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Abstract—In this paper, we present a fusion approach to solve the nonrigid shape recovery problem, which takes advantage of both the

appearance information and the local features. We have two major contributions. First, we propose a novel progressive finite Newton

optimization scheme for the feature-based nonrigid surface detection problem, which is reduced to only solving a set of linear equations.

The key is to formulate the nonrigid surface detection as an unconstrained quadratic optimization problem which has a closed-form

solution for a given set of observations. Second, we propose a deformable Lucas-Kanade algorithm which triangulates the template

image into small patches and constrains the deformation through the second order derivatives of the mesh vertices. We formulate it

into a sparse regularized least squares problem, which is able to reduce the computational cost and the memory requirement. The

inverse compositional algorithm is applied to efficiently solve the optimization problem. We have conducted extensive experiments

for performance evaluation on various environments, whose promising results show that the proposed algorithm is both efficient and

effective.

Index Terms—Image processing and computer vision, nonrigid detection, real-time deformable registration, nonrigid augmented reality,

medical image registration
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1 INTRODUCTION

Recovering nonrigid shapes is an interesting and beneficial

research problem for computer vision and image analysis [1],

[2], [3]. An effective nonrigid shape recovery technique can be

applied in a variety of applications for digital entertainment,

medical imaging [2] and augmented reality, such as the re-

texturing of images and videos [4], [5], [6], [7].

Nonrigid shape recovery can usually be regarded as the

problem of recovering the explicit surface with a few deforma-

tion parameters. In contrast to nonrigid shape recovery, non-

rigid surface detection [8] does not require any initialization

or a priori pose information. Furthermore, the goal of nonrigid

surface detection is to extract the deformable shape’s structure

from an input image and find out the correct correspondences

from noisy data automatically.

Many applications have been investigated for deformable

object tracking [9], [10], [11] and registration, such as face

tracking and modelling [12], [13], [14], [15], and also more

generic and more deformable objects [2]. The major problem

of these methods is that they tend to be computationally

expensive and mainly aim at object recognition and image

segmentation tasks rather than nonrigid shape recovery. How-

ever, a real-time and automated solution has recently been

proposed [8], [16], which takes advantage of an iterative semi-
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implicit optimization scheme.

Since the nonrigid shape is usually highly dynamic and

represented by many deformation parameters, the nonrigid

shape recovery problem is far more complex than the rigid

object detection. Moreover, it requires a sufficient number of

correct correspondences in order to obtain high registration

accuracy. Therefore, it is difficult to directly employ a robust

estimator used in the rigid object pose estimation, such as

RANSAC [17] or Hough transform [18], to remove the spu-

rious matches for nonrigid surface detection. An alternative

strategy is to iteratively solve for both the correspondence and

the transformation [19], [20]. However, these methods tend to

be computationally expensive, and few of them can be applied

to point sets extracted from real images; an exception is the

most recent part-based approach [21].

Most of the current nonrigid shape recovery methods can

be divided into two categories. The first is dependent on

local feature correspondences [8], [22]. The second is based

on the appearance, which directly minimizes the residual

image between the synthesized template image and the input

image [12], [13], [23]. As for the feature-based methods, it is

difficult to guarantee the registration accuracy in regions lack-

ing texture. On the other hand, the appearance-based approach

can exploit more of the texture information, and therefore

achieves better registration accuracy. However, it tends to be

computationally expensive and requires good initialization to

avoid the local optima, and only a few automated solutions

have been proposed in the literature. Since both the feature

and appearance based methods have limitations, there is a

need for an automated method which can make use of both

the appearance information and the local features.

In this paper, we propose a novel automated approach to

efficiently handle the nonrigid shape recovery problem, as

shown in Fig. 1. Also, the proposed fusion approach is able
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(a) Starbucks pad (b) T-shirt (c) Cover (d) Paper

Fig. 1. Recovering nonrigid shapes in real-time video (a-d). (a) The contour is overlaid on the Starbucks pad. (b)
T-shirt. (c) The cover of a magazine. (d) A piece of paper.

to take advantage of both the appearance information and the

local features.

Our first major contribution is the proposed progressive

finite Newton optimization scheme for nonrigid surface detec-

tion, which has the advantage of solving only a fixed number

of linear equations. The previous method [8] is currently gen-

erally accepted as the most effective methods of solving this

kind of problem. It employs an implicit iterative scheme for the

first order partial differential equation; however, this requires a

large number of iterations to solve the problem and remove the

outliers simultaneously. We tackle this critical problem from

two angles. First, the nonrigid surface detection is formulated

as an unconstrained quadratic optimization problem, which has

a closed-form solution for a given set of observations. Thus,

it can be efficiently solved through LU factorization. Then, a

progressive sample [24] scheme is employed to initialize the

optimization scheme, which can decrease the number of trials

significantly. Therefore, the present approach requires much

fewer iterations than the semi-implicit iterative optimization

scheme [16].

Our second contribution is the proposed deformable Lucas-

Kanade algorithm, which triangulates the template image

into small patches and preserves the regularity of the mesh

through the second order derivatives of the mesh vertices.

Moreover, the optimization of our proposed deformable Lucas-

Kanade algorithm is formulated into a sparse regularized least

squares problem, which is able to reduce the computational

cost and the memory requirement. The inverse compositional

algorithm [25] is applied to efficiently solve the optimization

problem. Furthermore, we solve the optimization for our

fusion approach with a modified deformable Lucas-Kanade

algorithm.

The rest of this paper is organized as follows. Section 2

reviews the previous approaches employed for the nonrigid

surface detection and recovery. In Section 3, we present

the proposed fusing features and appearance approach for

nonrigid shape recovery. Section 4 provides the details of our

experimental implementation and describes our experimental

results. We discuss limitations and future work in Section 5.

Section 6 sets out our conclusion.

2 RELATED WORK

Considerable research effort has been devoted to nonrigid

shape recovery problems in the computer vision and image

analysis domain [1], [2], [7], [12]. However, only a few

approaches are automatic and can achieve real-time results.

In a recent study, the repeating properties of a near regular

texture were exploited to track new texture tiles in video

frames [26]. Well-designed markers widely used in motion

capture are also applied to recover the structure of a nonrigid

surface, such as cloth and paper [6], [7]. As these methods

rely on the physical markers, they require the placing of pre-

defined patterns on the target surface. Nevertheless, they are

capable of high accuracy.

In fact, a large number of the appearance-based meth-

ods [12], [15], [23] can be viewed as extensions of the

original Lucas-Kanade algorithm [25] which has been one of

the most widely used techniques in computer vision. These

approaches directly minimize the residual image between the

input image and the synthesized model image [12], [27]. An

inverse compositional method [25] has recently been proposed

to efficiently solve the optimization problem in the Lucas-

Kanade algorithm, reducing the computational cost by pre-

computing the Hessian matrix. In [28], a feature-driven method

is described to make use of the compositional algorithms for

the parametric warps. In addition, optical flow information [2],

[15] can be incorporated into the optimization scheme to

obtain better results. The major limitation of these methods

is that they tend to become stuck at a local minimum and

hence require good initialization.

On the other hand, feature-based methods [8], [19], [29]

try to find out the transformation from the correspondences

built by feature matching methods. Thus, these methods can

benefit from the recent advances in the feature detection and

matching. In [8], [16], J. Pilet et al. proposed an iterative

approach to attack the nonrigid surface detection problem.

Physical constraints based on the Finite Element Model [3] are

employed for regularization. A semi-implicit iterative scheme

is proposed to solve the optimization problem.

The feature matching algorithm plays a very important

role for the feature-based nonrigid surface recovery method.

Recently, several sophisticated feature descriptors [30], [31]

have been proposed to handle the wide-baseline matching

problem, including images with large deformation [32]. In

addition, machine learning methods, such as random classi-

fication trees [33], are also employed to find the point cor-

respondences. These methods can take advantage of shifting

part of the computational load from the matching phase to the
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training phase.

It is more complex to handle a large amount of deformation

parameters for detecting the nonrigid surface rather than only

a few pose parameters used in rigid object detection. There-

fore, there are several challenges when applying conventional

robust estimators, such as RANSAC and M-estimator, for the

nonrigid surface detection task. One is the lack of a concise

function which can estimate the deformed mesh from the

correspondences directly. Obviously, the semi-implicit iterative

approach [8] is not efficient enough to deal with this problem.

Another challenge is that the RANSAC-based approach re-

quires a large number of trials. To the best of our knowledge,

there is still a lack of criteria for selecting the number

of samples for each trial in nonrigid surface detection. We

tackle the initialization problem through a modified RANSAC

method. The key is to draw from progressively larger sets

of top-ranked correspondences [24]. Thus, our progressive

sample scheme affords large computational savings, and the

conventional robust estimator can be engaged for initializing

the nonrigid surface detection.

3 FUSING FEATURES AND APPEARANCE

3.1 Overview

In this section, we describe the fusion approach to dealing with

the nonrigid shape recovery, which takes advantage of both

the local features and appearance information. For tackling

the challenges, a 2D nonrigid shape model is introduced.

We formulate the proposed algorithm into an optimization

problem which minimizes the correspondence error, the texture

difference and the surface energy. The key of our fusion

approach is to solve this problem in the following. First, we

present a progressive finite Newton method that employs the

feature correspondences to detect the nonrigid surface. Then,

we describe a novel deformable Lucas-Kanade algorithm to

handle the appearance error. Based on these two algorithms,

the optimization scheme for our fusion approach is formulated.

3.2 Mesh Model

(a) Model mesh s0 (b) Reference image

Fig. 2. (a) The mesh model with 216 vertices and 374

triangles. (b) The reference image size of 403× 516.

The nonrigid shape can be explicitly represented by triangu-

lated meshes. As shown in Fig. 2(a), we employ a triangulated

2D mesh with N hexagonally connected vertices, which are

formed into a shape vector s as below:

s =
[

sx sy
]⊤

=
[

x1 x2 . . . xN y1 y2 . . . yN

]⊤

where sx and sy are the vectors of the coordinates of mesh ver-

tices. Instead of treating the template image as a whole block,

as in [34], [35], we employ this 2D deformable mesh model to

triangulate it into small patches, as shown in Fig. 2(a). Then,

the mesh associated with the model image is defined as the

reference mesh s0.

We assume that a point m lies in a triangle whose three

vertices’ coordinates are (xi, yi),(xj , yj) and (xk, yk) respec-

tively, and {i, j, k} ∈ [1, N ] is the index of each vertex. The

piecewise affine warp function is used to map the image points

inside the corresponding triangle into the vertices in the mesh.

Thus, the mapping function W (m, s) is defined as below:

W (m, s) =

[

xi xj xk

yi yj yk

]

[

ξ1 ξ2 ξ3

]⊤
(1)

where (ξ1, ξ2, ξ3) are the barycentric coordinates for the point

m. Also, the piecewise affine warp W (m, s) is used to map

the input image into the reference frame s0. Fig. 2(b) shows

an example of the template image in the reference frame.

Based on this triangulated mesh model, we describe in

detail the proposed approach to nonrigid shape recovery in

the following.

3.3 Fusing Features and Appearance Approach

3.3.1 Proposed Algorithm

The aim of our fusion approach is to make use of both the

local features and the appearance information.

• Local feature correspondences. A set of correspon-

dences M between the model and the input image can

be built through a point matching algorithm. Therefore,

a pair of matched points is represented in the form of

m = {m0,m1} ∈ M , where m0 is defined as the 2D

coordinates of a feature point in the training image and

m1 is the coordinates of its match in the input image.

Then, the correspondence error term Ec(s) is the sum

of the weighted square error residuals for the matched

points, which is formulated as below:

Ec(s) =
∑

m∈M

V(δ, σ) (2)

where V(δ, σ) is a robust estimator, which is described

in Section 3.4.

• Appearance. In this paper, we try to handle the ap-

pearance error under the Lucas-Kanade framework. The

objective of the Lucas-Kanade algorithm is to minimize

the sum of the squared errors between the template image

T and the input image I warped back onto the coor-

dinate frame of the template. Baker and Matthews [25]

have proposed an inverse compositional algorithm which

switches the role of the template image T and input image

I in the computation of the incremental warp. Using
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this approach, the computational cost can be reduced by

pre-computing the Hessian matrix. Instead of using the

affine transformation or homography, as in [34], [35], we

directly employ the parameterization of the mesh model

vertices s in this paper. Due to the direct parameterization,

∆s is defined as the increments to the mesh vertices. We

employ the inverse compositional method to formulate

the energy for the appearance Ea. Following the notation

in [25], [27], Ea is defined as follows:

Ea(s) =
∑

x

[T (W (x; ∆s))− I(W (x; s))]2 (3)

In general, the nonrigid shape recovery problem approxi-

mates a 2D mesh with 2N free variables, which is usually ill-

posed. One effective way to attack this problem is to introduce

regularization, which preserves the regularity of a deformable

surface. This leads to the following energy function:

E(s) = Ea(s) + αEc(s) + λrEr(s) (4)

where α is a weight coefficient, and λr is a regularization co-

efficient. The regularization term Er(s) represents the surface

deformation energy. Also, Er(s), known as internal force in

Snakes [36], is composed of the sum of the squared second-

order derivatives of the mesh vertex coordinates.

As the mesh is regular, Er(s) can be formulated through a

finite difference:

Er = s⊤Ks (5)

where matrix K ∈ R2N×2N is defined as below:

K =

[

K 0
0 K

]

where K is a sparse and banded matrix which is determined

by the structure of the explicit mesh model [37].

Fig. 3. Overview of our 2D shape recovery algorithm.

3.3.2 Optimization Framework

To enable an automated solution, we employ the result of

minimizing the feature correspondences error to initialize the

optimization for the fusion approach. This is because the Ec(s)
is independent of the image during the optimization, and so it

can be computed very efficiently. More specifically, the initial

result is obtained by the nonrigid surface detection method,

which deals with the following energy minimization problem:

EF (s) = Ec(s) + λrEr(s) (6)

We describe the details of solution for the above optimization

problem in Section 3.4.

In this paper, the optimization for our fusion approach

is based on the Lucas-Kanade framework. To simplify the

formulation, we start from only taking consideration of the

texture difference Ea(s). Also, the regularization term Er(s)
is introduced to preserve the surface regularity. Thus, we can

obtain the following regularized least squares problem:

EA(s) = Ea(s) + λrEr(s) (7)

We name this approach the deformable Lucas-Kanade algo-

rithm, which can be used to solve the optimization for our

fusion approach with slight modification.

Therefore, the essence of our fusion approach is to first

detect the nonrigid shape using feature correspondences, and

then solve the fusion optimization based on the modified

deformable Lucas-Kanade algorithm. We will describe it in

detail in the following subsections. The overview of our

method is shown in Fig. 3 where each step is highlighted

using a shaded box.

3.4 Feature-based Nonrigid Surface Detection

To tackle the nonrigid surface detection problem in Eqn. 6, we

first present our finite Newton formulation. Then, a progressive

optimization scheme is proposed to deal with outliers and

find out as many correct correspondences as possible. The

complete feature-based nonrigid surface detection algorithm

is summarized in Fig. 4.

ALGORITHM: PROGRESSIVE NEWTON APPROACH TO NON-
RIGID SURFACE DETECTION

• Given: mesh model s0, ν, λr, σ0

• Pre-compute: K and (ξ1, ξ2, ξ3) for each keypoint m0

• Detection: for a given image

Obtain M by feature matching
Select active set by modified RANSAC
While σ > 2

Compute A and b

Solve linear system: Eqn. 16 and Eqn. 17
Calculate residual error δ and inlier set M1

σ = ν · σ

• Output: mesh vertices s

Fig. 4. Progressive Newton approach to nonrigid surface
detection.

3.4.1 Finite Newton Formulation

In this paper, we employ a robust estimator V(δ, σ) with

compact support size σ. Moreover, δ is the residual error,

which is defined as follows:

δ = m1 −Ws(m0) (8)

The robust estimator function V(δ, σ) that assesses a fixed

penalty for residuals larger than a threshold σ is employed

in the present work; this approach is relatively insensitive to

outliers [38]:

V(δ, σ) =

{

‖δ‖
σn , M1 = {m| ‖δ‖ ≤ σ2}

σ2−n, M2 = M1

(9)

where the set M1 contains the inlier matches, and M2 is the

set of the outliers. In addition, the order n determines the scale

of the residual. As shown in Fig. 5, the most correspondences
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Fig. 5. The robust estimator that assesses a fixed penalty

to residuals larger than a threshold σ.

are included when the support σ is large. As σ decreases, the

robust estimator becomes narrower and more selective.

Since the robust estimator function is not convex, the

associated penalty function approximation problem becomes

a hard combinational optimization problem. We tackle this

problem under the finite Newton optimization framework.

An augmented vector t ∈ RN containing the barycentric

coordinates is defined as below:

ti = ξ1 tj = ξ2 tk = ξ3

while the remaining elements in the vector t are all set to zero.

Therefore, the residuals for the inlier correspondences can be

rewritten as follows:

‖δ‖ = (u− t⊤x)2 + (v − t⊤y)2

= u2 + v2 − 2(ut⊤x + vt⊤y) + x⊤tt⊤x + y⊤tt⊤y

where (u, v) are the coordinates of m1. Therefore, the error

term in Eqn. 6 turns out to be

Ec =
∑

m∈M1

1

σn

(

u2 + v2 − 2

[

ut

vt

]⊤

s

+ s⊤
[

tt⊤ 0
0 tt⊤

]

s

)

+ qσ2−n

where q is the number of outliers.

Let b ∈ R2N be defined as below:

b =

[

bx

by

]

=
∑

m∈M1

1

σn

[

ut

vt

]

(10)

and a matrix A ∈ RN×N is equal to

A =
∑

m∈M1

1

σn
tt⊤ (11)

Thus, the energy function Eqn. 6 is formulated into an uncon-

strained quadratic optimization problem, which can be solved

by the modified finite Newton method [39], [40].

EF = s⊤
[

λrK + A 0
0 λrK + A

]

s− 2b⊤s

+
∑

m∈M1

ωm

σn
(u2 + v2) + qσ2−n

The finite gradient of the energy function EF with respect to

s can be derived as below:

∇ = 2

([

λrK + A 0
0 λrK + A

]

s−

[

bx

by

])

(12)

and the Hessian [38] can also be computed by

H1 = 2

[

λrK + A 0
0 λrK + A

]

(13)

Thus the gradient can be rewritten as below:

∇ = H1s− 2b (14)

Each Newton step will perform the following operation:

s← s− γH−1

1
∇ (15)

where γ is the step size. We simply set γ equal to one, and

no convergence problem occurs in our experiments. Since K

is regular, we find that update of the state vector s can be

computed by the following linear equation:
[

λrK + A 0
0 λrK + A

]

s =

[

bx

by

]

Moreover, the problem can be further simplified into two

linear equations which can be efficiently solved via LU

decomposition:

sx = (λrK + A)−1bx (16)

sy = (λrK + A)−1by (17)

The overall complexity is thus the complexity of one Newton

step. Note that the complexity of one step for the proposed

method is same as [41].

3.4.2 Progressive Finite Newton Optimization

Generally speaking, the incorrect matches cannot be avoided

in the first stage of the matching process where only local

image descriptors are compared. We introduce a coarse-to-fine

scheme to deal with those outliers. The support σ of robust

estimator V(δ, σ) is progressively decayed at a constant rate ν.

Since the derivatives of V(δ, σ) are inversely proportional to

the support σ, the regularization coefficient λr is kept constant

during the optimization. For each value of σ, the object func-

tion EF is minimized through the finite Newton step and the

result is employed as the initial state for the next minimization.

The minimization of EF is directly solved through Eqn. 16

and Eqn. 17 for a given initial state, and one step is enough to

achieve convergence. The optimization procedure stops when

σ reaches a value close to the expected precision, which is

usually one or two pixels. The algorithm reports a successful

detection when the number of inlier matches is above a given

threshold. Thus, the whole optimization problem can be solved

within a fixed number of steps. This is in contrast to the
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semi-implicit optimization scheme [16], which involves a few

iterations for each σ, and at least 40 iterations in total to ensure

the convergence.

In order to select most of the correspondences into the

initial active set and avoid getting stuck at local minima,

the initial value of σ is usually set to a sufficiently large

value σ0. However, this requires a fixed initial state. The

method is dependent on the object position, and needs a

few iterations to compensate for the errors generated by the

pose variations. In the present work, we solve this problem

through a modified RANSAC approach. Taking advantage

of our concise finite Newton formulation and closed-form

solution, the explicit mesh can be directly estimated from

a given set of correspondences. Moreover, we draw from

progressively larger sets of top-ranked correspondences, which

decreases the number of trials significantly. In the experiments,

the sampling process stopped within 5 trials. In the worst case,

such as when an object does not appear in the scene, it still

behaves as RANSAC. Therefore, the output of the proposed

progressive sample can be employed as the initial state for

the finite Newton optimization. Since the result of progressive

sample estimation is quite close to the solution, σ is relatively

small. Thus, the proposed progressive scheme requires fewer

stages, and is somewhat invariant to the initial position.

3.5 Deformable Lucas-Kanade Algorithm

Taking consideration of appearance information only, we try

to solve the optimization problem in Eqn. 7 using the inverse

compositional method. The deformable Lucas-Kanade algo-

rithm is summarized in Fig. 6.

ALGORITHM: DEFORMABLE LUCAS-KANADE ALGORITHM

• Given: T , s0, λr

• Pre-compute: K, ∇T ∂W

∂s
, and the Hessian matrix H2

• Iterate:

Warp I with W (x; s) to compute I(W (x; s))
Compute the residual image I(W (x; s))− T
Compute ∆s using Eqn. 19
Update the shape vector s← s−∆s

• Until ‖∆s‖ < threshold
• Output: mesh vertices s

Fig. 6. Deformable Lucas-Kanade algorithm.

3.5.1 Deformable Lucas-Kanade Algorithm

The warp update equation can be defined as follows:

W (x)← W (x) ◦W (x; ∆s)−1

Performing the first order Taylor expansion on the Eqn. 7

gives:

∑

x

[

T (W (x; s0)) +∇T
∂W

∂s
∆s− I(W (x; s))

]2

+λr(s + ∆s)⊤K(s + ∆s) (18)

where ∇T is the gradient of the template image evaluated at

W (x; s0), and ∂W
∂s

is the Jacobian of the warp parameters

evaluated at s. Note that ∇T ∂W
∂s

is the gradient, and s0 is the

reference mesh shown in Fig. 2(a).

Assuming that W (x; s0) is the identity warp, the gradient

of Eqn. 18 with respect to ∆s can be derived as below:

∑

x

[

∇T
∂W

∂s

]⊤[

T (W (x; s0)) +∇T
∂W

∂s
∆s− I(W (x; s))

]

+λrK(s + ∆s)

As the above gradient vanishes for optimality, this leads to the

following closed-form solution:

∆s = H−1

2

∑

x

[

∇T
∂W

∂s

]⊤

[I(W (x; s))− T (W (x; s0))]

−λrH
−1

2
Ks (19)

where H2 is the 2N × 2N Hessian matrix:

H2 =
∑

x

[

∇T
∂W

∂s

]⊤ [

∇T
∂W

∂s

]

+ λrK (20)

Note that the Hessian matrix H2 is independent of the

parameter vector s, and it is kept constant across iterative

optimization and can be pre-computed, and also independent

of the gradient matrix ∇T ∂W
∂s

. Therefore, the warp update of

the shape parameters ∆s can be computed very efficiently.

Since the coordinates of the mesh vertices s are directly

employed as the warp parameter in the deformable Lucas-

Kanade algorithm, the computation of the warp inversion be-

comes much easier than the linear combination model method

in AAMs [27]. Specifically, the shape vector s is updated by:

s← s−∆s (21)

Link to Lucas-Kanade algorithm: The proposed method

can be viewed as a natural extension of the Lucas-Kanade

algorithm, which is able to handle the deformations rather than

the affine transformation. Since the 2D coordinates of the mesh

vertices s is employed as the parameters in deformable Lucas-

Kanade algorithm, the degree of freedom is increased. This is

useful for handling the image alignment when the deformation

is large. Furthermore, the efficient optimization methods for

the Lucas-Kanade algorithm [25] can also be applied for the

proposed method.

Link to Active Appearance Models (AAMs) [27]: The

deformable Lucas-Kanade algorithm can be treated as a kind

of AAMs. It employs a single training example along with

certain physical constraints, while AAMs need to build both

texture and shape models to constrain the searching space.

3.5.2 Computing Gradient ∇T ∂W
∂s

Recall that the destination of the pixel x under the piecewise

affine warp W (x; s) depends on the vertices of the mesh s.

According to the definition in Eqn. 1, the Jacobian of the

warp W (x; s) with respect to the mesh vertices v(xi, yi) can

be derived as below:

∂W

∂xi

=
[

ξ1 0
]⊤

and
∂W

∂yi

=
[

0 ξ1

]⊤

It can easily be found that the non-zero parts of ∂W
∂xi

and ∂W
∂yi

are equal. The Jacobians can be illustrated as the images with



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE MANUSCRIPT, JUNE 2008 7

the same size of reference frame; in fact, each image is the

Jacobian with respect to the vertex v. Moreover, it can also be

observed that the warp Jacobian is quite sparse, having non-

zero values only in the triangles around the vertex v. Next, we

compute ∇T ∂W
∂s

by multiplying the gradient of the template

image with the warp Jacobian matrix.

Remark Since the dimensionality of the texture is usually

very high, the gradient ∇T ∂W
∂s

becomes quite a large matrix.

Fortunately, both the gradient and the Hessian H2 are the

sparse matrices in the proposed deformable Lucas-Kanade

algorithm, and this can greatly reduce the computational cost

and memory requirement and make the problem tractable.

Moreover, this also leads to a sparse regularized least squares

problem in Eqn. 7.

3.5.3 Lighting

In order to minimize the effect of global lighting variation,

we apply a scaling a and an offset o to the template image

T . Therefore, the energy function of the proposed deformable

Lucas-Kanade algorithm can be rewritten as follows:
∑

x

[aT (W (x; ∆s)) + o · 1− I(W (x; s))]2 + λrs
⊤Ks (22)

Similarly, we can employ an extended inverse compositional

algorithm [35], [42] to solve this optimization problem. See

Appendix A for the details.

3.6 Fusion Approach Optimization

Based on the deformable Lucas-Kanade algorithm, we de-

scribe the optimization scheme for the proposed fusion ap-

proach in Section 3.3.

We define a matrix B ∈ R2N×2N , which is equal to

B =
1

σn

[

A 0
0 A

]

(23)

Therefore, we can rewrite Ec as below:

Ec = s⊤Bs− 2b⊤s + qσ2−n +
∑

m∈M1

1

σn
(u2 + v2)

Performing the first order Taylor expansion on the energy

function Eqn. 4 gives:

∑

x

[

T (W (x; s0)) +∇T
∂W

∂s
∆s− I(W (x; s))

]2

+α(s + ∆s)⊤B(s + ∆s)− 2αb⊤(s + ∆s) + qσ2−n

+
∑

m∈M1

1

σn
(u2 + v2) + λr(s + ∆s)⊤K(s + ∆s) (24)

The solution to this problem is:

∆s = H−1

3

∑

x

[

∇T
∂W

∂s

]⊤

[I(W (x; s)) − T (W (x; s0))]

−αH−1

3
(Bs− b)− λrH

−1

3
Ks (25)

where H3 is the Hessian matrix:

H3 =
∑

x

[

∇T
∂W

∂s

]⊤ [

∇T
∂W

∂s

]

+ αB + λrK (26)

Again, we can compute the warp update through Eqn. 21.

In order to reduce the computational cost, we pre-compute

the gradient and part of the Hessian for the deformable Lucas-

Kanade algorithm. Since the inlier set is slightly changed in

the fusion optimization phase, matrix B can be viewed as

a constant. Therefore, we compute the Hessian H3 once for

each input image through Eqn. 26. The optimization procedure

stops when ‖∆s‖ is close to the given threshold or the number

of iterations exceeds the limit.

To tackle the lighting variations, we only need make slight

modification on the method described in Fig 6. Specifically, we

add the initialization step, and pre-compute the matrix B and

H3 for each input image. Furthermore, Eqn. 25 is employed

to compute the update for the shape vector s.

4 EXPERIMENTAL RESULTS

In this section, we discuss the details of our experimental

implementation and report the results of performance eval-

uation on nonrigid shape recovery. First, we perform the

various evaluations on the feature-based method. Then, both

the deformable Lucas-Kanade algorithm and fusion approach

are tested. Videos illustrating the results can be obtained from

webpage at http://www.cse.cuhk.edu.hk/∼lyu/fusion.

4.1 Experimental Setup

In order to register the mesh model conveniently, a model

image is acquired when the nonrigid surface contains no

deformation. In order to facilitate real-time augmented reality

applications, a random-trees based method [33] is used to

build the correspondences between the model image and the

input image. We also implemented a semi-implicit iterative

method [16], which is regarded as the state-of-the-art ap-

proach. All the experiments reported in this paper were carried

out on a Pentium-4 3.0GHz PC with 1GB RAM, and a DV

camera was engaged to capture videos.

4.2 Evaluation on Feature-based Nonrigid Surface

Detection

In this subsection, we show that the proposed feature-based

approach is very efficient for real-time tracking. In addition,

same convincing results are obtained for medical image reg-

istration, even with missing data.

4.2.1 Parameter Settings

Since the number of free variables for nonrigid surface recov-

ery is usually quite large (even up to one thousand), the sample

size of each RANSAC iteration becomes a tricky issue. We

compare the performance with different sample sizes. In our

experiments, the support σ is empirically set to 30, and λr is

set to a large value to ensure the regularity of the nonrigid

surface. Interestingly, we find that the best sample size is

three. This is because the nonrigid surface degenerates into

a rigid one, and only three points are necessary to determine

the position of a rigid surface. Moreover, when the sample

size increases, the probability of selecting the inlier data is

decreased. Thus, three is the best choice for the sample size.
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Fig. 7. Probability of success with different order n of the

robust estimator function.

A set of synthetic data is used to select the parameters, and

the reference mesh is manually registered. The performance

is evaluated by the percentage of mesh vertices within two

pixels of those in the reference mesh. The best regularization

coefficient is found to be around 3× 10−4 by grid searching.

Similarly, the initial support σ0 is set to 80, and decay rate ν

is 0.5. Fig. 7 plots the success probability with different orders

n of the robust estimator function. Based on these results, n

is set to 4.

4.2.2 Computational Efficiency

The complexity of the proposed method is mainly dominated

by the order of Eqn. 16 and Eqn. 17, which is equal to the num-

ber of vertices N in the mesh model. Another important factor

is the number of inlier matches, which affects the sparseness

of matrix A. This usually differs from one frame to another.

For the coffee mat with 120 vertices, as shown in Fig. 8, the

proposed method runs at 18 frames per second on real-time

video with the size of 720 × 576. As depicted in Table 1,

the proposed optimization scheme requires around 8 iterations

and only takes half of the time of the feature matching

algorithm, which is the bottleneck of the whole system. Our

implementation1 of semi-implicit iterative approach [16] needs

around 40 iterations to reach the convergence, and runs about

9 frames per second. The improvement is more significant

for high resolution mesh. Thus, the proposed method requires

far less iterations, and is efficient for real-time applications.

We also conduct the experiments without using the modified

RANSAC initialization, and start the optimization scheme

from a sufficiently large support σ = 1000. This requires 11

iterations, and the fitting accuracy is worse than the proposed

method. In addition, the modified RANSAC initialization can

also be used for a semi-implicit method, in which case the

number of iterations is reduced to around 25.

TABLE 1
Computational time of proposed method at each step.

Total Match Optimization Iteration Other

57ms 27ms 14ms ∼ 1.9ms 16ms

1. We use the same parameters setting as [16]. The convergence condition
is set to 0.9995, with at most 5 iterations for each support value σ.

(a) Result (b) Plastic cup

Fig. 8. The first row shows the initialization results
using the modified RANSAC method, and the second

row shows the results. We show the images with inlier
matches in (a).

Fig. 9. Re-texturing of a shirt print. The first row shows
the images captured by a camera. The second row shows

the results of replacing the bunny with the CVPR logo.

4.2.3 Performance of Nonrigid Surface Recovery

We use a coffee mat as the deformable object. As shown in

Fig. 8, the proposed method is robust to large deformations

and perspective distortion. In practice, the whole process runs

at around 18 frames per second. Fig. 9 describes the result of

detecting the pattern on a T-shirt, where similar performance is

achieved. As another feature-based method, the performance

of the proposed method is closely related to the texture of

objects. Better results can be obtained for objects with more

texture, because it is easy to find more correct correspondences

than with those lacking texture. Therefore, we present a fusion

approach to handle this issue.

4.2.4 Augmented Reality

Once the nonrigid surface is recovered, an immediate appli-

cation is to re-texture an image. In order to obtain realistic

results, the texture should be correctly relighted. As suggested

in [16], a re-textured input image is generated by directly
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(a) Source (b) Target (c) Before (d) Registered (e) Registered (f) After

Fig. 10. Applying the proposed method to medical image registration. A pair of sagittal images from two different
patients is shown. (a,b,e) are the source, target and registered source respectively. (d) is the registered source with

mesh model. (c) and (f) are the overlaid images before and after registration. The second row displays the synthetic
example with missing data.

multiplying a blank shaded image, which is the quotient of

the input image and the warped reference image. The refer-

ence image is acquired when the nonrigid surface is lighted

uniformly. Moreover, the quotient image is normalized through

multiplying the intensity of white color in the reference image.

This relighting procedure is easily done by the GPU and

requires only a short OpenGL shading language program; and

the whole process runs at about 17 frames per second. Fig. 9

shows the results of re-texturing a T-shirt with a Lambertian

surface. It is difficult to estimate a blank shaded image due

to dividing near zero intensity values and the use of an

uncontrolled optical sensor. However, the visual effect is that

the bunny in the input video is re-textured by the CVPR logo.

4.2.5 Medical Image

We also evaluate the proposed approach for medical image

registration. A pair of sagittal images [43] with the size of

256× 256 from two different patients are used in the experi-

ments. The source and target images differ in both geometry

and intensity. The results are plotted in Fig. 10; it can be seen

that the source image is successfully registered. In comparison

with the locally affine but globally smooth method [43], which

takes about 4 minutes, our proposed method only needs 0.2

seconds. Moreover, the sparse correspondences based method

can naturally handle the missing data and partial occlusion

problem. As shown in the second row of Fig. 10, when the

source images come with a region removed, the nonrigid shape

can still be recovered.

4.3 Evaluation on the Deformable Lucas-Kanade Al-

gorithm

4.3.1 Deformable Lucas-Kanade Fitting

Similarly, the parameters for deformable Lucas-Kanade al-

gorithm are found by grid searching; and the regularization

parameter λ is set to 105. Moreover, the texture mapping

is efficiently done by OpenGL. In Fig. 11, we include an

example of the proposed deformable Lucas-Kanade algorithm

fitting to a single image, and employ the template image and

mesh model illustrated in Fig. 2. Fig. 11(a) displays the initial

configuration, Fig. 11(b) the result after 30 iterations, and

Fig. 11(c) the final converged result after 58 iterations.

We also perform the experiment using the conventional

Lucas-Kanade algorithm with the inverse compositional

method, using the same initial position as our method. How-

ever, this fails to converge in this case due to the the large

non-affine deformation. Fig. 12 plots the root mean square

error (RMSE) curve for the proposed method. In the case

of the deformable Lucas-Kanade algorithm, the RMSE is

relatively large (28.5), which is mainly due to the difference

between the optical sensor and the printing device. However,

we can observe that the mesh was accurately registered on

the input image in Fig. 11(c). Since the lighting variations

are considered in the proposed method, the RMSE dropped

rapidly in the first few iterations .

Fig. 12. The Root Mean Square Error between the tem-

plate and input images against the number of iterations.
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(a) Initialized (b) 30 iterations (c) Converged

Fig. 11. An example of the deformable Lucas-Kanade fitting to a single image. The first row is the result mesh overlaid

on the input image. The second row displays the residual images; the inverted image is used for better illustration.

4.3.2 Computational Efficiency

The complexity of the proposed method is mainly dominated

by the size of the template image and the number of the

vertices N in the mesh model. Another factor is the number of

inlier feature matches, which affects the sparseness of matrix

B. In our experiments, three models are built to perform the

evaluation, as summarized in Table 2. The mesh model C1 is

shown in Fig. 2. C2 is obtained by increasing the edge length,

giving fewer mesh vertices than C1. C3 is built by reducing

both the template image and the mesh size to 75% of C1.

We evaluate the computational cost of the proposed method

for the nonrigid surface recovery task on realtime videos with

the size of 720 × 576. Table 2 summarizes the experimental

results on different models. We observe that the dimensionality

of the appearance determines the time complexity of the

deformable Lucas-Kanade algorithm. Therefore, gray images

are easier to track. The number of mesh vertices N has a great

influence on the initialization step, but a limited impact on the

computational time in the optimization.

TABLE 2
Computational time of the deformable Lucas-Kanade

algorithm on different 2D mesh models.

Vertices Size FPS Initialization Iteration

C1 (color) 216 198660 2.4 84ms ∼ 35.7ms
C1 (gray) 216 198660 4.4 84ms ∼ 16.7ms
C2 (gray) 96 194670 4.7 68ms ∼ 16.2ms
C3 (gray) 216 109538 6.1 77ms ∼ 10.2ms

4.4 Fusion Approach

We demonstrate here that the proposed fusion approach is able

to be used for nonrigid shape recovery tasks.

4.4.1 Parameter Settings

We consider two datasets for searching the parameters. One

is the magazine cover as illustrated in Fig. 15, and the other

is a piece of paper in Fig. 16. For each dataset, we select

ten testing images containing deformations, and then evaluate

the proposed fusion approach using different λr and α. In the

experiment, RMSE is used as the performance measurement.

Also, we employ a condition (‖∆s‖ < 2.0) as the success

criteria, and set the failure cases with the highest RMSE.

Fig. 13 plots the mean RMSE of ten tests. We can observe

that there is a broad area with low RMSE for selecting λr

and α; the lowest RMSE is found in the middle dark region.

Therefore, the local features are useful to improve the fitting

accuracy, and there is a large range for choosing the weight

coefficient α. When α becomes larger, the result is more

similar to those from the feature-based method; and there is a

constant ratio between λr and α. It can also be found that the

optimization seldom converges with small λr. Furthermore, as

shown in the upper part of each figure, large λr may lead to

oversmoothing. We set λr = 2 × 104 and α = 106 in the

following experiments.

4.4.2 Performance Evaluation

Two videos were captured for performance evaluation, which

are the magazine cover and a piece of paper. To investigate

the occlusion problem, the magazine cover is occluded by

hand in some frames. For simplicity, the feature-based method
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Fig. 13. The Root Mean Square Error (RMSE) with given regularization parameter λr and weight coefficient α. Two

sets of data are used for evaluation.
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(a) Magazine cover video sequence
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(b) Paper video sequence

Fig. 14. The Root Mean Square Error (RMSE) comparison of the progressive finite Newton (PFN) method, the semi-

implicit method [8], the deformable Lucas-Kanade (DLK) method and fusion approach on two videos. (a) As the model
image and input video are from different sources, RMSE for the feature-based method is much larger than that for the

fusion method. (b) Both the model image and input video are captured by the same device and under similar lighting
conditions, so RMSE is relatively low. Sample frames are shown in Fig. 15 and Fig. 16.

(a) Frame 80 (b) Frame 229 (c) Frame 249 (d) Frame 271

Fig. 15. Comparison of the deformable Lucas-Kanade (DLK) method (blue) and Fusion approach (red) on the
magazine video. The magazine cover is occluded by hand in (c-d).
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in Section 3.4 is denoted as “PFN”. The deformable Lucas-

Kanade algorithm in Section 3.5 is denoted as “DLK”, which

is equivalent to the fusion approach with α = 0. The proposed

fusion approach is denoted as “Fusion”. Fig. 14 shows the

results of the comparison between two feature-based methods

(PFN and J. Pilet [8]) and two appearance-based methods

(DLK and Fusion). From the experimental results, we first

observe that fusion approach consistently obtains the lowest

RMSE. Second, we find that PFN is slightly better than our

own implementation of the J. Pilet [8]. Further, comparing the

two appearance-based methods, DLK may suffer drift problem

in some frames as shown in Fig. 15 and Fig. 16. For those

frames containing small deformations, the two methods obtain

very similar results. Also, the proposed fusion approach and

DLK method are able to handle the partial occlusion well

without other treatment such as the robust loss functions,

which is mainly due to our direct parameterizations and the

regularization method. In addition, we use a piece of paper to

occlude the patterns on the paper, and the results are shown

in Fig. 17. Since the inverse compositional optimization starts

from a good initialization, the optimization for the fusion

approach usually requires around 8 iterations.

(a) Frame 251 (b) Zoomed region

Fig. 16. Comparison of the deformable Lucas-Kanade

(DLK) method (blue) and Fusion approach (red) on the

paper video. Results are shown at frame 251.

(a) Detected (b) Failed

Fig. 17. Pattern occluded by a piece of paper.

Fig. 18 illustrates the results of recovering the nonrigid

shape from a real-time video. We can observe that the fusion

method is robust to large deformations and perspective distor-

tions. In Fig. 19, we show the results of erasing the patterns

on the recovered surfaces using the method in [16]. It can be

seen that both the shadows and the specular regions are also

correctly estimated. In addition, the artifacts in the resulting

images are mainly due to an uncontrolled optical sensor.

5 DISCUSSIONS AND FUTURE WORK

5.1 Feature-based Method

We have proposed a novel scheme for non-rigid surface detec-

tion by progressive finite Newton optimization. In comparison

with semi-implicit optimization methods [16], the proposed

method inherits several advantages. First, we need not solve

the optimization iteratively for every σ, because it can be

solved in one step directly. Second, the iterative method starts

from a sufficiently large support value in order to estimate the

location and pose of an object, which leads to a large number

of iterations. Thus, the proposed method is far more efficient

than the semi-implicit method. In our experiments, both meth-

ods achieved similar accuracy that is mainly determined by the

performance of the feature matching algorithm. Additionally,

it is easy to implement the proposed approach, which only

involves solving the sparse linear equation, and does not

require tuning the viscosity parameters and a sophisticated

Levenberg-Marquardt optimization algorithm.

5.2 Deformable Lucas-Kanade algorithm

We discuss several major differences of our proposed de-

formable Lucas-Kanade algorithm compared with the previous

work. In contrast to the conventional Lucas-Kande algorithm

for image alignment [25], our proposed deformable Lucas-

Kanade algorithm can handle the large deformations rather

than the affine transformation or the homography. Different

from the AAMs [12], [27], we do not need a set of represen-

tative training examples to build the shape and the texture

models. Compared to other deformable template matching

methods, such as Active blob [23], the proposed deformable

Lucas-Kanada algorithm has several advantages. First, our

deformable model is more flexible. Second, the optimization

of the proposed approach is an efficient sparse problem, which

is able to reduce the computational cost by pre-computing the

gradient and Hessian.

5.3 Fusion Approach

In contrast to the feature-based image alignment methods [44],

the fusion approach can deal with large deformations and per-

spective distortions, in which correct feature correspondences

are difficult to obtain. Also, the jitter is greatly reduced in

the fusion approach. Furthermore, the proposed fusion method

can handle the partial occlusion, which is mainly due to the

triangulated mesh model and the regularization method. In

this paper, however, we have not discussed the illumination

issue for the appearance and fusion approaches, which may

be tackled by employing an illumination model [14].

5.4 Future Work

Although promising experimental results have validated the

efficiency of our methodology, some limitations and future

directions should be addressed. First of all, we have focused

our attention only on single deformable surface detection,

whereas it is also interesting to study the multiple case.

Moreover, small errors did occur in the boundary region.

In future work, global bundle-adjustment will be introduced
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Fig. 18. Recovering the cover of a magazine in a real-time video with the size of 720 × 576. The first row shows the
initialization results using feature correspondences only. The second row shows the results with the fusion approach.

Moreover, Root Mean Square Error (RMSE) is shown at the left corner in each image.

Fig. 19. Diminishing a picture on a piece of paper. The first row shows the 720×576 images captured by a DV camera.
The second row shows the results of diminishing the texture on the paper.

to improve the performance. Furthermore, a second order

approximation method [45] can be used to compute the warp

update. Finally, we may consider extending the proposed

scheme to 3D environments which will be effective to handle

the self-occlusion problem.

6 CONCLUSION

This paper presented a fusion approach to solve the non-

rigid shape recovery problem, which takes advantage of both

the appearance information and the local features. Firstly,

a progressive finite Newton method is proposed to detect

the nonrigid surface, which directly solves the unconstrained

quadratic optimization problem by an efficient factorization

method. Our modified RANSAC scheme takes advantage of

our concise formulation and progressive sampling of the top-

ranked correspondences, and can handle high-dimensional

spaces with noisy data. Secondly, the deformable Lucas-

Kanade algorithm can handle image alignment when the

deformation is large. We formulated the proposed deformable

Lucas-Kanade algorithm into a sparse regularized least squares

problem, which can be efficiently solved by the inverse com-

positional method. Finally, we solve the optimization problem

for the fusion approach under the deformable Lucas-Kanade

algorithm framework.

We have conducted extensive experimental evaluations on

diverse objects with different materials. The proposed progres-

sive finite Newton method is very fast and robust, and can han-

dle large deformations and illumination changes. It was tested
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in several applications, such as real-time Augmented Reality

and medical image registration. The promising experimental

results showed that the approach is more efficient and effective

than previous methods. Furthermore, the fusion approach can

improve the accuracy for the nonrigid shape recovery.

APPENDIX A
OPTIMIZATION WITH LIGHTING

Performing the first order Taylor expansion on Eqn. 22 gives:

∑

x

[

(a + ∆a)

(

T (W (x; s0)) +∇T
∂W

∂s
∆s

)

+ (o + ∆o) · 1

−I(W (x; s))]
2

+ λr(s + ∆s)⊤K(s + ∆s)

Let D denote ∇T ∂W
∂s

, the gradient of the above equation

can be derived as below:

∂EA

∂∆s
= aD⊤ [(a + ∆a) (T + D∆s) + (o + ∆o) · 1− I]

+λrK(s + ∆s)

∂EA

∂∆a
= T⊤ [(a + ∆a) (T + D∆s) + (o + ∆o) · 1− I]

∂EA

∂∆o
= 1⊤ [(a + ∆a) (T + D∆s) + (o + ∆o) · 1− I]

The texture difference ∆I is compute by: ∆I = I−aT−o.

Also, we define T =
[

T 1
]

, ∆g =
[

∆a ∆o
]

and

H4 = D⊤D + λr

a2K. Thus, we can obtain the following

equation by neglecting second-order terms:
[

a2H4 aD⊤T
aT ⊤D T ⊤T

] [

∆s

∆g

]

=

[

aD⊤∆I − λrKs

T ⊤∆I

]

As in [18], [35], we multiply a full-rank matrix L ∈
R4N×4N to the left side of the above equation:

L

[

a2H4 aD⊤T
aT ⊤D T ⊤T

] [

∆s

∆g

]

= L

[

aD⊤∆I − λrKs

T ⊤∆I

]

(27)

where L is defined as below:

L =

[

diag(12N ) 0
− 1

a
T ⊤DH−1

4
diag(12N )

]

Simplifying Eqn. 27, we can obtain ∆g by solving the

following equation:

(

Q−G⊤H−1

4
G
)

∆g = T ⊤∆I−G⊤H−1

4

(

D⊤∆I −
λr

a
Ks

)

where G = D⊤T and Q = T ⊤T . Also, ∆s can be computed

by:

∆s =
1

a

[

H−1

4

(

D⊤∆I −
λr

a
Ks

)

−H−1

4
G∆g

]

Similarly, we compute the warp update through Eqn. 21. Note

that we can pre-compute G and Q in order to reduce the

computational cost. As the regularization coefficient λr can

be chosen in a very wide range without significantly affecting

the results [8], [16], we treat the H4 as constant (set a = 1)

and ignore the changes of a during the optimization.
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