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Abstract— Most machine learning tasks in data classification
and information retrieval require human to provide labeled data
examples in the training stage. The goal of active learning is to
select the most informative examples for manual labeling in these
learning tasks. Most of the previous studies in active learning
have focused on selecting a single unlabeled example in each
iteration. This could be inefficient, since the classification model
has to be retrained for every acquired labeled example. It is also
inappropriate for the setup of information retrieval tasks where
the user’s relevance feedback is often provided for the top K
retrieved items. In this paper, we present a framework for batch
mode active learning, which selects a number of informative
examples for manual labeling in each iteration. The key feature
of batch mode active learning is to reduce the redundancy
among the selected examples such that each example provides
unique information for model updating. To this end, we employ
the Fisher information matrix as the measurement of model
uncertainty, and choose the set of unlabeled examples that can
efficiently reduce the Fisher information of the classification
model. We apply our batch mode active learning framework to
both text categorization and image retrieval. Promising results
show that our algorithms are significantly more effective than the
active learning approaches that select unlabeled examples based
only on their informativeness for the classification model.

Index Terms— Active Learning, Batch Mode Active Learning,
Logistic Regressions, Kernel Logistic Regressions, Convex Opti-
mization, Text Categorization, Image Retrieval

I. INTRODUCTION

Data classification has been an active research topic in the
machine learning community for many years. The goal of
data classification is to automatically assign data examples
to a set of predefined categories. One prerequisite for any
data classification scheme is to have labeled examples. In
order to reduce the effort in acquiring labeled examples, a
number of active learning methods [6], [7], [28], [4], [27],
[35] have been developed for data classification. The key idea
of active learning is to identify the examples that are most
informative with respect to the current classification model.

A short version of this paper has been published in the proceedings of the
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the conference paper, the new contents of this paper include (1) the kernel
version of batch mode active learning, (2) an improved qualitative analysis that
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mode active learning, (3) a new extensive set of empirical study of batch mode
active learning for classification, and (4) the empirical comparison between
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by bound optimization.
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In the past, active learning has been successfully applied to
a number of applications, including text categorization [24],
[25], [35], computer vision [20], content-based image retrieval
(CBIR) [31], [11], and text document retrieval [29].

Most active learning algorithms are conducted in an iterative
fashion. In each iteration, the example with the highest clas-
sification uncertainty is chosen for manual labeling, and the
classification model is retrained with the additional labeled
example. The step of training a classification model and the
step of soliciting a label are iterated alternately until most of
the unlabeled examples can be classified with reasonably high
confidence. A main problem with such a scheme is that only
a single example is selected for labeling in each iteration. As
a result, the classification model has to be retrained after each
new example is labeled. In the paper, we propose a novel active
learning framework that is able to select a batch of unlabeled
examples simultaneously in each iteration. A simple strategy
toward the batch mode active learning is to select the k most
informative examples. The problem with such an approach
is that some of the selected examples could be similar, or
even identical, to each other, and therefore do not provide
additional information for model updating. In general, the key
of batch mode active learning is to ensure little redundancy
among the selected examples such that each example provides
unique information for model updating.

To this end, we propose a framework of batch mode active
learning that measures the overall information for a set of
unlabeled examples by the Fisher information matrix [10].
We formulate the batch mode active learning framework into
a Semi-Definite Programming (SDP) problem, and present
an effective optimization algorithm based on the bound opti-
mization technique. Further, we propose the kernel version of
the proposed technique for kernel logistic regression models.
Finally, we present an empirical study of the proposed batch
mode active learning algorithm for two real world applications,
i.e., text categorization and content-based image retrieval.

The rest of this paper is organized as follows. Section II
reviews related work on active learning, text categorization,
and image retrieval. Section III briefly introduces the concepts
of logistic regression and kernel logistic regressions, which
are used as the classification model in our study. Section IV
presents the framework of batch mode active learning and
an efficient algorithm for solving the related optimization
problem. Sections V and VI present the empirical study of
batch mode active learning for text categorization and content-
based image retrieval, respectively. Section VII gives an em-
pirical evaluation of two different implementations of batch
mode active learning using different optimization approaches.
Section VIII sets out our conclusions.
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II. RELATED WORK

We will first review related work on active learning, and then
discuss text categorization and content-based image retrieval.

A. Active Learning

Active learning, or so-called pool-based active learning, has
been extensively studied in machine learning for a number of
years, and has already been employed for text categorization
and image retrieval in the past [18], [19], [24], [25], [34].
Most active learning algorithms are conducted in an iterative
fashion, alternating between updating the classification models
and soliciting class labels for the most informative examples.
One of the key issues in active learning is how to measure the
classification uncertainty of unlabeled examples. The ensemble
based approaches [6], [7], [24], [28] measure the classifica-
tion uncertainty based on the predictions by an ensemble of
classification models. They first generate a number of distinct
classification models using the labeled examples; then, the
classification uncertainty of a test example is measured by the
amount of disagreement among the ensemble of classification
models in predicting the labels for the test example. Another
group of approaches measure the classification uncertainty of
a test example by how far the example is away from the clas-
sification boundary (i.e., classification margin) [4], [27], [35].
A well-known approach within this group is Support Vector
Machine Active Learning developed by Tong and Koller [35].
Due to its popularity and success in previous studies, we will
use it as the baseline approach in our empirical study.

B. Text Categorization

The first application in our study is text categorization. Text
categorization has been widely studied in the communities of
data mining, information retrieval and statistical learning [39],
[40]. More recently, text categorization techniques have been
the key toward automated categorization of web pages and
web sites, which is being further applied to improve the per-
formance of web search engines in finding relevant documents
and facilitating users in browsing web pages or web sites.

In the past decade, a large number of statistical learning
techniques have been applied to automatic text categoriza-
tion [39], including the K-Nearest Neighbor approaches [23],
decision trees [2], Bayesian classifiers [36], inductive rule
learning [5], neural networks [26], and support vector ma-
chines (SVM) [13]. Empirical studies in recent years [13], [39]
have shown that SVM is one of the state-of-the-art techniques
among the methods mentioned above.

Recently, logistic regression has attracted considerable at-
tention for text categorization and high-dimension data min-
ing [16]. Several recent studies have shown that the logistic
regression model can achieve comparable classification accu-
racy to SVMs in text categorization. Compared to SVMs, the
logistic regression model is usually more efficient in model
training, especially when the number of training documents
is large [17]. Furthermore, the posterior probability output by
the logistic regression model can be used as the intermediate
results for other models, such as the Hierarchical Mixture

Expert (HME) model [14]. This motivates us to use logistic
regression as the basis classifier for text categorization.

One critical issue for automated text categorization is how
to reduce the number of labeled documents that are required
for building reliable text classification models. Given the
substantial effort required to acquire labels for documents, the
key is to exploit the unlabeled documents. One solution is
the semi-supervised learning approach, which tries to learn
a classification model from a mixture of labeled and unla-
beled documents. A comprehensive study of semi-supervised
learning techniques can be found in [44]. Another solution
is active learning [22], [28], which tries to choose the most
informative examples for manual labeling. In this paper, we
focus our attention on using active learning for reducing the
effort required for manual labeling.

C. Image Retrieval

The second application in our study is content-based image
retrieval (CBIR). One of the key challenges in CBIR is the
semantic gap between the low-level visual features that are
used to represent images and the high-level semantic concepts
that are conveyed in the content of images. One popular ap-
proach in CBIR toward bridging the semantic gap is relevance
feedback, in which a classification model is learned from the
user’s relevance judgments on the top retrieved images. During
the past years, a variety of machine learning algorithms have
been proposed for relevance feedback, including Bayesian
learning [38], decision tree [21], boosting [33], discriminant
analysis [11], and support vector machines [42], [9], etc.
Among them, the kernel based classifiers, such as support
vector machines, have shown to be one of the promising
approaches for relevance feedback [9].

A typical approach for relevance feedback of CBIR will
first rank the images according to their probability of being
classified as similar to the query example, and solicit relevance
judgments on the top ranked images from the users. The
acquired labeled images will then be used to update the classi-
fication model. The problem with such an approach is that the
most similar images identified by a classification model may
not be informative with respect to the classification model. Re-
cently, active learning has been suggested as a more promising
approach for soliciting users’ relevance feedback. One of the
most popular approaches may be the support vector machine
active learning [34], which solicits users’ relevance judgments
for the images that are closest to the decision boundary of
the classification model. However, directly applying active
learning methods to relevance feedback is insufficient given
that most active learning methods can only identify the single
most informative example, while the relevance feedback of
CBIR usually solicits the relevance judgments on multiple
images. Although the authors in [34] presented a simple
and efficient batch sampling solution, the heuristics are not
well justified and depend on the context of the problems. In
contrast, the proposed batch mode active learning algorithm is
well founded on the basis of Fisher information. Furthermore,
we presented a bound optimization algorithm that solves the
related optimization problem efficiently.
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III. LOGISTIC REGRESSION AND KERNEL LOGISTIC
REGRESSION

In this section, we give a brief introduction to logistic
regression and kernel logistic regression, which are used as the
basis classification models in text categorization and content-
based image retrieval, respectively.

A. Logistic Regression

Logistic regression (LR) is a binary class classification
model, and has been widely used in data mining and machine
learning due to its close relations to Support Vector Machines
and Adaboost [37], [41].

Given the input features x = (x1, x2, . . . , xd) of a test
example where d is the number of features, logistic regression
models the conditional probability of assigning a class label y
to the example by

p(y|x) =
1

1 + exp(−y(w>x + b))
(1)

where y ∈ {+1,−1} is the class label, w = (w1, w2, . . . , wd)
are the weights assigned to input features, and b is the
bias term. In general, logistic regression is a linear classifier
that has been shown to be very effective in classifying text
documents [16]. In addition, a number of efficient algorithms
have appeared in the recent literature [17] that allow logistic
regression to handle large-scale text categorization problems
effectively.

B. Kernel Logistic Regression

Kernel logistic regression (KLR) is a nonlinear extension of
the traditional logistic regression model based on the kernel
machine theory [37]. More specifically, given the training
examples {(x1, y1), (x2, y2), . . . , (xn, yn)} and a kernel func-
tion K(·, ·), the kernel logistic regression is posed as the
following optimization problem:

min
f∈HK

1
n

n∑

i=1

ln(1 + e−yif(xi)) +
λ

2
‖f‖2HK

(2)

where HK is the Hilbert space reproduced by the kernel
function K. According to the representer theorem [15], the
optimal f(x) can be written in the following form:

f(x) =
n∑

i=1

αiK(x,xi) (3)

In the above, we omit the bias term b in f(x) for simplicity.
Using the parametric form of f(x), the problem in Eq. 2 is
converted into an optimization problem of dual variables α.

It is interesting to note the close relationship between KLR
and kernel SVM [8]. To see this, we write the kernel SVM
into the following form:

min
f∈HK

1
n

n∑

i=1

max(0, 1− yif(xi)) +
λ

2
‖f‖2HK

(4)

Comparing the above equation to Eq. 2, we see that both
problems share a similar form, i.e., loss + penalty. The
key difference between these two algorithms lies in the loss

functions. According to a number of studies [8], [45], KLR
achieves a comparable classification accuracy to kernel SVM,
and enjoys several important merits, such as natural probability
outputs.

IV. A FRAMEWORK OF BATCH MODE ACTIVE LEARNING

In this section, we present a framework of batch mode active
learning for data classification tasks. In our proposed scheme,
logistic regression is used as the underlying classification
model for the binary classification tasks. In the following
subsections, we first introduce theoretic foundation for the
proposed framework, including the Fisher information matrix
and its application to active learning. Using the theoretic
foundation, we present a framework of batch mode active
learning, with a qualitative analysis aiming to illustrate how the
optimization of Fisher information will eliminate the overlap
among the selected examples in active learning. Finally, we
present two algorithms to efficiently solve the optimization
problem related to batch mode active learning.

A. Theoretical Foundation

Our active learning methodology is motivated by the work
in [43], in which the authors presented a theoretical framework
of active learning based on the minimization of Fisher infor-
mation. Given a data distribution q(x), and a classification
model p(y|x;α) where α includes all the parameters of the
classification model, the Fisher information matrix is defined
as follows

Iq(α) = −
∫

q(x)dx

∫
p(y|α, x)

∂2

∂α2
ln p(y|x;α)dy (5)

For the logistic regression model, its Fisher information matrix
Iq(α) is attained as:

Iq(α) = −
∫

q(x)
∑

y=±1

p(y|x)
∂2

∂α2
log p(y|x)dx

=

∫
1

1 + exp(α>x)

1

1 + exp(−α>x)
xx>q(x)dx (6)

Fisher Information matrix, is widely used in statistics for
measuring model uncertainty [30]. The most well known
result is the Cramer-Rao bound. Since the objective of active
learning is to identify examples that are most informative to
the target classification model, we will select examples that can
effectively reduce the Fisher information of the classification
model, which forms the basis for the active learning frame-
work presented in [43]. More specific, we denote by p(x)
the distribution of all unlabeled examples, and by q(x) the
distribution of unlabeled examples that are chosen for manual
labeling. Let α denote the parameters of a classification model.
Let Ip(α) and Iq(α) denote the Fisher information matrix of
the classification model for the distribution p(x) and q(x),
respectively. Then, the set of examples that can most efficiently
reduce the uncertainty of the classification model is found
by minimizing the ratio between the two Fisher information
matrices Ip(α) and Iq(α), i.e.,

q∗ = arg min
q

tr(Iq(α)−1Ip(α)) (7)
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B. Problem Formulation

Let D = (x1, . . . ,xn) be the unlabeled data, and S =
(xs

1,x
s
2, . . . ,x

s
k) be the subset of selected examples, where k

is the number of examples to be selected. In order to estimate
the optimal distribution q(x), we replace the integration in
Eqn. (6) with the summation over the unlabeled data, and the
model parameter α with its empirical estimation α̂.

We can now rewrite the above expression for the two Fisher
information matrices Ip and Iq as:

Ip(α̂) =
1
n

∑

x∈D

π(x)(1− π(x))xx> + δId

Iq(S, α̂) =
1
k

∑

x∈S

π(x)(1− π(x))xx> + δId

where
π(x) = p(−|x) =

1
1 + exp(α̂>x)

(8)

In the above, α̂ stands for the classification model that is
estimated from the labeled examples. Id is the identity matrix
of size d×d. δ is the smoothing parameter. δId is added to the
estimation of Ip(α̂) and Iq(S, α̂) to prevent them from being
singular matrices. Hence, the final optimization problem for
batch mode active learning is formulated as follows:

S∗ = arg min
S⊆D∧|S|=k

tr(Iq(S, α̂)−1Ip(α̂)) (9)

C. Qualitative Analysis

In this section, we will qualitatively justify the theory of
minimizing the ratio of Fisher information for batch mode
active learning. In particular, we consider two cases, the
case of selecting a single unlabeled example and the case
of selecting multiple unlabeled examples simultaneously. To
simplify our discussion, we assume ‖xi‖22 = 1 for any
unlabeled example xi.

a) Selecting a single unlabeled example: The Fisher
information matrix Iq is simplified into the following form
when the i-th example is selected:

Iq(α̂;xi) = πi(1− πi)xix>i + δId

Note that the above matrix has eigenvalue πi(1− πi) + δ for
eigenvector xi and δ for other eigenvectors. Thus, the objective
function tr(Iq(α̂)−1Ip(α̂)) becomes:

tr(Iq(α̂)−1Ip(α̂)) =
1

nδ

n∑
j=1

πj(1− πj)

− πi(1− πi)

nδ(δ + πi(1− πi))

n∑
j=1

πj(1− πj)(x
>
i xj)

2

As indicated by the above expression, to minimize the
above expression, we need to maximize (1) πi(1 − πi), and
(2) x>i xj ,∀j 6= i. Since πi(1 − πi) reaches its maximum
value at πi = 0.5, it can be regarded as the measurement
of classification uncertainty for the i-th unlabeled example.
Thus, the optimal example chosen by minimizing the ratio of
Fisher information matrix in the above expression tends to be
the one with a high classification uncertainty. Furthermore,
the quantity x>i xj ,∀j 6= i measures the similarity of the

ith example to the remaining unlabeled examples. Thus, by
maximizing x>i xj ,∀j 6= i, the selected example tends to be
representative of the entire collection of unlabeled examples.

b) Selecting multiple unlabeled examples simultaneously:
Let S = (x1,x2, . . . ,xk) be the k (k > 1) selected examples.
Then, the Fisher information matrix Iq(α̂;S) is written as

Iq(α̂;S) =
1

k

k∑
i=1

πi(1− πi)xix
>
i + δId

=
1

k

(
k∑

i=1

πi(1− πi)

) (
m>m + Λ

)
+ δId

where m and Λ is the mean and the covariance matrices
defined as follows:

m =

k∑
i=1

πi(1− πi)∑k
j=1 πj(1− πj)

xi

Λ =

k∑
i=1

πi(1− πi)∑k
j=1 πj(1− πj)

(xi −m)(xi −m)>

First, note that the covariance matrix Λ is a positive definite
matrix with rank equal to k − 1 if we assume that all the
unlabeled examples are linear independent and furthermore
d > k. Second, if (λi,vi), i = 1, 2, . . . , k − 1 are the
eigenvalues and the eigenvectors of Λ, we have

m>vi = 0, i = 1, 2, . . . , k − 1

This is because m>Λm = 0. Based on these two observations,
we have tr(Iq(α̂;S)−1Ip(α̂)) approximated as:

tr(Iq(α̂;S)−1Ip(α̂))

≈ k

n
∑k

i=1 πi(1− πi)

n∑
j=1

πj(1− πj)
(
(m>xj)

2 + xjΛ
†xj

)

+
1

nδ

n∑
j=1

πj(1− πj)

(
1− (m>xj)

2

‖m‖22
−

k−1∑
i=1

λi(vixj)
2

)
(10)

where † stands for pseudo inverse. In the above, we assume
that δ ¿ ∑k

i=1 πi(1 − πi)/k. As indicated by the above
expression, to minimize the ratio between Iq(α̂;S) and Ip(α̂),
we need to find a set of examples that satisfy the following
conditions:
• The selected examples should have large

∑k
i=1 πi(1−πi).

This implies that all the selected examples should have
large classification uncertainty.

• The selected examples should have a large covariance
matrix Λ such that x>j Λ†xj is small for any unlabeled
example. This implies that the selected examples should
be diverse enough such that their covariance matrix Λ
provides a good description for the distribution of all the
unlabeled examples.

Thus, by minimizing the Fisher information matrix, we can
avoid choosing the examples that are similar to each other.

D. Batch Mode Active Learning via Semi-Definitive Program-
ming (SDP)

It is not easy to find an appropriate distribution q(x)
that minimizes tr(I−1

q Ip). In the following, we present the
semidefinite programming (SDP) approach for optimizing
tr(I−1

q Ip).
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The key challenge in solving the problem in (7) is that
the Fisher information matrix for the selected examples Iq

is presented in the form of matrix inverse in (7). As a result,
the objective function is a nonlinear function for the selected
examples. Below, we aim to linearize the optimization problem
in (7). To this end, we rewrite the objective function tr(I−1

q Ip)
as tr(I1/2

p I−1
q I

1/2
p ), and introduce a slack matrix M ∈ Rn×n

to upper bound the objective function, i.e., M º I
1/2
p I−1

q I
1/2
p .

Then the original optimization problem can be rewritten as
follows:

min
q,M

tr(M)

s. t. M º I1/2
p I−1

q I1/2
p

n∑

i=1

qi = 1, qi ≥ 0, i = 1, . . . , n

(11)

In the above, we use the property tr(A) ≥ tr(B) if A º B.
Furthermore, we use the Schur complementary [3], i.e.,

D º AB−1A> ⇔
(

B A>

A D

)
º 0 (12)

if B º 0. This will lead to the following formulation for the
problem in (11):

min
q,M

tr(M)

s. t.

(
Iq I

1/2
p

I
1/2
p M

)
º 0

n∑

i=1

qi = 1, qi ≥ 0, i = 1, . . . , n

(13)

or more specifically

min
q,M

tr(M)

s. t.
n∑

i=1

qi

(
πi(1− πi)xix>i I

1/2
p

I
1/2
p M

)
º 0

n∑

i=1

qi = 1, qi ≥ 0, i = 1, . . . , n

(14)

It is clearly that the above problem is linear in M . In fact, it
belongs to the family of semi-definite programming and can
be solved by standard convex optimization packages such as
SeDuMi [32].

E. Eigen Space Simplification

Although the formulation in (14) is mathematically sound,
directly solving the optimization problem could be compu-
tationally expensive when the size of matrix M is large. In
particular, the high computational cost arises from the linear
matrix inequality (LMI) in (14). To reduce the computational
complexity, we aim to simplify the LMI constraint into a set
of linear inequality constraints y assuming certain parametric
form for M . In particular, we assume that M is only expanded
in the eigen space of matrix Ip. Let {(λ1,v1), . . . , (λs,vs)}
be the top s (s ¿ n) eigen vectors of matrix Ip where

λ1 ≥ λ2 ≥ . . . ≥ λs > 0. We assume matrix M has the
following form:

M =
s∑

k=1

γkvkv>k (15)

where the combination parameters γk ≥ 0, k = 1, . . . , s.
We rewrite the inequality for M º I

1/2
p I−1

q I
1/2
p as Iq º

I
1/2
p M−1I

1/2
p . Using the expression for M in (15), we have

I1/2
p M−1I1/2

p =
s∑

k=1

γ−1
k λkvkv>k (16)

Given that the necessary condition for Iq º I
1/2
p M−1I

1/2
p is

v>Iqv ≥ v>I1/2
p M−1I1/2

p v, ∀v ∈ Rd ,

we have v>k Iqvk ≥ γ−1
k λk for k = 1, . . . , s. This necessary

condition leads to the following constraints for γk:

γk ≥ λk

v>k Iqvk
=

λk∑n
i=1 qiπi(1− πi)(x>i vk)2

, k = 1, . . . , s

(17)
Meanwhile, the objective function in (14) can be expressed as

tr(M) =
s∑

k=1

γk (18)

By putting the above two expressions together, we approxi-
mate the SDP problem in (14) into the following optimization:

min
q∈Rn

s∑

k=1

λk∑n
i=1 qiπi(1− πi)(x>i vk)2

s.t.
n∑

i=1

qi = 1, qi ≥ 0, i = 1, . . . , n

(19)

Note that the above optimization problem is a convex opti-
mization problem since f(x) = 1/x is convex when x ≥ 0.
Given this formulation in (19), we present a bound optimiza-
tion algorithm for solving the above optimization problem.

F. Bound Optimization Algorithm

The main idea of bound optimization algorithm is to update
the solution iteratively. In each iteration, we will first calculate
the difference between the objective function of the current
iteration and the objective function of the previous iteration.
Then, by minimizing the upper bound of the difference, we
find the solution of the current iteration.

Let q′ and q denote the solutions obtained in two con-
secutive iterations, and let L(q) be the objective function in
(19). Based on the proof given in Appendix A, we have the
following expression:

L(q) =

s∑

k=1

λk∑n
i=1 qiπi(1− πi)(x>i vk)2

≤
n∑

i=1

(q′i)
2

qi
πi(1− πi)

s∑

k=1

(x>i vk)2λk(∑n
j=1 q′jπj(1− πj)(x>j vk)2

)2

(20)
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Now, instead of optimizing the original objective function
L(q), we can optimize its upper bound, which leads to the
following simple updating equation:

qi ←−q′2i πi(1− πi)
s∑

k=1

(x>i vk)2λk(∑n
j=1 q′jπj(1− πj)(x>j vk)2

)2

qi ←− qi∑n
j=1 qj

(21)

As with all bound optimization algorithms [3], this algo-
rithm is guaranteed to converge to a local maximum. Since the
original optimization problem in (19) is a convex optimization
problem, the above updating procedure is guaranteed to con-
verge to a global optimum. Fig. 1 shows the algorithm for
batch mode active learning by bound optimization techniques.

Remark. It is interesting to examine the property of the
solution obtained by the updating equation in (21). First,
according to (21), the example with a large classification
uncertainty (i.e., πi(1 − πi)) will be assigned a large prob-
ability qi. This is because qi is proportional to πi(1 − πi),
the classification uncertainty of the i-th unlabeled example.
Second, according to (21), any example that is similar to
many unlabeled examples is more likely to be selected. This is
because qi is proportional to the term (x>i vk)2, the similarity
of the i-th example to all the principal eigenvectors. This is
consistent with our intuition that we should select the most
informative and representative examples for active learning.

Algorithm 1 Batch Mode Active Learning with Logistic Regression
(LRBMAL)
INPUT: L, U /* training data set, unlabeled data set */

n, m, k /* unlabeled size, training size, batch size */
VARIABLES: q, Ip /* sampling probability, Fisher information matrix*/
PARAMETERS: δ, s /* regularization factor, number of top eigens */
OUTPUT: S /* a batch of selected unlabeled examples */
PROCEDURE:
1: initialize: S = ∅; qi ← 1/n, i = 1, 2, . . . , n;
2: α = LR train(L);
3: πi = p(+|xi) = 1/(1 + exp(−α>xi)), i = 1, 2, . . . , n;
4: Ip ← 1

n

∑n
i=1 πi(1− πi)xix

>
i + δId;

5: (v, λ) = eig(Ip, s); /* do eigen decomposition */
6: while (change in {qi} > ε) do
7: fj ←

∑n
i=1 qiπi(1− πi)(x

>
i vj)

2, j = 1, 2, . . . , s;
8: qi ← q2

i πi(1− πi)
∑s

j=1 (λjx
>
i vj)

2/f2
j

9: qi ← qi/
∑n

j=1 qj , i = 1, 2, . . . , n;
10: end while
11: while (|S| >= k) do
12: x∗ = arg maxxi∈U q(xi);
13: S ← S ∪ {x∗};
14: U ← U - {x∗};
15: end while
16: return S;

Fig. 1. A bound optimization algorithm for batch mode active learning

G. Batch Mode Active Learning for Kernel Logistic Regres-
sion

To extend the above analysis to the nonlinear classification
model, we follow the idea of the imported vector machine
reported by [45]. More specifically, we introduce the mapping
function f : x → φ(x), and the kernel function K(x′,x) =
φ(x) · φ(x′) that calculates the dot product of two examples
in the mapped space. Then, according to the results described

in Section III-B, we have

p(y|x) =
1

1 + exp(−yK(w,x))

where

K(w,x) =
∑

x′∈L

θ(x′)K(x′,x),

L = ((y1,xL
1 ), (y2,xL

2 ), . . . , (ym,xL
m)) represents the

set of labeled examples, and θ(x) is the combina-
tion weight for labeled example x. Thus, by treating
(K(xL

1 ,x),K(xL
2 ,x), . . . , K(xL

m,x)) as the new representa-
tion for the unlabeled example x, we can directly apply the
result for the linear logistic regression model to the nonlinear
case. Specifically, we can represent the Fisher information
matrix Ip as follows:

Ip(α̂) =
n∑

i=1

πi(1− π)gig>i (22)

where gi = (K(xL
1 ,xi),K(xL

2 ,xi), . . . , K(xL
m,xi)) and

πi = p(−|xi). Similarly, Iq can also be represented as:

Iq(α̂) =
n∑

i=1

πi(1− πi)qigig>i (23)

Hence, the convex optimization problem can be rewritten as:

min
q,M

tr(M)

s. t.
n∑

i=1

qi

(
πi(1− πi)gig>i I

1/2
p

I
1/2
p M

)
º 0

n∑

i=1

qi = 1, qi ≥ 0, i = 1, . . . , n

(24)

Finally, by using the similar approach in the above derivation,
we can develop an algorithm of batch mode active learning
with kernel logistic regressions shown in Fig. 2.

Algorithm 2 Kernelized Batch Mode Active Learning (KLRBMAL)
INPUT: L, U /* training data set, unlabeled data set */

n, m, k /* unlabeled size, training size, batch size */
VARIABLES: q, Ip /* sampling probability, Fisher information matrix*/
PARAMETERS: δ, s /* regularization factor, number of top eigens */
OUTPUT: S /* a batch of selected unlabeled examples */
PROCEDURE:
1: initialize: S = ∅; qi ← 1/n, i = 1, 2, . . . , n;
2: θ = KLR train(L);
3: πi = p(+|xi) = 1/(1 + exp(−∑

x′∈L θ(x′)K(x′,xi)))
4: gi = (K(xL

1 ,xi), K(xL
2 ,xi), . . . , K(xL

m,xi)), i = 1, 2, . . . , n
5: Ip ← 1

n

∑n
i=1 πi(1− πi)gig

>
i + δIm;

6: (v, λ) = eig(Ip, s); /* do eigen decomposition */
7: while (change in {qi} > ε) do
8: fk ←

∑n
i=1 qiπi(1− πi)(g

>
i vk)2, k = 1, 2, . . . , s;

9: qi ← q2
i πi(1− πi)

∑s
k=1 (λkg>i vk)2/f2

k
10: qi ← qi/

∑n
j=1 qj , i = 1, 2, . . . , n;

11: end while
12: while (|S| >= k) do
13: x∗ = arg maxxi∈U q(xi);
14: S ← S ∪ {x∗};
15: U ← U - {x∗};
16: end while
17: return S;

Fig. 2. A kernelization algorithm for batch mode active learning
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V. BATCH MODE ACTIVE LEARNING FOR TEXT
CATEGORIZATION

In this section, we present an empirical study by applying
the batch mode active learning technique with the bound
optimization algorithm to text categorization applications.

A. Experimental Testbeds

Three text collections are used for this empirical study.
For all three datasets, we remove both the stopwords and the
numbers from the documents, and covert all the words into
the lower case without stemming.

The first dataset is the Reuters-21578 Corpus, and more
specifically, the ModApte split of the Reuters-21578. This text
collection has been widely used for evaluating text categoriza-
tion algorithms [39]. There are a total of 10788 text documents
in this collection, and Table I shows a list of the 10 most
frequent categories of this dataset. Since each document in the
dataset can be assigned to multiple categories, we divide the
multi-label text categorization problem into a number of binary
classification problems, i.e., a different binary classification
problem for each category. In total, 26, 299 word features are
extracted and used to represent the text documents.

Category earn acq money-fx grain crude
Size 485 478 283 286 237

Category trade interest wheat ship corn
Size 3964 2369 717 582 578

TABLE I
A LIST OF 10 MAJOR CATEGORIES OF THE REUTERS-21578 DATASET.

Category course department faculty project staff student
Size 930 182 1124 504 137 1641

TABLE II
A LIST OF 6 CATEGORIES OF THE WEBKB DATASET.

Category Cat-0 Cat-1 Cat-2 Cat-3 Cat-4 Cat-5
Size 1000 1000 1000 1000 1000 1000

Category Cat-6 Cat-7 Cat-8 Cat-9 Cat-10
Size 999 1000 1000 1000 997

TABLE III
A LIST OF 11 CATEGORIES OF THE NEWSGROUP DATASET.

The other two datasets are Web-related text collections:
the WebKB dataset and the Newsgroup dataset. The WebKB
dataset comprises of WWW-pages collected from computer
science departments of various universities in January 1997 by
the World Wide Knowledge Base (Web->Kb) project of the
CMU text learning group. All the Web pages are classified into
seven categories: student, faculty, staff, department, course,
project, and others. In this study, we ignore the category
“others” due to its unclear definition. In total, there are 4, 518
data samples in the selected WebKB dataset, and 19, 686 word
features are extracted to represent the text documents. Table II
shows the details of the WebKB dataset. The newsgroup
dataset includes 20, 000 messages from 20 different news-
groups. Each newsgroup contains roughly 1000 messages. In
this study, we randomly select 11 out of 20 newsgroups for
evaluation. In total, there are 10, 996 data samples in the
selected Newsgroup dataset, and 47, 410 word features are

extracted to represent the text documents. Table III shows the
details of the engaged dataset.

Compared to the Reuters-21578 dataset, the two Web-
related data collections are different in that more unique
words are found in the Web-related datasets. For example,
both the Reuters-21578 dataset and the Newsgroup dataset,
contain roughly 10, 000 documents. But, the number of unique
words for the Newsgroups dataset is close to 50, 000, which
is about twice as the number of unique words found in
the Reuters-21578. Thus, it is more challenging to classify
WWW documents than normal text documents because more
feature weights need to be decided for the WWW documents.
This feature also makes the active learning algorithms more
valuable for classifying WWW documents than normal doc-
uments. This is because, by selecting informative documents
for manual labeling, we can decide the appropriate weights
for more words than by randomly selecting documents.

B. Experimental Settings and Compared Schemes

In order to remove the uninformative word features, fea-
ture selection is conducted using the Information Gain crite-
rion [40]. In particular, top 500 most informative features are
selected for each category in each of the three text collections
described above.

For performance evaluation, the F1 metric is adopted as our
evaluation metric, as it has proved to be a more reliable metric
than other metrics such as the classification accuracy [40].
More specifically, the F1 is defined as F1 = 2∗p∗r

p+r , where p
and r are precision and recall, respectively. Note that the F1
metric takes into account both the precision and the recall,
thus is a more comprehensive metric than either the precision
or the recall separately.

To examine the effectiveness of the proposed active learning
algorithm, we compare our algorithm with several existing
algorithms, including two baseline random sampling methods,
two typical active learning methods, and two online learning
methods. First of all, both the logistic regression and the
support vector machine models (LRRand and SVMRand),
trained on the initially labeled examples and randomly selected
examples, are engaged in our experiments as the baseline
models. By comparing to these two baseline approaches,
we are able to determine the amount of benefit brought by
different active learning algorithms.

Second, two popular active learning methods are studied,
which are based on the LR and SVM models, respectively.
One is the active learning algorithm based on the linear logistic
regression model. It measures the classification uncertainty
based on the entropy of the posterior distribution p(y|x). In
particular, for a given test example x and a logistic regression
model, the entropy of the distribution p(y|x) is calculated as:

H(p) = −p(−|x) log p(−|x)− p(+|x) log p(+|x)

The larger the entropy of x is, the more uncertain we are
about the class label of x. We refer to this baseline model as
the logistic regression active learning, or LRAL for short. The
second active learning model is based on the support vector
machine [35] that has already been discussed in Section II. In
this method, the classification uncertainty of an example x is
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determined by its distance to the decision boundary w>x +
b = 0, i.e., d(x;w, b) = |w>x+b|

‖w‖2 . The smaller the distance
d(x;w, b) is, the more the classification uncertainty will be.
We refer to this approach as support vector machine active
learning, or SVMAL for short. In addition to the above two
active learning algorithms, we also study their online version
active learning algorithms, in which the classification model
will be re-trained after every new example is actively selected.
We denote these two online version algorithms as LROnline

and SVMOnline, respectively.
To evaluate the performance of the compared active learning

algorithms, we first randomly select 100 labeled documents, 50
positive examples and 50 negative examples, for each category
from the dataset. Both the LR and the SVM models are
trained on the 100 labeled documents initially. Each active
learning method (except the two online algorithms) will select
k additional documents for labeling, and is evaluated based on
the classification model that is built upon a total of 100 + k
labeled documents. For the two online algorithms, they select
only 1 example in each iteration and repeat the selection for
k iterations. Each experiment is carried out 40 times, and the
averaged F1 together with its variance are calculated and used
for final evaluation.

To deploy efficient implementations of our scheme toward
large-scale text categorization tasks, all the algorithms used
in this study are programmed in the C language. The test-
ing hardware environment is on a Linux workstation with
3.2GHz CPU and 2GB physical memory. We employ the tool
for logistic regression that are developed by Komarek and
Moore [17]. To implement our active learning algorithm based
on the bound optimization approach, we employ a standard
math package for linear algebra, i.e., LAPACK [1], to solve
the eigen decomposition. The SVMlight package [12] is used
in our experiments for the implementation of SVM, which
has been considered as one of the state-of-the-art tools for
text categorization. Since SVM is not parameter-free and can
be sensitive to the capacity parameter, a separate validation set
is used to determine the optimal parameters for configuration.

C. Empirical Evaluation

In this subsection, we will first describe the results for the
Reuters-21578 dataset, since this dataset has been most exten-
sively studied for text categorization. We will then provide the
empirical results for the two Web-related datasets.

1) Experimental Results with Reuters-21578: Table IV
shows the experimental results of F1 performance averaging
over 40 executions on 10 major categories in the dataset, in
which each execution is given with 100 initial training samples
and 10 additional samples by active learning.

First, as listed in the 1st and the 2nd columns of Ta-
ble IV, we observe that the performance of the two baseline
methods, LRRand and SVMRand, are comparable when
the two classifiers are trained with the same initially labeled
100 examples and an additional set of 10 randomly selected
examples. For several categories, such as “grain”, “ship” and
“corn”, SVMRand is considerably better than LRRand.

Second, we compare the performance of the two regular
active learning algorithms listed in the 3rd and 4th columns

of Table IV, i.e., LRAL and SVMAL, that use the margin as
the selection criterion to select a batch of examples without
retraining the classifiers. We found that the performance of
these two active learning methods are rather close for most
cases, except for a few categories, such as “money-fx”, “crude”
and “ship”, where LRAL performs better than SVMAL. By
comparing them with the two random selection methods, both
of them importantly outperform the random approaches.

Further, we examine the performance of the two online
version algorithms LROnline and SVMOnline that will re-
train the classification model after an example is selected for
labeling. We can see that their performances are close for
most cases, except for a few categories, such as “money-
fx”, crude” and “wheat”, where LROnline considerably out-
performs SVMOnline. By comparing them with the two
regular active learning algorithms, some interesting result was
observed. As we know, it is commonly expected that an online
algorithm usually is able to outperform the corresponding non-
online approach importantly. But the two online algorithms
only achieve relatively small improvements on this dataset.
For some category, such as “acq”, the online algorithms are
even slightly worse than the regular active learning solutions.

Finally, we evaluate the performance of the proposed algo-
rithm LRBMAL, as shown in the last column of Table IV. We
can see that LRBMAL almost achieves the best results among
the compared algorithms, except for the “earn” category, where
the online algorithm LROnline obtains the best result. The
improvements by LRBMAL are statistically significant over a
number of categories, such as “trade”, “interest” and “corn”,
according to the student’s t-test (p < 0.05). For the exceptional
case, i.e., the “earn” category, LRBMAL is slightly worse than
the two online algorithms.

In order to examine the performance in more detail, we
evaluate the F1 measure of each category by varying the
number of actively selected examples from 1 to 10 for each
of the compared algorithms. Fig. 3 and Fig. 4 show the
experimental results of the F1 measurement. Similar obser-
vations can be drawn. First of all, we can see that all of the
active learning algorithms significantly outperform the random
selection algorithms. Second, among the compared active
learning algorithms, the online algorithms outperform the other
two regular algorithms on a number of categories, but the
improvements are not always significant. The improvements
of the online algorithms usually become more evident when
the number of selected examples increases. This is consistent
to the intuition that an online algorithm usually can perform
better than a non-online approach since the margin criterion
becomes more accurate after the classification model is re-
trained. Finally, by comparing the proposed algorithm to other
algorithms, we found that LRBMAL is consistently better
than the two regular margin-based active learning algorithms
for most situations. Finally, we can also see that LRBMAL

performs better than the two online algorithms for a number
of categories, such as “acq”, “money-fx” and “corn”, etc.

2) Experimental Results with Web-Related Datasets: The
classification results of the WebKB dataset and the Newsgroup
dataset are listed in Tables V and VI. First, notice that for the
two Web-related datasets, there are a few categories whose
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Category LRRand SVMRand LRAL SVMAL LROnline SVMOnline LRBMAL

earn
92.84 92.70 93.62 93.55 93.75 93.71 93.72±0.12 ±0.11 ±0.09 ±0.10 ±0.08 ±0.08 ±0.09

acq
84.68 83.94 85.82 85.74 85.70 85.04 86.68±0.21 ±0.21 ±0.23 ±0.18 ±0.18 ±0.27 ±0.15

money-fx
65.65 64.71 69.83 67.24 70.69 67.57 71.00±0.55 ±0.49 ±0.45 ±0.43 ±0.41 ±0.48 ±0.53

grain
62.72 65.76 69.22 69.09 69.99 69.62 70.57±0.89 ±0.68 ±0.69 ±0.47 ±0.64 ±0.45 ±0.62

crude
70.53 69.55 74.17 71.09 74.07 71.90 74.94±0.34 ±0.34 ±0.43 ±0.45 ±0.33 ±0.31 ±0.43

trade
51.37 52.87 55.44 55.49 55.90 55.92 57.78±0.64 ±0.43 ±0.62 ±0.41 ±0.53 ±0.41 ±0.53

interest
57.63 58.95 61.21 61.96 62.05 62.00 63.20±0.59 ±0.59 ±0.52 ±0.48 ±0.43 ±0.41 ±0.63

wheat
63.04 65.92 73.45 72.33 75.32 72.45 75.76±0.59 ±0.56 ±0.51 ±0.47 ±0.60 ±0.50 ±0.52

ship
66.75 69.89 73.40 71.70 73.73 72.76 74.14±1.01 ±0.53 ±0.42 ±0.41 ±0.42 ±0.32 ±0.36

corn
44.97 47.21 53.92 54.40 55.89 54.67 58.14±0.58 ±0.64 ±0.65 ±0.56 ±0.61 ±0.66 ±0.99

TABLE IV
THE F1 PERFORMANCE ON THE REUTERS-21578 DATASET WITH 100 TRAINING SAMPLES AND 10 ACTIVE SAMPLES(%).
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Fig. 3. Experimental results of F1 performance on the “earn”, ”acq”, ”money-fx”, and “grain” categories
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Fig. 4. Experimental results of F1 performance on the “trade”, “interest”, “corn” and “wheat” categories

Category LRRand SVMRand LRAL SVMAL LROnline SVMOnline LRBMAL

course
92.29 91.50 93.11 92.13 93.33 92.34 93.24±0.19 ±0.20 ±0.17 ±0.17 ±0.15 ±0.21 ±0.17

department
78.95 78.98 85.19 84.86 85.69 85.36 85.89±0.65 ±0.55 ±0.43 ±0.28 ±0.38 ±0.37 ±0.43

faculty
79.87 79.63 81.22 80.81 81.15 81.08 81.59±0.30 ±0.34 ±0.30 ±0.32 ±0.34 ±0.33 ±0.31

project
68.53 67.19 70.51 69.78 70.76 70.25 71.06±0.38 ±0.64 ±0.38 ±0.50 ±0.42 ±0.51 ±0.36

staff
23.40 22.42 25.56 25.56 26.22 26.38 26.21±0.42 ±0.50 ±0.47 ±0.64 ±0.47 ±0.58 ±0.45

student
83.45 81.90 84.78 84.02 84.92 83.80 84.88±0.28 ±0.36 ±0.26 ±0.26 ±0.27 ±0.29 ±0.26

TABLE V
THE F1 PERFORMANCE ON THE WEBKB DATASET WITH 100 TRAINING SAMPLES AND AND 10 ACTIVE SAMPLES (%).

F1 measurements are extremely low. For example, for the
category “staff” of the WebKB dataset, the F1 measurement is
only about 23% to 26% for all methods. This fact indicates that
it is more challenging to classify the WWW documents than
normal documents. Second, we observe that the two baseline
methods, LRRand and SVMRand, perform similarly on both

Web datasets, in which the LRRand method slightly outper-
forms the SVMRand method for a few categories. Third,
by comparing the two regular margin-based active learning
approaches, namely, LRAL and SVMAL, we observe that,
for a number of categories, LRAL achieves substantially better
performance than SVMAL. The most noticeable case is the
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Category LRRand SVMRand LRAL SVMAL LROnline SVMOnline LRBMAL

Cat-0
97.98 98.87 99.32 99.59 99.49 99.72 99.40±0.10 ±0.05 ±0.05 ±0.03 ±0.03 ±0.02 ±0.05

Cat-1
92.64 92.09 95.18 94.77 95.29 94.81 95.31±0.25 ±0.38 ±0.14 ±0.16 ±0.11 ±0.16 ±0.13

Cat-2
78.01 74.86 82.45 76.61 82.56 79.39 82.71±0.58 ±0.41 ±0.34 ±0.55 ±0.41 ±0.38 ±0.33

Cat-3
86.67 84.57 90.55 87.33 91.29 88.80 90.68±0.55 ±0.40 ±0.29 ±0.34 ±0.28 ±0.27 ±0.28

Cat-4
67.20 64.31 70.58 66.09 70.11 68.82 71.34±0.61 ±0.46 ±0.72 ±0.55 ±0.65 ±0.47 ±0.71

Cat-5
76.43 73.84 77.87 76.16 77.88 76.39 78.05±0.22 ±0.29 ±0.20 ±0.25 ±0.25 ±0.27 ±0.19

Cat-6
91.05 87.86 93.35 91.30 93.53 91.22 93.61±0.23 ±0.25 ±0.14 ±0.20 ±0.14 ±0.20 ±0.13

Cat-7
59.10 55.66 63.72 61.23 64.97 61.30 65.14±0.93 ±1.09 ±0.89 ±0.99 ±0.76 ±1.05 ±0.87

Cat-8
75.32 70.74 79.09 75.12 79.83 77.94 79.27±0.80 ±0.62 ±0.62 ±0.71 ±0.45 ±0.45 ±0.59

Cat-9
79.97 78.28 83.71 82.04 84.35 82.79 84.23±0.50 ±0.40 ±0.41 ±0.46 ±0.34 ±0.37 ±0.39

Cat-10
99.65 99.86 99.90 99.95 99.94 99.95 99.90±0.02 ±0.01 ±0.01 ±0.00 ±0.00 ±0.00 ±0.01

TABLE VI
THE F1 PERFORMANCE ON THE NEWSGROUP DATASET WITH 100 TRAINING SAMPLES AND 10 ACTIVE SAMPLES (%).

Dataset LRAL SVMAL LROnline SVMOnline LRBMAL

Reuters
0.237 0.328 2.481 3.364 0.882±0.005 ±0.010 ±0.005 ±0.016 ±0.009

WebKB
0.284 0.462 2.879 4.692 1.025±0.011 ±0.014 ±0.008 ±0.014 ±0.015

Newsgroup
0.530 0.872 5.496 8.791 1.571±0.011 ±0.020 ±0.011 ±0.019 ±0.015

TABLE VII
TIME PERFORMANCE ON THE THREE TEXT DATASETS (SECONDS).

category 2 of the Newsgroup datasets, where SVMAL only
a small improvement with the additional labeled examples. In
contrast, the LRAL algorithm improves the F1 measurement
from 78.01% to 82.45%.

Finally, compared to LRAL, we observe that the proposed
algorithm LRBMAL is able to improve the F1 measurement
considerably over the margin-based active learning approach
in most cases. For example, for category 7 of the Newsgroup
dataset, the LRAL algorithm improves the baseline method
from 59.10% to 63.72%, while the LRBMAL algorithm
is able to achieve a better improvement from 59.10% to
65.14%. Compared to the two online algorithms LROnline

and SVMOnline, the proposed LRBMAL algorithm perform
closely to these two approaches on both Web datasets. For a
number of categories, LRBMAL performs better than the two
online algorithms. This observation indicates that the proposed
batch mode active learning algorithm is effective for large-
scale text categorization tasks. It is important to note that this
is not to claim the batch mode active learning algorithm is
always better than the online algorithms. In fact, there are
a few categories, the online algorithms are better than the
proposed batch mode active learning method.

3) Time Performance: To further examine the efficiency of
the proposed algorithm, we conduct experiments to evaluate
the time performance compared with other active learning
approaches. For each dataset, all algorithms are evaluated with
an experiment of selecting 10 examples for active learning.
Every experiment is repeated 40 executions. Table VII shows
the experimental results of average time performance on the
three text datasets. From the results, we observe that among
the compared algorithms, the two regular active learning
algorithms are the most efficient ones as they do not require
additional retraining cost. In contrast, the two online algo-
rithms are the least efficient ones, which dramatically increase

the computational time. The proposed batch mode active
learning algorithm, without retraining cost, achieves much
smaller time cost compared to other two online algorithms
(about 1/3∼1/4 fraction), though it is worse than the two
regular active learning approaches (about 3∼4 times). This
observation shows that the proposed algorithm is efficient for
practical applications.

VI. BATCH MODE ACTIVE LEARNING FOR CBIR

In this section, we will apply the algorithm of batch mode
active learning to relevance feedback in content-based image
retrieval. As indicated in the related work, relevance feedback
is critical to alleviating the semantic gap issue in CBIR, in
which active learning has been shown to be one promising
solution [34]. We will compare the proposed algorithm for
batch mode active learning to the heuristic active learning
methods for relevance feedback [34].

A. Experimental Testbed

To conduct empirical evaluation of our proposed algorithm,
we choose the real-world images from the COREL image
CDs. In total, we use 5, 000 images to form our testbed from
50 different image categories. Each category in the dataset
consists of exactly 100 images that are randomly selected
from the relevant examples in the COREL image CDs. Every
category represents a different semantic topic, such as dog,
cat, horse, botany, and butterfly, etc.

B. Image Representation

An important step of CBIR is the low-level feature extrac-
tion. Three kinds of features are extracted to represent the
images in our experiments: color, edge and texture.

For color features, we use the color moment since it is
close to natural human perception. Many previous research
studies have shown the effectiveness of color moment applied
in CBIR. Given an image, we extract 3 moments: color mean,
color variance and color skewness in each color channel (H,
S, and V), respectively. Thus, a 9-dimensional color moment
is adopted as the color feature in our experiments.

For edge features, we employ the edge direction histogram.
A given image is first converted to the gray image. Then a
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Canny edge detector is applied to obtain the edge images, in
which the edge direction histogram can be computed. The edge
direction histogram is quantized into 18 bins of 20 degrees
each; hence an 18-dimensional edge direction histogram is
employed to represent the edge features.

For texture features, we study wavelet based textures. An
input color image is first converted to the gray image. Then
Discrete Wavelet Transformation (DWT) is performed on the
gray image using a Daubechies-4 wavelet filter. Each wavelet
decomposition on a gray 2D-image results in four subimages
with a 0.5∗0.5 scaled-down image of the input image and the
wavelets in three orientations. The scaled-down image is fed
into the DWT operation to produce the next four subimages.
In total, we perform 3-level decomposition and extract features
from the 9 of the subimages by computing the entropy. Hence,
a 9-dimensional wavelet texture is employed.

In total, a 36-dimensional feature vector is used to repre-
sent an image [9], including 9-dimension color features, 18-
dimension edge features, and 9-dimension wavelet features.

C. Experimental Setup

In our experiments for CBIR, we have developed an al-
gorithm of batch mode active learning, based on the kernel
logistic regression classification model, to accomplish the rel-
evance feedback function in our CBIR systems. For simplicity,
we will refer to our batch mode active learning algorithm
as KLRBMAL. To evaluate the effectiveness of our batch
mode active learning algorithm for relevance feedback of
CBIR, similar to the previous experiment, we compare our
algorithm to two random selection algorithms KLRRand

and SVMRand, and two regular active learning algorithms
SVMAL and KLRAL. Similarly, two online version algo-
rithms KLROnline and SVMOnline are also implemented,
although they are seldom used for relevance feedback in CBIR.
For all the classification models used in this study, the same
RBF kernel is used. The kernel width is determined by separate
validation sets.

In our experiments, relevance judgments are based on their
semantic categories of images. In particular, an image is
judged as relevant to a query when both the image and
the query example belong to the same semantic category.
Although this definition is somewhat simplified, it does allow
us to evaluate the retrieval performance automatically and
systematically, thus reducing subjective errors arising from
manual evaluations by different people. The similar approach
has been widely adopted by previous studies [34], [9].

To enable objective comparisons, we simulate the relevance
feedback of CBIR as follows. We first randomly select a query
image from the Corel database, and retrieve the Ninit images
that are closest to the query example in terms of Euclidean
distance. We then simulate the user’s relevance feedback for
the Ninit retrieved images based on their semantic categories.
The retrieved images are marked as relevant when both
the retrieved image and the query examples share the same
categories. Next, we apply the active learning algorithms to
identify the Nbatch (the batch size) most informative images
for manual labeling in each iteration of active learning. A
classification model is built based on both the initially labeled

images and the labeled images that are acquired by active
learning. The final retrieval results are ranked based on the
learned classification model. The Average Precision is used
as the evaluation metric in our experiments. This is defined
as the percentage of returned images that are relevant to the
query examples.

D. Performance Evaluation

In our experiments, we evaluate the active learning algo-
rithms with respect to the change of the number of selected
examples, i.e., the batch size Nbatch. We randomly pick 100
image examples from the testbed as the queries. For each
query, the number of initially labeled images Ninit is set to
10 and the experimental results of relevance feedback using
different active learning algorithms are evaluated by changing
the number of selected examples Nbatch from 1 to 10. Fig 5 (a)
and (b) show the experimental results of average precision on
both top 20 and top 30 ranked results respectively.

Several observations can be drawn from the experimental
results in Fig 5. First of all, comparing the two random
selection algorithms, we found that their retrieval results are
similar no matter how the batch size changes. For the top 20
ranked results, KLRRand is slightly better than SVMRand,
but their difference becomes smaller for the top 30 ranked re-
sults. Second, for the two regular margin-based active learning
algorithms KLRAL and SVMAL, both of them considerably
outperform the random approaches particularly when Nbatch

increases. In most cases, especially when Nbatch is larger than
3, SVMAL is better than KLRAL on both the top 20 and
top 30 ranked results. Further, for the two online algorithms
KLROnline and SVMOnline, both of them are consistently
better than their non-online algorithms. The improvements
become more evident when Nbatch increases. This observation
matches our intuition that the online algorithms often work
better given more accurate classification models by re-training.
Finally, comparing the proposed algorithm KLRBMAL to
other algorithms, we can see that KLRBMAL achieves the
best results when the number of selected examples is smaller
than 6. For all cases, KLRBMAL is significantly better
than the regular active learning algorithm KLRAL. Com-
pared to the online algorithms KLROnline and SVMOnline,
KLRBMAL considerably outperform the two online algo-
rithms when Nbatch is smaller than 6. When Nbatch is greater
than 6, the improvement become smaller. When Nbatch is
set to 10, KLRBMAL fails to improve over the two online
algorithms.

To examine the effectiveness of the proposed algorithm
in more details, we also evaluate the average precision of
other top ranked results. Table VIII and Table IX show the
experimental results of average precision on top 20 ∼ 100
with Nbatch = 5 and Nbatch = 10, respectively. For the
results with Nbatch = 5, the proposed algorithm KLRBMAL

achieves the best performance from top 20 to top 50 ranked
results, which are usually more critical for a CBIR task.
The improvements on these results are statistically significant
according to the student’s t-test (p < 0.05). For the results
with Nbatch = 10, KLRBMAL outperforms the two regular
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Fig. 5. Experimental results of several active learning algorithms for content-based image retrieval.

active learning algorithms consistently, but does not achieve
any improvement over the two online algorithms.

Remark. As an important note, we need to mention that
the main purpose of engaging the two online algorithms for
comparisons is to let us judge how good is the performance
achieved by a batch mode active learning algorithm. We
emphasize that the BMAL algorithm enjoys two major ad-
vantages over the online algorithms. First, no retraining cost is
required for the batch mode active learning algorithm. Second,
the BMAL algorithm avoids the additional overhead of user
interventions as required by an online algorithm, which is
inefficient and not practical for real-world applications. This is
because every relevance feedback procedure between a system
and a user often has to incur some overhead in either system
response or network communication time (network overhead
for a Web application). This is why most practical relevance
feedback solutions in CBIR are usually conducted in a batch
fashion but not an online fashion [34], [9].

VII. COMPARISON OF TWO OPTIMIZATION METHODS

In the two preceding subsections, we have shown that the
algorithm of batch mode active learning using bound opti-
mization is effective for both text categorization and relevance
feedback of CBIR. In this section, we conduct an empirical
study of two different implementations of batch mode active
learning, for which both of them are based on the kernel
logistic regression model. One is the approximated bound op-
timization approach (KLRBO

BMAL), and the other is the original
semi-definite programming (SDP) approach (KLRSDP

BMAL).

A. Experimental Testbed

Due to the high computational cost of SDP, we do not
use text categorization and relevance feedback of CBIR for
evaluation in this study. Instead, we choose 5 datasets of
relatively small size from UCI machine learning repository
as our experimental testbed. Table X shows the datasets in
our experiment.

Dataset #Classes #Instances #Features
Breast-cancer 2 683 9
Cleveland 2 297 13
Heart 2 270 13
House-votes 2 435 16
Ionosphere 2 351 34

TABLE X
THE UCI MACHINE LEARNING DATASETS IN OUR TESTBED.

B. Experimental Results

The purpose of this experiment is to compare the effec-
tiveness of two batch mode active learning (BMAL) im-
plementations using different optimization formulations, i.e.,
(KLRBO

BMAL) and (KLRSDP
BMAL). For comparison, we also com-

pare them with a KLR margin-based active learning solution
KLRAL, which has been described in the previous section.

In our experimental settings, a set of initial 20 random
training examples is provided for training a logistic regression
classifier. After the initial classifier is obtained, active learning
algorithms are engaged for selecting a batch of 20 informative
examples for labeling. Finally, an updated logistic regression
classifier is re-trained on the combined set of the initial training
examples and the additional batch of examples.

Datasets Metrics KLRAL KLRSDP
BMAL KLRBO

BMAL

Cleveland Acc. 76.70 ± 0.55 78.74 ± 0.70 78.62 ± 0.54
F1 75.19 ± 0.60 76.33 ± 0.71 76.20 ± 0.57

Heart Acc. 76.95 ± 0.64 79.73 ± 0.46 79.55 ± 0.36
F1 74.24 ± 0.74 76.20 ± 0.59 76.24 ± 0.45

House Acc. 93.18 ± 0.42 94.48 ± 0.39 94.01 ± 0.33
F1 94.43 ± 0.35 95.39 ± 0.33 95.00 ± 0.28

Ionosphere Acc. 76.52 ± 0.54 77.77 ± 0.50 77.87 ± 0.65
F1 83.70 ± 0.39 84.34 ± 0.37 84.80 ± 0.52

TABLE XI
EXPERIMENTAL RESULTS OF CLASSIFICATION PERFORMANCE

EVALUATION ON UCI TESTBEDS (%).

Table XI shows the experimental results of the perfor-
mance comparison. From the results, we found that both of
two different BMAL implementations are considerably more
effective than KLRAL, which again validated the similar
results as achieved beforehand. By comparing the performance
of the two BMAL implementations, we can see that the
performance of the bound optimization approach (KLRBO

BMAL)
is very similar to the original approach by SDP optimization
(KLRBO

BMAL). It is somewhat surprising that the KLRBO
BMAL

solution is slightly better than the SDP solution in some cases,
such as the “Heart” and “Ionosphere” datasets. These results
show that the bound optimization solution is empirically a
good approximation of the original formulation.

Finally, we evaluate the computational efficiency of the
two different implementations of batch mode active learning.
Both algorithms are run in Matlab environment with a PC
of 3.2GHz CPU. In our implementation, the KLRSDP

BMAL algo-
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TOP KLRRand SVMRand KLRAL SVMAL KLROnline SVMOnline KLRBMAL

20
41.15 40.50 41.65 44.25 45.75 47.05 49.90±0.43 ±0.42 ±0.43 ±0.44 ±0.44 ±0.47 ±0.47

30
36.00 35.73 36.97 38.87 40.50 41.73 43.10±0.37 ±0.38 ±0.39 ±0.39 ±0.41 ±0.42 ±0.41

40
32.18 32.10 33.55 34.45 36.93 37.43 38.28±0.34 ±0.34 ±0.36 ±0.35 ±0.38 ±0.37 ±0.37

50
29.58 29.66 30.38 31.42 33.28 33.78 34.56±0.30 ±0.31 ±0.32 ±0.32 ±0.33 ±0.33 ±0.34

60
27.38 27.63 28.17 28.75 30.92 31.22 31.43±0.27 ±0.29 ±0.29 ±0.29 ±0.30 ±0.31 ±0.31

70
25.60 26.10 26.29 26.39 28.83 29.07 29.07±0.25 ±0.26 ±0.27 ±0.27 ±0.28 ±0.28 ±0.28

80
24.23 24.88 24.99 24.85 27.13 27.29 27.15±0.24 ±0.24 ±0.25 ±0.25 ±0.26 ±0.26 ±0.26

90
22.78 23.36 23.56 23.63 25.71 25.90 25.78±0.22 ±0.22 ±0.24 ±0.24 ±0.25 ±0.25 ±0.25

100
21.72 22.19 22.26 22.31 24.43 24.68 24.52±0.21 ±0.21 ±0.22 ±0.22 ±0.23 ±0.23 ±0.23

TABLE VIII
AVERAGE PRECISION OF THE COMPARED ALGORITHMS FOR IMAGE RETRIEVAL WITH 5 SELECTED EXAMPLES(%).
TOP KLRRand SVMRand KLRAL SVMAL KLROnline SVMOnline KLRBMAL

20
43.75 42.35 46.00 48.30 54.35 56.15 53.65±0.44 ±0.43 ±0.45 ±0.46 ±0.48 ±0.51 ±0.47

30
37.87 37.77 40.63 41.57 47.87 49.47 47.30±0.39 ±0.39 ±0.42 ±0.41 ±0.46 ±0.47 ±0.44

40
33.88 34.45 36.73 37.58 43.90 45.25 41.10±0.35 ±0.36 ±0.38 ±0.38 ±0.43 ±0.43 ±0.40

50
31.20 31.78 33.22 34.16 39.68 40.80 36.84±0.31 ±0.33 ±0.35 ±0.35 ±0.40 ±0.39 ±0.36

60
29.05 29.77 30.98 31.13 36.72 37.42 33.62±0.28 ±0.31 ±0.32 ±0.32 ±0.37 ±0.37 ±0.32

70
27.10 27.94 29.09 28.94 34.03 34.61 31.19±0.26 ±0.28 ±0.30 ±0.29 ±0.34 ±0.34 ±0.30

80
25.43 26.51 27.36 26.86 31.76 32.29 29.34±0.25 ±0.26 ±0.28 ±0.27 ±0.32 ±0.32 ±0.28

90
24.17 25.14 25.71 25.49 29.91 30.80 27.71±0.23 ±0.24 ±0.26 ±0.26 ±0.30 ±0.30 ±0.26

100
23.02 23.77 24.21 23.92 28.49 28.99 26.22±0.22 ±0.22 ±0.24 ±0.24 ±0.28 ±0.28 ±0.25

TABLE IX
AVERAGE PRECISION OF THE COMPARED ALGORITHMS FOR IMAGE RETRIEVAL WITH 10 SELECTED EXAMPLES(%).

Algorithm Cleveland Heart House-Votes Ionosphere

KLRBO
BMAL 0.105 0.096 0.185 0.349

KLRSDP
BMAL 8.720 7.357 28.103 103.516

TABLE XII
COMPUTATIONAL TIME OF TWO BMAL FORMULATIONS (SECONDS).

rithm is implemented by the SeDuMi packages [32], a popular
and efficient solution to SDP problems in Matlab. Table XII
shows the computational time of the two algorithms averaged
over 40 executions on each of the UCI datasets. It is clear
that the KLRBO

BMAL algorithm using the bound optimization
formulation is significantly more efficient than KLRSDP

BMAL,
i.e., the algorithm using SDP formulation. More specifically,
the KLRBO

BMAL algorithm is about 77 ∼ 297 times faster than
the KLRSDP

BMAL algorithm across different datasets.

VIII. CONCLUSIONS

This paper presents a framework of batch mode active learn-
ing for data classification and multimedia retrieval. Unlike the
traditional active learning approach, which focuses on select-
ing a single example in each iteration, the batch mode active
learning approach allows for multiple examples to be selected
simultaneously for manual labeling. We employ the Fisher
information matrix for the measurement of model uncertainty,
and choose the set of examples that will effectively increase
the Fisher information. To solve the related optimization
problem effectively, we first formulate the learning problem
into a semi-definite programming problem. We then develop
an effective algorithm of batch mode active learning based on
the bound optimization technique. Furthermore, we develop a

kernel version of batch mode active learning using the kernel
logistic regression. We apply our method to large-scale text
categorization and relevance feedback of content-based image
retrieval, and show promising results in comparison to two
state-of-the-art active learning algorithms. Our empirical study
also shows that the approximated algorithm of batch mode
active learning using bound optimization performs as well as
the SDP version of batch mode active learning. In future work,
we will extend our methodology to other machine learning
problems.
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APPENDIX
APPENDIX A. PROOF OF INEQUATION

In this appendix we prove the following inequality from Sec-
tion IV.F. Let L(q) be the objective function in (19), we then have

L(q) =

s∑

k=1

λk∑n
i=1 qiπi(1− πi)(x>i vk)2

=

s∑

k=1

λk∑n
i=1 q′iπi(1− πi)(x>i vk)2

×
∑n

i=1 q′iπi(1− πi)(x
>
i vk)2∑n

i=1 q′iπi(1− πi)(x>i vk)2 qi
q′i

(25)
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Using the convexity property of reciprocal function, namely

1/

n∑
i=1

pix ≤
n∑

i=1

pi

x
(26)

for x ≥ 0 and pdf {pi}n
i=1, we can arrive at the following deduction:

∑n
i=1 q′iπi(1− πi)(x

>
i vk)2∑n

i=1 q′iπi(1− πi)(x>i vk)2 qi
q′i

≤ ∑n
i=1

q′iπi(1−πi)(x
>
i vk)2∑n

j=1 q′jπj(1−πj)(x>j vk)2
1
qi
q′
i

=
∑n

i=1

(q′i)
2πi(1−πi)(x

>
i vk)2

qi
∑n

j=1 q′jπj(1−πj)(x>j vk)2

Substituting the above inequation back into (25), we can achieve the
following inequality:

L(q)

≤
s∑

k=1

λk∑n
i=1 q′iπi(1− πi)(x>i vk)2

×
(

n∑

i=1

(q′i)
2πi(1− πi)(x

>
i vk)2

qi

∑n
j=1 q′jπj(1− πj)(x>j vk)2

)

=
s∑

k=1

λk(∑n
j=1 q′jπj(1− πj)(x>j vk)2

)2 ×
n∑

i=1

(q′i)
2(x>i vk)2πi(1− πi)

qi

=
n∑

i=1

(q′2i )

qi

πi(1− πi)
s∑

k=1

(x>i vk)2λk

(
∑n

j=1 q′jπj(1− πj)(x>j vk)2)2
.

This finishes the proof of the inequality mentioned above. ¥
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