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Abstract— Discriminative classifiers such as Support Vector
Machines (SVM) directly learn a discriminant function or a
posterior probability model to perform classification. On the
other hand, generative classifiers often learn a joint probability
model and then use the Bayes rule to construct a posterior
classifier. In general, generative classifiers are not as accurate as
discriminative classifiers. However generative classifiers provide
a principled way to deal with the missing information problem,
which discriminative classifiers cannot easily handle. To achieve
good performance in various classification tasks, it is better
to combine these two strategies. In this paper, we develop a
method to train one of the popular generative classifiers, the
Naive Bayesian classifier (NB) in a discriminative way. We name
this new model as the Discriminative Naive Bayesian classifier.
We provide theoretic justifications, outline the algorithm, and
perform a serious of experiments on benchmark real-world
datasets to demonstrate our model’s advantages. Its performance
outperforms NB in classification tasks and outperforms SVM in
handling missing information tasks.

I. INTRODUCTION

Generative classifiers have shown their advantages in many
classification tasks, even though their overall performance
is not as good as discriminative classifiers such as Support
Vector Machines [18][9]. A typical example of generative
classifiers is the Naive Bayesian classifier [5][12]. Under a
conditional independency assumption, i.e., P (Ai, Aj |C) =
P (Ai|C)P (Aj |C), for 1 ≤ i 6= j ≤ n, NB classifies a
new data point x into the class with the highest posterior
probability as shown in Eq. (1), where Ai, Aj represent
the attributes or variables, C denotes the class variable, n
is the number of the attributes. In Eq. (2), this posterior
classification rule can be transformed into a joint probability
classification rule, since P (A1, A2, . . . , An) for a given data
point is a constant with respect to C. Finally, by combining the
independency assumption, the classification rule is changed in

a decomposable form as Eq. (3).

c = arg max
Ci

P (Ci|A1, A2, . . . , An) (1)

= arg max
Ci

P (Ci)P (A1, A2, . . . , An|Ci)
P (A1, A2, . . . , An)

= arg max
Ci

P (Ci)P (A1, A2, . . . , An|Ci) (2)

= arg max
Ci

P (Ci)
n∏

j=1

P (Aj |Ci) (3)

When used in real applications, NB first partitions the dataset
into several sub-datesets by the class label. Then, in each
sub-dataset labelled by Ci, P (Aj = ajk|Ci) can be easily
estimated by the frequency nijk/ni, nijk is the number of
the occurrences of the event {Aj = ajk} in sub-dateset Ci

according to the Maximum Log-likelihood (ML) criterion.
Here ni is the number of the samples in sub-dateset Ci.

This above simple scheme achieves surprising success
in many classification tasks [5][12][6]. Importantly, a great
advantage of NB is its immediate ability to deal with
the missing information problem. Assume the attributes set
{A1, A2, . . . , An} as A. When the information of a subset of
A, for example T , is unknown or missing, the marginalization
inference can be obtained immediately as follows:

c = arg max
Ci

∑

T

P (Ci)P (A− T, T |Ci)

= arg max
Ci

P (Ci)P (A− T |Ci)

= arg max
Ci

P (Ci)
∏

j∈A−T

P (Aj |Ci). (4)

No further computation is needed in handling this missing
information problem, since each term P (Aj |Ci) has been
calculated in training NB.

However, there are still shortcomings in NB. More specifi-
cally, this approach models the joint probability in each subset
separately and then applies the Bayes rule to construct the
posterior classification rule. This framework appears to be
incomplete, since this construction procedure actually discards
important discriminative information for classification. With-
out considering the other classes of data, this method only
tries to approximate the information in each sub-dataset. On



the other hand, the discriminative classifiers preserver this
information well by directly constructing decision rules among
all the data. Therefore, for the Naive Bayesian classifier, it
is not enough to approximate the date in each sub-dateset
separately. It should provide a global scheme to preserve the
discriminative information among all the data.

One of the solutions is to directly learn a posterior prob-
ability model rather than a joint probability model. However
within the framework of Bayesian network classifier, this kind
of approaches is often computationally hard to perform the
optimization. Even for the simple Naive Bayesian classifier,
the corresponding posterior learning, known as the Logistic
Regression (LR) [11], will encounter problems in order to
deal with missing information tasks. In a two-category clas-
sification problem, LR defines the posterior probability as
P (c = C0|A1, A2, . . . , An) = 1/(1+exp(−∑n

j=1 βjAj−θ)),
P (c = C1|A1, A2, . . . , An) = 1−P (c = C0|A1, A2, . . . , An).
Similarly, the ML criterion can be used to find the parameters
β and θ. When the values of a subset of attribute set T are
unknown, the marginalization on T is obtained in Eq.( 5):

P (c = C0|A− T ) =P
T P (c=C0|A)P (A−T,T )P

T P (c=C0|A)P (A−T,T )+
P

T P (c=C1|A)P (A−T,T ) . (5)

The right hand side will be hard to calculate. First, P (A−T, T )
varies from T , thus it cannot be omitted. Second, P (c =
C0|A), the logistic form will be at least calculated r|T | times,
where r is the minimum number of values of attributes,
|T | represents the cardinality of set T . This calculation will
be computationally intractable when the number of missing
attributes is big.

In this paper, we develop a novel method to train the
Naive Bayesian classifier, in a discriminative way. We call this
model the Discriminative Naive Bayesian (DNB) classifier.
Beginning with modelling the joint probabilities for the data,
we plug into the optimization function a penalty item which
describes the divergence between two classes. On one hand,
the optimization of the new function tries to approximate the
dataset as accurately as possible. On the other hand, it also tries
to enlarge the divergence among classes as big as possible.
Importantly, when improving the accuracy, this model also
inherits the NB’s ability in handling the missing information
problem.

This paper is organized as follows. In the next section,
we present a short review on related work. In Section III,
we describe the Discriminative Naive Bayesian classifier in
detail. We then in Section IV evaluate our algorithm on four
benchmark datasets. In Section V, the relationship between
our algorithm and other approaches, such as SVM, and Fisher
Discriminant Analysis, is discussed. Finally, in Section VI, we
set out the conclusion.

II. RELATED WORK

Combining generative classifiers and discriminative classi-
fiers has been one of active topics in machine learning. A
lot of work [1][7][17][2] has been done in this area. However

nearly all of these methods are designed for Gaussian Mixture
Model [14] or Hidden Markov Model [15]. By contrast, our
discriminative approach is developed for one of Bayesian
network classifiers, the Naive Bayesian classifier. On the other
hand, Jaakkola et al. develop a method to explore generative
models from discriminative classifiers [10]. Different from
this approach, our method performs a reverse way to use
discriminative information in generative classifiers. In [8], a
discriminative training is performed on a kind of tree belief
networks, Chow-Liu Tree; however, it appears hard to prove
the convergence of the algorithm.

III. DISCRIMINATIVE NAIVE BAYESIAN CLASSIFIER

In this section, we first develop the discriminative Naive
Bayesian classifier in a two-category classification task. Then
in Section III-B we emploit a voting scheme to extend our
method into multi-category classification tasks.

A. Two-category Discriminative Naive Bayesian Classifier

The NB firstly partitions the dataset into several sub-datasets
by the class variable. Typically, in a two-category classification
problem, two sub-datasets S1 and S2 represent the data with
the class label C1 and C2 respectively. Then in each sub-
dataset, the ML or the cross entropy criterion can be used to
find the optimal values for the parameters, namely, P (Aj |C1)
and P (Aj |C2), 1 ≤ j ≤ n. The cross entropy between a
distribution p and a reference distribution q is defined as the
Kullback–Leibler function shown in the following:

KL(q, p) =
∑

q log
q

p
. (6)

Within the framework of Bayesian learning, the reference dis-
tribution is generally the empirical distribution. Therefore for
NB, the optimization function in a two-category classification
problem can be written as follows:

{P1, P2} = arg max
{p1,p2}

(KL(p1, p̂1) + KL(p2, p̂2)) . (7)

p̂1 and p̂2 represent the empirical distribution for the sub-
dataset 1 and sub-dataset 2 respectively. The first term and
second term on the right hand side of Eq. (7) describe how
accurately the joint distributions p1 and p2 approximate the
sub-dataset 1 and sub-dataset 2. It is observed again that this
function is incomplete, since only the inner-class information
is preserved. The important inter-class information, namely,
the divergence information between class 1 and class 2 is
discarded actually. To fix this problem, we add into the
optimization function an interactive term, which represents the
divergence between classes

{P1, P2} = arg min
{p1,p2}

f(p1, p2)

= arg min
{p1,p2}

(KL(p1, p̂1) + KL(p2, p̂2) + W ·Div(p1, p2)).

Div(p1, p2) is a function of the divergence between p1 and
p2. This function value needs to go up as the divergence goes
down. W is a penalty parameter. In this paper, we use the



reciprocal of the Kullback–Leibler measure to represent the
function

Div(p1, p2) =
1∑

x p1 log p1
p2

. (8)

Optimization on this function will make the inner-
divergence described in the first two terms on the right hand
side as small as possible while the inter-class divergence
among classes will be as big as possible, which will benefit
the classification greatly. Different from the discriminative
classifiers such as the LR, the discriminative information is
finally incorporated into the joint probability p1 and p2. Thus
the advantages of using joint probabilities will be naturally
inherited into the discriminative Naive Bayesian classifier.

However, the disadvantage of plugging this interactive item
is that we cannot optimize p1 and p2 as in NB separately in
the sub-dataset 1 and sub-dataset 2. To clarify this problem,
we combine the NB assumption to expand the optimization
function in a complete form:

min
{p1,p2}

2∑
c=1

n∑

j=1

∑

Aj

[p̂c(ajk) log
ˆpc(ajk)

pc(ajk)
]

+W · 1∑n
j=1

∑
Aj

p1(ajk) log(p1(ajk)/p2(ajk))
, (9)

s.t. 0 ≤ pc(ajk) ≤ 1, (10)∑

Aj

pc(ajk) = 1, c = 1, 2; j = 1, 2, . . . n.

pc(ajk) is the short form of pc(Aj = ajk). So does p̂c(ajk).
p1 and p2 are a set of parameters, namely, p1 = {p1(Aj), 1 ≤
j ≤ n}, p2 = {p2(Aj), 1 ≤ j ≤ n}. This is a nonlinear
optimization problem under linear constraints. p1 and p2 are
interactive variables. It is clear that they cannot be separately
optimized as in Eq.( 7).

To solve this problem, we use a modified Rosen’s Gradient
Projection Method [16]. We firstly calculate the gradients of
the optimization function with respect to p1 and p2. We then
project this gradient on the constraint plane. In our problem
the projection matrix can be written as Eq. (16). The optimal
step length α is searched in the projected gradient direction
by using the Quadratic Interpolation method [13]. The process
is repeated until a local minimal is obtained. We write down
the detailed steps as follows:

1: Calculate the gradient according to Eq. (13-15).
2: Project the gradient into the constraint plane:∇fM =
∇f ·M .

3: Search the optimal step length α by Cubic Interpolation
method.

4: Update p1, p2 by the following Equations.

p1(ajk)new = p1(ajk)old − α∇fM
1jk ; (11)

p2(ajk)new = p1(ajk)old − α∇fM
2jk . (12)

5: Goto step 1 until p1 and p2 converge.

∂f

∂p1(ajk)
= −p̂1(ajk)/p1(ajk)

− W

Z
[1 + log(p1(ajk)/p2(ajk))]; (13)

∂f

∂p2(ajk)
= −p̂2(ajk)/p2(ajk)

+
W

Z
p1(ajk)/p2(ajk); (14)

Z =
n∑

i=1

∑

Aj

log
p1(ajk)
p2(ajk)

; (15)

M = I −A(A′A)−1A′, (16)

where A is the coefficient matrix for the constraint.

B. Multi-category Discriminative Naive Classifier

We use a partly-connected committing machine scheme
to extend the two-category classification problem into the
multi-category one. We construct a two-category classifier for
each pair of classes. For an m-category problem, in total,
m(m − 1)/2 classifiers will be constructed. Each classifier
will output a probability on how confident its vote is. We then
sum up the voting probabilities for each class and return the
class with the highest probabilities as the final decision. In
Fig. 1, we illustrate a four-category committing machine. In
Fig. 1, totally 4 × 3/2 = 6 DNB two-category classifiers are
constructed. Then these classifiers output the confidence on the
class they are voting for. These confidences or probabilities are
summed up for each class. Finally, the class with the maximum
confidence is outputted as the classification result.

IV. EVALUATIONS

In this section, we implement the DNB algorithm to evaluate
its performance on four benchmark datasets from Machine
Learning Repository in UCI [3]. The detailed information for
these datasets are listed in Table I. We intentionally choose
these datesets which vary in the variable number and the
sample size. As observed in Table I, the variable number
ranges from 4 to 60 and the sample size varies from 150
to 6435. The diversity in choosing the datesets will make
the evaluations on the algorithms more reliable. For the Iris
dateset, which has a small number of samples, we use a five-
fold Cross-Validation method (CV5) to test the performance.
We compare our model’s performance with NB and a 3-order
polynomial kernel SVM in two cases, namely the case without
information missing and the case with information missing.
The parameters for DNB and SVM are used in the experiments
are listed in Table II.

A. Without Information Missing

We first implement our model in the case without infor-
mation missing. The experimental results are demonstrated in
Table III. It can be observed that DNB outperforms NB in all
of the four datesets. This implies incorporating discriminative
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Fig. 1. Discriminative Naive Bayesian Classifier Committing Machine for a four-category problem. Si, 1 ≤ i ≤ 4 represent the sub-dataset for category i
respectively. Clm, 1 ≤ l ≤ 3, l < m means the two-category Discriminative Naive Beyesian classifier for category l and category m.

TABLE I
DESCRIPTION OF DATA SETS USED IN THE EXPERIMENTS

Dataset ]Variables ]Class ]Train ]Test
Iris 4 3 150 CV-5

Segment 19 7 2310 30%
Satimage 36 6 4435 2000

DNA 60 3 2000 1186

TABLE II
PARAMETERS USED IN THE EXPERIMENTS

Method Penalty parameter Kernel function
DNB 1000 N/A
SVM 1000 3-order polynomial

information in training the generative models benefits the
classification greatly. When compared with SVM, DNB wins
in two of the datesets while it loses in the other two. We
note that in these two datasets, i.e., Segment and Setimage,
SVM performs significantly better than DNB. This demerit
of DNB roots in the inner scheme of generative classifiers.
In Section V-A, we will present a detailed discussion on this
issue.

TABLE III
PREDICTION ACCURACY WITHOUT INFORMATION MISSING(%)

Dataset NB DNB SVM
Iris 93.33 97.33 95.33

Segment 88.44 90.88 95.96
Satimage 80.65 82.65 87.90

DNA 94.44 94.52 94.35

B. With Information Missing

It is important to discuss the ability of the DNB in handling
the missing information problem, since one of the main advan-
tages for generative classifiers lies at this point. Gradually, we
increase the percentages of the number of unknown or missing
attributes randomly. We then test the recognition rate on these
datasets with different percentages. As mentioned previously
for DNB and NB, a principled way to handle the missing
information problem is to use inference under uncertainty: c =
arg maxCi

P (Ci)
∏

Aj∈A−T P (Aj |Ci). For SVM, a normal
way to force its application in missing information tasks is
simply setting zero values for the missing attributes. Since in
implementing SVM, the values of attributes are pre-normalized
to the range [-1,1], the zero value can be considered as the
average value of the attributes. Thus in a sense, this method
can be regarded as replacing the missing values with the
corresponding average value. The experiment results for the
four datasets are shown in Fig. 2.

It is shown that NB demonstrates a robust ability to handle
the missing information problem. In four datasets, the error
rate curves of NB maintain a flat trend when the information
does not decay too much. Furthermore, DNB shows a similar
resistance ability while its accuracy is higher than NB. In
comparison, SVM’s performance gradually runs down as the
number of the missing variables goes up. The superiority
of DNB over NB and SVM is especially prominent in the
Iris dataset. In the Iris dataset the number of samples is
relatively small. Thus the the distribution from insufficient
training data may not represent the real distribution. Therefore,
the discriminative item will contribute more in constructing the
classifiers.
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Fig. 2. Error rates with information missing for four datasets. The figures on the up-left, up-right, bottom-left,bottom-right are the curves for Iris, Segment,
Satimage and DNA respectively.

V. DISCUSSIONS

A. Why DNB Performs Not As Well As SVM When No Infor-
mation Is Missing?

In SVM, a linear classifier y = w ·x+ b with the maximum
margin between two classes is searched by minimizing the
following function as Eq. (17).

τ(w, ξ) =
C

N

N∑

i=1

ξi +
1
2
‖ w ‖2

s.t. yi · ((w · xi) + b) ≥ 1− ξi, ξi ≥ 0, (17)

where, xi ∈ Rn, n is the data dimension, yi ∈ R is the
class label corresponding to xi and w ∈ Rn, b ∈ R are the
variables to be optimized. To handle the non-linear problem,
usually the so-called kernel trick will be used to map the
input into a high-dimension feature space, where a linear
classifier can be found. This function consists of two parts.
Since 2

‖w‖ represents the margin between two classes, the
second part on the right hand of Eq. (17), namely 1

2 ‖ w ‖2
describes the extent on how faraway two classes are from each

other. The first term can be considered as the loss function
in the training dataset, i.e., how accurate the sample in the
training dateset can be classified into the corresponding class.
Interestingly, we note this optimization function of SVM is
similar to the one of DNB. In the DNB model, two terms
form the optimization function as Eq. (8). The second term
represents a meaning similar to the one in SVM. The first
term in DNB also tries to approximate the training dataset
as accurately as possible. The difference is that in SVM, the
first part directly minimizes the recognition error rate while in
DNB, this part minimizes an intermediate term representing
the difference between the estimated joint distribution and the
empirical distribution. As Box says, all models are wrong
(but some are useful) [4]. The estimated distribution under
the strong independency assumption may not always coincide
with the real data, and therefore may fail to work in practice.

B. Relation Between DNB And Fisher Discriminant Analysis

It is interesting that Fisher Discriminant Analysis (FDA)
also uses an idea similar to ours to separate two classes.



The discriminant function in FDA is defined as: JF (w) =
(µ1−µ2)

2

D2
1+D2

2
, where µi = 1

N

∑
x∈Si

x, D2
i =

∑
x∈Si

(x − µi)2

and Si is the sub-dateset for class i, N is the number of the
data points. By maximizing JF (w), FDA minimizes the inner-
class divergence described by the denominator and maximizes
the inter-class divergence represented by the difference of the
means between two classes. The final classification rule is
provided in a linear form: y = sign(w · x + b). However,
using the difference between the mean values as the divergence
between two classes may not be an informative way as the
Kullback-Leibler divergence, a distribution-based approach.

VI. CONCLUSION

In this paper, we have proposed a novel model named the
Discriminative Naive Bayesian classifier. This model combines
the advantages of generative classifiers with discriminative
classifiers. When handling the tasks without information miss-
ing, the DNB demonstrates a superior performance than the
Naive Bayesian classifer. When handling the tasks with in-
formation missing, the DNB outperforms the Support Vector
Machine. A series of experiments has been conducted to evalu-
ate our model. The results have demonstrated the effectiveness
of our model in comparison with the Naive Bayesian classifier
and the Support Vector Machine.
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