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Abstract

Reliability and fault correlation are two main
concerns for design diversity, yet empirical data
are limited in investigating these two. In previ-
ous work, we conducted a software project with
real-world application for investigation on soft-
ware testing and fault tolerance for design diver-
sity. Mutants were generated by injecting one sin-
gle real fault recorded in the software development
phase to the final versions. In this paper, we per-
form more analysis and experiments on these mu-
tants to evaluate and investigate the reliability fea-
tures in diverse software systems. We apply our
project data on two different reliability models and
estimate the reliability bounds for evaluation pur-
pose. We also parameterize fault correlations to
predict the reliability of various combinations of
versions, and compare three different fault-tolerant
software architectures.

1 Introduction

Design diversity is one of the main techniques
for software fault tolerance. This approach was
proposed to achieve quality and reliability of soft-
ware systems by detecting and tolerating software
faults during operation. Its basic idea is to employ
different development teams in building different
program versions independently according to one
single specification [14]. During program execu-
tions, the final consensus output is either voted
by multiple versions, or verified by an acceptance

test, which can be one of the program versions.
The multi-version programs are expected to fail
with low probability of coincident failures. Al-
though many research efforts have been conducted
for investigation, experimentation, modeling and
evaluation of software design diversity, it still re-
mains a debatable approach compared with other
software engineering techniques. One main reason
is the lack of real world project data on collect-
ing the features of design diversity; and the other
is the failures in diverse versions may not occur
independently, making it difficult to establish jus-
tifiable predictive reliability models.

Nevertheless, to attempt the modeling of reli-
ability and fault correlations achieved in design
diversity, some methods have been proposed. Eck-
hardt and Lee [9] proposed the first model of
fault correlation for diverse systems. Later Little-
wood and Miller [13] showed a conceptual model in
which the reliability of a pair of versions may even
be better than what is under the assumption of
independence. Dugan and Lyu [7] proposed a de-
pendability model for N-version programming to
parameterize the possibility of fault correlations.
Recently, Popov Strigini et al [17] further pointed
out that the bounds on the reliability of multiple-
version systems can be estimated by dividing the
demand space of the test cases into disjoint sub-
domains.

In our previous work, we have conducted a
software project with real-world application and
engaged multiple programming teams to inde-
pendently develop program versions based on an
industry-scale avionics application. We investi-



gated the features and relationship between faults
uncovered in the program versions. Mutants with
real faults injected have been examined to investi-
gate software testing and fault tolerance together
[16]. In this paper, we extend our previous work
to coincident faults in diverse programs. We ap-
ply different reliability models on our generated
mutants and evaluate their effectiveness.

This paper is organized as follows. In Section
2, we recall the different reliability models about
coincident failures in diverse software systems, as
well as the descriptions and experimental proce-
dures of our project. Section 3 shows the esti-
mation results on reliability bounds using Popov,
Strigini et al’s method [17]. Section 4 performs
dependability modeling [7] and provides the pa-
rameters of fault correlations for various combina-
tion of mutants. Finally, a conclusion is given in
Section 5.

2 Background

2.1 Reliability Models for Diverse Systems

With multiple “independently developed” pro-
gram versions, one would expect that failures in a
subset of the versions may be masked or at least
detected; coincident failures of all versions will be
less frequent than failures of any single version;
and thus a multiple-version system will fail less
often than a single version. One might hope that
the different versions fail “independently”, but in
some empirical studies failures of multiple versions
were positively correlated [3, 11]. Eckhardt and
Lee (EL model) [9] proposed a probability model
that attempts to capture the nature of failure de-
pendency in N-version programming. EL model
is based on the notion of “variation of difficulty”
over the demand space. Different parts of the de-
mand space present different degrees of difficulty,
which makes the program versions built indepen-
dently more likely to fail with the same “difficult”
parts of the target problem. Therefore, failure
independency between program versions may not
be the necessary result of “independent” develop-
ment when failure probability is averaged over all
demands. For most situations, a positive correla-

tion between version failures may inherit from a
randomly-chosen pair of program versions.

Littlewood and Miller (LM model) [13] showed,
on the other hand, that the variation of difficulty
could be turned from a disadvantage into a benefit
with forced design diversity. Forced diversity may
insist that different teams use different develop-
ment methods, different testing schemes, different
tools and languages [15]. With forced diversity,
the problem which is more difficult for one team
may be easier for another team, and vice versa.
The possibility of negative correlation between two
versions means that the reliability of a 1-out-of-2
system could be greater than it would be under the
assumption of independence. Both EL and LM
models are conceptual models because they do not
support predictions for specific systems and highly
depend on the notion of difficulty defined over the
possible demand space [17].

In addition to EL and LM models, some struc-
tural models for design diversity were also pro-
posed, such as [1, 4, 5, 6, 10, 20] to predict the
reliability of diverse systems. For example, Tomek
and Trivedi [21] proposed employing a stochastic
reward net for design diversity analysis. On the
other hand, [7] proposed a Markov reward model,
where the Markov states and transitions represent
the evolution of the system. Fault tree models are
used to capture the effects of software faults and
transient hardware faults together for each oper-
ation configuration. The fault tree model can be
parameterized using experimental data over test
cases and over test time frames, and probabilities
of unrelated faults and related faults between two
versions or common to all versions can be calcu-
lated from real data.

[17] studied how the conceptual model of fail-
ure generation can be applied to a specific set of
versions. This model estimates the probability of
failure on demand given the knowledge on sub-
domains in a 1-out-of-2 diverse system. Various
alternative estimates for probability of coincident
failures in the whole demand space as well as in its
subdomains are investigated. Upper bounds and
“likely” lower bounds for unreliability (probability
of failure per demand) are obtained by using data
from individual diverse versions. The proposed



methods are demonstrated on examples, showing
how bounds estimated via subdomains may be
tighter than those estimated on the whole demand
space.

These models try to describe the features of
fault correlation between different combination
of versions, and predict the reliability of diverse
systems. Empirical data are highly demanded
for evaluation and cross-validation the usefulness
and/or effectiveness of such reliability models.

2.2 Project Descriptions and Experimental Pro-
cedure

Motivated by the lack of empirical data, we con-
ducted a real-world project for design diversity in
the year 2002. The Redundant Strapped-Down
Inertial Measurement Unit (RSDIMU) project in-
volved more than one hundred students and 34
program versions were developed for a period of
12 weeks according to the same specification. The
details of the project and development procedures
are discussed in [16]. 21 out of the 34 versions were
selected to create mutants, each of which was in-
jected with a single fault identified in the testing
phase. Following a systematic rule for the mutant
creation process, 426 mutants were generated for
testing and evaluation.

To investigate the nature and features of soft-
ware failures, 1200 test cases were executed on
these program versions as well as the generated
mutants for evaluation test. Based on these re-
sults, a number of analysis and evaluations were
conducted, including fault classification and dis-
tribution, effectiveness of code coverage and mu-
tant coverage, and the similarities between differ-
ent mutants.

In this paper, we will further engage these test-
ing results and mutants to verify the effectiveness
and accuracy of different reliability models for di-
verse software systems.

3 Evaluation on Popov, Strigini et al’s
Reliability Bounds Model

Popov, Strigini et al’s model (PS model) [17]
gave the upper and “likely” lower bounds for prob-

ability of failures on demand for a 1-out-of-2 di-
verse system. To get these bounds, complete
knowledge on the whole demand space should be
provided. As it is hard to obtain such knowl-
edge, the demand space can be partitioned into
some disjoint subsets, which are called subdo-
mains. Given the knowledge on subdomains, fail-
ure probabilities of the whole system can be esti-
mated as a function of the subdomain to which a
demand belongs. The main idea is as follows.

For each subdomain Si (i = 1, · · · , n), we as-
sume that the following probabilities are known:
The probability P (Si) of a random demand during
software operation being drawn from Si and the
probabilities of failure (pfds) of A and B (PA,B|Si

)
for demands from Si, PA|Si

and PB|Si
. Then

PA,B|Si
= PA|Si

PB|Si
+ covi(ΩA, ΩB). (1)

The upper bound on the probability of system
failure is determined as a weighted sum of upper
bounds within subdomains:

P(A,B) ≤
∑

i

min (PA|Si
, PB|Si

)P (Si). (2)

The “likely” lower bound can be drawn from
the assumption of conditional independence:

PA,Bsub−ind
=

∑

i

PA|Si
PB|Si

P (Si), (3)

where PA,Bsub−ind
is the actual probability of co-

incident failures in each subdomain if the versions
fail independently.

Alternative expressions for PA,B as the pfd of a
1-out-of-2 version system are given in Figure 1.

This model can be applied to real-world data
collected for diverse software. The upper bound
and the lower bound can be estimated for applica-
tions using Point Estimate method or Confidence
Bounds method. In our experiment, we adopt
Point Estimate method to illustrate the modeling
results.

3.1 Prediction Results Using Our Data Set

In our experiment, we created 426 mutants from
21 program versions, where each mutant was in-
jected with one real fault into the final program



Table 1. Alternative expressions for the pfd of a 1-out-of-2 system (from [17])∑
x∈D

ωA(x) · ωB(x) · P (x)

PA · PB + cov(ΩA, ΩB)
(would be pfd in case
of independence)

(accounts for variation of score between individual demands)

PA · PB + cov(PA|Si
, PB|Si

) + E(covi(ΩA, ΩB))
(term for variation of
pfd between subdo-
mains)

(term for variation
of score within each
subdomain)∑

i
PA|Si

PB|Si
P (Si) + E(covi(ΩA, ΩB))

(pfd in case of independence in each subdomain)

PA,Bsub−ind + E(covi(ΩA, ΩB))

versions passing the qualification test. Note the
meaning of a mutant is different from that of a ver-
sion, in the sense that a mutant is not a real final
version but with faults injected manually. Here
we treat each mutant, which contains only one
real programming fault as a real version. From
the analysis of severity of different faults, we no-
tice that some faults can be more severe or even
critical for the whole program, while others may
have little influence on the program functionality.
In this experiment, we only engage those mutants
which passed the first 800 test cases 1 (as a qual-
ification test set) to study the failure correlation
of the diverse versions.

The RSDIMU application receives input values
from redundant sensors and produces a consensus
inertial measurement for avionic vehicles. The in-
put domain for RSDIMU can be represented by
various sensor failure conditions. In order to get
the disjoint subdomains on the demand space, we
follow the method described in [8] by dividing the
1200 test cases into 7 categories, i.e., S0,0, S0,1,
S1,0, S1,1, S2,0, S2,1 and “others.” These cate-
gories (or so-called “states”) denote different situ-
ations that the number of faulty sensors prior to or
during the measurement operations. For example,
S1,0, indicates the “state” of the environment with
a single faulty sensor prior to testing and no more
sensor failures during the testing. We add the 7th
state, i.e., “others” to denote the situations other

1Out of the 1200 test cases conducted during qualifi-
cation test, the first 800 test cases were designed to test
various functionality of the application, while the last 400
test cases were randomly generated according to real oper-
ational scenarios.

than the above 6 operational states. It represents
those test cases in which the whole RSDIMU sys-
tem would fail under some extreme circumstances.
Although it is indicated in [8] that such situation
has little chance of occurring in mission-critical di-
verse systems, we still consider it as a subdomain
of the total test cases due to the following reasons:
1) these seven disjoint subdomains compose the
whole demand space which cannot be fully repre-
sented with only six states; 2) for reliable systems,
the diverse versions need to react correctly to ex-
treme situations.

As stated, we use the first 800 test cases as the
qualification test. All the mutants which passed
the qualification test are adopted in this experi-
ment, and each mutant is treated as a single ver-
sion. We apply the remaining 400 test cases on
these selected mutants. The number of failures
of these mutants (belonging to different versions)
with respect to the states of test case are listed
in Table 2. Note that the six mutants are from
different initial versions with injection of different
design and programming faults.

To apply PS model, we define the hypothetical
demand profiles for calculation and illustrate the
effect of the demand profile on the upper bounds
and lower bounds. The adjusted demand profile is
shown in Table 3. The former three in Table 3 are
hypothetical demand files described in [17], while
the last one (DP4) is the real probability distribu-
tion in our 400 test cases. Furthermore, in order
to simulate the model more accurately and real-
istically, we select mutants belonging to different
program versions, e.g., pair (117,305), (215,382)
and (382,403). We adopt Demand Profile 4 in our



Table 2. Failure data of mutants passing qualification test
Mutant ID S0,0 S0,1 S1,0 S1,1 S2,0 S2,1 Sothers

117 0 0 0 0 0 0 3

215 0 0 0 1 0 0 0

223 0 0 0 0 0 0 3

305 2 1 2 0 0 0 0

382 0 0 0 8 0 0 1

403 0 0 0 0 0 0 3

analysis, which is the real probability distribution
in our experiment.

Table 3. Demand Profile
DP1 DP2 DP3 DP4

p(s0,0) 0.99 0.4 0.15 0.4
p(s0,1) 0.005 0.2 0.15 0.1175
p(s1,0) 0.003 0.2 0.15 0.14
p(s1,1) 0.001 0.1 0.15 0.085
p(s2,0) 0.0005 0.05 0.15 0.0825
p(s2,1) 0.0003 0.03 0.15 0.0275
pothers 0.0002 0.02 0.10 0.1475

In [17], Popov, Strigini et al discuss the use
of both observed frequencies and of conservative
confidence bounds as estimates of the conditional
pfds, and favour the second alternative. Partic-
ularly in our case, according to Table 2, no fail-
ure was observed in some subdomains. Thus we
adopt confidence bounds method to estimate the
joint pfds in our experiment. Table 4 shows the
90% confidence upper bounds on pfds of mutants
in subdomains, and Table 6 displays the lower
bounds. Our testing results for upper bounds and
lower bounds on joint pfds under four demand pro-
files are listed in Table 5 and Table 7, respectively.

3.2 Comparison and Discussion

The target objects engaged in our experiment
and NASA 4-university experiment studied in [17]
are different. In the latter, diverse versions are
employed to explore the granularity of failure cor-
relations between different pairs of versions. But
in our experiment, we treat mutants as the target
diverse versions, and we know the exact fault each
mutant contains. This is more helpful in finding
realistic features of faults and their coincidence in

diverse systems. Furthermore, to make the com-
parison more reasonable, we only test the mutants
passing the qualification test and then capture
their behavior in the subsequent operation test-
ing. For better realism, i.e., similarity with real-
world multiple-version systems, we select mutants
derived from different program versions.

The behavior of three pairs of mutants show
three different features of fault coincidence of de-
sign diversity. For pair (117, 305), the two mu-
tants fail differently on the seven subdomains. In
this case, P117,305upper is tighter (smaller) than
min(P117, P305) consistently for all demand pro-
files, although the difference between the two are
insignificant under DP1. The reason behind is
that the subdomains where mutant 117 performs
better are those where mutant 305 performs worse,
and vice versa, consistently. As the behavior of the
two mutants are different in all subdomains, the
covariance shown in Table 7 is a small positive
number under DP1, while negative in the other
three demand profiles. Thus the “likely” lower
bound P117,305sub ind10%

is greater than P117 ∗ P305

under DP1, but smaller under DP2, DP3 and
DP4.

For the second pair of mutants (215,382), the
covariance is positive under all demand profiles,
indicating that the two mutants have related faults
and may fail at the same subdomains. The upper
bound P215,382upper equals to min(P215, P382) un-
der all demand profiles, since mutant 382 performs
worse than mutant 215 in all subdomains. As the
correlation between the two mutants, the lower
bounds with 90% confidence are always tighter
(greater) than P215 ∗ P382 under all subdomains.
This positive covariance case supports the concept
of “variation of difficulty” between and within dif-
ferent demand subdomains.



Table 4. 90 percent confidence upper bounds on mutants’ pfds in subdomains
Mutant ID S0,0 S0,1 S1,0 S1,1 S2,0 S2,1 Sothers

117 0.0142 0.0468 0.0396 0.0637 0.0655 0.1746 0.1080

215 0.0142 0.0468 0.0396 0.1066 0.0655 0.1746 0.0376

223 0.0142 0.0468 0.0396 0.0637 0.0655 0.1746 0.1080

305 0.0327 0.0786 0.0907 0.0637 0.0655 0.1746 0.0376

382 0.0142 0.0468 0.0396 0.3446 0.0655 0.1746 0.0633

403 0.0142 0.0468 0.0396 0.0637 0.0655 0.1746 0.1080

Table 5. Upper bounds on the joint pfds under Demand Profiles
Pair P117 90% P305 90% min(P117 90%, P305 90%) P117,305upper90%

DP1 0.0146 0.0332 0.0146 0.0146
(117, DP2 0.0400 0.0626 0.0400 0.0386
305) DP3 0.0715 0.0796 0.0715 0.0644

DP4 0.0483 0.0562 0.0483 0.0379

P215 90% P382 90% min(P215 90%, P382 90%) P215,382upper90%

DP1 0.0146 0.0149 0.0146 0.0146
(215, DP2 0.0429 0.0672 0.0429 0.0429
382) DP3 0.0709 0.1091 0.0709 0.0709

DP4 0.0415 0.0656 0.0415 0.0415

P382 90% P403 90% min(P382 90%, P403 90%) P382,403upper90%

DP1 0.0149 0.0146 0.0146 0.0146
(382, DP2 0.0672 0.0400 0.0400 0.0391
403) DP3 0.1091 0.0715 0.0715 0.0670

DP4 0.0656 0.0483 0.0483 0.0417

The third pair (382,403) shows the possibility
of negative covariance on DP3 and DP4. The co-
variance is a small negative number, and thus the
lower bound is smaller than the probability under
independence scenario. It indicates that with de-
sign diversity, the covariance of different versions
may become a benefit instead of a disadvantage.
Nevertheless, as in [17], our data also show that
this situation is less likely to happen under DP1.
The reason behind may be that the two mutants
have correlations on some subdomains and no cor-
relation on other subdomains, i.e., they have co-
incident failures on Sothers, but no coincident fail-
ures on S1,1. In DP1, the probability of the “in-
dependence” subdomain S1,1 is a small number;
while in other three demand profiles, the proba-
bility of S1,1 is large enough to affect the overall
correlation and make the reliability even higher
than that of assuming “independence”.

In order to assess whether the approach pro-
posed in [17] is useful in practice, we need to an-
swer the following questions:

1. “Does this method always produce tighter

bounds than PA ∗ PB and min(PA, PB)?” From
the analysis and discussion above, we can see that
the confidence bounds are tighter under most cir-
cumstances except two situations: 1) one mutant
performs worse than the other in all subdomains;
and 2) with negative covariance, the lower bound
is smaller than the probability under independent
scenario.

2. “Does this method give tight enough predic-
tions when used in practice?” To this question, we
cannot give answers on the basis of our data, since
in our experiment probabilities of common failure
are measured directly from the number of common
failures observed. The original method in [17] is
meant for cases in which one can obtain estimates
of failure probabilities (per subdomain) for the two
versions separately, but does not have a chance of
observing the two versions on the same test cases
before making a prediction. Further experimen-
tal data are needed to be explored to answer this
question.

Overall, the approach proposed in [17] of an-
alyzing the behaviors of the versions by subdo-



Table 6. 90 percent confidence lower bounds on mutants’ pfds in subdomains
Mutant ID S0,0 S0,1 S1,0 S1,1 S2,0 S2,1 Sothers

117 0.00065 0.00219 0.00185 0.00301 0.00309 0.00874 0.02939

215 0.00065 0.00219 0.00185 0.01529 0.00309 0.00874 0.00175

223 0.00065 0.00219 0.00185 0.00301 0.00309 0.00874 0.02939

305 0.00686 0.01113 0.01949 0.00301 0.00309 0.00874 0.00175

382 0.00065 0.00219 0.00185 0.16154 0.00309 0.00874 0.00890

403 0.00065 0.00219 0.00185 0.00301 0.00309 0.00874 0.02939

Table 7. Lower bounds on the joint pfds under Demand Profiles
Pair P117 10% P305 10% cov(S117 10%, S305 10%) P117 10%P305 10% P117,305sub ind10%

DP1 6.73 · 10−4 6.91 · 10−3 3.86 · 10−8 4.65 · 10−6 4.69 · 10−6

(117, DP2 2.37 · 10−3 9.62 · 10−3 −4.26 · 10−6 2.28 · 10−5 1.86 · 10−5

305) DP3 5.87 · 10−3 8.02 · 10−3 −1.80 · 10−5 4.71 · 10−5 2.91 · 10−5

DP4 5.87 · 10−3 7.79 · 10−3 −2.47 · 10−5 4.57 · 10−5 2.09 · 10−5

P215 10% P382 10% cov(S215 10%, S382 10%) P215 10%P382 10% P215,382sub ind10%

DP1 6.80 · 10−4 8.27 · 10−4 2.39 · 10−6 5.26 · 10−7 2.95 · 10−6

(215, DP2 3.05 · 10−3 1.78 · 10−2 1.98 · 10−4 5.43 · 10−5 2.52 · 10−4

382) DP3 4.95 · 10−3 2.76 · 10−2 2.50 · 10−4 1.37 · 10−4 3.86 · 10−4

DP4 2.83 · 10−3 1.63 · 10−2 1.70 · 10−4 4.62 · 10−5 2.16 · 10−4

P382 10% P403 10% cov(S382 10%, S403 10%) P215 10%P382 10% P382,403sub ind10%

DP1 8.27 · 10−4 6.73 · 10−4 4.62 · 10−7 5.57 · 10−7 1.02 · 10−6

(382, DP2 1.78 · 10−2 2.37 · 10−3 1.61 · 10−5 4.23 · 10−5 5.84 · 10−5

403) DP3 2.76 · 10−2 5.87 · 10−3 −4.86 · 10−5 1.62 · 10−4 1.13 · 10−4

DP4 1.63 · 10−2 5.86 · 10−3 −1.16 · 10−5 9.56 · 10−5 8.40 · 10−5

mains appears to help, with our project data, in
revealing the features of failure correlation among
diverse programs.

4 Evaluation on Dugan and Lyu’s Sys-
tem Reliability Model

Dugan and Lyu (DL model) proposed a depend-
ability modeling methodology for fault-tolerant
software and systems [7]. The DL reliability model
is constructed by three parts: a Markov model de-
tails the system structure, and two fault trees rep-
resent the causes of unacceptable results in the ini-
tial configuration and in the reconfigured degraded
state. Based on this 3-level reliability model, three
parameters can be estimated according to the ex-
perimental data: PV , the probability of an unre-
lated fault in a version; PRV , the probability of
a related fault between two versions; and PRALL,
the probability of a related fault in all versions.
The fault tree models for 2, 3 and 4 version sys-
tems are shown in Figure 1. The three parame-
ters are calculated by the following equations for

3-version systems:

PV =
F1

NF0 + F1
, (4)

PRV =
2F2PV (1− PV )− (N − 1)F1P

2
V

2F2PV (1− PV ) + (N − 1)F1(1− P 2
V )

,

(5)

PRALL =
F3 − PV

3

1− PV
3 , (6)

where F1,F2 and F3 represent the observed fre-
quency of a single failure, two and three coincident
failures, respectively, in a 3-version configuration.

In order to verify the effectiveness and consis-
tency of DL model, we apply new data to this
model and compare our results with original re-
sults in [7]. In this experiment, we employ the
same six mutants passing the qualification test as
the target versions in this fault tree model and
their failure characteristics are investigated. The
400 operational test cases were executed on these



Figure 1. Fault tree models for 2, 3 and 4 version systems (from [7])

mutants and the failures encounter in each mu-
tant are shown in Table 8. We can see from Ta-
ble 8 that the average failure probability for single
version is 0.01, which is much smaller compared
with the original experimental data in [7]. It indi-
cates that the versions we used in this experiment
is more reliable. Moreover, the small failure fre-
quency does not affect the prediction accuracy in
terms of magnitude.

Table 8. failure Characteristics for individual
mutants

Mutant ID Number of failures Prob. By-case

117 3 0.0075

215 1 0.0025

223 3 0.0075

305 5 0.0125

382 9 0.0225

403 3 0.0075

Average 4 0.01

We configure the six mutants in pairs, and com-
pare their outputs for each test case. Table 9
yields an estimate of PV = 0.0084 for the proba-
bility of raising an unrelated failure in a 2-version
configuration, and an estimate PRV = 0.0016 for
the probability of a related failure.

Next, the six mutants are configured in sets of
three. Table 10 shows the number of times that
0, 1, 2 and 3 failures occurred in the 3-version

Table 9. failure Characteristics for 2-version
configurations

Category Number of cases Frequency

F0 - no failure 5890 0.9817
F1 - single failure 100 0.0167
F2 - two coincident 10 0.0017

Total 6000 1.0000

configuration. The data yields an estimate of
PV = 0.0071 for the probability of an indepen-
dent failure. The comparison between the pre-
dicted probability of 0, 1, 2 and 3 failures us-
ing independence model and observed frequency
are shown Table 11. Unlike the previous experi-
ment reported in [6], our data shows that the ob-
served frequency for two and three simultaneous
failures is higher than that of the independence
model. The data also yields the estimation of
PRV = 0.0013 for the probability of two related
failures, and PRALL = 0.0004 for the probability
of failures involving all three versions.

The mutants are then analyzed in combinations
of four programs. Table 12 shows the number of
times that 0, 1, 2, 3 and 4 failures occurring in
the 4-version configuration. The data yields an
estimate of PV = 0.0063 for the probability of an
independent failure. The comparison between the
predicted probability of 0, 1, 2, 3 and 4 failures
using independence model and observed frequency



Table 10. failure Characteristics for 3-version
configurations

Category Number of cases Frequency

F0 - no failure 7797 0.9746
F1 - single failure 169 0.0211
F2 - two coincident 31 0.0039
F3 - three coincident 3 0.0004

Total 8000 1.0000

Table 11. Comparison of independent model
with observed data for 3 versions

No. of failures Independent model Observed frequency

0 0.9786 0.9746
1 0.0213 0.0211
2 0.0002 0.0039
3 0 0.0004

are shown in Table 13. Just like 3-version configu-
ration, our data shows that the observed frequency
for three and four coincident failures is higher than
that of the independence model. The data also
yields the estimation of PRV = 0.0028 for the
probability of two related faults, and PRALL = 0
for the probability of coincident failures in all four
versions.

Table 12. failure Characteristics for 4-version
configurations

Category Number of cases Frequency

F0 - no failure 5811 0.9685
F1 - single failure 147 0.0245
F2 - two coincident 33 0.0055
F3 - three coincident 9 0.0015
F4 - four coincident 0 0.0000

Total 6000 1.0000

Table 14 summarizes the parameters estimated
from our data. The parameters are applied to the
fault tree model shown in Figure 1. The predicted
system failure probability using derived parame-
ters in the fault tree models agrees quite well with
the observed data, especially with the 2- and 3-
version configurations. For the 4-version configu-
ration, the predicted probability is close to zero
but the observed frequency is 0.0015. Our ex-

Table 13. Comparison of independent model
with observed data for 4 versions

No. of failures Independent model Observed frequency

0 0.9750 0.9685
1 0.0247 0.0245
2 0.0002 0.0055
3 0 0.0015
4 0 0

Table 14. Summary of parameter values de-
rived from our data

2-version model 3-version model 4-version model

PV = 0.0084 PV =0.0072 PV =0.0063
PRV = 0.0016 PRV = 0.0013 PRV =0.0028

PRALL= 0.0004 PRALL= 0

Predicted system failure probability (from the model)
0.0017 0.0045 0.000048

Predicted system failure probability (from the data)
0.0017 0.0043 0.0015

periment shows that the predicted system failure
probability from fault tree model is very close to
the observed values in most situations, except that
there is a gap between the two in 4-version model.
This should be further investigated to validate the
effectiveness and accuracy of the fault tree model.

Figure 2 compares the predicted reliability
of three different configurations, including 2-
version configuration for Distributed Recovery
Block (DRB) [18], 3-version configuration for N-
Version Programming (NVP) [2, 15], and 4-version
configuration for N-Self Checking Programming
(NSCP) [12]. We can see from our experiment that
DRB is the most reliable of the three to produce
a correct result, while NSCP is the least reliable.
Compared with the original experimental data in
[6], the prediction performance of the three con-
figurations in our experiment are consistent with
those in [6]. However, if we look into the first hun-
dreds of hours, the three configurations performs
differently, as shown Figure 3. Here NSCP depicts
higher reliability than DRB and NVP, although it
gives the least reliability in the long run.

Figure 4 compares the predicted safety of the
three systems. Here we assume that the decider
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Figure 2. Predicted reliability by different con-
figurations

used in the NVP and NSCP has a failure probabil-
ity of only 0.0001 and that for DRB has a failure
rate of 0.001 [7]. According to Figure 4, NSCP is
the most likely to produce a safe result, while DRB
are an order of magnitude less safe than NSCP.
This is also consistent with the original experi-
mental results in [7].

Overall, compared our project with former
project in [7], the reliability and safety perfor-
mance of DRB, NVP, NSCP shows consistency
of DL model with respect to our experimental
data. The discrepancy in the first hundreds of
hours may indicate dependence on operational do-
mains and needs further investigations. Further-
more, the above predictions are on the basis of
our primary data, some assumptions in [7] and
the fault tree modeling. To achieve more accu-
rate results, the information about the correlation
between successive executions should be included
[19].

5 Conclusion and Future Work

In this paper, we perform analysis and investi-
gation on reliability and fault correlation issues for
diverse software systems. We apply our RSDIMU
project data to evaluate the effectiveness and pre-
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Figure 3. Predicted reliability by different con-
figurations

diction accuracy of existing reliability models for
fault tolerant software. In our experiment, mu-
tants with real faults are engaged. 400 operational
test cases were executed on six mutants which
passed a qualification test to investigate the fault
correlation features between any pairs of mutants.

We first apply Popov, Strigini et al’s reliabil-
ity bounds model to locate the upper and lower
bounds for reliability of diverse programs. The re-
sults reveal that the confidence bounds are tighter
with our data in most situations. It verifies the hy-
pothesis of “variety of difficulties” on different de-
mand subdomains, and supports the effectiveness
of design diversity with small fraction of positive
fault correlations and existence of negative corre-
lations. Furthermore, we adopt Dugan and Lyu’s
dependability model to parameterize the reliabil-
ity of different configurations. The analysis shows
that NSCP is the least reliable but most safe ap-
proach among the three, while DRB inherits the
highest reliabililty but the lowest safety according
to our experimental data in the long run. The
discrepancies in the first hundreds of hours may
relate to the operational domain and needs fur-
ther investigation.

As our future work, we will further analyze the
prediction accuracy of these reliability and fault
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Figure 4. Predicted safety by different config-
urations

correlation models on design diversity. Other com-
prehensive models such as Tomek and Trivedi’s
model using stochastic reward nets will be param-
eterized and analyzed by our data set. Further
testing and verification will be explored on our
data set to collect more experimental results.
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