310 IEEE TRANSACTIONS ON RELIABILITY, VOL. 50, NO. 3, SEPTEMBER 2001

Framework for Modeling Software Reliability, Using
Various Testing-Efforts and Fault-Detection Rates

Sy-Yen Kug Fellow, IEEE Chin-Yu Huang, and Michael R. Ly&enior Member, IEEE

Abstract—This paper proposes a new scheme for constructing NFD
software reliability growth models (SRGM) based on a nonhomo- NHPP
geneous Poisson process (NHPP). The main focus is to provide aRE
efficient parametric decomposition method for software reliability SRGM
modeling, which considers both testing efforts and fault detection
rates (FDR). In general, the software fault detection/removal mech- TE
anisms depend on previously detected/removed faults and on how
testing efforts are used. From practical field studies, it is likely
that we can estimate the testing efforts consumption pattern and
predict the trends of FDR. A set of time-variable, testing-effort- m(t)
based FDR models were developed that have the inherent flexi-
bility of capturing a wide range of possible fault detection trends: A(#)
increasing, decreasing, and constant. This scheme has a flexible
structure and can model a wide spectrum of software development w(t)
environments, considering various testing efforts. The paper de- W (¢)
scribes the FDR, which can be obtained from historical records of AW()
previous releases or other similar software projects, and incorpo-
rates the related testing activities into this new modeling approach.

The applicability of our model and the related parametric decom-
position methods are demonstrated through several real data sets "0
from various software projects. The evaluation results show that 7y
the proposed framework to incorporate testing efforts and FDR for 1y,
SRGM has a fairly accurate prediction capability and it depicts the g(t)
real-life situation more faithfully. This technique can be applied to

a wide range of software systems.

Index Terms—Fault detection, nonhomogeneous Poisson process
(NHPP), software faults and failures, software reliability growth
model (SRGM), testing-effort functions.

A
8,m
ACRONYMS d(t)
AE accuracy of estimation U(t)
DS data set
FDR fault detection rate

HPP homogeneous Poisson process
K-S Kolmogorov—Smirnov

LOC lines of source code

LSE least squares estimate

MLE maximum likelihood estimate
MSF mean of square fitting faults

number of faults detected
non-HPP

relative error

software reliability growth model
testing effort

Notation

mean number of faults detected in tiffe ¢]: mean
value function

dm(t)/dt: failure intensity form(t)

current TE consumption at time

cumulative TE consumption at tinte

W(.) — W(0)

anticipated number of initial faults

FDR per unit of TE

initial value of »

final value ofr

initial TE

consumption rate of the TE expenditures for a
Weibull-type curve at time

total amount of TE eventually used

consumption rate of TE expenditures in the logistic
TE function

constant parameter in the logistic TE function
[scale, shape] parameter in the Weibull TE function
detectability of an error for the current error content
Laplace trend factor.

. INTRODUCTION

UE to the rapid development of computer and information

technology, society increasingly depends on software-in-
tensive systems. Software is embedded in many modern sys-
tems, including expensive scientific computing systems, finan-
cial banking systems, industrial applications, university com-
puter centers, and home personal computers. Since the demands

for complex and large-scale software systems are increasing
Manuscript received February 6, 1999; revised February 28, 2000. This werkore rapidly, the possibility of programmers’ design errors in

was supported by the National Science Council, Taiwan, ROC and the Tai
Power Company, under Grant NSC 87-TPC-002-017. It was also partially s

"ﬁ[b systems will grow appreciably. Consequently, the possibility

ported by a grant from the Research Grant Council of the Hong Kong Spedicrises due to software failures will continue to increase. These

Administrative Region, under Project CUHK4432/99E.
Responsible Editor: K. Kanoun
S.-Y. Kuo and C.-Y. Huang are with the Electrical Engineering Departme

failures can generate enormous losses of revenue for many en-
Jerprises. Therefore, to determine system reliability, the soft-

National Taiwan University, Taipei, Taiwan (e-mail: SYKuo@cc.ee.ntu.edu.twyare reliability must be carefully evaluated.

CY2Huang@mail.cbc.gov.tw).

M. R. Lyu is with the Computer Science and Engineering Departme
The Chinese University of Hong Kong, Shatin, Hong Kong (e-mai
Lyu@cse.cuhk.edu.hk).

Publisher Item Identifier S 0018-9529(01)11175-9.

1The singular and plural of an acronym are always spelled the same.

Software reliability is similar to hardware reliability because
irlfroth can be described by probability distributions. However,
software faults are harder to visualize, detect, and correct,
compared with physical hardware faults. The reliability of
any system depends on the correctness of the system design,

0018-9529/01$10.00 © 2001 IEEE



KUO et al: FRAMEWORK FOR MODELING SOFTWARE RELIABILITY 311

the correctness of the mapping of the system design to ithat will eventually be encountered by the customers. The FDR,
plementation, and the reliability of the system-componentsn the other hand is used to measure the effectiveness of fault
Software systems are quite different from hardware systeistection by test techniques and test cases. In the vast literature
because the former do not wear out, at least in a physical serj$g-[6], and [10]-[19], most researchers assume a constant FDR
Therefore, fault and failure patterns for software and hardwaper fault in deriving their SRGM. That is, they assume that all
are different, and the difference is fundamental Thus, the safaelts have equal probability of being detected during the soft-
models used for measuring hardware reliability cannot be usedre testing process, and the rate remains constant over the in-
for measuring software reliability. tervals between fault occurrences.

Hardware has mixtures of decreasing and increasing failureln reality, the FDR strongly depends on the skill of test
rates [1], [2]. The decreasing failure rate is caused by repairitRgms, program size, and software testability. Through real data
original design-related hardware failures. The increasing failuggperiments and analyzes on several software development
rate is due to hardware component aging or wear-out. On tk®jects [20], the FDR has 3 possible trends as time progresses:
other hand, software systems usually have a decreasing failidereasing, decreasing, or constant. We thus treat the FDR as
rate [1]-[3]. And there is some confusion as to whether soft-function of time to interpret these possible trendg; we
ware reliability is probabilistic or deterministic. The answer deassume a time-variable fault detection function. And, we con-
pends on how we view software reliability. However, softwargolidate these 2 concepts, TE function and time-variable FDR,
has to be considered with its environment. Various software relito a combined analysis for software reliability modeling.
ability measurement indicate different values for the same soft-This paper estimates the SRGM parameters by MLE and LSE
ware under different testing/operating environments. Accordimgethods. We take the estimated parameters into the proposed
to the ANSI definition [4]: “Software reliability is the proba- software-fault prediction model and compare the predicted re-
bility of failure-free software operation for a specified period o$ults with other existing SRGM. From the comparison results,
time in a specified environment.” Hence, accurately modelirgyr analysis determines the reasons why the predicted results
software reliability, and predicting its possible trends, are ess@gree or disagree with the actual results. Experimental results
tial in determining the system reliability. To achieve a highly reshow that the combined model gives a more accurate predic-
liable software system, many software fault detection/removiédn, and depicts the real-life situation more faithfully.
techniques can be used by the program developers or testingection Il describes a basic SRGM that combines the TE
teams. In applying these techniques, the SRGM are importdirction and the time-variable FDR.
because they can provide quite useful information for devel- Section lll extends the basic SRGM to consider various time-
opers and testers during the testing/debugging phase. dependent FDR, and discusses several modeling propositions.

Numerous fault-prediction models are published, and manySection IV estimates these parameters of the proposed SRGM

efforts were made to estimate software reliability from real D&ased on the actual observed software failure data, plots their
Most of them are based on mean value functions, and fairly compares them with other ex-

isting models.

» calendar-time, e.g., the Jelinski-Moranda Model [4],  ggction v discusses FDR and the reliability trend.

« staff-time, e.g., Shooman Model [4], or

e computer-time, e.g., Musa Model [4], [5].
. . L o Il. TE-BASED SOFTWARE RELIABILITY MODELING
Musa [5], [6] first discussed the validity of execution-time

theory by taking DS from real software systems. However, The mathematical expression of TE-based is:
most existing DS are not based on the execution-time concept.
Recently, [1]-[3] and [7]-[9] proposed two simple SRGM with dm(t) 1

Weibull-type and logistic TE functions, respectively. These gt w(t) (&) fa—m®)],  a>0,0<r(t)<1
models attempt to account for the relationship among the dm(t)
calendar testing, the amount of TE, and the number of software ~ —,— = w(t) - 7(t) - [a — m(t)]. 1)

faults detected during testing. The TE can be measured by
the human power, the number of test cases, the numberTsis basic SRGM (1) is based on the assumptions:
CPU hours, etc. When applied extensively to real software 1) The fault removal process is NHPP.
development projects, these models provide a reasonable fiR) The software system is subject to failures at random times
to the observed data and give insightful interpretations for the  caused by the manifestation of remaining faults in the
resource consumption process during the software development system.
phase [7]-[9]. 3) The mean number of faults detected (i ¢ + At],

In general, among various SRGM, two most importantfactors  dm(t)/dt by the currentw(t), is proportional to the
affect reliability: the number of initial faults and the FDR. The mean number of remaining faults in the system.
number of initial faults is the number of faults in the software at 4) Ther(t) is a function of time (not just a constant).
the beginning of the test. This number is usually a representative5) The time-dependent behavior of TE can be modeled by a
measure of software reliability. Knowing the number of residual Logistic or a Weibull distribution.
faults can help to determine whether the software is suitable for6) Each time a failure occurs, the fault that caused it is im-
customers to use or not, and how much more testing resources mediately and perfectly removed, and no new faults are
are required. It can provide an estimate of the number of failures  introduced.



312 IEEE TRANSACTIONS ON RELIABILITY, VOL. 50, NO. 3, SEPTEMBER 2001

7) Correction of errors takes only negligible time and a de- 3) Logistic TE Function:Whenm > 3, the Weibull-type
tected error is removed with certainty. TE curves have an apparent peak phenomenon [7]-[9], [20].
Eg. (1) has 2 elements which influence the number of fauldiis phenomenon does not seem realistic because it is not
detectedw(t) andr(t). If r(¢) is constant over time, then commonly used in an actual software development/test process.
Therefore, we suggest a logistic TE function to describe the

dm(t ; i
(t) = w(t) -7 [a—m(t)]. @) te_st effort patte_zrns. Also, [24] reporFed that this function was
dt fairly accurate in the 1978-1980 project survey. Therefore
Solve (2) using the boundary conditien(0) = 0: W(t) N (10)

:1—|—A~e><p(—oc~t)7

m(t) = a-[1 —exp(—r- [w(t) — w(0)])]. (3) ) = dW(t) N-A-a-exp(—a-t)
T T L+ A expl—a -2
A. The TE Function = N-A-a 5. (11)
The first componentin (1) is the TE function. During the soft- [exp <a7t> + A-exp <—a7t>}
ware testing/debugging phase, appreciable TE, e.g., number of

test cases, human Power, and CPU time, is consumed. The Nrhe EDR
sumed TE can indicate how effective software faults are de- _ _ )
tected. Hence, resource consumption or allocation of human! he seécond componentin (1) is the FDR: the rate of discov-
power can be modeled by various distributions. From the stud@&"g new faults in software during the testing phase. Typically,
in [1]-[3], [7]-[9], [20], [21], several TE pattern expressiongvhether the software faults can be detected or not, depends on
exist, as shown in this Section II-A. the ability of programmers/debuggers, the software structure,
1) Constant TE Consumptionin the derivation of classical the maturity of software development procedure, and the corre-
SRGM [4]-[6], [11]-[14], [17], [22], most researchers assumg@tion among program modules.

that the TE (workload) of a software system is constant: * At the beginning of the testing phase, many faults can be
discovered by inspection, and the FDR depends on the
w(t) = wo. (4) fault-discovery efficiency, the fault density, the TE, and

the inspection rate.

2) Weibull-Type TE FunctionAccording to [1]-[3], [5], « In the middle stage of the testing phase, the FDR usually
[23], TE should not be assumed constant throughout the testing depends on other parameters such as the execution rate of
phase. In fact, instantaneous TE ultimately decreases during cpu instruction, the failure-to-fault relationship, the code
the testing life cycle so that the cumulative TE approaches a  expansion factor, and the scheduled CPU execution hours
finite limit. This analysis is reasonable because no software per calendar day [4].
company will spend infinite resources on software testing,nsequently, the FDR can be calculated. We use this rate to
Thus we describe TE a Weibull distribution: track the progress of checking activities, to evaluate the effec-

t tiveness of test planning, and to assess the checking methods we
W(t)=N- {1 — exp <—/ 9(7) dT)} (5) adopted.
0 1) Constant Proportionality:Most existing SRGM assume

t
W(t) = / w(7)dr. (6) thatthe mean number of faults detectedtint + At) is pro-
0 portional to the number of remaining faults [4], [11]-[14], [17],
There are 3 cases. [22]:
1) g(t) = B. Thenw(t) = N - 8- exp(—3 - t]). Thereis an m(t+ At) =r-w(t) - [a —m(t)] - At, (12)

exponential curve, and the cumulative TE ¢] is
7 IS a constant proportionality.

W(t)=N-[1—exp(—3-1t)] ) 2) Time-Variable FDR:In our experiments, the FDR is mea-
sured by the “average number of faults detected per TE expen-
2) g(t) = B-t. Then diture” or by the “number of faults detected by special checking
3 activities.” This information is helpful for the system devel-
w(t)=N- -3t exp {—5 -tﬂ . opers to plan the checking activities, diagnose problems, and

assess the effects of changes. And, it indicates cost-effective-

There is a Rayleigh curve and the cumulative TE s~ ness of various checking activities in the long run. To inter-
pret the possible variation in FDR with time, we survey some
B o real test/debugging DS [4], [5], [11], [12], [15], [17], [18], [22]
W t — N . 1 _ . t B 8 [} ] ] 1. ] I} ] ]
®) < P { 2 ®) [25]-[27]. We analyze those fault-detection processes and ob-

) ) serve various fault-detection behaviors. Most of the grouped DS
3) w(t) = N-B-m-t™!.exp[-F3-t™]. Thereis a Weibull pave the form:

curve, and the cumulative TE is
(to, mo), (t1, m1), ..., (tn, my);

W(t) =N - (1 —exp[-3-t"]). (9) m; = total number of faults detected by.



KUO et al: FRAMEWORK FOR MODELING SOFTWARE RELIABILITY

(a) DS1 (b) DS2
0.1 0.4 5
« o o o c®
0o
goost %, §02 o e
o o co c o
0 0
0 3 10 2? 0 5 10
3x10 time c) DS3 time
2to ©
g ° :
T, o
o o © % o %,o0
0 (o) i
0 5 10 15 20
time
X 10*" (9) DS7 (h) DS8
o
c20b® o 02
=) o o o
lL1 Ie) o i
oo, @ 0u%
0 [¢] [v) 0 %() o0
0 10 20 0 10 20
time ?') DS9 time
o
[a]
<02t o
2 o
°
o c o _ 9 ~ ©
00 5 10 15
time
(m) DS13
0.16
0.14 e
0.12
0 c o
c 0.1
ry ®o
0.08} o °
9
0.06 o
0.04 o
0.02o 5 0
time

Fig. 1.

Variation of FDR with time.

313

(d) DS4 (e) DS5
0.04 S
0.2t ©
« «
80.02 & E
0
0 o Op olefetren
0 10 2 (4] 10 20
0.1 time ?f) Ds6 time
[a)
Goosf ° % o
o
0
0 2 4 6 8
time
(j) DS10 (k) DS11
P 0.03ro
0210 o 002}
5 o B
o oot} o,
o . Q
0 O © e
0 5 1 0 5 10
1 time (?) DS12 time
(e}
005
o_c,\,.g"‘ﬂ-'-‘c"pcco c®o?
o 5 10 15 20
time
(n) DS14
0.2
o
0.18
0.16
0
« 0.14
Q
o
% 0.12
0.1 [+]
o © o
0.08 °
0.06
0 5 10
time

Generally speaking, the data obtained based on calendar tiate (14) is solved numerically [29] (usually on a computer).
tends to be noisy (short-term randomness) and might not complg. 1 shows that the FDR varies with time for various real DS:

with most assumptions for existing SRGM [4], [5], [28]. One
way of interpreting FDR at various times is to use the computa-

tion approach in [28]. From (3), and usimg(t;), m(t;+1), the
FDR betweert; andt; ., is estimated by:

m(t;)

a- [1 — exp(—T : AW(t7))]

m(tiy1)
or

m(t:) - [L - exp(—r -

—m(tit1) - [I — exp(—r- AW(%;))] = 0.

a-[L— exp(—r- AW (tigs))]’

AW (#i41))]

(13)

(14)

* Fig. 1(a), (e), (M, (), (n) show that FDR has an increasing
trend as time progresses;
¢ Fig. 1(b)—(d), (9), (k), (m) show that FDR is nonincreasing
over timet;
« Fig. 1(h), (i), (I) show that FDR seems to be a constant.
There are some peaks and valleys in describing the possible
FDR states. This might be due to sudden changes of test
schemes, test teams, or the software under test.
A software testing process consists of several testing stages,
including unit testing, integration testing, system testing, and



314 IEEE TRANSACTIONS ON RELIABILITY, VOL. 50, NO. 3, SEPTEMBER 2001

installation testing. If the software system is very large arfBubstitute (16) into (1) and solve the differential equation under
complex, programmers can usually remove the easy-to-detdé boundary conditionn(0) = 0 [8], [9]:

faults in their programs through inspection at the early stage m(t) = a-[1 — exp(—r - AW ())]. (17)

of software testing. As time passes, the testing phase proceeds o o

to the integration testing and the system testing phases, &%@™M (15), the FDR per remaining fault at testing tifrie

it becomes more difficult for the programmers to detect the a(t) =r-w(t). (18)

remaining faults._ln this case, initially FDR is increasing angq‘ (18) indicates that(¢) is dominated byw(t), whetherd(t)
then it is decreasing [see Fig. 1(b), (k), or (m)]. In other word% homogeneous or nonhomogeneous.

the length of time between fault-detection will increase. On the

other hand, if the software are not large and do not have magy proposition 2: Non-Decreasingt)

program modules, then the testing skills of programmers will If () is nondecreasing ify thenm(t) is an increasing fault
improve as time progresses, and more efficient testing SCherﬂ%%ection function

can be conducted. Accordingly, the FDR can have an increasin ) '

trend [see Fig. 1(f), (j), or (n)]. If the requirements are changed ase 2.L: .
and new features are added, or if new faults are introduced r(t)=7r(0)+Fk- m, k> 0. (19)
during debugging, the FDR will also increase. In any case, the hi . ° i del to d ibe th
FDR has three possible trends as time progresses: increas er this assumption, we use a linear model to describe the
decreasing, and constant, as shown in the real project dat

R. In (19),79 is the initial FDR andk is the slope (model
Section Il discusses software reliability modeling for Variougarameter) which can be estimated by LSE. khis used 1o
FDR.

track and predict the increasing FDR trends. Substitute (19) into
(), and solve the differential equation:

Il. | NVESTIGATION ON FDR m(t)=a- <1 — ro +k ) (20)

We examine specific expressions of FDR and make several "o 'eXp[(TO. + k) 'AW(t)] +k
propositions. Because the fault-detection task is performed Iﬁgpm (15), the FDR per remaining fault is
programmers after coding, they will analyze the source-code or () = w(t) - <1 _ k ) (21)
the results from object-code executions. Section 1I-B-2 suggests expl(ro+ k) - AW+ k)’
that a time-dependent coefficient can replace the constant FRR is monotonically increasing with tinte That is, (21) im-
assumption [20]. To interpret the results, we assume that {hiées that (20) describes a fault detection process in which the
FDR s afunction ofn(t). That s, there is some relation amongletectability of a fault increases with the progress of software
the number of initial faults, the number of detected faults, andsting.
the FDR. By re-arranging (1), the FDR per remaining fault at Case 2.2:

testing timef can be described. This represents the detectability =~ ] . om(t) ] ] 29
of a fault for the current fault content [3], [17], [36]: () =ro+(rs —70) 0 O0<mo<ry (22)
dt) = dm(t) . B (15) S.ubstlitute (22) |n.to (1); the result is a Riccati differential equa:
dt  a—m(t) tion with solution:
ie., rf
m(t)=a-|1-— ,
d(t) © < ro - explry - AW ()] + 75 =70 )
7(t) = m, 0< o < Tf- (23)
Similarly, from (15), the FDR per remaining fault at testing time

Eq. (15) implies thati(t) oc (t): r(¢) T,d(t) Tandr(t) |, ;g

d(t) |; and implies that the FDR per remaining fault is a func- rp—1o

tion of the currentu(t). We viewd(t) as a software reliability- d(t) = w(t) -7y - <1 - = SNTAE — ) ;

growth index. Most software reliability models assume théth ro - explry - AW(A] 475 = 7o

is a constant (some do not even consider it, and they sst 0<ro<rs (24)

a constant rate [4], [5], [L11]-[13]). Far(¢t) = constant, then Which is monotonically increasing. Similarly, (24) means
d(t) = constant, which indicates that these models have a Hbat (23) describes a fault-detection process in which the
mogeneous FDR. In the real projects, however, (15) givesdatectability of a fault increases with the progress of software
more precise description about the behaviat(e}. Several sce- testing.

narios are discussed in Sections IlI-A-lll-C.

C. Proposition 3: Non-Increasing(t)

A. Proposition 1: Constant FDR for(¢) If #(#) is nonincreasing with timg thenm(t) is a decreasing
If 7(¢) is constant irt, thenm(¢) is a constant FDR. FDR function. This case describes the situation that many easy
Case 1: faults are effectively detected in the beginning and the last few
faults are more difficult to detect.
r(t) =r. (16)  case 3.1:

Eq. (16) shows that all faults are equally detectable during () — 1 m(t) o5
testing. Under this assumption, the FDR per unit TE is constant. r(t) =10 T ’ (25)



KUO et al: FRAMEWORK FOR MODELING SOFTWARE RELIABILITY 315

Substitute (25) into (1); the solution is: TABLE |
1 CLASSIFICATION OF THEMODELS
ty=a-[1- ———+— 0<r ¢ (26
miE) = e < 7’0-AW(t)+1> <ro <y (26) Group FDR Case
From (15), the FDR per remaining fault at test timis A rt)=r m(t) 1
B r(t)=ro+(ry ~ro)- | 22,33
ro - w(t) 0<ro<ryor0<ry <rg
dit) = ———————. 27
() ro - AW(t) + 1 @) c r(t)=ro+k-"‘Té); 2.1, 3.2
c 3.2 k>0o0rk<0
ase 3.2
D r(t)=rp- (1— @) ; 31
t
r(t) :nﬁ-k-m, k < o0. (28) To >0
a
i 28) i 1), th lution is: . .
Substitute (28) into (1), the solution is M, =actual cumulative number of detected faults during
ro + k the test and after the test.
m(t) = a- <1 - . X ) (29) For practical purposed/, is obtained from software-
ro - expl(ro + k) - AW + & fault tracking after software testing.
From (15), the FDR per remaining fault at test timis 2) MSF
dit) = w(t)- (1- i (30) 1§ 2
- expl(ro + k) - AW+ k) MSF =2 ) [m(t:) —mi]". (35)
=1
Case 3.3:
A smaller MSF indicates a smaller fitting error and better
t
r(t) =ro+(ry—ro)- m, ro<rp.  (31) performance. L -
a Other useful quantitative measures to assist in determining
Substitute (31) into (1), the solution is: the number of regldual faults and.thg probabilllty that a software
system can survive up to a certain time, are:
) ry 1) MF (maximum faults): total number of initial faults,
H=a-[1- .
m( ) a < o - exp[(Tf) . AW(t)] 7y — 7,()) ’ m(OO),

32) 2) RF (remaining faults in the system at test titjien(oc)—
m(t), an important indicator of software reliability and a
useful measure for planning maintenance activities;

3) MTTF (mean time to failure);

To > T§-

From (15), the FDR per remaining fault at test timie

3 4) SR (software reliability) [8], [9], [19], [30].
dit) =w(t)-ry- <1 - ) .
ro-explry - AW +7rf — 70
(33) A. DS #1
The system is a PL/I database application software.dlltg
m of the Weibull-type TE function in (7)—(9), anif, A, « of
D. Model Classification the Logistic TE function in (10) can be derived using MLE and
Table | divides the propositions in Sections IlI-A-lII-C intoLSE. Similarly,a, o, r, & of the mean value function can also
4 groups. be solved numerically. Fig. 2 shows the fitting of the estimated

Various TE functions can be applied in each of these 4 groupE by using (7)—(10). Table Ill summarizes the estimated pa-
to form a particular software reliability model. Consider 4 TEameters for various TE functions, mean value function, and the
functions: Logistic, Weibull, Rayleigh, and Exponential; theeomparison criteria. Our proposed software reliability growth
there is a maximum of 16 models based on our approach. function fits pretty well at the 5%-significance level through

the K-S goodness-of-fit [4]. From Table Ill, both MSF and AE
IV. EXPERIMENTAL STUDIES AND RESULTS in group B are less than those in other groups and the existing

To check the performance of our models in Section Iil, and 2RGM:; therefore, group B could have a better goodness-of-fit.
make a fair comparison with other existing SRGM, we apply Ehis performance improvement is achieved by the using 2 pa-
DS to our models. These DS are in Table Il. The 2 compariséameters to interpret the FDR patterns instead of the traditional

criteria for evaluations among accepted models are: assumption of constant FDR.
1) AE [5], [8], [10], [14] By adding an extra parameter in modeling the fault detec-

tion phenomenon, the estimation becomes more tedious because
more numerical calculations are involved. However, the addi-
tional calculations can be fully automated. If high reliability is

(34)

M, —a
AE = |2 .
‘ M,




316

TABLE I

SUMMARY OF REAL DS THAT WERE STUDIED

IEEE TRANSACTIONS ON RELIABILITY, VOL. 50, NO. 3, SEPTEMBER 2001

DS NFD | Observation Period | Software Project/Program Descriptions and Characteristics
1(11 328 | 19 weeks PL/I application Program, Execution Time: 47.65 CPU hours, Software Size: 1317k LOC
2 [27] 86 | 22 days Execution Time: 93 CPU hours
3125 136 | 21 weeks Real-time Command & Control Application (System T1),

Execution Time: 25.3 CPU hours, 9 Programmers, Software Size: 21.7k LOC

Testing Effort (CPU Hours)

TABLE Il
SUMMARY OF MODEL PARAMETERS AND COMPARISONS FORDS #1
Model {(Group A) a r MSF AE (%)
with Logistic function 394.076  0.0427223 118.29 10.07
with Weibull function 565.35  0.0196597 122.09 57.91
with Rayleigh function 459.08  0.0273367 268.42 28.23
with Exponential function | 828.252 0.0117836 140.66 131.35
Model (Group B) a ro rs MSF AE (%)
with Logistic function 337.41 0.018962 0.113343 163.095 5.75
with Weibull function 345.686 0.0125642  0.106949 91.0226 3.43
with Rayleigh function 371.438 0.0137198  0.0805023 158.918 3.75
with Exponential function | 352.521 0.0108438 0.108197 83.9989 1.53
Model (Group C) a 0 k MSF AE (%)
with Logistic function 430.662 0.0409427 —0.0146536 103.0326  20.11
with Weibull function 385.392  0.0229036  0.0393828 87.5831 7.65
with Rayleigh function 379.947 0.0239006  0.0385439 406.7115 6.13
with Exponential function | 385.179  0.0180857  0.0547021 83.3452 7.69
Model (Group D) a ro MSF AE (%)
with Logistic function 582.538  0.0308452 96.9321 62.72
with Weibull function 958.718  0.0118215 124.3994  167.79
with Rayleigh function 702.693 0.0191208 247.84 96.09
with Exponential function | 1225.66 0.0082272 169.7194  242.36
Existing SRGM a r MSF AE (%)
G-O Model 760.0  0.0322688 139.815  112.29
Inflection S-Shaped Model 389.1 0.0935493 133.53 8.69
Delayed S-Shaped Model 374.05  0.197651 168.67 4.48
Exponential Model 455.371  0.0267368 206.93 27.09
HGDM 387.71 * 138.12 8.30
(group B) that incorporates the TE function and time-variable
FDR, actually fits the DS satisfactorily in this experiment.
Log
AT T e B. DS #2
L ’ — N —_— —-=—- EXp. L. . .
o IR This is the pattern of discovery of faults [27]. The cumulative
g S number of discovered faults up to 22 days is 86 and the total con-
7 obserded ) sumed debugging time is 93 CPU hours. All debugging data are
/ Time (Weeks) used in this experiment. Each parameter is estimated by MLE
0 5 7.5 10 12.5 15 17.5 and LSE in the proposed SRGM, shown in Table IV. Fig. 3 fits

Fig. 2. Observed/estimated Mstime, for DS #1.

the estimated TE by using (8)—(10). Table 1V shows that the
MSF for groups C and D are less than those of other groups and
existing SRGM. The continuous curves for the estimated mean

required in some critical applications, such as large-scale covue function have an inflection point, showing S-shaped be-
mercial software or safety-critical flight software, the cost dfavior due ta'y > ro. In summary, the combined model (group
extra computation for more accuracy is easily justified. Frofd or D) of incorporating TE function and time-variable fault de-
our simulations, the continuous curve of an estimated metggtion fits this DS better than others.

value function has an inflection point; i.e., it has S-shaped be-

havior due tory > = in group B of Table Ill. The derived C.

DS #3

software reliability model under such an assumption, (22), wasThis is the System T1 data of the US Rome Air Develop-
used [11], [12], [14], [20]. In summary, the combined modeahent Center (RADC) projects in [5], [6], [25]. The number of



KUO et al: FRAMEWORK FOR MODELING SOFTWARE RELIABILITY

317

TABLE IV Testing Effort (CPU Hours)
SUMMARY OF MODEL PARAMETERS AND COMPARISONS FORDS #2 1
10 Log
Model (Group A) a r MSF s ———.Weibull
with Logistic function 88.8931  0.039059 25.2279 ——-Ray.
with Weibull function 87.0318 0.0345417 7.772 6
with Rayleigh function 86.1616  0.0359624 3.91643 —~ .
~
Model (Group B) a o rs MSF ‘ -
with Logistic function 89.4528  0.188499 0.0543846 14.06603 2
with Weibull function 87.3126  0.017449 0.0522258  18.956772
with Rayleigh function 87.3472  0.0177506  0.0515699 20.4568 0 Time(Weeks)
0
Model (Group C) a To k MSF 0 3 1o s 2
with Logistic function 97.5332  0.0472247 -0.0385523  7.354363
with Weibull function 97.6841 0.0360678 -0.0227224 6.5909 . . .
with Rayleigh function | 112.182 0.0335812 -0.0335811  6.60318 Fig. 3. Observed/estimated Mstime, for DS #2.
Model (Group D) a ro MSF
with Logistic function 106.10  0.0437178 7.33727 TABLE V
with Weibull function 114.52 0.0314776 6.36531 SUMMARY OF MODEL PARAMETERS AND COMPARISONS FORDS #3
with Rayleigh function 112.183  0.0335812 6.60318
Existing SRGM a r MSF Model (Group A) o r MSF
G-O Model 137.072 0.0515445 25.33 with Logistic function 138.026 0.145098 62.41
Delayed S-Shaped Model | 88.6533  0.228148 6.31268 with Rayleigh function 866.94 0.00962474 89.24095
HGDM 88.30 * 33.6812 Model {Group B) a o Ty MSF
with Logistic function 137.759 0.0502167 0.359256 14.6442
with Rayleigh function 150.047 0.013763 0.3222336 12.137
with Exponential function | 187.537  0.000889141 0.166756 19,73719
objectinstructions in System T1 (areal-time command and €0 model (Group C) a o k MSF
i i i . with Logistic function 142.567 0.14881 -0.0450675  13.4266
trol appllcatlon) IS 21700 It tO_Ok 21 weeks to Complete th with Rayleigh function 156.715 0.0183746 0.25801 10.9726
test by 9 testers. During this time, 136 faults were remove _with Exponential function | 173.064 _0.000488055  0.194059  48.5971
Table V shows the estimated parameters of various SRGM. C  Model (Group D) a o MSF
_ 3 H ¢ with Logistic function 164.106 0.169151 38.121
proposed _mo_d_els (Groups A-D) fit the failure datg at a 5¢ 7o Ragleigh function 154347  0.00545049 49,7666
level of s-significance through the K—.S gpodngss-of-flt te:st, th Existing SRGM R B MSF
other models do not have a good fit. Fig. 4 fits the estimate Exponential Model 137.2 0.156 3019.66
i H G-O Model 142.32 0.1246 2438.3
TE by using (7), (8), (10). For this DS, group B and C haVe pejayed 5-Shaped Model | 237.196  0.0963446 245.246
better goodness-of-fit measure than other groups and exist...,
SRGM. Similarly, these continuous curves of estimated mean
value function have inflection points. Hence, they are S-shaped ™19 Btert (U Houze)
.5 Log
3 ———Ray.
g
V. FDR AND RELIABILITY TREND 3
2
Software reliability studies are usually based on the applica- -5
tion of several SRGM to obtain various measures of interest. Re 1
liability growth can be analyzed by trend tests. Blindly applying -5
SRGM might not lead to meaningful results when the trend in- o = = == ine (Weeks)
dicated by the data differs from that predicted by the model. If
th_e model is app_lled to the data and shows atr_end in accordap%_ez4_ Observed/estimated W&time, for DS #3.
with its assumption, the results can be greatly improved [4], [5],
[31]—{34]. Various statistical tests have been published (suct .,
as Kendall, Spearman or Laplace test) for identifying trends ir
grouped data or time-series. The Laplace test is very useful i ,
determining the software reliability growth, and has excellent
performance for NHPP. We calculate the Laplace trend facto \ l \
U/ (¢) [31]-[33]. A negativel/(¢) indicates a decreasing failure o A A time
intensity, and thus, reliability growth. On the other hand, a pos-
itive U(t) indicates an increasing failure intensity, and thus the _ ]
reliability decreases. 12 < U(t) < 2, then it indicates a
stable reliability [4], [5], [31]-[34].
Using DS #1, Fig. 5 shows the Laplace trend test results. | -4
shows that the trend test applied to this DS indicates a reliability
growth. Thus, in this case our models can be applied. To illus:
2.5 7.5 10 12.5 is 17.5

trate, we only use Logistic TE function as the estimated value
functions. Similar analyzes and discussions can be applied to

the other TE functions or the other DS. The capability of theig. 5. Laplace trend test for DS #1.



318 IEEE TRANSACTIONS ON RELIABILITY, VOL. 50, NO. 3, SEPTEMBER 2001

Ealil = Brrar WELEELve Erray
i A /\‘ 8.1
& o — 1.1
Bl ' ——
3, |
-&,3
4,8
POLE B LR MO 18 B P 33 % TS W R W i
i L.
Madakive Error Malilive Koy

a1

| A\ , IR f\f\v |

L\/\/A‘. W
IU.11 .
] ER ] ] .5

1 3% E1 193

. d.

Falatiwve Error

Balative Ermer

0.3 i
0b.13 =0.1
4.1 =0.3

3 A a8 .
i V N s

3.1

B 3.8 & 1.8 1B 19.% % §Y.& = - | T 7.% 19 E3.% % 1T.B

8 f.

Fig. 6. Relative error curves for various SRGM, based on DS #1. (a), (b), (c), (d) depict the model with Logistic function in groups A, B, C, D, tesf@ctive
is the G-O model; (f) is the Yamada S-shaped model.

model to predict failure behavior from present and past failure The comparisons in Fig. 4 show that the combined model
behavior is predictive validity [4]-[6], which can be representeroup B) of incorporating the TE function and the time-vari-
by computing the RE for a DS: able fault detection has better predictive validity. Fig. 6 shows
that the relative errors of the combined models (Groups A-D)
m(t,) — q approach zero faster than for_ the G-O model and _the Yamada
RE = ———. (36) S-shaped model: these combined models can provide better es-

9 timation for this DS. Table VI shows the relative errors of var-
) ious DS after the testing phase.
q = number of failures As stated in Section Ill, FDR is a metric which indicates a
t, = testtime forg failures. trend. It decreases when the software has been used and tested

If ¢ failures are observed By, we use the failure data up to timerepeatedly, showing reliability growth. It can also increase if the
t. (t. < t,)to estimate the parametersmaft). Substituting the testing techniques/requirements are changed, or new faults are
estimates of these parameters in the mean value function yidlitsoduced due to new software features or imperfect debugging.
the estimate of the number of failures(t,) by ¢,. The esti- The experimental results showed that various SRGM incorpo-
mate is compared witl. The procedure is repeated for variousating various TE functions have different trends of FDR, even
values oft,. [5]. We can check the predictive validity by plottingwhen they are simulated under the same DS. From the analysis
the relative errowst,. Following [5] and using the real projectresults on 3 actual DS, the larger the FDR is as time progresses
failure data in Section IV-A, compute the relative error in preFDR is increasing), the smaller the number of initial faults, and
diction for the DS at the end of testing. Fig. 6 shows the resultgce versa.



KUO et al: FRAMEWORK FOR MODELING SOFTWARE RELIABILITY

TABLE VI [11]

COMPARISON OFRE (N %) FORDS1, DS2, DS3 ATER THE TESTING PHASE

(12]

Model (Group A) DS1 DS2 DS3 [13]
with Logistic function 0.75 -0.27 -1.05
with Weibull function 5.32 -2.68 -2.46
with Rayleigh function 078 336 -2.34 [14]
with Exponential function | 6.32 241 -198

Model (Group B) DS1 DS2 DS3 [15]
with Logistic function -0.215 9.09 1.22
with Weibull function 0.79 -048 257
with Rayleigh function 1.58 -9.09 24 [16]
with Exponential function 1.26 0.21 1.56

Model (Group C) DS1 DS2 DS3 [17]
with Logistic function 023 -235 -0.53
with Weibull function 278 -1.23 -2.25
with Rayleigh function -1.43  -116 34 [18]
with Exponential function 2.79 <148 125

Model (Group D) DS1 DS2 DS3 [19]
with Logistic function 094 -217 -2.11
with Weibull function 58 -062 -0.14 [20]
with Rayleigh function -0.74  -1.23 -0.07
with Exponential function | 5.85 364 014

[21]

From our study [9], the first DS might have an imperfect de-[22]
bugging phenomenon, eflecting the characteristic of increasing
FDR. In our models, sometimes we use 1 extra parameter to de-

scribe the fault detection/removal process, such,dke slope

(23]

parameter in (19), or;, the final FDR in (22). By adding a pa-
rameter in modeling the fault-detection process, the estimation
procedure is more complicated because more numerical operjazlf”
tions are involved. However, this approach does offer a better egs;)
timation result as shown in Tables I1I-V when the combination
includes either a reasonable TE function or an adequate FD56]
function.

(1]

[2

(3]

(4]
(5]
(6]
(71

(8]

[9]

(20]

[27]
REFERENCES

S. Yamada, H. Ohtera, and H. Narihisa, “Software reliability growth [28]
models with testing effort,JEEE Trans. Reliability vol. R-35, pp.

19-23, Apr. 1986.

S. Yamada, J. Hishitani, and S. Osaki, “Software reliability growth [29]
model with Weibull testing effort: A model and applicationEEE [30]
Trans. Reliability vol. 42, pp. 100-105, 1993.

S. Yamada, H. Ohtera, and H. Narihisa, “A TE dependent software reli-
ability model and its application Microelectronics and Reliabilityvol.

27, no. 3, pp. 507-522, 1987. [31]
M. R. Lyu, Handbook of Software Reliability EngineeringlcGraw-
Hill, 1996.

J. D. Musa, A. lannino, and K. OkumotSpftware Reliability, Measure-
ment, Prediction, and ApplicatioMcGraw Hill, 1987.

J. D. Musa,Software Reliability Engineering: More Reliable Software,
Faster Development and TestingcGraw-Hill, 1999.

C. Y. Huang, J. H. Lo, and S. Y. Kuo, “A pragmatic study of parametric
decomposition models for estimating software reliability growth,” in
Proc. 9th Int'l. Symp. Software Reliability Engineering (ISSRE'98)
1998, pp. 111-123.

C. Y. Huang, S. Y. Kuo, and I. Y. Chen, “Analysis of a software relia-
bility growth model with logistic TE function,” ifProc. 8th Int’'l. Symp. (34]
Software Reliability Engineering (ISSRE'91p97, pp. 378-388.

C. Y. Huang, S. Y. Kuo, and M. R. Lyu, “Effort-index-based software
reliability growth models and performance assessment,” in Proc. 24tt35]
Ann. Int'l. Computer Software and Applications Conf. (COMPSAC
2000), 2000.

R.H.Hou, S.Y.Kuo, and Y. P. Chang, “Applying various learning curves [36]
to hyper-geometric distribution software reliability growth model,” in
Proc. 5th Int'l. Symp. Software Reliability Engineerjri@94, pp. 7-16.

[32]

(33]

319

M. Ohba, “Software reliability analysis modeldBM J. Res. and De-
velopmentvol. 28, no. 4, pp. 428-443, Jul. 1984.

P. N. Misra, “Software reliability analysis|BM Systems Jvol. 22, no.

3, pp. 262-279, 1983.

A. L. Goel and K. Okumoto, “Time-dependent fault detection rate model
for software reliability and other performance measurdsEE Trans.
Reliability, vol. R-28, no. 3, pp. 206-211, 1979.

S. Yamada, J. Hishitani, and S. Osaki, “Software reliability growth mod-
eling: Models and applicationdEEE Trans. Software Engineeringpl.
SE-11, no. 12, pp. 1431-1437, 1985.

S. Yamada, S. Osaki, and H. Narihisa, “Software reliability growth mod-
eling with number of test runsTrans. IECE Japayvol. E-67, no. 2, pp.
79-83, 1984.

R.H. Huo, S.Y.Kuo, and Y. P. Chang, “Optimal release policy for hyper-
geometric distribution software reliability growth modelZEE Trans.
Reliability, vol. 45, no. 4, pp. 646-651, Dec. 1996.

Y. Tohma, H. Yamamoto, and R. Jacoby, “Parameter estimation of the
hyper-geometric distribution for real/test data,’Hroc. 2nd Int’l. Symp.
Software Reliability Engineering (ISSRE'91p91, pp. 28-34.

K. Matsumoto, K. Inoue, T. Kikuno, and K. Torii, “Experimental eval-
uation of software reliability growth models,” ifroc. 18th Int’l. Symp.
Fault-Tolerant Computing (FTCS)988, pp. 148-153.

M. R. Lyu and A. Nikora, “Using software reliability models more ef-
fectively,” IEEE Softwarepp. 43-52, Jul. 1992.

S. Bittanti, P. Bolzern, and E. P. EDRo¢t al, “A flexible modeling
approach for software reliability growth,” iBoftware Reliability Mod-
eling and IdentificationSpringer-Verlag, 1988, pp. 101-140.

F. N. Parr, “An alternative to the Rayleigh curve for software devel-
opment effort,” IEEE Trans. Software Engineeringol. SE-6, pp.
291-296, 1980.

Y. Tohma, K. Tokunaga, S. Nagase, and Y. Murata, “Structural approach
to the estimation of the number of residual software faults based on the
hyper-geometric distribution [EEE Trans. Software Engineeringol.

15, no. 3, pp. 345-355, Mar. 1999.

L. H. Putnam, “A general empirical solution to the macro software sizing
and estimating problem|EEE Trans. Software Engineeringpl. 4, pp.
345-367, 1978.

T. DeMarcoControlling Software Projects: Management, Measurement
and EstimationPrentice-Hall, 1982.

J. D. Musa, “Software reliability data,” report and database available
from: Data and Analysis Center for Software; Rome Air Development
Center (RADC), Rome, NY, USA.

P. B. Moranda, “A comparison of software error-rate models;Téras
Conf. on Computingl975, pp. 2A-6.1-2A-6.9.

Y. Tohma, R. Jacoby, Y. Murata, and M. Yamamoto, “Hyper-geometric
distribution model to estimate the number of residual software faults,”
in Proc. COMPSAC-891989, pp. 610-617.

Y. K. Malaiya, A. V. Mayrhauser, and P. K. Srimani, “An examination
of fault exposure ratio,/[EEE Trans. Software Engineeringol. 19, no.

11, pp. 1087-1094, 1993.

D. KahanerNumerical Methods and Softwarrentice Hall, 1989.

S. S. Gokhale, M. R. Lyu, and K. S. Trivedi, “Software reliability anal-
ysis incorporating fault detection and debugging activities,Pioc.

9th Int’l. Symp. Software Reliability Engineering (ISSRE; 9898, pp.
202-211.

K. Kanoun and J. C. Laprie, “Software reliability trend analyzes
from theoretical to practical considerationdBEE Trans. Software
Engineering vol. 20, no. 9, pp. 740-747, 1994.

K. Kanoun, M. Martini, and J. Souza, “A method for software relia-
bility analysis and prediction application to the TROPICO-R switching
system,"|EEE Trans. Software Engineeringpl. 17, no. 4, pp. 334-344,
1991.

J. C. Laprie, K. Kanoun, C. Beounes, and M. Kaaniche, “The KAT
(Knowledge—Action—Transformation) approach to the modeling and
evaluation of reliability and availability growthJEEE Trans. Software
Engineeringvol. 17, no. 4, pp. 370-382, 1991.

M. R. Martini and J. M. de Souza, “Reliability assessment of com-
puter systems designMicroelectronics Reliabilityvol. 31, no. 2/3, pp.
237-244, 1991.

S. Yamada, S. Osaki, and H. Narihisa, “A fault detection rate theory for
software reliability growth models;Trans. IECE Japanvol. E-68, no.

5, pp. 292-296, May 1985.

K. Pillai and V. S. Sukumaran Nair, “A model for software development
effort and cost estimationJEEE Trans. Software Engineeringol. 23,

no. 8, pp. 485-497, Aug. 1997.



320 IEEE TRANSACTIONS ON RELIABILITY, VOL. 50, NO. 3, SEPTEMBER 2001

Sy-Yen Kuo received the B.S. (1979) in electrical engineering from NationaWlichael R. Lyu received the B.S. (1981) in electrical engineering from National
Taiwan University, the M.S. (1982) in electrical and computer engineering fromaiwan University, the M.S. (1985) in computer engineering from University of
the University of California at Santa Barbara, and the Ph.D. (1987) in cor@alifornia, Santa Barbara, and the Ph.D. (1988) in computer science from Uni-
puter science from the University of lllinois at Urbana-Champaign. He is\rsity of California, Los Angeles. He is an Associate Professor at the Com-
Professor and Chairman in the Department of Electrical Engineering, Natiopalter Science and Engineering Department of the Chinese University of Hong
Taiwan University. He was the chairman of the Department of Computer S&eng. He worked at the Jet Propulsion Laboratory, Bellcore (now Telcordia) and
ence and Information Engineering, National Dong Hwa University, Taiwan froBell Labs, and taught at the University of lowa. His research interests include
1995 to 1998, a faculty member in the Department of Electrical and Corseftware reliability engineering, distributed systems, fault-tolerant computing,
puter Engineering at the University of Arizona from 1988 to 1991, and an eweb technologies, web-based multimedia systems, and wireless communica-
gineer at Fairchild Semiconductor and Silvar-Lisco, both in California, frortions. He has published over 80 refereed journal and conference papers in these
1982 to 1984. In 1989, he also worked as a summer faculty fellow at Jet Proparieas. Dr. Lyu initiated the firdnt’'l. Symp. on Software Reliability Engineering

sion Laboratory of California Institute of Technology. His current research iffSSRE) in 1990. He was the program chairman for ISSRE’'96 and PRDC’99,
terests include fault-tolerant parallel and distributed computing, software @d has served on program committees for numerous international conferences.
liability, WDM and high speed networks, and low power VLSI systems. Hele is the editor for two booksSoftware Fault Tolerancel 995 (Wiley) and the
received the distinguished research award in 1997 from the National Scieftandbook of Software Reliability Engineeririg96 (IEEE and McGraw-Hill).
Council, Taiwan. He received the Best-Paper Award in the 1996 Int’l. Symp. ¢te is on the editorial board for IEEERENSACTIONS KNOWLEDGE AND DATA
Software Reliability Engineering, the Best-Paper Award in the simulation aftNGINEERING, IEEE TRANSACTIONS RELIABILITY , andJ. Information Science

test category at the 1986 IEEE/ACM Design Automation Conference (DAGINd Engineering

the National Science Foundation’s Research Initiation Award in 1989, and the

IEEE/ACM Design Automation Scholarship in 1990 and 1991.

Chin-Yu Huang was awarded an honorary degree (1989) in electronic engi-
neering from Hocking College, OH USA. From 1990 to 1992, he studied in
the Department of Transportation Engineering and Management at National
Chiao-Tung University. He received the M.S. (1994) in electrical engineering
from National Taiwan University, and is pursuing his Ph.D. in the Department
of Electrical Engineering at National Taiwan University. He worked at the Bank
of Taiwan and is now working at Taiwan Semiconductor Manufacturing Com-
pany. His research interests are software reliability, testing, and fault-tolerant
computing.



