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Framework for Modeling Software Reliability, Using
Various Testing-Efforts and Fault-Detection Rates
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Abstract—This paper proposes a new scheme for constructing
software reliability growth models (SRGM) based on a nonhomo-
geneous Poisson process (NHPP). The main focus is to provide an
efficient parametric decomposition method for software reliability
modeling, which considers both testing efforts and fault detection
rates (FDR). In general, the software fault detection/removal mech-
anisms depend on previously detected/removed faults and on how
testing efforts are used. From practical field studies, it is likely
that we can estimate the testing efforts consumption pattern and
predict the trends of FDR. A set of time-variable, testing-effort-
based FDR models were developed that have the inherent flexi-
bility of capturing a wide range of possible fault detection trends:
increasing, decreasing, and constant. This scheme has a flexible
structure and can model a wide spectrum of software development
environments, considering various testing efforts. The paper de-
scribes the FDR, which can be obtained from historical records of
previous releases or other similar software projects, and incorpo-
rates the related testing activities into this new modeling approach.
The applicability of our model and the related parametric decom-
position methods are demonstrated through several real data sets
from various software projects. The evaluation results show that
the proposed framework to incorporate testing efforts and FDR for
SRGM has a fairly accurate prediction capability and it depicts the
real-life situation more faithfully. This technique can be applied to
a wide range of software systems.

Index Terms—Fault detection, nonhomogeneous Poisson process
(NHPP), software faults and failures, software reliability growth
model (SRGM), testing-effort functions.

ACRONYMS1

AE accuracy of estimation
DS data set
FDR fault detection rate
HPP homogeneous Poisson process
K–S Kolmogorov–Smirnov
LOC lines of source code
LSE least squares estimate
MLE maximum likelihood estimate
MSF mean of square fitting faults
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NFD number of faults detected
NHPP non-HPP
RE relative error
SRGM software reliability growth model
TE testing effort

Notation

mean number of faults detected in time : mean
value function

: failure intensity for
current TE consumption at time
cumulative TE consumption at time

anticipated number of initial faults
FDR per unit of TE
initial value of
final value of
initial TE
consumption rate of the TE expenditures for a
Weibull-type curve at time
total amount of TE eventually used
consumption rate of TE expenditures in the logistic
TE function
constant parameter in the logistic TE function

, [scale, shape] parameter in the Weibull TE function
detectability of an error for the current error content
Laplace trend factor.

I. INTRODUCTION

DUE to the rapid development of computer and information
technology, society increasingly depends on software-in-

tensive systems. Software is embedded in many modern sys-
tems, including expensive scientific computing systems, finan-
cial banking systems, industrial applications, university com-
puter centers, and home personal computers. Since the demands
for complex and large-scale software systems are increasing
more rapidly, the possibility of programmers’ design errors in
the systems will grow appreciably. Consequently, the possibility
of crises due to software failures will continue to increase. These
failures can generate enormous losses of revenue for many en-
terprises. Therefore, to determine system reliability, the soft-
ware reliability must be carefully evaluated.

Software reliability is similar to hardware reliability because
both can be described by probability distributions. However,
software faults are harder to visualize, detect, and correct,
compared with physical hardware faults. The reliability of
any system depends on the correctness of the system design,
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the correctness of the mapping of the system design to im-
plementation, and the reliability of the system-components.
Software systems are quite different from hardware systems
because the former do not wear out, at least in a physical sense.
Therefore, fault and failure patterns for software and hardware
are different, and the difference is fundamental Thus, the same
models used for measuring hardware reliability cannot be used
for measuring software reliability.

Hardware has mixtures of decreasing and increasing failure
rates [1], [2]. The decreasing failure rate is caused by repairing
original design-related hardware failures. The increasing failure
rate is due to hardware component aging or wear-out. On the
other hand, software systems usually have a decreasing failure
rate [1]–[3]. And there is some confusion as to whether soft-
ware reliability is probabilistic or deterministic. The answer de-
pends on how we view software reliability. However, software
has to be considered with its environment. Various software reli-
ability measurement indicate different values for the same soft-
ware under different testing/operating environments. According
to the ANSI definition [4]: “Software reliability is the proba-
bility of failure-free software operation for a specified period of
time in a specified environment.” Hence, accurately modeling
software reliability, and predicting its possible trends, are essen-
tial in determining the system reliability. To achieve a highly re-
liable software system, many software fault detection/removal
techniques can be used by the program developers or testing
teams. In applying these techniques, the SRGM are important,
because they can provide quite useful information for devel-
opers and testers during the testing/debugging phase.

Numerous fault-prediction models are published, and many
efforts were made to estimate software reliability from real DS.
Most of them are based on

• calendar-time, e.g., the Jelinski–Moranda Model [4],
• staff-time, e.g., Shooman Model [4], or
• computer-time, e.g., Musa Model [4], [5].

Musa [5], [6] first discussed the validity of execution-time
theory by taking DS from real software systems. However,
most existing DS are not based on the execution-time concept.
Recently, [1]–[3] and [7]–[9] proposed two simple SRGM with
Weibull-type and logistic TE functions, respectively. These
models attempt to account for the relationship among the
calendar testing, the amount of TE, and the number of software
faults detected during testing. The TE can be measured by
the human power, the number of test cases, the number of
CPU hours, etc. When applied extensively to real software
development projects, these models provide a reasonable fit
to the observed data and give insightful interpretations for the
resource consumption process during the software development
phase [7]–[9].

In general, among various SRGM, two most important factors
affect reliability: the number of initial faults and the FDR. The
number of initial faults is the number of faults in the software at
the beginning of the test. This number is usually a representative
measure of software reliability. Knowing the number of residual
faults can help to determine whether the software is suitable for
customers to use or not, and how much more testing resources
are required. It can provide an estimate of the number of failures

that will eventually be encountered by the customers. The FDR,
on the other hand is used to measure the effectiveness of fault
detection by test techniques and test cases. In the vast literature
[1]–[6], and [10]–[19], most researchers assume a constant FDR
per fault in deriving their SRGM. That is, they assume that all
faults have equal probability of being detected during the soft-
ware testing process, and the rate remains constant over the in-
tervals between fault occurrences.

In reality, the FDR strongly depends on the skill of test
teams, program size, and software testability. Through real data
experiments and analyzes on several software development
projects [20], the FDR has 3 possible trends as time progresses:
increasing, decreasing, or constant. We thus treat the FDR as
a function of time to interpret these possible trends;viz, we
assume a time-variable fault detection function. And, we con-
solidate these 2 concepts, TE function and time-variable FDR,
into a combined analysis for software reliability modeling.

This paper estimates the SRGM parameters by MLE and LSE
methods. We take the estimated parameters into the proposed
software-fault prediction model and compare the predicted re-
sults with other existing SRGM. From the comparison results,
our analysis determines the reasons why the predicted results
agree or disagree with the actual results. Experimental results
show that the combined model gives a more accurate predic-
tion, and depicts the real-life situation more faithfully.

Section II describes a basic SRGM that combines the TE
function and the time-variable FDR.

Section III extends the basic SRGM to consider various time-
dependent FDR, and discusses several modeling propositions.

Section IV estimates these parameters of the proposed SRGM
based on the actual observed software failure data, plots their
mean value functions, and fairly compares them with other ex-
isting models.

Section V discusses FDR and the reliability trend.

II. TE-BASED SOFTWARE RELIABILITY MODELING

The mathematical expression of TE-based is:

(1)

This basic SRGM (1) is based on the assumptions:

1) The fault removal process is NHPP.
2) The software system is subject to failures at random times

caused by the manifestation of remaining faults in the
system.

3) The mean number of faults detected in ,
by the current , is proportional to the

mean number of remaining faults in the system.
4) The is a function of time (not just a constant).
5) The time-dependent behavior of TE can be modeled by a

Logistic or a Weibull distribution.
6) Each time a failure occurs, the fault that caused it is im-

mediately and perfectly removed, and no new faults are
introduced.
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7) Correction of errors takes only negligible time and a de-
tected error is removed with certainty.

Eq. (1) has 2 elements which influence the number of faults
detected: and . If is constant over time, then

(2)

Solve (2) using the boundary condition :

(3)

A. The TE Function

The first component in (1) is the TE function. During the soft-
ware testing/debugging phase, appreciable TE, e.g., number of
test cases, human Power, and CPU time, is consumed. The con-
sumed TE can indicate how effective software faults are de-
tected. Hence, resource consumption or allocation of human
power can be modeled by various distributions. From the studies
in [1]–[3], [7]–[9], [20], [21], several TE pattern expressions
exist, as shown in this Section II-A.

1) Constant TE Consumption:In the derivation of classical
SRGM [4]–[6], [11]–[14], [17], [22], most researchers assumed
that the TE (workload) of a software system is constant:

(4)

2) Weibull-Type TE Function:According to [1]–[3], [5],
[23], TE should not be assumed constant throughout the testing
phase. In fact, instantaneous TE ultimately decreases during
the testing life cycle so that the cumulative TE approaches a
finite limit. This analysis is reasonable because no software
company will spend infinite resources on software testing.
Thus we describe TE a Weibull distribution:

(5)

(6)

There are 3 cases.

1) . Then . There is an
exponential curve, and the cumulative TE in is

(7)

2) . Then

There is a Rayleigh curve and the cumulative TE is

(8)

3) . There is a Weibull
curve, and the cumulative TE is

(9)

3) Logistic TE Function:When , the Weibull-type
TE curves have an apparent peak phenomenon [7]–[9], [20].
This phenomenon does not seem realistic because it is not
commonly used in an actual software development/test process.
Therefore, we suggest a logistic TE function to describe the
test effort patterns. Also, [24] reported that this function was
fairly accurate in the 1978–1980 project survey. Therefore

(10)

(11)

B. The FDR

The second component in (1) is the FDR: the rate of discov-
ering new faults in software during the testing phase. Typically,
whether the software faults can be detected or not, depends on
the ability of programmers/debuggers, the software structure,
the maturity of software development procedure, and the corre-
lation among program modules.

• At the beginning of the testing phase, many faults can be
discovered by inspection, and the FDR depends on the
fault-discovery efficiency, the fault density, the TE, and
the inspection rate.

• In the middle stage of the testing phase, the FDR usually
depends on other parameters such as the execution rate of
CPU instruction, the failure-to-fault relationship, the code
expansion factor, and the scheduled CPU execution hours
per calendar day [4].

Consequently, the FDR can be calculated. We use this rate to
track the progress of checking activities, to evaluate the effec-
tiveness of test planning, and to assess the checking methods we
adopted.

1) Constant Proportionality:Most existing SRGM assume
that the mean number of faults detected in is pro-
portional to the number of remaining faults [4], [11]–[14], [17],
[22]:

(12)

is a constant proportionality.
2) Time-Variable FDR: In our experiments, the FDR is mea-

sured by the “average number of faults detected per TE expen-
diture” or by the “number of faults detected by special checking
activities.” This information is helpful for the system devel-
opers to plan the checking activities, diagnose problems, and
assess the effects of changes. And, it indicates cost-effective-
ness of various checking activities in the long run. To inter-
pret the possible variation in FDR with time, we survey some
real test/debugging DS [4], [5], [11], [12], [15], [17], [18], [22],
[25]–[27]. We analyze those fault-detection processes and ob-
serve various fault-detection behaviors. Most of the grouped DS
have the form:

total number of faults detected by.
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Fig. 1. Variation of FDR with time.

Generally speaking, the data obtained based on calendar time
tends to be noisy (short-term randomness) and might not comply
with most assumptions for existing SRGM [4], [5], [28]. One
way of interpreting FDR at various times is to use the computa-
tion approach in [28]. From (3), and using , , the
FDR between and is estimated by:

(13)

or

(14)

Eq. (14) is solved numerically [29] (usually on a computer).
Fig. 1 shows that the FDR varies with time for various real DS:

• Fig. 1(a), (e), (f), (j), (n) show that FDR has an increasing
trend as time progresses;

• Fig. 1(b)–(d), (g), (k), (m) show that FDR is nonincreasing
over time ;

• Fig. 1(h), (i), (l) show that FDR seems to be a constant.

There are some peaks and valleys in describing the possible
FDR states. This might be due to sudden changes of test
schemes, test teams, or the software under test.

A software testing process consists of several testing stages,
including unit testing, integration testing, system testing, and
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installation testing. If the software system is very large and
complex, programmers can usually remove the easy-to-detect
faults in their programs through inspection at the early stage
of software testing. As time passes, the testing phase proceeds
to the integration testing and the system testing phases, and
it becomes more difficult for the programmers to detect the
remaining faults. In this case, initially FDR is increasing and
then it is decreasing [see Fig. 1(b), (k), or (m)]. In other words,
the length of time between fault-detection will increase. On the
other hand, if the software are not large and do not have many
program modules, then the testing skills of programmers will
improve as time progresses, and more efficient testing schemes
can be conducted. Accordingly, the FDR can have an increasing
trend [see Fig. 1(f), (j), or (n)]. If the requirements are changed
and new features are added, or if new faults are introduced
during debugging, the FDR will also increase. In any case, the
FDR has three possible trends as time progresses: increasing,
decreasing, and constant, as shown in the real project data.
Section III discusses software reliability modeling for various
FDR.

III. I NVESTIGATION ON FDR

We examine specific expressions of FDR and make several
propositions. Because the fault-detection task is performed by
programmers after coding, they will analyze the source-code or
the results from object-code executions. Section II-B-2 suggests
that a time-dependent coefficient can replace the constant FDR
assumption [20]. To interpret the results, we assume that the
FDR is a function of . That is, there is some relation among
the number of initial faults, the number of detected faults, and
the FDR. By re-arranging (1), the FDR per remaining fault at
testing time can be described. This represents the detectability
of a fault for the current fault content [3], [17], [36]:

(15)

i.e.,

Eq. (15) implies that : and ,
; and implies that the FDR per remaining fault is a func-

tion of the current . We view as a software reliability-
growth index. Most software reliability models assume that
is a constant (some do not even consider it, and they setas
a constant rate [4], [5], [11]–[13]). For constant, then

constant, which indicates that these models have a ho-
mogeneous FDR. In the real projects, however, (15) gives a
more precise description about the behavior of. Several sce-
narios are discussed in Sections III-A–III-C.

A. Proposition 1: Constant FDR for

If is constant in , then is a constant FDR.
Case 1:

(16)

Eq. (16) shows that all faults are equally detectable during
testing. Under this assumption, the FDR per unit TE is constant.

Substitute (16) into (1) and solve the differential equation under
the boundary condition, [8], [9]:

(17)

From (15), the FDR per remaining fault at testing timeis

(18)

Eq. (18) indicates that is dominated by , whether
is homogeneous or nonhomogeneous.

B. Proposition 2: Non-Decreasing

If is nondecreasing in, then is an increasing fault
detection function.

Case 2.1:

(19)

Under this assumption, we use a linear model to describe the
FDR. In (19), is the initial FDR and is the slope (model
parameter) which can be estimated by LSE. Theis used to
track and predict the increasing FDR trends. Substitute (19) into
(1), and solve the differential equation:

(20)

From (15), the FDR per remaining fault is

(21)

and is monotonically increasing with time. That is, (21) im-
plies that (20) describes a fault detection process in which the
detectability of a fault increases with the progress of software
testing.

Case 2.2:

(22)

Substitute (22) into (1); the result is a Riccati differential equa-
tion with solution:

(23)

Similarly, from (15), the FDR per remaining fault at testing time
is

(24)

which is monotonically increasing. Similarly, (24) means
that (23) describes a fault-detection process in which the
detectability of a fault increases with the progress of software
testing.

C. Proposition 3: Non-Increasing

If is nonincreasing with time, then is a decreasing
FDR function. This case describes the situation that many easy
faults are effectively detected in the beginning and the last few
faults are more difficult to detect.

Case 3.1:

(25)
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Substitute (25) into (1); the solution is:

(26)

From (15), the FDR per remaining fault at test timeis

(27)

Case 3.2:

(28)

Substitute (28) into (1), the solution is:

(29)

From (15), the FDR per remaining fault at test timeis

(30)

Case 3.3:

(31)

Substitute (31) into (1), the solution is:

(32)

From (15), the FDR per remaining fault at test timeis

(33)

D. Model Classification

Table I divides the propositions in Sections III-A–III-C into
4 groups.

Various TE functions can be applied in each of these 4 groups
to form a particular software reliability model. Consider 4 TE
functions: Logistic, Weibull, Rayleigh, and Exponential; then
there is a maximum of 16 models based on our approach.

IV. EXPERIMENTAL STUDIES AND RESULTS

To check the performance of our models in Section III, and to
make a fair comparison with other existing SRGM, we apply 3
DS to our models. These DS are in Table II. The 2 comparison
criteria for evaluations among accepted models are:

1) AE [5], [8], [10], [14]

(34)

TABLE I
CLASSIFICATION OF THEMODELS

actual cumulative number of detected faults during
the test and after the test.

For practical purposes, is obtained from software-
fault tracking after software testing.

2) MSF

(35)

A smaller MSF indicates a smaller fitting error and better
performance.

Other useful quantitative measures to assist in determining
the number of residual faults and the probability that a software
system can survive up to a certain time, are:

1) MF (maximum faults): total number of initial faults,
;

2) RF (remaining faults in the system at test time):
, an important indicator of software reliability and a

useful measure for planning maintenance activities;
3) MTTF (mean time to failure);
4) SR (software reliability) [8], [9], [19], [30].

A. DS #1

The system is a PL/I database application software. The, ,
of the Weibull-type TE function in (7)–(9), and , , of

the Logistic TE function in (10) can be derived using MLE and
LSE. Similarly, , , , of the mean value function can also
be solved numerically. Fig. 2 shows the fitting of the estimated
TE by using (7)–(10). Table III summarizes the estimated pa-
rameters for various TE functions, mean value function, and the
comparison criteria. Our proposed software reliability growth
function fits pretty well at the 5%-significance level through
the K–S goodness-of-fit [4]. From Table III, both MSF and AE
in group B are less than those in other groups and the existing
SRGM; therefore, group B could have a better goodness-of-fit.
This performance improvement is achieved by the using 2 pa-
rameters to interpret the FDR patterns instead of the traditional
assumption of constant FDR.

By adding an extra parameter in modeling the fault detec-
tion phenomenon, the estimation becomes more tedious because
more numerical calculations are involved. However, the addi-
tional calculations can be fully automated. If high reliability is
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TABLE II
SUMMARY OF REAL DS THAT WERE STUDIED

TABLE III
SUMMARY OF MODEL PARAMETERS AND COMPARISONS FORDS #1

Fig. 2. Observed/estimated TEvs time, for DS #1.

required in some critical applications, such as large-scale com-
mercial software or safety-critical flight software, the cost of
extra computation for more accuracy is easily justified. From
our simulations, the continuous curve of an estimated mean
value function has an inflection point; i.e., it has S-shaped be-
havior due to in group B of Table III. The derived
software reliability model under such an assumption, (22), was
used [11], [12], [14], [20]. In summary, the combined model

(group B) that incorporates the TE function and time-variable
FDR, actually fits the DS satisfactorily in this experiment.

B. DS #2

This is the pattern of discovery of faults [27]. The cumulative
number of discovered faults up to 22 days is 86 and the total con-
sumed debugging time is 93 CPU hours. All debugging data are
used in this experiment. Each parameter is estimated by MLE
and LSE in the proposed SRGM, shown in Table IV. Fig. 3 fits
the estimated TE by using (8)–(10). Table IV shows that the
MSF for groups C and D are less than those of other groups and
existing SRGM. The continuous curves for the estimated mean
value function have an inflection point, showing S-shaped be-
havior due to . In summary, the combined model (group
C or D) of incorporating TE function and time-variable fault de-
tection fits this DS better than others.

C. DS #3

This is the System T1 data of the US Rome Air Develop-
ment Center (RADC) projects in [5], [6], [25]. The number of



KUO et al.: FRAMEWORK FOR MODELING SOFTWARE RELIABILITY 317

TABLE IV
SUMMARY OF MODEL PARAMETERS AND COMPARISONS FORDS #2

object instructions in System T1 (a real-time command and con-
trol application) is 21 700. It took 21 weeks to complete the
test by 9 testers. During this time, 136 faults were removed.
Table V shows the estimated parameters of various SRGM. Our
proposed models (Groups A–D) fit the failure data at a 5%
level of -significance through the K–S goodness-of-fit test; the
other models do not have a good fit. Fig. 4 fits the estimated
TE by using (7), (8), (10). For this DS, group B and C have a
better goodness-of-fit measure than other groups and existing
SRGM. Similarly, these continuous curves of estimated mean
value function have inflection points. Hence, they are S-shaped.

V. FDR AND RELIABILITY TREND

Software reliability studies are usually based on the applica-
tion of several SRGM to obtain various measures of interest. Re-
liability growth can be analyzed by trend tests. Blindly applying
SRGM might not lead to meaningful results when the trend in-
dicated by the data differs from that predicted by the model. If
the model is applied to the data and shows a trend in accordance
with its assumption, the results can be greatly improved [4], [5],
[31]–[34]. Various statistical tests have been published (such
as Kendall, Spearman or Laplace test) for identifying trends in
grouped data or time-series. The Laplace test is very useful in
determining the software reliability growth, and has excellent
performance for NHPP. We calculate the Laplace trend factor

[31]–[33]. A negative indicates a decreasing failure
intensity, and thus, reliability growth. On the other hand, a pos-
itive indicates an increasing failure intensity, and thus the
reliability decreases. If , then it indicates a
stable reliability [4], [5], [31]–[34].

Using DS #1, Fig. 5 shows the Laplace trend test results. It
shows that the trend test applied to this DS indicates a reliability
growth. Thus, in this case our models can be applied. To illus-
trate, we only use Logistic TE function as the estimated value
functions. Similar analyzes and discussions can be applied to
the other TE functions or the other DS. The capability of the

Fig. 3. Observed/estimated TEvs time, for DS #2.

TABLE V
SUMMARY OF MODEL PARAMETERS AND COMPARISONS FORDS #3

Fig. 4. Observed/estimated TEvs time, for DS #3.

Fig. 5. Laplace trend test for DS #1.
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Fig. 6. Relative error curves for various SRGM, based on DS #1. (a), (b), (c), (d) depict the model with Logistic function in groups A, B, C, D, respectively. (e)
is the G-O model; (f) is the Yamada S-shaped model.

model to predict failure behavior from present and past failure
behavior is predictive validity [4]–[6], which can be represented
by computing the RE for a DS:

(36)

number of failures
test time for failures.

If failures are observed by, we use the failure data up to time
to estimate the parameters of . Substituting the

estimates of these parameters in the mean value function yields
the estimate of the number of failures by . The esti-
mate is compared with. The procedure is repeated for various
values of [5]. We can check the predictive validity by plotting
the relative errorvs . Following [5] and using the real project
failure data in Section IV-A, compute the relative error in pre-
diction for the DS at the end of testing. Fig. 6 shows the results.

The comparisons in Fig. 4 show that the combined model
(Group B) of incorporating the TE function and the time-vari-
able fault detection has better predictive validity. Fig. 6 shows
that the relative errors of the combined models (Groups A–D)
approach zero faster than for the G-O model and the Yamada
S-shaped model: these combined models can provide better es-
timation for this DS. Table VI shows the relative errors of var-
ious DS after the testing phase.

As stated in Section III, FDR is a metric which indicates a
trend. It decreases when the software has been used and tested
repeatedly, showing reliability growth. It can also increase if the
testing techniques/requirements are changed, or new faults are
introduced due to new software features or imperfect debugging.
The experimental results showed that various SRGM incorpo-
rating various TE functions have different trends of FDR, even
when they are simulated under the same DS. From the analysis
results on 3 actual DS, the larger the FDR is as time progresses
(FDR is increasing), the smaller the number of initial faults, and
vice versa.
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TABLE VI
COMPARISON OFRE (IN %) FORDS1, DS2, DS3 AFTER THETESTINGPHASE

From our study [9], the first DS might have an imperfect de-
bugging phenomenon, eflecting the characteristic of increasing
FDR. In our models, sometimes we use 1 extra parameter to de-
scribe the fault detection/removal process, such as, the slope
parameter in (19), or , the final FDR in (22). By adding a pa-
rameter in modeling the fault-detection process, the estimation
procedure is more complicated because more numerical opera-
tions are involved. However, this approach does offer a better es-
timation result as shown in Tables III–V when the combination
includes either a reasonable TE function or an adequate FDR
function.
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