cases
for these CORBA programs according to the specification. We used black box
testing method, i.e., testing was on system functions only. Each operation
defined in the system specification was tested one by one. We defined some test
cases for each operation. The test cases were selected in 2 categories: normal

24 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Table 1.5. General Metrics of Different Teams

Team TLOC CLOC SLOC CClass CMethod SClass SMethod Fail Maybe R R1

P2 1129 613 516 3 15 5 26 7 6 0.77 0.88

P3 1874 1023 851 3 23 5 62 3 6 0.84 095

P4 1309 409 900 3 12 1 23 3 12 0.74 0.95

P5 2843 1344 1499 4 26 1 25 2 1 0.95 0.96

P6 1315 420 895 3 3 1 39 13 10 0.60 0.77

P7 2674 1827 847 3 17 5 35 3 14 0.70 0.95

P8 1520 734 786 3 24 4 30 1 6 0.88 0.98

P9 2121 1181 940 4 22 3 43 4 2 0.89 0.93

P10 1352 498 854 3 12 5 41 2 2 0.93 0.96

P11 563 190 373 3 12 3 20 6 3 0.84 0.89

P12 5695 4641 1054 14 166 5 32 1 4 0.91 0.98

P13 2602 1587 1015 3 27 3 32 17 19 0.37 0.70

P14 1994 873 1121 4 12 5 39 4 6 0.82 0.93

P15 714 348 366 4 11 4 33 2 5 0.88 0.96

P16 1676 925 751 3 3 23 44 30 0 0.47 0.47

P17 1288 933 355 6 25 5 35 3 3 0.89 0.95

P18 1731 814 917 3 12 3 20 4 9 0.77 0.93

P19 1900 930 970 3 3 2 20 35 1 0.37 0.39

cases and cases that caused exceptions in the system. For each operation in
the system, at least 1 normal test case was conducted in testing. In the other
cases, all the exceptions were covered. But in order to reduce the work load,
we tried to use as few test cases as possible so long as all the exceptions have
been catered for.

We used the test results as indicator of quality. We applied different qual-
ity prediction models : i.e., classification tree model and Bayesian Network
model to the metrics and test results. We then validated the prediction re-
sults of these models against the test results. We divided the programs into
two groups: training data and testing set, and adopted cross evaluation. This
was done after or during the prediction process according to the prediction
models. After applying the metrics to the different models, we analyzed the
accuracy of their predicting results and identified their advantages and disad-
vantages. Also, based on the results, we adjusted the coefficients and weights
of different metrics in the final models.

1.6.3 Experiment Results

Summation Model

The Summation model gives a prediction by simply adding all the metrics
selected and weighted by the user. For simplicity, we gives equal weighting
factor for all the metrics, e.g., all metrics = 1. Also we normalize the values of
metrics by using the ratio of the actual value to the maximum value of that

1 A Generic Environment for COTS Testing and Quality Prediction 25

particular metric, i.e., m1 = TLOC
max(TLOC) , m2 = CLOC

max(CLOC) , etc. for every
program. The overall quality mark then is Q = m1 + m2 + · · · for all the 18
programs. The result of the summation model is listed in Table 1.6.

Product Model

The Product model multiplies all the metrics selected and weighted by the
user. The values of metrics are also normalized to values close to 1 using the
same method as in above section. The final result is the product of these
normalized values. It is listed in Table 1.6.

Classification Tree Results Using CART

We adopted commercial tools CART [48] in our classification tree modeling.
The CART methodology is technically known as binary recursive partitioning.
The process is binary because parent nodes are always split into exactly two
child nodes and recursive because the process can be repeated by treating
each child node as a parent. The key elements of a CART analysis are a set of
rules for: 1) splitting each node in a tree; 2) deciding when a tree is complete;
and 3) assigning each terminal node to a class outcome (or predicted value
for regression).

Table 1.6. Results of Summation Model and Product Model

Team Summation Modeling Product Model Fail Maybe R R1

P2 7.00 0.0000159 7 6 0.77 0.88

P3 1.62 0.0002658 3 6 0.84 095

P4 2.69 0.0000030 3 12 0.74 0.95

P5 1.62 0.0001134 2 1 0.95 0.96

P6 2.68 0.0000013 13 10 0.60 0.77

P7 1.82 0.0002813 3 14 0.70 0.95

P8 2.53 0.0000577 1 6 0.88 0.98

P9 1.97 0.0002036 4 2 0.89 0.93

P10 2.50 0.0000323 2 2 0.93 0.96

P11 2.08 0.0000007 6 3 0.84 0.89

P12 1.13 0.0788932 1 4 0.91 0.98

P13 5.44 0.0002482 17 19 0.37 0.70

P14 2.50 0.0001391 4 6 0.82 0.93

P15 2.49 0.0000040 2 5 0.88 0.96

P16 1.50 0.0000808 30 0 0.47 0.47

P17 2.94 0.0000853 3 3 0.89 0.95

P18 2.03 0.0000213 4 9 0.77 0.93

P19 1.83 0.0000047 35 1 0.37 0.39

26 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Table 1.7. Option Setting of the classification tree

Construction Rule Least Absolute Deviation
Estimation Method Exploratory - Resubstitution
Tree Selection 0.000 se rule
Linear Combinations No

Initial value of the complexity parameter = 0.000
Minimum size below which node will not be split = 2
Node size above which sub-sampling will be used = 18
Maximum number of surrogates used for missing values = 1
Number of surrogate splits printed = 1
Number of competing splits printed = 5
Maximum number of trees printed in the tree sequence = 10
Max. number of cases allowed in the learning sample = 18
Maximum number of cases allowed in the test sample = 0
Max # of nonterminal nodes in the largest tree grown = 38

(Actual # of nonterminal nodes in largest tree grown = 10)
Max. no. of categorical splits including surrogates = 1
Max. number of linear combination splits in a tree = 0

(Actual number cat. + linear combination splits = 0)
Maximum depth of largest tree grown = 13

(Actual depth of largest tree grown = 7)
Maximum size of memory available = 9000000

(Actual size of memory used in run = 5356)

Table 1.8. Importance of different variables in the classification tree

Metrics Relative
Importance

Number of
Categories

Minimum
Category

CMETHOD 100.000
TLOC 45.161
SCLASS 43.548
CLOC 33.871
SLOC 4.839
SMETHOD 0.000
CCLASS 0.000

N of the learning sample = 18

We applied the metrics and testing results in Table 1.5 to the CART tool,
and collected the classification tree results for predicting the quality variable
”Fail”. Table 1.7 is the option setting of the classification tree. The tree con-
structed is shown in Figure 1.16, and the relative importance of each metric
is listed in Table 1.8. From Figure 1.16, we can see that the 18 learning sam-
ples are classified into 9 groups (terminal nodes), whose information are listed
in Table 1.9. The most important vector was the number of methods in the
client program (CMethod), and the next three most important vectors were

1 A Generic Environment for COTS Testing and Quality Prediction 27

CMETHOD<7

TLOC<1495.5 TLOC<638.5

TLOC<2758.5

CMETHOD<26

SLOC<908.5

21 3

9

8

TLOC<921.5 7

TLOC<1208.54

65

Fig. 1.16. Classification tree structure

TLOC, SCLASS and CLOC. From the node information, we observe that the
most non fault-prone nodes are those programs with 638.5<TLOC<921.5 and
7<CMETHOD<26 and SLOC<908.5, or CEMTHOD>7 and TLOC<638.5.
The relationship between classification results and three main metrics was
analyzed and listed in Table 1.10.

Table 1.9. Terminal node information in the classification tree

Parent Node Wgt Count Count Median MeanAbsDev Complexity

1 1.00 1 13.000 0.000 17.000
2 2.00 2 35.000 2.500 17.000
3 1.00 1 6.000 0.000 6.333
4 1.00 1 2.000 0.000 2.500
5 1.00 1 7.000 0.000 4.000
6 6.00 6 3.000 0.500 4.000
7 3.00 3 4.000 0.000 3.000
8 1.00 1 17.000 0.000 14.000
9 2.00 2 2.000 0.500 8.000

28 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Table 1.10. Relationship between the classification results and 3 main metrics

Terminal Node Mean Faults CMethod TLOC SLOC

4 2 72̃6 638.5∼921.5 ≤908.5

9 2 >7 ≤638.5 -

6 3 72̃6 1208.5∼2758.5 ≤908.5

7 4 72̃6 638.5∼921.5 >908.5

3 6 >7 ≤638.5 -

5 7 72̃6 638.5∼921.5 ≤908.5

1 13 ≤7 ≤1495.5 -

8 17 >26 638.5∼921.5 -

2 35 ≤7 >1495.5 -

BBN Results

The HUGIN System is adopted[48]. It is a tool enabling one to construct
model based decision support systems in domains characterized by inherent
uncertainty. The models supported are Bayesian belief networks and their
extension influence diagrams. The HUGIN System enables the user to define
both discrete nodes and to some extent continuous nodes in the models.

Bayesian networks are often used to model domains, which are character-
ized by inherent uncertainty. This uncertainty may be caused by imperfect
understanding of the domain, incomplete knowledge of the state of the do-
main at the time where a given task is to be performed, randomness in the
mechanisms governing the behavior of the whole system. We have developed
a prototype to show the potential of one of the quality prediction models,
namely BBN, and illustrated its useful properties using real metrics data
from the software engineering experiment(see Section1.6.2).

serverLOC ClientClass ClientMethod

clientLOC

TLOC TestResult

ServerClass

ServerMethod

Fig. 1.17. The Influence Diagram of the BBN model

We constructed an influence diagram for the CORBA programs according
to the metrics and testing results collected in the testing procedure, as shown
in Figure 1.17. Although, due to interaction between these metrics, some of
them are redundant. We assumed the worst scenario and considered every
metrics. Each of these metrics shown in Figure 1.17 had its own impact on
the testing result. Once the influence diagram is constructed, we input the

1 A Generic Environment for COTS Testing and Quality Prediction 29

Fig. 1.18. The probability description of nodes in BBN model

probability of the metrics and testing results collected in our test procedures,
as shown in Figure 1.18.

Fig. 1.19. The different probability distribution of metrics according to the quality
indicator (sum propagation)

30 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Fig. 1.20. The different probability distribution of metrics according to the quality
indicator (max propagation)

The result of the Hugin tool are shown in Figure 1.19 and Figure 1.20,
where (a) is the original probability distribution of different metrics and test-
ing results; (b) is the probability distribution of the metrics when the number
of faults is less than 5; (c) is the probability distribution of the metrics when
the number of faults is between 5 and 10. Figure 1.19 shows the results of
summation propagation, and Figure 1.20 the results of maximum propaga-
tion.

Summation propagation shows the true probability of the states of the
nodes with the total summation equals to 1. For maximum propagation, if
a state of a node belongs to the most probable configuration it is given the
value 100. All other states are given the relative value of the probability of the
most probable configuration they found in comparison to the most probable
configuration. That is, assume node N has two states a and b, and b belongs to
the most probable configuration of the entire BBN which has the probability
0.002; then, b is given the value 100. Now, assume that the most probable
configuration which a belongs to has probability 0.0012;then, a is given the
value 60.

Using maximum propagation instead of sum propagation, we can find the
probability of the most likely combination of states under the assumption
that the entered evidence holds. In each node, a state having the value 100.00
belongs to the most likely combination of states. From Figure 1.20(b), we

1 A Generic Environment for COTS Testing and Quality Prediction 31

can find the best combination of the metrics with respect to the correspond-
ing testing results, as listed in Table 1.11. For test result between 0 and 5,
the ranges of CMethod, TLOC and SLOC are very close to the results of
classification tree in Table 1.10.

Table 1.11. Relationship between test result and metrics in BBN

TestResult CCLASS CMethod SCLASS SMethod TLOC CLOC SLOC

0-5 1-5 10-50 1-5 10-50 1-2K 0-0.5K 0.5-1K

5-10 1-5 10-50 1-5 10-50 1-2K 0.5-1K 0.5-1K

Case-Based Reasoning Model

To use Case-Based Reasoning model, a case base, containing a number of com-
ponents with various metrics values and quality levels, should be established.
When a new component is developed, the most similar component in the case
base should be identified based on different metrics. The quality data of the
case is then used for the new component. Case base for CBS is unavailable
at present. Thus, we simply illustrate how CBR model works with our own
synthetic data set.

Table 1.12. Result of Case-Based Reasoning Model

Team Distance with P2 Fail Maybe R R1

P3 914.7185 3 6 0.84 095

P4 470.6442 3 12 0.74 0.95

P5 2106.7950 2 1 0.95 0.96

P6 464.5589 13 10 0.60 0.77

P7 1992.6031 3 14 0.70 0.95

P8 490.4284 1 6 0.88 0.98

P9 1219.3470 4 2 0.89 0.93

P10 421.2268 2 2 0.93 0.96

P11 720.9598 6 3 0.84 0.89

P12 6114.3718 1 4 0.91 0.98

P13 1835.0995 17 19 0.37 0.70

P14 1087.2116 4 6 0.82 0.93

P15 514.7980 2 5 0.88 0.96

P16 672.7332 30 0 0.47 0.47

P17 392.1632 3 3 0.89 0.95

P18 750.7696 4 9 0.77 0.93

P19 949.3340 35 1 0.37 0.39

Assuming we have already had a case base containing 17 programs, i.e.,
P3 to P19. To predict the quality of a new program P2, we would find the

32 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

most similar program in the case base (e.g., using Euclidean distance without
weighting), see Table 1.12. We would then predict that program P2 had the
similar quality level to that of the selected program, e.g., P17 with 3 faults
under a reliability indicator of 89

1.6.4 Discussion

In our experiment, we used real CORBA programs as the testing data and
applied them to the five quality prediction models to show the way they work.
The effectiveness and applicability of these models could be evaluated using
more data. Summation model and product model are the simplest compared
with the other three models. They are intuitive and easy to construct. How-
ever, their prediction accuracy are not high. The meaning of these models is
yet unclear. For this reason, they are not widely used.

Classification tree model predicts the quality of a program by constructing
a tree model according to the collected metrics. If the learning sample is large
enough, the prediction result of classification tree would be very accurate.
However, the disadvantage of classification tree modeling is that it needs large
learning data and more data descriptions. In our case, the classification tree
result will be more accurate if we had used more programs for learning, and
more metrics could be collected to describe the features of various aspects for
the given programs.

BBN constructs an influence diagram depicting the dependency relation-
ship of the metrics and testing result. It can predict a range of testing results
using different combination of metrics. Also, it can suggest the best combi-
nation of metrics. This is more clear in BBN than in classification tree. The
obvious disadvantage of BBN model is that the user is required to know the
dependency relationship well in his specific domain before an effective influ-
ence diagram could be constructed. But such knowledge is only available after
several runs.

Case-Based Reasoning model requires an established and sizable case base.
Due to the lack of such archival data, the effectiveness of the CBR model for
CBSD awaits further investigation.

The testing data used in our experiment is limited, i.e., only 18 programs
were used to construct the models and to validate the prediction. To make
the comparison more accurate, we will use more programs as test data in our
future work. Also, if we could collect data from real component-based systems,
we would apply these models to individual components as well as the entire
systems in order to obtain the relationship of their qualities.

1.7 Conclusion

In this chapter, we introduce a component-based software development frame-
work. We propose a QA model for component-based software development,

1 A Generic Environment for COTS Testing and Quality Prediction 33

which covers both the component QA and the system QA as well as their in-
teractions. As far as we know, this is the first effort to formulate a QA model
for developing software systems based on component technologies. We further
propose a generic quality assessment environment for component-based soft-
ware systems: ComPARE. ComPARE is new in that it collects metrics of more
aspects for software systems, including process metrics, static code metrics,
and dynamic metrics for software components, integrates reliability assess-
ment models from different techniques used in current quality prediction area,
and validates these models against the failure data collected in real life. Com-
PARE can be used to assess real-life off-the-shelf components and to evaluate
and validate the models selected for their evaluation. The overall component-
based software system can then be composed and analyzed seamlessly. Com-
PARE can be an effective environment to promote component-based software
system construction with higher reliability evaluation and proper quality as-
surance.

Acknowledgement

The work described in this book chapter was supported by the following
projects:

• ”Open Component Foundation,” an Industry Support Fund project sup-
ported by the Hong Kong Industry Department (Project No. AF94/99).

• a grant from the Research Grants Council of the Hong Kong Special Ad-
ministrative Region (Project No. CUHK4360/02E).

• a strategic grant supported by the Chinese University of Hong Kong
(Project No. 4410001).

References

1. P. Vitharana, “Risks and challenges of component-based software development,”
Communications of the ACM, vol. 46, no. 8, pp. 67–72, 2003.

2. G. Pour, “Component-based software development approach: New opportuni-
ties and challenges,” in Proceedings of Technology of Object-Oriented Languages
Tools 26, Santa Barbara, California, Aug. 1998, pp. 375–383.

3. T. Ravichandran and M. A. Rothenberger, “Software reuse strategies and com-
ponent markets,” Communications of the ACM, vol. 46, no. 8, pp. 109–114,
2003.

4. A. W. Brown and K. C. Wallnau, “The current state of cbse,” IEEE Software,
vol. 15, no. 5, pp. 37–46, 1998.

5. S. S. Yau and B. Xia, “Object-oriented distributed component software develop-
ment based on corba,” in Proceedings of COMPSAC’98, Vienna, Austria, Aug.
1998, pp. 246–251.

34 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

6. G. Pour, “Enterprise javabeans, javabeans & xml expanding the possibilities for
web-based enterprise application development,” in Proceedings of Technology of
Object-Oriented Languages and Systems, Nancy, France, June 1999, pp. 282–291.

7. M. L. Griss, “Software reuse architecture, process, and organization for business
success,” in Proceedings of the Eighth Israeli Conference on Computer Systems
and Software Engineering, Dan Accadia, Herzliya, June 1997, pp. 86–98.

8. G. T. Heineman and W. T. C. (ed.), Component-Based Software Engineering:
Putting the Pieces Together. Reading, MA: Addison-Wesley, 2001.

9. (2000) The ibm website. [Online]. Available: http://www4.ibm.com/software/
ad/sanfrancisco

10. C. H. Schmauch, ISO9000 for Software Developers. Milwaukee, Wisconsin:
ASQC Quality Press, 1994.

11. A. A. Keshlaf and K. Hashim, “A model and prototype tool to manage software
risks,” in Proceedings of the First Asia-Pacific Conference on Quality Software,
Kowloon, Hong Kong, Oct. 2000, pp. 297–305.

12. M. R. Lyu, Ed., Handbook of Software Reliability Engineering. New York:
McGraw-Hill, 1996.

13. J. Voas and J. Payne, “Dependability certification of software components,” The
Journal of Systems and Software, vol. 52, no. 2-3, pp. 165–172, 2000.

14. N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures in a
complex software system,” IEEE Transactions on Software Engineering, vol. 26,
no. 8, pp. 797–814, 2000.

15. S. S. Gokhale and M. R. Lyu, “Regression tree modeling for the prediction of
software quality,” in Proceedings of the Third ISSAT International Conference
on Reliability and Quality in Design, Anaheim, California, Mar. 1997, pp. 31–36.

16. J. Munson and T. Khoshgoftaar, “The detection of fault-prone programs,” IEEE
Transactions on Software Engineering, vol. 18, no. 5, pp. 423–433, 1992.

17. A. A. Porter and R. W. Selby, “Empirically guided software development using
metric-based classification trees,” IEEE Software, vol. 7, no. 2, pp. 46–53, 1990.

18. L. C. Briand, V. R. Basili, and C. Hetmanski, “Developing interpretable models
for optimized set reduction for identifying high-risk software components,” IEEE
Transactions on Software Engineering, vol. 19, no. 11, pp. 1028–1034, 1993.

19. N. E. Fenton and M. Neil, “A critique of software defect prediction models,”
IEEE Transactions on Software Engineering, vol. 25, no. 5, pp. 675–689, 1999.

20. N. G. K. E. Emam, S. Benlarbi and S. N. Rai, “Comparing case-based reasoning
classifiers for predicting high risk software components,” The Journal of Systems
and Software, vol. 55, no. 3, pp. 301–320, 2001.

21. M. R. Lyu, J. S. Yu, E. Keramidas, and S. R. Dalal, “Armor: Analyzer for reduc-
ing module operational risk,” in Proceedings of Twenty-Fifth International Sym-
posium on Fault-Tolerant Computing (FTCS-25), Pasadena, California, June
1995, pp. 137–142.

22. D. J. Smith, Achieving Quality Software (Third Edition). Chapman & Hall,
1995.

23. W. Kozaczynski and G. Booch, “Component-based software engineering,” IEEE
Software, vol. 15, no. 5, pp. 34–36, 1998.

24. (2000) The omg website. [Online]. Available: OMG:http://www.omg.org/
corba/whatiscorba.html

25. (2000) The microsoft website. [Online]. Available: http://www.microsoft.com/
isapi

1 A Generic Environment for COTS Testing and Quality Prediction 35

26. Y. M. Wang, O. P. Damani, and W. J. Lee, “Reliability and availability issues in
distributed component object model (DCOM),” in Fourth International Work-
shop on Community Networking Proceedings, Atlanta,Georgia, Sept. 1997, pp.
59–63.

27. (2000) The sun website. [Online]. Available: http://developer.java.sun.com/
developer

28. G. Pour, M. Griss, and J. Favaro, “Making the transition to component-based
enterprise software development: Overcoming the obstacles - patterns for suc-
cess,” in Proceedings of Technology of Object-Oriented Languages and systems,
Nancy, France, June 1999, pp. 419–419.

29. C. Szyperski, Component Software: Beyond Object-Oriented Programming.
New York: Addison-Wesley, 1998.

30. S. M. Yacoub, B. Cukic, and H. H. Ammar, “A component-based approach
to reliability analysis of distributed systems,” in Proceedings of the 18th IEEE
Symposium on Reliable Distributed Systems, Lausanne, Switzerland, Oct. 1999,
pp. 158–167.

31. ——, “Scenario-based reliability analysis of component-based software,” in Pro-
ceedings of 10th International Symposium on Software Reliability Engineering,
Boca Raton,Florida, Nov. 1999, pp. 22–31.

32. J. Q. Ning, K. Miriyala, and W. Kozaczynski, “An architecture-driven, business-
specific, and component-based approach to software engineering,” in Proceedings
of Third International Conference on Software Reuse: Advances in Software
Reusability, Rio De Janeiro, Brazil, Nov. 1994, pp. 84–93.

33. M. goulao and F. B. e Abreu, “The quest for software components quality,” in
Proceedings of the 26th Annual International Computer Software and Applica-
tions Conference (COMPSAC’02), Oxford,England, Aug. 2002, pp. 313–318.

34. Y. Yu and B. W. Johnson, “A bbn approach to certifying the reliability of
cots software systems,” in Proceedings of Annual Reliability and Maintainability
Symposium, Tampa, Florida, Jan. 2003, pp. 19–24.

35. C. Rajaraman and M. R. Lyu, “Reliability and maintainability related software
coupling metrics in C++ programs,” in Proceedings 3rd IEEE International
Symposium on Software Reliability Engineering (ISSRE’92), North Carolina,
USA, Oct. 1992, pp. 303–311.

36. ——, “Some coupling measures for C++ programs,” in Proceedings of TOOLS
USA 92 Conference, Santa Barbara, California, Aug. 1992, pp. 225–234.

37. I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-Oriented
Software Engineering: A Use Case Driven Approach. Reading, MA: Addison-
Wesley, 1992.

38. M. R. Lyu, “Software reliability theory,” in Encyclopedia of Software Engineer-
ing, J. J. Marciniak, Ed. New York: Wiley, 2001.

39. F. Stallinger, A. Dorling, T. Rout, B. Henderson-Sellers, and B. Lefever, “Soft-
ware process improvement for component-based software engineering: An in-
troduction to the oospice project,” in Proceedings of the 28th EUROMICRO
Conference (EUROMICRO’02), Dortmund, Germany, Sept. 2002, pp. 318–323.

40. (2000) Hong kong productivity council. [Online]. Available: http://www.hkpc.
org/itd/servic11.htm

41. S. Beydeda and V. Gruhn, “Merging components and testing tools: The self-
testing cots components (stecc) strategy,” in Proceedings of the 29th EUROMI-
CRO Conference (EUROMICRO’03), Belek-Antalya, Turkey, Sept. 2003, pp.
107–114.

36 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

42. (2001) The metamata website. [Online]. Available: http://www.metamata.com
43. (2001) The klgroup website. [Online]. Available: http://www.klgroup.com
44. S. H. Kan, Metrics and Models in Software Quality Engineering (Second Edi-

tion). Reading, MA: Addison-Wesley, 2003.
45. S. Sedigh-Ali, A. Ghafoor, and R. A. Paul, “Metrics and models for cost and

quality of component-based software,” in Proceedings of the Sixth IEEE In-
ternational Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC’03), Hokkaido, Japan, May 2003, pp. 149–155.

46. T. Systa, Y. Ping, and H. Muller, “Analyzing java software by combining metrics
and program visualization,” in Proceedings of the Fourth European Software
Maintenance and Reengineering, Zurich, Switzerland, Mar. 2000, pp. 199–208.

47. J. D. Musa, Software Reliability Engineering. New York: McGraw-Hill, 1998.
48. (2001) The hugin expert website. [Online]. Available: http://www.hugin.com
49. G. Xing and M. R. Lyu, “Testing, reliability, and interoperability issues in the

corba programming paradigm,” in Proceedings of 1999 Asia-Pacific Software
Engineering Conference (APSEC’99), Takamatsu, Japan, Dec. 1999, pp. 530–
536.

