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Cluster Number Selection for a Small Set of Samples Using the Bayesian
Ying–Yang Model

Ping Guo, C. L. Philip Chen, and Michael R. Lyu

Abstract—One major problem in cluster analysis is the deter-
mination of the number of clusters. In this paper, we describe
both theoretical and experimental results in determining the
cluster number for a small set of samples using the Bayesian–Kull-
back Ying–Yang (BYY) model selection criterion. Under the
second-order approximation, we derive a new equation for
estimating the smoothing parameter in the cost function. Finally,
we propose a gradient descent smoothing parameter estimation
approach that avoids complicated integration procedure and gives
the same optimal result.

Index Terms—Bootstrap, cluster number selection, data
smoothing, SEM algorithm, small number sample set, smoothing
parameter estimation.

I. INTRODUCTION

I N INTELLIGENT statistical data analysis or unsupervised
classification, cluster analysis is to determine the cluster

number or cluster membership of a set of given samples,
[1], [2], [3], [27], by its mean vector, . In

most cases, the first step of the clustering is to determine the
cluster number. The second step is to design a proper clustering
algorithm. In recent years, several clustering analysis algo-
rithms have been developed to partition samples into several
clusters, in which the number of clusters ispredetermined. The
most notable approaches are, for example, the mean square
error (MSE) clustering and finite mixture model algorithms.

The MSE clustering algorithm typically is implemented by
the well-known -mean algorithm [1], [27]. This method re-
quires specifying the number of clusters,, in advance. If is
correctly selected, then it can produce a good clustering result;
otherwise, data sets cannot be grouped into appropriate clus-
ters. However, in most cases the number of clusters is unknown
in advance. Because it is difficult to select appropriate number
of clusters, some heuristic approaches have been used to tackle
this problem. The rival penalized competitive learning (RPCL)
[4] algorithm has demonstrated a very good result in finding
the cluster number. However, there is still no appropriate theory
being developed [5], [6].
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In the mixture model cluster analysis, the sample data are
viewed as two or more mixtures of normal (Gaussian) distri-
bution in varying proportion. The cluster is analyzed by means
of mixture distribution. The likelihood approach to the fitting
of mixture models has been utilized extensively [7]–[11]. How-
ever, the determination of the appropriate cluster number still
remains one of the most difficult problems in cluster analysis
[12].

The Bayesian–Kullback Ying–Yang (BYY) learning theory
has been proposed in [13]. The BYY learning is a unified algo-
rithm for both unsupervised and supervised learning which pro-
vides us a reference for solving the problem of selecting cluster
number. The experimental results worked very well for a large
set of samples when the smoothing parameter [14],
[15]. However, for a relatively small set of samples, the max-
imum likelihood (ML) method with the expectation-maximiza-
tion (EM) algorithm [16] for estimating mixture model param-
eters will not adequately reflect the characteristics of the cluster
structure. In this way, the selected cluster number is incorrect.
To solve the problem for the small set of samples, the BYY
theory for data smoothing is developed in [17] is approach con-
siders the nonparametric density estimation and the smoothing
factor in the Parzen window.

In this paper, we investigate the problem of determining the
smoothing parameter and the model selection in clustering.
With this approach, the performance of the BYY model
selection criterion for determining cluster number is greatly
improved. Finally, we propose an efficient gradient descent
smoothing parameter estimation approach that not only reduces
the complicated computation procedure but also gives the
optimal result.

II. PRELIMINARY

First, we briefly review the finite mixture model and the BYY
theory for model selection [14], [19].

A. The Finite Mixture Model

Let us consider a Gaussian mixture model. The joint proba-
bility density that consists of Gaussians is

with

and (1)

1045-9227/02$17.00 © 2002 IEEE



758 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 3, MAY 2002

where

(2)

is a general multivariate Gaussian density function,denotes
a random vector, is the dimension of , and parameter

is a set of finite mixture model parameter
vectors. Here, is theprior probability, is the mean vector,
and is the covariance matrix of theth component. Based
on a given data set , these parameters can be esti-
mated by maximum likelihood learning with the EM algorithm
[7], [16].

B. The BYY Theory for Finite Mixture Model and EM
Algorithm

As mentioned in [19], [20], unsupervised learning problems
can be summarized into the problem of estimating joint distribu-
tion of patterns in the input space and the represen-
tation space . By the Bayesian Kullback Ying–Yang theory,
we have the following Kullback–Leibler divergence [19]:

(3)

where and are two different models.
The minimization of can be implemented by

the alternative minimization procedure which alternatively min-
imizes one model while keeping other models temporarily fixed.

We can obtain a general form of function in the Gaussian
mixture model case as

(4)

where is a nonparametric kernel estimation.
With

(5)

the function becomes

(6)

For a mixture model parameter learning

(7)

If function is minimized with respect to parameter,
the EM algorithm [7], [16] can be rederived within the limit of

. The following is the EM algorithm which breaks down
into E-step and M-step.

E-Step: Calculate theposteriorprobability

(8)

M-Step:

(9)

(10)

(11)

A local minima can be found by iterating these two steps.

C. Model Selection Criterion

The determination of an appropriate number of clusters in a
data set is one of the most difficult problems in clustering anal-
ysis [12]. In the literature, there are several heuristically pro-
posed information theoretical criteria. Following Akaike’s pio-
neering work [21] in which an information criterion was first
proposed for use in selecting the number of clusters in the mix-
ture model cluster analysis. Similar studies include AICB [22],
CAIC [23], and SIC [24]. These criteria combine the maximum
value of the likelihood with the number of parameters.

The cluster number,, is actually a structural scale parameter
of the BYY system. From the BYY system, the BYY model
selection criterion for determining the correct cluster number is
derived in [14] as follows:

(12)

(13)

(14)

where

(15)

(16)

In practice, we start with , estimate the parameter
by the EM algorithm based on the given samples, and compute

. Then, we proceed to , and compute again.
We continue this process after we gather a series of. The
appropriate cluster number,, is selected from the one with min-
imal .

Although the model selection approach discussed above
works well for a good size of data samples, we found out, from
several experimental results, that the selected cluster number
was not correct for a relatively small set of samples. The results
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(a) (b) (c)

Fig. 1. Data smoothing result: The 2-D synthetic data set and the comparison ofJ versusk. (a) Data set. (b) The result of “without data smoothing” approach.
(c) The result of “with data smoothing” approach. The results show that four clusters is the best number.

are also incorrect with other theoretical information criteria
mentioned above. The reason is that the MLE with the EM
algorithm that estimates mixture model parameters will not
reflect the characteristics of cluster structures adequately. As
a result, it affects the correctness of determining the cluster
number. In order to study the effect of parameter estimation on
the BYY model selection, we have incorporated the bootstrap
technique with the EM algorithm in the MLE of mixture
parameters and obtained a relatively robust performance for
determining the cluster number with the BYY criterion and
clustering for small set of samples [18].

In the next section, we investigate the BYY data smoothing
theory for parameter estimation.

III. BYY D ATA SMOOTHING THEORY

Under the conditional mean field approximation, minimizing
function corresponding parameter will lead to the

smoothing EM (SEM) algorithm [20], where the updates in
E-step and M-step are given as follows.

E-Step:

(17)

M-Step:

(18)

(19)

(20)

where is a dimensional identity matrix. The SEM al-
gorithm is different from the ordinary EM algorithm in that it
employs covariance estimation correction.

According to the principle of minimizing function, when
, the smoothing parametershould be estimated as

(21)

IV. PRACTICAL IMPLEMENTATION CONSIDERATION

The BYY data smoothing is a quite new technique. Two
aspects for implementing BYY data smoothing should be
discussed. One aspect is that we need to verify if the esti-
mated parameter for determining the cluster number with
data smoothing. The other aspect is the selection of a proper
smoothing parameter to estimate the mixture parameter.

Without loss of generality, we use a heuristic estimation of
smoothing parameter for fast implementation. For example,
we can use of average distance approximation to estimate

value as follows:

(22)

A. Data Smoothing Experiments

In order to investigate the data smoothing effect, we first use
some synthetic data sets to conduct the experiments.

The data sets have been generated under different conditions,
such as different Gaussian mixtures, different mean, and
different covariance of each cluster.

In computer experiments, we randomly generate 30two-
dimensional (2-D) samples and 50 three-dimensional (3-D)
samples, where is the number of Gaussian mixtures, varying
from one to eight. Three data sets and their experimental results
are shown in Figs. 1–3.

The cluster number selection criterion is when the cost func-
tion versus reaches its global minimum point at

, where is the candidate cluster number andis the actual
number of Gaussians in the finite Gaussian mixture model.

Fig. 1 shows the experimental result of the cost function
versus for two dimensional Gaussian mixture data

set. From Fig. 1(b), we find that the ordinary EM algorithm
over-estimates the actual cluster number (which gives us six
clusters), while the data smoothing SEM algorithm gives a
reasonable result. In Fig. 1(c) the best cluster number is four
from the versus plot. Similarly in Fig. 2(c), the best cluster
number is six, while the result of the ordinary EM algorithm
shown in Fig. 2(b) is eight. As for large samples case, the
experiments show no obvious difference between and

in search of the correct cluster numbers [15].
Another example is the Iris plant dataset [26]. Fig. 3 depicts

the results of the Iris dataset. The experimental results show
that the correct cluster number is three from Fig. 3(c). We see
that with data smoothing, the performance of cluster number
selection is improved.
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(a) (b) (c)

Fig. 2. Data smoothing result: The 3-D synthetic data set and the comparison ofJ versusk. (a) Data set. (b) The curve “without data smoothing.” (c) The curve
“with data smoothing.” The results show that six clusters is the best number.

(a) (b) (c)

Fig. 3. The IRIS data set and the comparison ofJ versusk. (a) IRIS data set inx ; x ; x axis view. (b) The curve “without data smoothing.” (c) The curve
“with data smoothing.” The results show that three clusters is the best number.

B. Smoothing Parameter Estimation

According to the principle of minimizing function, the
optimal smoothing parameter can be obtained from (21). How-
ever, the evaluation of integration is computation-expensive.
Therefore, we propose an approximation scheme in order to
avoid the integration.

In the following, we first review the quantized method which
is recommended in [17]; then we derive a new gradient descent
approximation for estimating this smoothing parameter.

The Quantized Method:On each of the quantized levels,
, we run the SEM algorithm to obtain a se-

ries of mixture parameter . We then choose one such that
its corresponding value of , is the smallest. This
approach is an exhaustive search method and usually is compu-
tation-expensive. A gradient descent approach is proposed next.

Gradient Descent Approach:For the gradient descent ap-
proach, we need to find an approximation for estimating param-
eter . Referring to [17], the smoothing parameter is given as

[17, eq. (14b)]

where

Note is a Gaussian density function.
Now, let us denote

Integrate , we get .
Because is positive and for
, it leads to

This indicates , no matter how distributed.
As we know, for any finite number of samples , the sum-

mation value will be less than the integration value when the
function is positive, i.e.,

From the above inequality, we can see that the approach al-
ways finds a regardless the data distribution and initializa-
tion. Because is nonnegative, the value of will approach
to zero eventually.

In order to cope with the above-mentioned efficiency, we de-
rive a new equation for estimating smoothing parameterbased
on Kullback–Leibler divergence.

Rewrite (6) in the following form:

(23)

where

(24)

(25)

(26)

If we use Gaussian kernel density

(27)
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(a) (b)

Fig. 4. The quantized method for the synthetic data set with three clusters. (a) Data plot (b) The 3-D view ofJ versush, andk. A local minima occurs atk = 3

andh is around 0.006.

then we obtain

(28)

Because the term is inside the integral in (29),
when moves away from , the function value becomes very
small. So we can use Taylor expansion for at .
When is small, we can omit the higher order terms and only
keep the first-order term. By doing this, we have the following
approximation of (detailed derivations are given in the Ap-
pendix):

(29)

(30)

(31)

We know that

(32)

where

(33)

and the last term in (32) can be calculated as

(34)

So (32) becomes

(35)

From

(36)

and with mean center approximation (see Appendix), we can
obtain the new gradient descent formula for estimatingas

(37)

where is a learning parameter and

(38)

(39)

Let , we obtain the following estimation equation
for :

(40)

C. Experimental Results and Discussions

Now we present the experimental results for both the quan-
tized and the gradient descent approximations of.

In the experiments, we vary value from 0.001 to 0.05 and
from one to eight. From Fig. 4, we see that using the quantized
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Fig. 5. Differenth values and the correspondingJ (k) curves that are found from the results of the gradient descent approach. Ifh equals 0.3783,k is under-
estimated, while forh is less than 0.0024, thenk is overestimated. (a)h = 0:3783. (b)h = 0:04814. (c)h = 0:03415. (d)h = 0:03413. (e)h = 0:0024.
(f) h = 0:0006.

Fig. 6. Differenth values and the correspondingJ (k) curves that are found from the results of the gradient descent approach. (a)h = 0:3783. (b) h =
0:04814. (c) h = 0:03415. (d) h = 0:03413. (e)h = 0:0024. (f) h = 0:0006.

method, and can be determined simultaneously. From these
results, we obtain value at minimal .

From these experiments, we know that by using the gradient
method, the searching range is limited in a small region of
value compared to the quantized level method. Differentwill
result in different mixture model parameters,; therefore it pro-
duces different estimations. To find the optimal one, we can
use the properties of and [17] to analyze the results and
to determine and . We know that if or is too small,

will be over-estimated. If is too large, the curve will be too
smooth and will be underestimated (see Fig. 5 for the com-
parison). In most cases, we can determineand from sim-
ulations easily. For example, in the experiments, the effect of
data smoothing is somehow similar to increase of the number
of samples. Figs. 5 and 6 show the results of the gradient de-
scent approach. The results also confirm with the theorem in
[14], if , and if ,
for . From Fig. 6, we can easily find the possibleis
three. From these figures, we obtain the optimalvalues, as
0.048 14, 0.034 13 and 0.034 15, respectively, through the gra-
dient descent approach.

V. SUMMARY

In this paper, we first review the BYY learning theory scheme
for data smoothing. For a small set of samples, by combining
data smoothing techniques with the SEM algorithm, we ob-
tain a relatively robust performance for determining the cluster
number.

The selection of the smoothing parameteris a crucial
problem. In this study, we derive an estimating formula for
the smoothing parameter. Often with the estimated pa-
rameter, we can obtain a correct cluster number. Based on
Kullback–Leibler divergence, we derive the gradient descent
approach for estimating the smoothing parameter. The exper-
iments indicate that the proposed approach works very well,
and it is less computation-intensive compared to the exhausted
search methods.

In fact, under the circumstance of different models, different
sample sizes, and different data distributions, the determination
of an appropriate cluster number using the Gaussian mixture
model is very difficult. From our derivations and experiments,
the BYY-based model selection criterion can select a reasonable
cluster number even in a small set of samples.
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APPENDIX

FORMULA OF ESTIMATING SMOOTHING PARAMETER

Here we derive the formula for estimating the smoothing pa-
rameter in the Gaussian mixture model case.

In the multidimension case, we have

while is

Integrating it, we get

From (31) and (35), we have

(41)

For the last term of the above equation, we use the mean
center approximation, i.e.,

(42)

Combining the above equations and with the mean field ap-
proximation, we can obtain the following equation:

(43)
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