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Abstract

The goal of active learning is to select the
most informative examples for manual label-
ing. Most of the previous studies in active
learning have focused on selecting a single un-
labeled example in each iteration. This could
be inefficient since the classification model
has to be retrained for every labeled exam-
ple. In this paper, we present a framework
for “batch mode active learning” that ap-
plies the Fisher information matrix to select
a number of informative examples simulta-
neously. The key computational challenge is
how to efficiently identify the subset of unla-
beled examples that can result in the largest
reduction in the Fisher information. To re-
solve this challenge, we propose an efficient
greedy algorithm that is based on the prop-
erty of submodular functions. Our empirical
studies with five UCI datasets and one real-
world medical image classification show that
the proposed batch mode active learning al-
gorithm is more effective than the state-of-
the-art algorithms for active learning.

1. Introduction

Data classification has been an active research topic in
machine learning in recent years. One of the prerequi-
sites for any data classification scheme is the labeled
examples. To reduce the effort involved in acquiring
labeled examples, a number of active learning meth-
ods (Fine et al., 2002; Freund et al., 1997; Graepel &
Herbrich, 2000; Seung et al., 1992; Campbell et al.,
2000; Schohn & Cohn, 2000; Tong & Koller, 2000)
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have been developed in order to identify the examples
that are most informative to the current classification
model. In the past, active learning has been success-
fully employed in a number of applications, including
text categorization (McCallum & Nigam, 1998; Roy &
McCallum, 2001; Tong & Koller, 2000), computer vi-
sion (Luo et al., 2004), and information retrieval (Shen
& Zhai, 2005).

Despite extensive studies of active learning, one of the
main problems with most of the existing approaches is
that only a single example is selected for manual label-
ing. As a result, the classification model has to be re-
trained after each labeled example is solicited. In this
paper, we propose a novel active learning algorithm
that is able to select a batch of unlabeled examples
simultaneously. A simple strategy toward achieving
batch mode active learning is to select the top k most
informative examples. The problem with such an ap-
proach is that some of the selected examples could be
similar, or even identical, to each other, and there-
fore do not provide additional information for model
updating. Hence, the key of batch mode active learn-
ing is that, on the one hand, all the selected examples
should be informative, and on the other hand, each
selected example should be different from the others
and should provide unique information.

To this end, we propose a framework of batch mode
active learning that applies the Fisher information ma-
trix to measure the overall informativeness for a set
of unlabeled examples. The main computational chal-
lenge with the proposed framework is how to efficiently
identify the subset of examples that are overall the
most informative to the current classification model.
To address the computational difficulty, we suggest an
efficient greedy algorithm that is based on the proper-
ties of submodular functions.

To evaluate the effectiveness of the proposed active
learning algorithms, we apply them to the task of med-
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ical image classification. Recently, the application of
machine learning techniques to medical image retrieval
and analysis has received more and more attention
(Lehmann et al., 2005). Due to the rapid develop-
ment of computer technology, it is becoming more and
more convenient to acquire, digitally store and trans-
fer medical imagery. Nowadays, many hospitals need
to manage several tera-bytes of medical image data
each year (Müller et al., 2004). Therefore, categoriza-
tion of medical images is becoming imperative for a
variety of medical systems, especially in the applica-
tion of digital radiology such as computer-aided diag-
nosis or case-based reasoning (Lehmann et al., 2005).
Since annotating medical images can only be done by
doctors with special expertise, acquiring labeled ex-
amples in medical image classification is usually sub-
stantially more expensive than in other classification
problems. This special feature of medical image clas-
sification makes it more suitable for active learning.

The rest of this paper is organized as follows. Sec-
tion 2 reviews the related work on medical image cat-
egorization and active learning algorithms. Section 3
presents the general framework for batch mode active
learning. Section 4 describes two efficient algorithms
for identifying a batch of unlabeled examples that are
most informative to the classification model. Section
5 presents the empirical evaluation of our active learn-
ing methods in medical image categorization. Section
6 sets out our conclusion.

2. Related Work

Although image categorization in general is not new
to researchers in computer science, only a few stud-
ies have been devoted to the medical domain. Only
in recent years have researchers started to pay more
attention to automatic categorization of medical im-
ages (Lehmann et al., 2005). Many classification al-
gorithms have been applied to medical image catego-
rization, including the large margin classifiers, deci-
sion trees, and neural networks. Among them, the
large margin classifiers, such as support vector ma-
chines (SVM) and kernel logistic regression (KLR), ap-
pear to be most effective (Lehmann et al., 2005). One
of the prerequisites for any classification scheme is the
availability of labeled examples. Acquiring labeling in-
formation is usually a costly task. This is particularly
true for medical image categorization since medical im-
ages can only be annotated and labeled by doctors.
Hence, it is critical to reduce the labeling efforts for
medical image categorization. To address this prob-
lem, we apply active learning techniques that select
only the most informative medical images for doctors

to label. It is worth noting that another approach to
reduce the labeling efforts is the semi-supervised learn-
ing methods (Seeger, 2001), which learns a classifica-
tion model from a mixture of labeled and unlabeled
data.

Active learning, or called pool-based active learning,
has been extensively studied in machine learning for
several years (McCallum & Nigam, 1998; Roy & Mc-
Callum, 2001). Most active learning algorithms are
conducted in an iterative fashion. In each iteration,
the example with the highest classification uncertainty
is chosen for manual labeling. Then, the classification
model is retrained with the additional labeled example.
The steps of training a classification model and solic-
iting a labeled example are iterated alternatively until
most of the examples can be classified with reasonably
high confidence. One of the key issues in active learn-
ing is how to measure the classification uncertainty of
the unlabeled examples. In several recent studies (Fine
et al., 2002; Freund et al., 1997; Graepel & Herbrich,
2000; Seung et al., 1992), a number of distinct clas-
sification models are first generated. Then, the clas-
sification uncertainty of a test example is measured
by the amount of disagreement among the ensemble
of classification models in predicting the labels for the
test example. Another group of approaches measures
the classification uncertainty of a test example by how
far the example is away from the classification bound-
ary (i.e., classification margin) (Campbell et al., 2000;
Schohn & Cohn, 2000; Tong & Koller, 2000). One
of the most well-known approaches within this group
is Support Vector Machine Active Learning, developed
by Tong and Koller (Tong & Koller, 2000). Due to its
popularity and success in previous studies, we use it
as the baseline approach in our study.

One of the main problems with most existing active
learning algorithms is that only a single example is se-
lected for labeling each time. As a result, the classifi-
cation model has to be retrained after each labeled ex-
ample is solicited. In this paper, we focus on the batch
mode active learning that selects a batch of unlabeled
examples in each iteration. A simple strategy is to
choose the top k most uncertain examples. However,
it is likely that some of the most uncertain examples
are strongly correlated and therefore will provide simi-
lar information to the classification model. In general,
the challenge in choosing a batch of unlabeled exam-
ples is twofold: on the one hand, the examples in the
selected batch should be informative to the classifica-
tion model; on the other hand, the examples should
be diverse enough such that information provided by
different examples does not overlap. To address this
challenge, we employ the Fisher information matrix as
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the measurement of model uncertainty, and choose the
set of examples that efficiently reduces the Fisher in-
formation. In our previous work (Hoi et al., 2006), we
formulated the batch mode active learning into a Semi-
Definite Programming problem and employed a bound
optimization algorithm to solve the approximated con-
vex optimization problem. In this paper, we solve the
related optimization problem by exploring the proper-
ties of submodular function.

3. A Framework of Batch Mode Active
Learning

In this section, we describe the framework for batch
mode active learning that is based on the Fisher in-
formation matrix. We choose the logistic regression
model as the underlying classification model because
of its simplicity and probabilistic nature. To facilitate
our discussion, we start with the linear classification
model, followed by the extension to the nonlinear clas-
sification model using the kernel trick.

The theoretical foundation of our batch mode active
learning is based on the work of (Zhang & Oles, 2000),
in which the authors presented a framework of active
learning based on the maximization of the Fisher in-
formation matrix. Given that the Fisher information
matrix represents the overall uncertainty of a classifi-
cation model, our goal is to search for a set of examples
that can most efficiently reduce the Fisher information
matrix. More specifically, this goal can be formulated
into the following optimization problem:

Let p(x) be the distribution of all unlabeled exam-
ples, and q(x) be the distribution of unlabeled exam-
ples that are chosen for manual labeling. Let α de-
note the parameters of the classification model. Let
Ip(α) and Iq(α) denote the Fisher information matrix
of the classification model for the distribution p(x) and
q(x), respectively. Then, the set of examples that can
most efficiently reduce the uncertainty of classification
model is found by minimizing the ratio between the
two Fisher information matrices Ip(α) and Iq(α), i.e.,

q∗ = arg min
q

tr(Iq(α)−1Ip(α)) (1)

For logistic regression models, the Fisher information
matrix Iq(α) is obtained by:

Iq(α)

= −
∫

q(x)
∑

y=±1

p(y|x)
∂2

∂α2
log p(y|x)dx

=
∫

1
1 + exp(αT x)

1
1 + exp(−αT x)

xxT q(x)dx

(2)

In order to estimate the optimal distribution q(x), we
replace the integration in the above equation with a
summation over the unlabeled data and the selected
examples. Let D = (x1, . . . ,xn) be the unlabeled data,
and S = (xs

1,x
s
2, . . . ,x

s
k) be the subset of selected ex-

amples, where k is the number of examples to be se-
lected. We can now rewrite the above expression for
Fisher information matrices Ip and Iq as:

Ip(α̂) =
1
n

∑

x∈D

π(x)(1− π(x))xxT + δId

Iq(S, α̂) =
1
k

∑

x∈S

π(x)(1− π(x))xxT + δId

where
π(x) = p(−|x) =

1
1 + exp(α̂T x)

(3)

In the above, α̂ stands for the classification model that
is estimated from the labeled examples. Id is the iden-
tity matrix of size d × d. δ ¿ 1 is the smoothing pa-
rameter. δId is added to the estimation of Ip(α̂) and
Iq(S, α̂) to prevent them from being singular matrices.
Hence, the final optimization problem for batch mode
active learning is formulated as follows:

S∗ = arg min
S⊆D∧|S|=k

tr(Iq(S, α̂)−1Ip(α)) (4)

To extend the above analysis to the nonlinear classi-
fication model, we follow the idea of imported vector
machine (Zhu & Hastie, 2001) by introducing a kernel
function K(x′,x) and rewriting the logistic regression
model as:

p(y|x) =
1

1 + exp(−yK(w,x))

According to the representer theorem, φ(w) could be
written as a linear combination of φ(x) for the labeled
examples x, i.e.,

φ(w) =
∑

x∈L

θ(x)φ(x)

where θ(x) is the combination weight for labeled exam-
ple x. L = ((y1,xL

1 ), (y2,xL
2 ), . . . , (ym,xL

m)) stands for
the set of labeled examples, where m is the number
of labeled examples. Using the result of representer
theorem, we have K(w,x) and p(y|x) rewritten as:

K(w,x) =
∑

x′∈L

θ(x′)K(x′,x)

p(y|x) =
1

1 + exp
(−y

∑
x′∈L θ(x′)K(x′,x)

)

Thus, by treating (K(xL
1 ,x),K(xL

2 ,x), . . . ,K(xL
m,x))

as the new representation for the unlabeled example x,
we can directly apply the result for the linear logistic
regression model to the nonlinear case.
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4. Efficient Algorithms for Batch Mode
Active Learning

The challenge with solving the optimization problem
in Eqn. (4) is that the number of candidate sets for
S is exponential in the number of unlabeled examples
n. As a result, it is computationally prohibitive when
the number of unlabeled examples is large. In order to
resolve the difficulty with the combinatorial optimiza-
tion, we present a greedy algorithm that is based on
the idea of submodular function.

The key idea of this approach is to explore the general
theorem about submodular functions in (Nemhauser
et al., 1978): consider the optimization problem that
searches for a subset S with k elements to maximize a
set function f(S), i.e.,

max
|S|=k

f(S)

If f(S) is 1) a nondecreasing submodular function,
and 2) f(∅) = 0, then the greedy algorithm will
guarantee a performance (1 − 1/e)f(S∗), where S∗ =
arg max|S|=k f(S) is the optimal subset. Based on this
theorem, when a set function f(S) satisfies the two
conditions, namely nondescreasing submodular func-
tion and f(∅) = 0, the subset S that maximizes f(S)
can be well approximated by the solution obtained by
the greedy algorithm.

In order to utilize the above theorem, the key is to
approximate the objective function in Eqn. (4) by a
submodular function. To this end, we simplify the
objective function as follows:

tr(I−1
q (S)Ip)

= tr
(

I−1
q (S)

(
Iq(S) k

n + n−k
n δI+

1
n

∑
x/∈S π(x)(1− π(x))xx>

))

=
k

n
+ δ

n− k

n
tr(I−1

q (S))

+
1
n

∑

x/∈S

π(x)(1− π(x))x>I−1
q (S)x

We ignore the second term in the above expression,
i.e., δ(n − k)tr(I−1

q (S))/n, and only focus on the last
term, i.e.,

∑
x/∈S x>I−1

q (S)x. This is because the sec-
ond term is proportional to the smoothing parameter δ
that is usually set to be small. To further simplify the
computation, we approximate the term x>I−1

q (S)x as
follows:

Let {(λk,vk)}d
k=1 be the eigenvectors of matrix Iq(S).

Then, for any x, we have

xT I−1
q (S)x =

d∑

k=1

λ−1
k (xT vk)2

≈ ‖x‖22∑d
k=1 λk(x>vk)2/‖x‖22

=
(
∑d

i=1 x2
i )

2

x>Iq(S)x

In the above, we approximate the harmonic mean
of the eigenvalues λis by their arithmetic mean,

i.e.,
(∑d

i=1 λ−1
i pi

)−1

≈ ∑d
i=1 λipi where pi =

(xT vi)2/
(∑d

i=1(x
T vi)

)2

= (xT vi)2/‖x‖22 is a PDF.
Note that this approximation will make the optimal
solution more stable than the original objective func-
tion. This is because tr(I−1

q (S)Ip) is proportional to
λ−1

i and therefore is sensitive to the small eigenvalues
of Iq while the approximate one does not.

By assuming that each example x is normalized as 1,
namely ‖x‖22 = 1, we have

∑

x/∈S

π(x)(1− π(x))x>I−1
q (S)x

≈
∑

x/∈S

π(x)(1− π(x))
x>Iq(S)x

=
∑

x/∈S

π(x)(1− π(x))k
δ +

∑
x′∈S π(x′)(1− π(x′))(x>x′)2

Hence, the entire optimization problem in Eqn. (4) is
simplified as follows:

min
|S|=k∧S⊆D

∑

x/∈S

π(x)(1− π(x))
δ +

∑
x′∈S π(x′)(1− π(x′))(x>x′)2

(5)

In order to explore the theorem about submodular
functions described in (Nemhauser et al., 1978), we
define the set function f(S) as follows:

f(S) =
1
δ

∑

x∈D

π(x)(1− π(x)) (6)

−
∑

x/∈S

π(x)(1− π(x))
δ +

∑
x′∈S π(x′)(1− π(x′))(x>x′)2

Evidently, the problem in Eqn. (5) is equivalent to the
following optimization problem:

max
|S|=k∧S⊆D

f(S) (7)

It is easy to see that f(∅) = 0. It is also not diffi-
cult to show that f(S) is a nondecreasing submodular
function. The detailed proof can be found in the Ap-
pendix. Hence, the set function f(S) satisfies the two
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• Initialize S = ∅
• For i = 1, 2, . . . , k

– Compute x∗ = arg max
x/∈S

f(S ∪x)− f(S)

– Set S = S ∪ x∗

Figure 1. A greedy algorithm for arg max|S|=k f(S)

conditions of the theorem about submodular functions,
and the result of the theorem can be applied directly
to the problem in (7). More specifically, the value of
the subset found by the greedy algorithm is no less
than 1 − 1/e of the value of the true optimal subset.
In Figure 1, we summarize the greedy algorithm that
solves the optimization problem in (7).

Remark. To see what type of examples will be cho-
sen by the greedy algorithm, we analyze the difference
between f(S∪x) and f(S), which is written as follows:

f(S ∪ x)− f(S)

= g(x, S) +
∑

x′ /∈(S∪x)

g(x′, S)g(x, S ∪ x)(x>x′)2

where function g(x, S) is defined as

g(x, S) =
π(x)(1− π(x))

δ +
∑

x′∈S π(x′)(1− π(x′))(x>x′)2
(8)

Based on the above expressions, we can draw the fol-
lowing observations:

• f(S ∪ x)− f(S) ∝ π(x)(1− π(x)). This indicates
that examples with large classification uncertainty
are more likely to be selected than examples with
small classification uncertainty.

• The first term in f(S ∪ x) − f(S) is inverse to∑
x′∈S π(x′)(1 − π(x′))(x>x)2. This indicates

that the optimal choice of example x should not
be similar to examples in S, i.e., the set of selected
instances.

• The second term in f(S∪x)−f(S) is proportional
to (x′x)2 for all examples x′ /∈ S. This indicates
that the optimal choice of example x should be
similar to the unselected examples.

In summary, the selected examples will have the fol-
lowing three properties: 1) uncertain to the current
classification model, 2) dissimilar to the other selected
examples, and 3) similar to most of the unselected ex-
amples. Clearly, these three properties are the desir-
able properties for batch mode active learning.

5. Experimental Result

In this section, we report our empirical study of batch
mode active learning in the application to medical im-
age categorization.

Table 1. List of UCI machine learning datasets.

Dataset #Instances #Features

Australian 690 14
Breast-cancer 683 10
Heart 270 13
Ionosphere 351 34
Sonar 208 60

Table 2. List of medical image categories.

Category Category Info #Instances

Cat-1 cranium, MUS 336
Cat-2 cervical spine, MUS 215
Cat-3 thoracic spine, MUS 102
Cat-4 lumbar spine, MUS 225
Cat-5 hand, MUS 576
Cat-6 radio carpal joint, MUS 77
Cat-7 elbow, MUS 69
Cat-8 shoulder, MUS 108
Cat-9 chest, bones, MUS 93
Cat-10 abdomen, GAS 152
Cat-11 pelvis, MUS 217
Cat-12 foot, MUS 205
Cat-13 ankle joint, MUS 137
Cat-14 knee, MUS 194
Cat-15 hip, MUS 79

MUS:“musculoskeletal system”, GAS:“gastrointestinal system”.

5.1. Experimental Testbeds

To examine the effectiveness of our active learning al-
gorithm, we first evaluate the performance of the pro-
posed batch active learning algorithm on five datasets
from the UCI machine learning repository1. Table 1
shows the list of the datasets used in our experiment.

We then evaluate the proposed batch mode ac-
tive learning algorithm on medical image classifica-
tion. The medical image dataset is formed by ran-
domly selecting 2, 785 medical images from the Im-
ageCLEF (Lehmann et al., 2005) that belong to 15
different categories. Table 2 gives the details of the
medical image testbed. Each image is represented by
2560 visual features that are extracted by the Gabor
wavelet transform. To represent the visual character-
istics of medical images, the Gabor wavelet filters (Liu
& Wechsler, 2002) are emplyed to extract the texture
features of medical images.

5.2. Empirical Evaluation

Since medical image categorization is a classification
problem, we adopt the classification F1 performance
as the evaluation metric. The F1 metric is defined as
F1 = 2 ∗ p ∗ r/(p + r), the harmonic mean of precision

1www.ics.uci.edu/ mlearn/MLRepository.html
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p and recall r of classification. Since the F1 metric
takes into account both the precision and the recall of
classification, it is usually preferred over other metrics.

In our experiments, two large margin classifiers,
i.e., the kernel logistic regressions (KLR) (Zhu &
Hastie, 2001) and the support vector machines
(SVM) (Burges, 1998), are employed as the basis clas-
sifiers. Two active learning algorithms are employed as
the baseline models in our studies. The first baseline
model is the kernel logistic regression active learning
algorithm that measures the classification uncertainty
based on the entropy of the distribution p(y|x). The
examples with the largest entropy are selected for man-
ual labeling. We refer to this baseline model as the
logistic regression active learning model, or KLR-AL
for short. The second reference model is based on sup-
port vector machine active learning (Tong & Koller,
2000). In this method, the classification uncertainty
of an example x is determined by its distance from
the decision boundary wT x + b = 0. The unlabeled
examples with the smallest distance are selected for
labeling. We refer to this approach as SVM active
learning, or SVM-AL for short.

To evaluate the performance of the competing active
learning algorithms, we first randomly pick l training
samples from the dataset for each category consisting
of an equal number of negative and positive examples.
We then train both SVM and KLR classifiers using
the l labeled examples, respectively. Based on these
two initially trained models, additional s (referred to
as the “batch size”) unlabeled examples are chosen for
manual labeling for each active learning method. To
see the effects of the selected examples on the classifi-
cation models, we also train the two reference models
by randomly selecting s examples for manually label-
ing, which are referred to as SVM-Rand and KLR-
Rand, respectively. For performance comparison, ev-
ery experiment is carried out 20 times, and the aver-
aged classification F1 with their standard errors are
calculated and used for final evaluation.

5.3. Experimental Results

Table 3 summarizes the experimental results of the
five UCI datasets for the proposed batch mode ac-
tive learning algorithm as well as the two baseline ap-
proaches for active learning. Both the number of ini-
tially labeled examples l and the number of selected
examples s for each iteration are set to be 10. Due to
the space limitation, we only presented the results of
the first two iterations. Compared to the two reference
models using randomly selected examples, i.e., SVM-
Rand and KLR-Rand, all the three active learning al-

gorithms are able to achieve noticeable improvement
in F1 across all five UCI datasets. We also observed
that the improvement made by the active learning al-
gorithms in the second iteration is considerably smaller
than that of the first iteration. In fact, after the third
iteration, the improvement made by the active learn-
ing algorithms starts to diminish.

Comparing to the two baseline active learning algo-
rithms, we observe that the proposed approach per-
forms significantly (p < 0.05) better over the dataset
“Australian”, “Ionosphere”, and “Sonar”, according
to the student-t test. We further examine the perfor-
mance of the proposed approach by varying the batch
size from 10 to 50. Fig. 2 shows the experimental re-
sults of the three active learning methods using dif-
ferent batch sizes. Again, we observe that the batch
mode active learning method consistently outperforms
the other methods across different batch sizes.

Table 4 summarizes the experimental results of the
first two iterations for the medical image dataset. 40
labeled examples are used for initially training, and
20 examples are selected for each iteration of active
learning. Similar to the UCI datasets, the three ac-
tive learning algorithms perform considerably better
than the two reference models across all the categories.
The most noticeable case is category 3, where F1 is
improved from around 40% to about 50% by the ac-
tive learning algorithms. Furthermore, the compari-
son between the batch mode active learning algorithm
and the two non-batch active learning algorithms re-
vealed that the proposed algorithm for batch mode
active learning always improves the classification per-
formance. For a number of categories, including cat-
egory 3, 10, 12, and 15, the improvement in the F1
measurement is statistically significant (p < 0.05) ac-
cording to the student-t test. Similar improvements
were also observed for different batch sizes. We did
not report those results due to the space limitation.

6. Conclusion

This paper presented a general framework for batch
mode active learning. Unlike the traditional active
learning that focuses on selecting a single example in
each iteration, the batch mode active learning allows
multiple examples to be selected for manual labeling.
We use the Fisher information matrix for the mea-
surement of model uncertainty and choose the set of
examples that will effectively reduce the Fisher infor-
mation. In order to solve the related optimization
problem, we proposed an efficient greedy algorithm
that approximates the objective function by a sub-
modular function. Empirical studies with five UCI
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Table 3. Evaluation of classification F1 performance on the UCI datasets.

Dataset
Active Learning Iteration-1 Active Learning Iteration-2

SVM-Rand KLR-Rand SVM-AL KLR-AL KLR-BMAL SVM-Rand KLR-Rand SVM-AL KLR-AL KLR-BMAL

Australian
74.80 76.48 77.86 77.00 78.86 79.29 80.89 80.73 81.43 83.49
±1.97 ±2.16 ±0.84 ±1.14 ±1.00 ±1.30 ±1.29 ±0.93 ±0.89 ±0.36

Breast
96.34 96.10 96.80 97.05 97.67 96.80 96.26 97.52 97.71 97.81
±0.37 ±0.33 ±0.20 ±0.02 ±0.06 ±0.23 ±0.55 ±0.07 ±0.06 ±0.03

Heart
70.94 72.34 71.41 73.51 75.33 76.76 77.84 76.92 78.78 79.53
±1.29 ±1.46 ±2.39 ±1.80 ±1.26 ±0.70 ±0.78 ±0.91 ±1.12 ±0.59

Ionosphere
88.58 88.78 89.05 89.66 92.39 90.45 90.60 93.42 93.71 94.26
±0.83 ±0.81 ±1.12 ±1.10 ±0.69 ±0.59 ±0.61 ±0.51 ±0.49 ±0.55

Sonar
67.51 67.22 72.07 70.18 74.36 73.80 73.33 75.11 74.80 77.49
±1.57 ±1.49 ±0.84 ±1.28 ±0.43 ±0.81 ±0.97 ±0.87 ±0.78 ±0.45
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Figure 2. Evaluation of classification F1 performance on the UCI datasets with different batch sizes.

datasets and one medical image dataset demonstrated
that the proposed batch mode active learning algo-
rithm is more effective than the margin-based active
learning approaches, which have been the dominant
methods for active learning.
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Appendix

Theorem 1 The set function f(S) in Eq. (6) is a
nondecreasing submodular function.

Proof. To prove that the set function f(S) is a sub-
modular function, we use the sufficient and necessary
condition for submodular functions (Parker, 1988),
i.e., for any two sets A ⊆ B, for any element x /∈ B,
f(S) is a submodular function if and only if the fol-
lowing condition holds:

f(A ∪ x)− f(A) ≥ f(B ∪ x)− f(B)

In order to show the above property, we compute the
difference f(S ∪ x)− f(S) for x /∈ S, i.e.,

f(S ∪ x)− f(S)

= g(x, S) +
∑

x′ /∈(S∪x)

g(x′, S)g(x, S ∪ x)(x>x′)2

where the function g(x, S) is already defined in Eqn.
(8). First, according to the definition of function
g(x, S) in Eqn. (8), g(x, S) ≥ 0 for any x and S.
Thus we have f(S ∪ x) ≥ f(S); therefore, f(S) is a
nondescreasing function. Second, as indicated by the
above expression, the difference f(S ∪ x) − f(S) is a
monotonically decreasing function. As a result, we
have f(A∪x)−f(A) ≥ f(B∪x)−f(B) when A ⊆ B.
In conclusion, the function f(S) is a nondecreasing
submodular function.
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