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Abstract—By imitating the way that heat flows in a medium diffusing from the initial unit heat source at positign Since
with a geometric structure, we propose two novel classification arbitrary initial conditions can be considered as a combination
algorithms, Non-propagating Heat Diffusion Classifier (NHDC) ot hegt sources with different intensities at different positions,

and Propagating Heat Diffusion Classifier (PHDC). In NHDC, . . .
an unlabelled data is classified into the class that diffuses the 85 & consequence of the linearity of the heat equation, the heat

most heat to the unlabelled data after one local diffusion from kernel can be used to generate the solution to the heat equation
time 0 to a small time period, while in PHDC, an unlabelled according to the following equation

data is classified into the class that diffuses the most heat to

the unlabelled data in the propagating effect of the heat flow

from time O to time ¢, whi(F:)h Eneans that in PHDC, the heat fz,t) = , Ki(z,y) fo(y)dy.

diffuses infinitely many times from time O and each time period M

is infinitely small. In other words, we measure the similarity The heat kernel,;(x,y) can be considered as a general-
between an unlabelled data and a class by the heat amount that jzation of Gaussian density. This is because that when the

the unlabelled data receives from the set of labelled data in the ; ; ; i ; ;
class, and then classify the unlabelled data into the class with underlying manifold is a flat n d|m§n5|0nal Euclidean space,
the heat kerneK:(x,y) has an explicit form

the most similarity. Unlike the traditional method, in which the
heat kernel is applied to a kernel-based classifier we employ o |z — yHQ
the heat kernel to construct the classifier directly; moreover, (47t)™ 2 exp(——F—), Q)
instead of imitating the way that the heat flows along a linear or 4t

nonlinear manifold, we let the heat flow along a graph formed which is the same as the Gaussian density. When the geometric
by the k-nearest neighbors. An important and special feature in - yanifold varies, the corresponding heat kernel varies and can

both NHDC and PHDC is that the kemel is not symmetric. We be considered as the generalization of Gaussian density from
show theoretically that PWA (Parzen Window Approach when 9 ty

the window function is a multivariate normal kernel) and KNN  flat Euclidean space to general manifold.
are actually special cases of NHDC model, and that PHDC has Some recent successful applications of heat kernel includes

the ability to approximate NHDC. Experimer_lts_ show that NHDC [1], [2] and [3]. In [1], the authors approximate the heat
performs better than PWA and KNN in prediction accuracy, and  yarnel for multinomial family in a closed form, from which
that PHDC performs better than NHDC. - . .
great improvements are obtained over the use of Gaussian or
l. INTRODUCTION linear kernels. In [2], the authors propose the use of discrete

_ ) ~__diffusion kernel to discrete or categorical data, and show that
The heat flow throughout a geometric manifold with initiaj,o simple diffusion kernel on the hypercube can result in

conditions can be described by the following second Ordﬁbod performance for such data. In [3], the authors employ

differential equation : heat kernel to construct weight of a neighborhood graph, and
af _ apply it to a non-linear dimensionality reduction algorithm.
L_Af = 0 -
£(z,0) = fola), Based on the successful applications of the heat kernel on

the classification problem, it is natural to explore the use of
where f(z,t) is the heat at location: at time ¢, beginning heat kernel in a wider area where the underlying geometry
with an initial distribution of heat given byfy(z) at time is unknown or its heat kernel cannot be approximated in the
zero. The heat or diffusion kerndl;(z,y) [1] is a special same way as in [1]. To achieve our goal, we represent the
solution to the heat equation with a special initial conditioanderlying geometry by a finite neighborhood graph, instead
called the delta functiod(x — y), which has the following of approximating the heat kernel in a given geometry. Then we
propertiesd(x —y) = 0 for = # y; ff;o d(x—y)dx = 1. The establish a heat diffusion model based on this graph, instead
delta functiond(z — y) in the heat diffusion setting has theof on the manifold.
physical meaning — it describes a unit heat source at positionThe remaining of the paper is organized as follows. In
y when there is no heat in other positions. Based on this, tBection I, we establish a heat diffusion model on the graph.
heat kernelK,(x,y) describes the heat distribution at time In Section Ill, we preseniNon-propagating Heat Diffusion



Classifier(NHDC) and in Secion IV, we establigtropagating
Heat Diffusion Classifie(PHDC). In Section V, we interpret f(At) = (I +aAtH)f(0). (5)
the model in more details. Then in Section VI, we descrlb

the connection between NHDC and other models, and t
connection between NHDC and PHDC. Moreover, we analy
the difference between the heat kernel proposed in [2] a
our heat kernel. In Section VII, we show and discuss o
experimental results and conclusions. Section VIII provid
the conclusion.

(5) is one closed form solution to Eq. (2) in the setting
fnon -propagating heat diffusion, where it describes the heat
H@trlbutlon after a time period oA¢ from time 0.
Next, we try to find another closed form solution to Eg.
) in the setting of propagating heat diffusion. In the limit
— 0, Eq. (3) becomes

Il. HEAT DIFFUSION MODEL ON GRAPH %f(t) =aHf(t), (6)

First we give our notation for the heat diffusion model o
graph. Consider a directed weighted gragh= (V, E, W),
whereV = {v1,vs,...,v,}, E = {(v;,v;) |there is an edge  otH _ NH
from v; to v;} is the set of all edges, and” = (w;;) is the f(8) = 71 (0) = e £(0), 0
weight matrix. Different from the normal undirected weigheavherey = at, ande?? is defined as
graph, the edgév;, v;) is considered as a pipe that connects to
nodes: and j, and the weighty;; is considered as the length O =+ ~H+
of the pipe(v;, v;). The valuef;(t) describes the heat at node 2! 3!
i at timet, beginning from an initial distribution of heat givenThe matrixe?! is called agpropagating diffusion kernéh the
by fo(i) at time zero. sense that the heat diffusion process continues infinitely many

We establish our model as follows. Suppose, at thmeach times after the nodes diffuse their heat to their neighbors for
nodei receivesM (i, j, t, At) amount of heat from its neighborthe first time.

J during a period ofAt. The heatM (i, j, t, At) should be  Eq. (7) is the solution to Eq. (2) when we consider prop-
proportional to the time period\t and the heat difference agating heat diffusion. It has a natural property as shown in
fj(t) — fi(t). Moreover, the heat flows from nodeto node the following theorem.

i through the pipe that connects nodeand j, and therefore  Theorem 1:The solution in Eq. (7) has the property of heat

the heat diffuses in the pipe in the same way as it does greserving.

the m-dimensional Euclidean space as described in Eq. (1).Based on the two closed form solutions Eq. (5) and Eq. (7),
Based on th|s consideration, we assume thdt, j, t, At) = we establish two different classifiers in the next two sections.

o-exp(—— —55)(f;(t)— fi(t)) At. As aresult, the heat difference
at node: between time + At and timet will be equal to the

sum of the heat that it receives from all its neighbors. This js ASSUme that there are classes, namely;, Cs, ..., C..
formulated as Let the labelled data set containg samples, represented by

(Xi, ki) (i =1,2,..., M), which means that the data poixt
belongs to clasa;j'ki. Suppose the labelled data set contains
t+ At) — a-exn(— 2 (t))At Mj points in clasg’y, so thatd >, M), = M. Let an unlabelled
fitt+ Z p( ﬂ )(fj( )= H() data set containd’ unlabelled samples, representedxpy: =
2 M+1,M+2,....,M+N).
Note that whenf;(t) > f;(t), nodei receives a negative We first employ the neighborhood construction algorithm
amount of heat, i.e., it sends out a positive amount of heatcommonly used in the literature, for example in [3], [4], [5]
To find a closed form solution to Eq. (2), we express it eénd [6], to form a graph for all the data. Then we apply the
a matrix form; non-propagating heat diffusion kernel to the graphs. For the
purpose of classification, for each claSg in turn, we set the
f(t+ At) — f(2) — aHf(1) 3) initial heat at the labelled data in clags to be one and all
At ’ other data to be zero, then calculate the amount of heat that
where H = (H,;), and each unlabelled data receives from the labelled data in class
Cy. Finally, we assign the unlabelled data to the class from
=D ki, B exp(— Bk ), i=14; which it receives most heat. More specifically, we describe the
H;j = exp(— ”) (j,i) € E; (4) resulting non-propagating Heat Diffusion-Based Classifier as
0 o ot,herwise follows.
’ [Step 1: Construct neighborhood graph]Define graph
The matrixH is called amon-propagating diffusion kernéh  over all data points both in the training data set and in the
the sense that the heat diffusion process stops after the naai@labelled data set by connecting poirfsandx; from x; to
diffuse their heat to their neighbors. Let= 0, Eq. (3) can be x; if X; is one of theK nearest neighbors of; measured by
rewritten as the Euclidean distance. Lek(i, j) be the Euclidean distance

Iéolving Eq. (6), we get

|H2+ 'H3+ (8)

I1l. N ON-PROPAGATINGHEAT DIFFUSION CLASSIFIER
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between poink; and pointx;. Set edge weightv;; equal to
d(i, j) if x; is one of theK nearest neighbors of;, and set
n=M+ N.
[Step 2: Compute the Non-propagating Heat Kernel]
Using Eq. (4), get the Non-propagating Heat Kerhkl
[Step 3: Compute the Heat Distribution] Let

fk(O) = (a:’f,x;",...,mﬁI,O,O,...,O)T,
———
N

_ k _ H _ k __ i
k=1,2,....¢ Wherexi =1if Ck?i = Ck, zy =0 otherwise. Fig. 2. Non-propagating Heat Diffusion Result on the Neighborhood Graph
Then we obtainc results for f(At), namely, f*(At) =

Hfk0), k=1,2,...,c
By Eq. (5), f*(At) should be equal t8/ + aAtH) f*(0), Similarly Figure 3 shows the result of non-propagating heat
but the identity matrix/ and the constanttAt have no flow when the initial heat is 1 at nodes in class 2 and O at
effect on the classifier introduced in Step 4, so we simpbther nodes.
let f&(At) = Hf*(0). f£(0) means that all the data points
in classC) have a unit heat at the initial time while other
data points have no heat, and the corresponding ré¢§(ls)
means that the heat distribution at tim& is caused by the
initial heat distributionf* (0).
[Step 4: Classify the data] For [ = 1,2,...,N,
compare thepth (p = M 4+ [) components of
LAY, f2(At), ..., f¢(At), and choose clas§, such that
fE(At) = max¢_, fI(At), i.e., choose the class that dis-
tributes the most heat to the unlabelled datathen classify
the unlabelled data, to classCy.
In Figure 1, we illustrate a neighborhood graph, in whichig. 3. Non-propagating Heat Diffusion Result on the Neighborhood Graph
three cases are represented by circle and labelled as class 1,

two cases are represented by square and labelled as class £he ynlabelled data (triangle) receives heat both from nodes
and one case is represented by a triangle and is unlabellgdclass 1 and nodes in class 2. According to Step 4, we
According to Step 1, there is an edge fromto x; if X; IS ¢lassify the unlabelled data as the class from which it receives
one of theK™ nearest neighbors of,, and hence the in-degreethe most heat. Through comparison the amount of heat in the
of each node ig<. In the graph in Figure 1i{' is set to be 2. trjangle in Figure 2 and Figure 3, we classify the unlabelled

data to class 2.

In this non-propagating heat diffusion classifier (NHDC),
we only consider the heat flow in a small time period, and
heat diffuses only once during such a period. We have two
free parameters in NHDCK and 3. In the next section, we
consider the propagating effect of infinitely many times of
heat flow: The heat diffuses to its neighbors first, then these
neighbors diffuse the heat further to their own neighbors. This
process continues until an appropriate titnis reached.

IV. PROPAGATING HEAT DIFFUSION CLASSIFIER

Fig. 1. Neighborhood Graph In this classifier, we replace the non-propagating heat dif-
fusion kernel H with the propagating heat diffusion kernel
Figure 2 shows how heat flows from one node to anothet”. Consequently, the algorithm in Section Il changes to
node when the initial heat is 1 at nodes in class 1 and 0 at othiee following.
nodes. A node diffuses heat only to its successors througHStep 1: Construct neighborhood graph] The same as
the directed edge. As a result of the non-propagating he#tep 1 in Section Ill.
diffusion, one square receives heat, represented by two smalStep 2: Compute the Propagating Heat Kernel]Using
circles, from its two circle predecessors; one square recei&s. (4) and Eq. (8), get the Heat Kernel” .
heat, represented by one small circle, from its one circle prede{Step 3: Compute the Heat Distribution] f*(0) is the
cessor; the unlabelled data (triangle) receives heat, represes@tie as Step 3 in Section Ill. Using Eq. (7), we obtain
by one small circle, from its one circle predecessor. results for f(t), namely, f(¢) = e f*(0), k = 1,2,...,c.



[Step 4: Classify the data]For! = 1,2,..., N, compare points and data points with labél In such case, Step

the p-th (p = M + ) components off*(t), f2(t),..., f¢(t), 3 and Step 4 need to be changed correspondingly.
and choose clas€’, such thatf¥(t) = max¢_, fi(t), i.e.,
choose the class that distributes the most heat to the unlabelled V. INTERPRETATION

datax, from time O to timet, then classify the unlabelled data | section II, we assume that the heat diffuses in the pipe

Xy to classC. ] __in the same way as it does in the-dimensional Euclidean
Since we consider the propagating effect of heat dlﬁUSlogpace_ Next we will justify this assumption.

this classifier is called Propagating Heat Diffusion Classifier |; ;s out [3] that in an appropriate coordinate system
(PHDC). We have three free parameters in AHDBGC: 5 and K,(z,y) on a manifold is approximately the Gaussian:

Y.
Different from NHDC, after the first heat diffusion, the hea% llz — yl|?

will continue to diffuse in PHDC. The second heat diffusion t(@,y) = (4mt) ™= exp(~ At )(@(z,y) + O(1)),

is based on the result of the first diffusion, which is roughI%here(b(x y) is a smooth function withs(z, z) — 1 andO(?)

: : 2o . ?épresents an ignorable term wheis small. Therefore when
amount of heat transmltted_m the_ second dlffuglor?, which m%yandy are close and is small, we have
directly come from data (circle) in class 1 or indirectly from
data (square) in class 2. The tiny squares have similar meaning.
For example, there are two tiny circles in the left-lowest large

square. They are the results of the second diffusion: One tiﬁgr more details, see [3] and [7].
circle is transmitted indirectly from the small circle in the In our graph Fleat diffusion model in Section II. we first

right large _triangle, and_ the other tiny Cir.de is d_irectly frOrT}:onsider the heat flow in a small time peridd, and the pipe
the large circle in the middle. When the time peridd tends length between nodé and nodej is small (recall that only

to zero and in fact our model acts this way, there is infiniteb(,henj is one of thek” nearest neighbors, we create an edge
many timest/At of heat diffusion from time 0 to time. from j to 7). So the above approximation can be used in our
model, and we rewrite it as follows:

m 1’ —_— 9 2
Kt(177y) ~ (47’#)77 GXp(fw).

4t

# exp(— ) (©)
exp 4At .
According to the Mean-Value Theorem and the fact that

Ky(i,7) = 0, we have

Ka(i,j) = (4rAt)~

KAt(i7j) = KAt(Zvj)_KO(Z7])
_ dKa(i,5)
— ) g

2

SR exp(—zg )AL,

where the last approximation is based on Eqg. (9)is a
parameter that depends akt, and a = iw%ﬁ‘mﬂ‘? —
imB~™/2~1. To make our model concise; and 3 simply
serve as free parameters that unrelated\toand w;;. This
explains why we assume thg\t the at timeach node receives
M(i, j,t, At) = « - exp(—=5)(f;(t) — fi(t))At amount of
heat from its neighboy.

VI. CONNECTIONS WITHOTHER MODELS AND RELATED
WORK

Fig. 5. Second Heat Diffusion Result on the Neighborhood Graph

Remark In Step 1, we construct only one graph over both In this section, we establish connections between NHDC
labelled data and unlabelled data by the method'afiearest and other models, and connection between NHDC and PHDC.

neighbors. There are many variants in this step: We show that PWA (Parzen Window Approach [8] when the
1) We can construct the graph by other methods such wsdow function is a multivariate normal kernel) and KNN
e-neighborhood. (K -Nearest-Neighbors) are actually special cases of NHDC,

2) We can construct graphs: For each clags; in turn, and that PHDC can approximate NHDC. Finally, we compare
construct graph by connecting all the unlabelled dataur heat kernel with those in the related work.



A. NHDC and Parzen Window Approach

point x,,. Note that whenV = 1, i.e., when the number of

First we review the Parzen Windows non-parametric methlabelled data is equal to onk,;_, K, = K. According to
for density estimation, using Gaussian kernels. When the kéf€P 4, we will classify the unlabelled data to the class’y
nel functionH (u) is a multivariate normal kernel, a commorsuch thatf;(At) = K is the maximal among alfg(At) =
choice for the window function, the estimate of the density &tq- This is exactly what KNN does, and so KNN can be

the pointz is
N 1 M

1 [Ix — x| |2
X) = — —_—
p(x) i

Z; (277]12)(1/2 exp(— 242 ) (10)

When applying it for classification, we need to construct the
classifier through the use of Bayes’s theorem. This involves
modelling the class-conditional densities for each class sepa-

considered as a special case of NHDC (wheaands to infinity
and N =1).

C. NHDC and PHDC

When the parametey is small, we can approximate'”

IN. Eq. (8) by its first two items, i.e.,

e ~ 4+ ~H, (15)

rately, and then combining them with priors to give models for
the posterior probabilities which can then be engaged to maken in PHDC, f*(t) = e f%(0) ~ f*(0) + vH f*(0). As
classification decisions [8]. The class-conditional densities ftite constanty and the first itemf*(0) impose no effect on

classC), can be obtained by extending Eq. (10):

Pdc) = Y e X XIE) g
PRV =00, 2= an2)iz P gpr 7
1:Ck, =Ch

while the priors can be estimated usifigCy) = 4%. Using
Bayes’ theorem, we get

~ X=X;|2

p(Crlx) = Mp(X)(éwhz)de ,CZC eXP(_H QhQH )- (12)

i:Ck, =Ch

the classifier, PHDC possesses a similar classification ability
in this case as NHDC, in whiclf*(At) = Hf*(0). This
denotes the relation between NHDC and PHDC.

D. Related Work

The success in [1] is achieved partly because of the spe-
ciality of the geometry in the problem. For most geometries,
however, there is no closed form solution for the heat kernel.
Even worse, in most cases, the underlying geometry structure
is unknown. In such cases, it is impossible to construct the heat

If K =n — 1, then the graph constructed in Step 1 will bd&ernel for the geometry in a closed form. In contrast, there is

a complete graph, and the matix in Eq. (4) becomes

2
_ Wi

*Zk#fXP( 8 ), =1
exp(——4), J#i
Then, in NHDC, the heatf¥(At) that unlabelled data,

receives from the data points in claég will be equal to
i —c, exD(—|1x, = xi[[*/), which is the Eq. (12) if we

H,

iy =

(13)

always a closed form solution — a heat kernel for the graph
that approximates the geometry in our model. In [1] and [2],
heat kernel is applied to a large margin classifier; in contrast,
our kernel is employed directly to construct a classifier.

It is worthy to make a theoretical comparison between the
heat kernel in our model and that in [2] because it is impossible
to make an empirical comparison between them (as shown
below in the second item, their applications are different), and

let v = 1/Mp(x)(2rh?)%2, and 3 = 2h%. This means that because our heat kernel shows the same appearaficas
Parzen Window Approach when the window function is Ehatin [2]. We list below the major differences between them:
multivariate normal kernel can be considered as a special cas¢) When the graph is symmetric angl tends to infinity,

of NHDC (when we letK = n — 1 in NHDC).

B. NHDC and KNN

If 3 tends to infinity, therexp(
the matrix H in Eq. (4) becomes

2
_ U)ij

) will tend to one, and

-Ki, j=4
Hj;=4¢ 1, X; is one of theK nearest neighbors of;;
0, otherwise

(14)

Here K, is the outdegree of the poirf (note that the indegree

of the pointx; is K). Then, in NHDC, the heaf!(At) that
unlabelled datar, receives from the data points in clag
will be equal to

A= Y 1 =K,

i:li:Cq

where K, is the number of the labelled data points from class
C,, which are theK nearest neighbors of the unlabelled data

the matrix ¥ and the heat kernel™ in our model take
the same form as that in [2].

Our classifier is mainly concerned with the real-valued
data, while the proposed classifier in [2] aims at cate-
gorical data in their experiments.

Our graph is constructed by thE nearest neighbors

in order to approximate the discrete structure of the
unknown manifold, while in [2], for each attribute,
a graph is constructed by a hypercube, and then the
final diffusion kernel is the product of each individual
diffusion kernel.

Our model is created by the imitation of the non-
propagating heat diffusion and the propagating effect of
the local heat diffusion. The heat flow in the pipe be-
haves in the way of locality, and thus it can approximate
the heat kernel in the Euclidean space because the time
period and the pipe length are small. However, in [2],
there is no such consideration.

2)

3)

4)



5) Limited to narrow applications, the kernel in [2] must
satisfy two mathematical requirements to be able to
serve as a kernel: It must be symmetric and positive

TABLE Il
PARAMETERS SETTING OFPWA KNN NHDC anD PHDC

semi-definite. In contrast, without the limitation of being

applied to a kernel-based classifier, our heat kernel is no

necessarily symmetric and positive semi-definite.

Nevertheless, it is interesting to combine these two models

by considering the cases when there are both continuou

attributes and categorical attributes in the data set. Besideg

it is a challenge to apply our heat kernel to a kernel-based
classifier when the kernel is not symmetric. These deserve
further investigations, but are outside the scope of this paper.

VIl. EXPERIMENTS

The Parzen Window Approach (PWA), KNN, NHDC and
PHDC are applied to six datasets from the UCI Repository.

Table | describes the datasets we use. The first column refers

to the names of the datasets, the second column refers to th
number of cases in each dataset, the third column refers to
the number of classes, and the fourth column is the number
is the number of attributes. In the dataset Credit-g, we only
consider the seven continuous attributes while the thirteen

dataset PWA | KNN NHDC PHDC
/B | K [[K[1/B | K[1/8] ~
Credit-g 50 31 13 0 11 0 0.02
Diabetes 300 34 33 50 34 [ 150 | 0.05
Glass 7500 3 40 | 1750 || 38 | 1500 | 0.27
Iris 350 7 15 0 13 50 0.47
8 Sonar 1150 3 24 | 1650 || 24 | 1200 | 0.41
3, Vehicle 650 10 [} 350 10 | 600 | 0.11
TABLE Il
MEAN ERROR RATES OFPWA KNN NHDC AnD PHDC
dataset PWA(%) | KNN(%) | NHDC(%) | PHDC (%)
Credit-g 27.65 24.41 23.90 23.94
Diabetes 25.04 24.22 23.70 23.78
Glass 28.44 29.36 27.01 26.88
Iris 2.93 2.64 2.64 2.21
Sonar 11.72 17.14 11.25 10.93
Vehicle 27.55 28.59 27.10 27.07
Average 20.56 21.06 19.26 19.14

discrete attributes are ignored. avoid the difficulty of finding a closed form heat kernel for
some complicated geometries. Moreover, our solution to heat
equation has the property of heat preserving, but our heat
kernel is not symmetric and positive definite.

While NHDC is a generalization of both Parzen Window

TABLE |
DESCRIPTION OF THEDATASETS

dataset | Cases| Classes| Aftributes Approach (when the window function is a multivariate normal
Credit-g 1000 2 7 . .

Diabetes | 768 > 8 kgrnel) and KNN, PHDC can approximate NHDC if parameter
Glass 214 6 9 ~ is small. Both NHDC and PHDC are proven to be efficient
Iris 150 3 4 in our experiments.

Sonar 208 2 60

Vehicle | 846 4 18 ACKNOWLEDGMENTS
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validations, and the last row in Table Ill shows the averadd
results.

The experimental results show that NHDC uniformly out3]
performs PWA and KNN in accuracy, indicating the supe-
riority of our approach. Furthermore, PHDC improves ovgj
NHDC.

(5]
VIIl. CONCLUSION

We have presented two classifiers NHDC and PHDC kyy
imitating the way that heat flows in a medium with a geometric
structure. By approximating the manifold by th€ nearest 7]
neighbors graph, we can avoid the difficulty of finding thé
explicit expression for the unknown geometry in most case8]
By establishing the heat diffusion equation on the graph, we

existence to David Aha and Patrick Murphy.
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