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Abstract—Robust regression techniques are critical to fitting data with
noise in real-world applications. Most previous work of robust kernel
regression is usually formulated into a dual form, which is then solved
by some quadratic program solver consequently. In this correspondence,
we propose a new formulation for robust regularized kernel regression
under the theoretical framework of regularization networks and then
tackle the optimization problem directly in the primal. We show that the
primal and dual approaches are equivalent to achieving similar regression
performance, but the primal formulation is more efficient and easier to
be implemented than the dual one. Different from previous work, our
approach also optimizes the bias term. In addition, we show that the pro-
posed solution can be easily extended to other noise-reliable loss function,
including the Huber-ε insensitive loss function. Finally, we conduct a set
of experiments on both artificial and real data sets, in which promising
results show that the proposed method is effective and more efficient than
traditional approaches.

Index Terms—Kernel regression, regularized least squares (RLS),
robust estimator, support vector machine (SVM).

I. INTRODUCTION

Learning to fit data with noise is an important research problem
in many real-world data mining applications. Robust regression has
attracted more and more research attention recently [1]–[5]. The
history of robust regression research can be traced back to the early
works of scientists in both statistics and mathematics [6]. Recently,
a variety of techniques have been proposed to solve the robust re-
gression problem in various real-world applications. One promising
group of robust regression techniques is based on the kernel learning
techniques, which is motivated by the regularization network theory
[7], [8]. Several popular techniques, such as the regularized least
squares (RLS) and support vector regression (SVR), are developed
under similar theoretical foundation [8]–[10].

In general, given a real-world regression problem, noise is an in-
evitable challenge, which needs to be carefully handled. To tackle this
problem with kernel learning methods, there are two typical ways to
attack this challenge. One way is to add some regularization term into
the regression optimization, which can avoid the regression overfitting
of the data. The other way is to design a proper loss function that
is able to tolerate the noisy outliers. For the former way, it is well
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known that regularization plays a critical role in kernel methods for
achieving better generalization performance. The latter way, which is
less carefully considered, is also important to tackle the noise problem.
For example, traditional kernel-based regression methods often adopt
the quadratic loss function, which may receive large impact from
outliers; hence, the resulting solution is likely to be dominated by a
small amount of noise. In this correspondence, we propose a novel
robust regularized kernel regression, which carefully considers both
factors in tackling the noise issue.

In addition to noise, another important issue for kernel-based re-
gression methods is the efficiency problem. Typically, most kernel
methods, such as support vector machines (SVMs), are often solved
based on the dual optimization [8], [10]. Whereas the dual optimiza-
tion can be solved by some state-of-the-art techniques, such as the
sequential minimal optimization [11], some recent studies indicate
that the primal formulation of SVMs can also be solved efficiently
without using the complicated dual optimization techniques [12]–[14].
The primal approaches usually only involve simple linear equations
that can be solved efficiently. The previous study also shows that
the primal approaches are usually superior to the dual approaches
when considering approximate solutions. However, there is still little
attention on solving the robust kernel regression problem based on the
primal approach directly. In this correspondence, we propose a novel
and efficient algorithm to solve the robust regression problem in primal
directly.

To this end, we highlight three of our major contributions:
1) We propose a new robust regression technique, which is the robust
regularized kernel regression, which is more robust for learning to fit
with noisy data than traditional techniques; 2) we study optimization
techniques for solving the problem from both dual and primal ap-
proaches, and 3) we show that the proposed primal approach is more
efficient than the conventional dual approaches and conduct empirical
experiments to verify its effectiveness.

The rest of this correspondence is organized as follows. Section II
reviews the related work of robust kernel regression. Section III gives
the formulation of the robust regularized kernel regression technique.
Section IV investigates optimization techniques for solving the robust
regression problem from both dual and primal approaches. Section V
shows our empirical study on evaluating the accuracy and efficiency
performance of the proposed regression techniques. Section VI con-
cludes this correspondence.

II. RELATED WORK

We first review related work on robust kernel regression, followed
by the motivation of solving it directly in primal.

To handle the noise problem in regressions, some approaches have
been studied by hybrid loss functions, including the squared loss
function and the ε-insensitive loss function. The robust Huber re-
gression problem [15] considers a convex differentiable cost function,
which is quadratic for small errors and linear otherwise. Hence, the
Huber loss function is insensitive to outliers. In [4], the robust Huber
regression was formulated into a dual form and solved efficiently
by a convex quadratic program. In addition, a unified loss function
was proposed in [1], which tries to combine the power of both the
Huber and the ε-insensitive loss functions. Another hybrid approach
also attempts to introduce the smoothness into the ε-insensitive loss
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Fig. 1. Illustration of two loss functions.

function [3]. Although training efficiency can be improved by a fast
Newton–Armijo algorithm, their objective function is still based on the
squared loss function. In addition, L1 regularized logistic regression
[2] also demonstrates some good performance for classification tasks.

Aside from the robust loss functions, some previous studies also
attempt to improve the robustness of large margin training to handle
outliers in SVMs. A robust SVR is proposed to tackle the overfitting
issue and fine-tune the parameters, which attempts to avoid selecting
the outliers as support vectors [16]. In [17], some indicator variables
are introduced into soft margin SVMs to detect and remove outliers
selectively. Although the relaxation of the soft margin SVM remains
convex, the problem becomes a complicated semidefinite program
problem, which is hard to be solved efficiently.

All of the above methods often solve the problems in the dual
approaches. One of the main contributions in this correspondence is
to solve the robust regularized kernel regression in the primal, which
leads to an unconstrained optimization problem.

III. ROBUST REGULARIZED KERNEL REGRESSION

A. Theoretical Foundation

In general, a regression problem can be defined as a problem of
approximating a multivariate function from the data, which is usually
an ill-posed problem. One effective way to solve the problem is based
on the theoretical framework of regularization networks [7], [18]. It
usually formulates the issue as a variation of finding the embedded
function f to solve the following minimization problem:

min
f∈H

1

n

n∑
i=1

V (yi, f(xi)) + λ‖f‖2
H (1)

where V (·, ·) is the loss function, and (xi, yi)
n
i=1 denotes the n pairs

of samples. The second term is known as smoothness functional.
According to the representer theorem [19], any f ∈ H minimizing

the regularized risk function in (1) will have a representation of
the form

f(x) =

n∑
i=1

αik(xi,x) (2)

or

f(x) =

n∑
i=1

αik(x,xi) + b (3)

where b is an offset term that may sometimes be ignored for simplicity,
and k(·, ·) is the kernel function that is either fully or compactly
supported.

There are various choices for the loss function. For example,
RLS, also known as ridge regression [20], considers a squared error
loss function, which is the classical L2 regularization networks. The
loss function is defined as V (y, f(x)) = u2, where the variable u
is defined as u = y − f(x). If V (·, ·) is an ε-insensitive function
V (y, f(x)) = uε, the resulting problem becomes the ε-SVR.

B. Robust Regularized Kernel Regression

In general, the outliers are overemphasized using the L2 norm in
RLS. Whereas the L1-norm loss function can avoid this problem, it
overemphasizes error on points close to the predicted line. Fortunately,
the Huber loss function [15] provides a compound solution, which
enjoys the advantages of both the L1 and L2 norms. The Huber loss
function is shown in Fig. 1(a). It is also named as robust regression in
the literature [4], and the loss function is defined as follows:

V(u) =

{
u2 |u| ≤ m
m (2|u| − m) |u| > m

(4)

where m indicates the switcher from quadratic to linear. In addition,
when m becomes larger, the loss function is more like quadratic. Thus,
it achieves an appropriate emphasis on the large and small errors.

It is convenient to extend the Huber loss function by introducing
an ε-insensitive region, which is shown in Fig. 1(b). We denote it
as the Huber ε-insensitive loss function, and the regression problem
is defined as the enhanced robust regression. Moreover, this hybrid
loss function is similar to the soft insensitive loss function [1], which
enjoys the advantage of sparse solutions. It can be explicitly defined as
follows:

V (y, f(x)) =

⎧⎪⎪⎨
⎪⎪⎩

m (2(u − ε) − m) u − ε > m
u2 0 < u − ε ≤ m
0 |u| ≤ ε
u2 −m ≤ u + ε < 0
−m (2(u + ε) + m) u + ε < −m.

(5)

Consider the kernel reproducing property, we can combine
(1) and (3)

n∑
i=1

V

(
yi,

n∑
i=1

k(xi,xj)αj

)
+ λ

n∑
i,j=1

αiαjk(xi,xj)

where αi is the coefficient defined in the primal, which is not inter-
preted as Lagrange multipliers.
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Let ki denote (k(x1,xi), . . . , k(xl,xi)); rewrite the aforemen-
tioned objective function as follows:

E =

n∑
i=1

V
(
y,kT

i α
)

+ λαTKα (6)

where K is the kernel matrix with Kij = k(xi,xj).

IV. OPTIMIZATION METHODS: DUAL VERSUS PRIMAL

Given the robust regularized kernel regression problem, we first
formulate it into dual forms and then offer a direct primal formulation.
Furthermore, we propose an efficient algorithm to solve the primal,
which is able to reduce the size of the problem. We also provide a
similar primal solution for the enhanced robust regression approach.

A. Dual Optimization

Because the previous robust regression methods with the Huber loss
function [4] only consider the linear case without adding any regular-
ization term in the objective function, we formulate this problem under
the framework of regularization networks in this correspondence.
Frequently, a nonlinear mapping function can be employed in the
robust regression. Furthermore, the regularization term is employed
to avoid the overfitting issue and ensure the numerical stability.

Currently, there are two different approaches for formulating the
robust regularized kernel regression into dual forms.

1) Dual I: One can formulate the robust regularized kernel regres-
sion into the dual form as follows:

min
v,w,α,b

wTw + +2m1Tv + λαTKα

s.t. −w − v � Kα + b − y � w + v

0 � w � m

0 � v

with variables α,v,w, and b.
2) Dual II: Another dual form can be given as [4]

min
w,α

wTw + 2m1T|u−w| + λαTKα.

Moreover, this dual form in turn can be reduced to a simple quadratic
programming (QP) problem as follows:

min
α,w,v

wTw + 2m1Tv + λαTKα

− v � Kα + b − y −w � v

v � 0.

As suggested in [4], a simplification on the aforementioned dual
problem will be more efficient, which is derived as follows:

min
α,w,v,t

wTw + 2m1T(v + t) + λαTKα

Kα + b − y −w = v − t

v, t � 0.

Obviously, all the aforementioned dual optimizations are QP problems,
which can be solved by some standard QP solver [21]. Being a
convex optimization problem, the dual optimization can be solved
in polynomial time. Due to the introduction of extra variables, the
problem size becomes large and hence may affect the efficiency of
the solution.

Fig. 2. Robust regularized kernel regression (R3) algorithm.

B. Primal Optimization

Instead of solving the optimization problem in dual, we propose
a novel primal solution for the robust regularized kernel regression
problem. The algorithm is shown in Fig. 2. We rewrite the Huber loss
function as follows:

V (y, f(x)) =

{
m(2u − m) S1 = {x|u > m}
u2 S2 = {x| − m ≤ u ≤ m}
−m(2u + m) S3 = {x|u < −m}.

The finite Newton method and its modification are efficient and
effective to solve this problem [12], [14]. It can handle the complex
piecewise loss function, whereas it is usually challenging for the
standard Newton method. According to the objective function in (6),
the derivatives of E(α) with respect to α can be derived as follows:

∂E

∂α
=2

(
λKα+

|S2|∑
i=1

ki

(
kT

i α−yi

)
+m

|S1|∑
i=1

ki−m

|S3|∑
i=1

ki

)

=2(λKα+KI0Kα+Kq)

where q is an n-dimensional vector, which equals

q = −I0y + me (7)

and I0 is an n × n diagonal matrix with the first |S2| entries being one
and the others zero. Moreover, e is defined as

ei =

{
1 xi ∈ S1

0 xi ∈ S2

−1 xi ∈ S3.

Because the derivatives of E(α) with respect to the variable α vanish
for optimality, it leads to the following solution:

α = −(λI + I0K)−1q. (8)

When the offset b is considered, there are two approaches to tackle this
issue. One is to directly estimate the offset b from the average fitting
residual error. Another is to perform a joint optimization on both α
and b. We prefer the latter approach for better empirical performance.
Let q́ denote as

q́ = I0(b · 1− y) + me. (9)
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Consider the bias b; the gradient ∇ becomes

∇ =

[ ∂E
∂α

∂E
∂b

]
= 2

[
λKα + KI0Kα + Kq́

I0Kα + q́

]
.

Therefore, the Hessian matrix H is derived as follows:

H = 2

[
λK + KI0K I0K

KI0 I0

]
.

Thus, we rewrite the gradient matrix ∇ as follows:

∇ = H

[
α

0

]
− 2

[
Kq́

q́

]
.

The update equation for each Newton optimization is as
follows: [

α′

b′

]
=

[
α

b

]
− γH−1∇ (10)

where γ is the step size that can be safely set to one.
The Hessian matrix H is able to be decomposed into the product of

two matrices

H =

[
K 0
1 −λ

][
λI + I0K 1

1 0

]
.

Therefore, it can be derived that

H−1∇ =

[
α
0

]
−

[
λI + I0K 1

1 0

]−1 [
q́
0

]
. (11)

Substituting (11) into (12), the final update equation is obtained as
follows:[

α′

b′

]
=

[
(1 − γ)α

b

]
+ γ

[
λI + I0K 1

1 0

]−1 [
q́
0

]
. (12)

C. Efficient Algorithm

Directly computing the matrix inversion in (12) may be compu-
tationally expensive. In this section, we propose a fast algorithm to
compute α and b.

Let us denote the matrix M as M = λI + I0K and
define N as

N =

[
λI + I0K 1

1T 0

]
=

[
M 1
1T 0

]
.

According to the matrix inversion lemma

N−1 =

[
M−1(I − 1 · g · 1TM−1) M−1 · 1 · g

g · 1T · M−1 −g

]

where g = 1/(1T · M−1 · 1). Substituting the previous equation into
(12), we can obtain[

α′

b′

]
=

[
(1 − γ)α + γM−1(q− 1 · g · 1TM−1q

b + γg · 1T · M−1q

]
.

Assuming that the step size γ = 1, the update of α and b can be
computed by

b′ = b + g · 1T · M−1q (13)

α′ =M−1 [q− (b′ − b) · 1] . (14)

It is shown that only the inverse of M is involved in the computation.
Given the fact that the lower left block of M is zero, the inverse of M
can be efficiently computed. According to the matrix inversion lemma,
we then have

M−1 =

[
KS2,S2 + λI KS2,S1∪S3

0 λI

]−1

=

[
K−1

S2,S2
− 1

λ
K−1

S2,S2
KS2,S1∪S3

0 1
λ
I

]

where K(·,·) represents the submatrix of K.
Remark: The complexity of the proposed approach is O(|S2|3 +

n2), where |S2| ≤ n, whereas the RLS is O(n3).

D. Enhanced Robust Regression

In similar, we solve the enhanced robust regression problem directly
in primal and rewrite the loss function as follows:

V (y, f(x))

=

⎧⎪⎪⎨
⎪⎪⎩

m (2(u − ε) − m) S1 = {x|u − ε > m}
(u − ε)2 S2 = {x|0 < u − ε ≤ m}
0 S3 = {x‖u| ≤ ε}
(u + ε)2 S4 = {x| − m ≤ u + ε < 0}
−m (2(u + ε) + m) S5 = {x|u + ε < −m}.

According to the definition, m must be greater than ε. Obviously, the
enhanced robust regression problem degenerated into the robust kernel
regression when ε equals zero. The derivatives of E(α) are derived as
follows:

∂E

∂α
=2λKα − 2

|S2|∑
i=1

Ki

(
KT

i α − yi + ε
)

+ 2m

|S1|∑
i=1

Ki

− 2

|S4|∑
i=1

Ki

(
KT

i α − yi − ε
)
− 2m

|S5|∑
i=1

Ki

=2(λKα + KI0Kα + Kq)

where q is denoted as q = −I0y + e, and I0 is an n × n diagonal
matrix with the first |S2| + |S4| entries being one and the others zero.
Here, e is a vector; each element is defined as

ei =

⎧⎪⎪⎨
⎪⎪⎩

m xi ∈ S1

ε xi ∈ S2

0 xi ∈ S3

−ε xi ∈ S4

−m xi ∈ S5.

One can see that the form of derivatives in the enhanced robust
regression is equivalent to the robust regularized kernel regression
except the difference of defining q and e. Thus, we can solve this
optimization by using the previous efficient algorithm for the robust
regularized regression.

V. EXPERIMENTAL RESULTS

We have implemented both the dual and primal algorithms
of the robust regularized kernel regression in Matlab. For sim-
plicity, the Dual I and Dual II algorithms using regulariza-
tion are denoted as “D-H1” and “D-H3,” respectively. The other
Dual II algorithm without a regularization term is denoted as
“D-H2,” which is equivalent to the typical robust regression method
[4]. Our proposed robust regularized kernel regression approach is
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Fig. 3. Two fitting examples on the sinc artificial data set of different noise
percentages.

TABLE I
FITTING RESULTS ON sinc DATA SETS WITH DIFFERENT

NOISE PERCENTAGES. THE MSE IS ADOPTED AS

THE METRIC, AND THE UNIT IS 10−2

denoted as “R3.” Because the enhanced robust regression performs
similarly against the R3 algorithm, our evaluation mainly focuses on
the latter. All experiments were carried out on a Pentium-4 3.0-GHz
PC with 1-GB RAM.

To conduct the performance evaluation, we adopt three popular data
sets for regression in our experiments, including one artificial data
set and two real regression data sets from UCI Machine Learning
Repository.

A. Experiment I: The sinc Artificial Data

The function sinc(x) = sin ‖x‖/x is widely used to examine
the performance of regression algorithms [1], [8]. In our
experiment, both training and testing data sets are generated
by uniformly sampling 100 data points from the interval
[−10, 10], respectively. The target values are then corrupted by
some noise with a normal distribution. The standard deviation σ
of the injected noise is set to one. Fig. 3 shows two fitting results
under the settings of different noise percentages. In the experiment,
all of the regularization and kernel parameters are fairly determined
using the training set. The mean-square error (mse) is adopted as the
performance metric, which has been widely used in regression tasks.

In the experiment, we generated several versions of data sets with
different noise percentages. Then, we repeated each experiment up
to 30 runs and summarize average results in Table I. From the
experimental results, several observations can be drawn. First, we
found that, among the three dual algorithms, D-H2, which is the one
without regularization, performed very well in the noise-free case but
suffered significantly when the noise increases. The D-H3 algorithm is
consistently better than the D-H1 algorithm. Second, we found that
the proposed R3 algorithm is comparable to the dual solutions. In
particular, our algorithm is better than the two regularized algorithms,
which are the D-H1 and D-H3, when the noise is lower and is
significantly better than the nonregularized algorithm D-H2 when the
noise is higher. These results show that the proposed R3 algorithm is

TABLE II
REGRESSION PERFORMANCE ON THE TESTING DATA FOR THE

ROBOT ARM DATA SET. THE MAE AND THEIR

STANDARD DEVIATION RESULTS ARE

REPORTED. THE UNIT IS 10−1

TABLE III
RESULTS OF TESTING DATA ON THE BOSTON DATA SET

effective in handling noisy data. In addition, we can also observe that
RLS with the L2 norm only works well in the small noise case; the
performance becomes worse when data are nosier.

B. Experiment II: The Robot Arm Data Set

In the second experiment, we study a regression task of the well-
known robot arm problem introduced by Neal [22]. In the robot
arm problem, there are two input variables x1 and x2, representing
joint angles, and two target values y1 and y2, representing arm
positions in rectangular coordinates. This data set1 consists of 600
input–target pairs. The target values are contaminated by independent
Gaussian noise with a standard deviation of 0.05. In our experiment,
we randomly sample 200 examples (pairs) from the data set as a
training set and treat the rest part of the data set as the testing set.
For experimental settings, all regularization and kernel parameters
are optimized according to the training data set. For the performance
metric in this experiment, we adopt the mean absolute error (MAE) by
following the previous work in the literature [1], [22].

We repeat the same experiment up to 100 runs and summarize
average results in Table II. From the experimental results, similar
observations can be found. The proposed R3 method obtained the
smallest MAE results compared with other solutions.

C. Experiment III: The Boston Housing Data Set

The third experiment is to study the Boston housing problem, which
is to estimate the median price of houses in 506 census tracts within
the Boston metropolitan area in 1970. Thirteen attributes pertaining
to each census tract are available for prediction.2 For each run of the
experiment, the data set is randomly partitioned into a training set of
481 examples and a testing set of 25 examples. In total, 100 runs were
conducted. Table III summarizes the average experimental results with
respect to the mse metric.

From the results, we can see that the proposed R3 method achieved
the best performance, which is the same as the other two dual methods
and is better than the D-H2 approach. Meanwhile, we found that all
of the proposed primal and dual methods are significantly better than

1http://wol.ra.phy.cam.ac.uk/mackay/bigback/dat/.
2http://lib.stat.cmu.edu/ data set s/boston.
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Fig. 4. Comparison of time efficiency with different training sizes.

the RLS solution. The simple L2-norm loss function leads to the
unbiased estimation of the target function, which may suffer difficulty
in handling the noisy data. This again verifies the effectiveness of the
proposed primal method.

D. Evaluation of Efficiency Performance

Finally, we empirically examine the efficiency performance of the
proposed method. To this purpose, we conduct the experiment by
comparing the time cost of the proposed algorithm with respect to
the other algorithms mentioned earlier. Fig. 4 shows the experimental
results of time performance with respect to different training set sizes.
From the experimental results, we can clearly see that the proposed
primal algorithm is significantly more efficient than the other three
dual solutions and is comparable to the RLS approach. It is interesting
to find that RLS is slightly faster than the proposed R3 approach. This
is because the loss function used in R3 is more complicated than RLS
and hence requiring more computational cost.

VI. CONCLUSION

In this correspondence, we proposed a novel robust regularized
kernel regression and suggested an efficient algorithm to solve the
problem. We first presented our formulation under a theoretical frame-
work of regularization networks. Based on the solid framework, we
solved the robust regularized kernel regression problem directly in
the primal form, which leads to an unconstrained optimization. We
then proposed an efficient algorithm to reduce the computational cost.
Compared with the traditional dual methods, our primal formulation
is more efficient to be solved and easier to be implemented. We

also extended the proposed solution to the Huber-ε insensitive loss
function, which enjoys the sparsity in the solution representation.
Experimental results on both artificial and real data sets validated the
effectiveness and efficiency of our method.
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