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Abstract: In this paper, the tertiary structures of protein chains of heterocomplexes were mapped to 2D networks; based
on the mapping approach, statistical properties of these networks were systematically studied. Firstly, our experimental
results confirmed that the networks derived from protein structures possess small-world properties. Secondly, an inter-
esting relationship between network average degree and the network size was discovered, which was quantified as an
empirical function enabling us to estimate the number of residue contacts of the protein chains accurately. Thirdly, by
analyzing the average clustering coefficient for nodes having the same degree in the network, it was found that the archi-
tectures of the networks and protein structures analyzed are hierarchically organized. Finally, network motifs were de-
tected in the networks which are believed to determine the family or superfamily the networks belong to. The study of
protein structures with the new perspective might shed some light on understanding the underlying laws of evolution,
function and structures of proteins, and therefore would be complementary to other currently existing methods.

1. INTRODUCTION

Complex systems, such as the World Wide Web
(WWW), social insect colonies, telecommunication systems
and protein-protein interaction networks, can be modeled as
complex networks, or mathematical graphs [1][2], in which
each component is denoted as a vertex and the relationships
between two components are represented as edges connect-
ing the corresponding vertices. Real-world networks typi-
cally exhibit small-world properties [3], by which is meant
that a high degree of local clustering is observed; also, the
average shortest path length between any two vertices scales
logarithmically with the network size, which cannot be ob-
served in either regular lattices or random graphs[1] [4].

Protein structures are complex systems per se , with sev-
eral tens, hundreds or even thousands of residues, interacting
with each other to help stabilize the tertiary structures so that
specific functions can be realized in vivo. In this sense, the
network modeling approach is suitable for characterizing and
analyzing protein structures, in which residues correspond to
vertices of the networks, and interaction (or any other type of
relationship) between residues is represented as an edge
linking the corresponding nodes. Vendruscolo et al. [5] con-
structed networks for a set of protein structures; through in-
vestigating the value of betweenness for each node of the
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networks, some “key nodes”, acting as nucleation centers for
protein folding, were identified. Atigan et al.  [6] discovered
that the average shortest path lengths are strongly correlated
with residue fluctuations. Dokholyan et al. [7] found that the
network's topological properties are crucial for the protein to
have the kinetic ability to fold. Recently, based on a set of
enzyme chains, Amitai et al. [8] reported that, by using the
closeness value of each node in the network, it could be pre-
dicted which residues in the protein structure are functional.
Besides, protein structure flexibility [9], recurring structural
patterns [10] and side-chain clusters [11] can all be studied
using the graph representation approach.

In the following discussion, we will present our initial
investigation of a set of non-redundant protein chains of het-
erocomplexes using the network modeling approach.
Through investigating the relationship between network av-
erage degree and the network size, a function can be summa-
rized to estimate the number of residue contacts of the pro-
tein chains effectively. By analyzing the average clustering
coefficient for the nodes having the same degree in the net-
work, we can show that the architectures of the networks and
protein structures analyzed are hierarchically organized. Fi-
nally, network motifs have been detected in the networks;
these are believed to determine the general family or super-
family the networks belong to.

This remainder of this paper is organized as follows.
Section 2 gives an overall introduction of the data we made
use of and some crucial definitions. In Section 3, the experi-
mental results are demonstrated to evaluate our approach.
Finally, some concluding remarks and directions for future
research are included in Section 4.
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2. METHOD

2.1 Data Collection

The data analyzed in our experiment is originally from P.
Aloy and R. B. Russell [12]. Problematic chains and chains
sharing high homologies are eliminated from the data they
collected. After this filtering procedure, 424 non-redundant
protein chains were retained; each chain shares less than
30% sequence identity with other chains in the data set. The
structures of these chains were obtained from the Protein
Data Bank (PDB) [13]. A list of the protein chains we stud-
ied is available at http://www.dmresearch.net/ het-
ero_list.htm.

2.2 Representation of Protein Tertiary Structures

In the experiment, a reduced representation of protein
structures is employed, namely, each residue is represented
by its C-α atom; thus in three-dimensional space, the struc-
tures of protein chains are represented simply as the connec-
tivity of the C-α atoms of each residue [14]. In addition, we
define two residues to be in contact if the distance between
their C-α atoms is less than a threshold [15], for which the
value of 8 ångstroms is adopted.

2.3 Definitions

To convert the tertiary structures into networks, we first
define the edges of the networks to be the contacts of resi-
dues (more precisely, the contacts of their C-α atoms); in
other words, if two residues are in contact in the tertiary
structure, an edge connecting the two corresponding nodes
will appear in the network.

Complex networks are essentially mathematical graphs;
in mathematical terms, the residue contact network built in
our experiment is a graph with a vertex set V of residues and
an edge set E= {(x, y)| (x, y ∈ V) ∩ (0<||x-y|| 2 ≤ 8)}, where
||
g

|| 2  is the Euclidean distance (l 2 norm) between the resi-
dues x and y in the three-dimensional structure of the protein,
meaning that two nodes in the graph are adjacent if the dis-
tance of two residues is less than or equal to 8 ångstrom.
Note that the graphs mentioned are naturally unweighted,
which is equivalent to imposing a weight of 1 on all the
edges and nodes.

One of the protein chains in our dataset is shown below
to clarify the conversion procedure. Fig. 1 presents the terti-
ary structure of the B chain of 1a0h; its reduced representa-
tion is shown in Fig. 2, and the network derived from the
simplified structure is exhibited in Fig. 3.

2.4 Network Properties

Supposing that there are a total of N vertices in one net-
work, the network is equivalent to a two-dimensional array A
with the size of N?N; each element Aij in the array is defined
as follows:

 Eq. (1)

Figure 1. The three-dimensional structure of chain B of the protein
(PDB code: 1a0h); the colors represent different amino acid resi-
dues. The figure was generated by VMD [16].

Figure.2. The reduced representation of the same chain (C-α trace);
the colors represent different amino acid residues. The figure was
generated by VMD [16].

Figure 3. The residue contact network derived from the tertiary
structure of the same chain. The figure was generated by Ospray
[17].
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Traditionally, this 2D array A is known as the adjacency
matrix in Graph Theory.

Networks are typically quantified by several numerical
measures so that comparisons and analyses can be made di-
rectly; all the required properties can be derived from the
adjacency matrix.

Some important properties used in this paper are defined
as follows:

(1) The degree K i  of a vertex i is the number of nodes that
are directly connected to i; thus,

 Eq. (2)

(2) The average degree of the network can be written as:

 Eq. (3)

which is the average over all the degree of each node in the
network.

(3) The degree distribution Pi(k) of the network refers to the
probability that the vertex i has degree k. Degree distribution
is a widely used criterion to classify a specific network into
some category; for example, the degree distributions of typi-
cal random networks [18][19] and small-world networks
(SWN) [3] have a Poisson distribution, while the degree dis-
tribution of scale-free networks [20] usually follows the
power law, namely, Pi(k) k-γ,where γ is a positive number.

(4) The clustering coefficient C i [3] of a vertex i is the value
measuring the probability that two nodes of the network are
adjacent if they have a common neighbor i. Thus,

 Eq. (4)

(5) Similarly, the average clustering coefficient C of the net-
work is defined as:

 Eq. (5)

(6) The characteristic path length of a network is the average
minimum number of connections that must be traversed to
link any residue pair i and j. It is usually considered a useful
measure to reflect the efficiency of information spread and
communication among vertices in a network.

(7) Network motifs are patterns that are over-represented in a
network. As R. Milo’s pivotal work [21] [22] shows, they are
the basic building blocks of complex networks, and thus de-
fine the universal family or superfamily of networks.

3. EXPERIMENTAL RESULTS

(1) General Properties of the Networks

We first confirmed that the residue contact networks de-
rived from the chains of heterocomplexes possess small-
world properties. The degree distribution is shown in Fig. 4,
from which it is evident that the metric exhibits a Poisson
distribution.

Figure 4. Degree distribution of the residue contact networks

The characteristic path length calculated for the networks
is 4.787±1.537, and the average clustering coefficient of the
networks is 0.5726±0.038. To prove that the networks pos-
sess small-world properties, we can compare them with those
derived from regular lattices and random graphs [5]. For
random graphs whose size N and average degree K are iden-
tical with the ones we analyzed, the characteristic path length
and clustering coefficient are 2.31±0.277 and 0.07±0.05598
respectively; as for regular lattices, the characteristic path
length and clustering coefficient are 12.1±8.725 and
0.6549±0.026 respectively. This strongly suggests that the
model of the networks in our experiments is a compromise
between the regular lattice model and the random graph
model, with intermediate values for the characteristic path
length and clustering coefficient; thus, as described by Ven-
druscolo et al. [5] and Atilan et al. [6], the relatively high
clustering coefficient compared with random graphs and low
characteristic path length compared with regular lattices in-
dicate that the networks derived from the chains of hetero-
complexes indeed have small-world network properties.

(2) Average Degree Versus Network Size

The relationship between the average degree and the size
of the proteins in our dataset was studied. Interestingly, we
discovered that the increase in the average degree is quite
regular with respect to the accretion of the network size
(which is equivalent to the size of the protein). The relation-
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ship is shown in Fig. 5. In order to quantify the relationship,
a curve fitting technique was used to derive a function f(x) =
9.113e0.0002475x – 7.288e-0.02674x for estimating the average
degree of a network from its size (denoted by x).

Figure 5. Average degree vs. network size. The fitted curve and the
prediction bounds are also shown in the upper plot, and the fitting
residuals are presented in the lower plot.

We note that the definition of average degree given in
equation (3) is exactly equivalent to the following:

2||

||

E
K

V
=  Eq. (6)

where E, V are the sets of edges and vertices respectively;
||E  and ||V  are the numbers of edges and vertices in the
network. Since the average degree can be estimated by f(x),
as we mentioned above, the following formula is always true

(note here ||xV= ):

2||
()

||

E
Kfx

V
==  Eq. (7)

Therefore, the number of the edges of the network can be
calculated using the following formula:

  
| E |= 1

2
xf (x) = 1

2
x(9.113e0.0002475x − 7.288e−0.02674x )  Eq. (8)

According to the definition of network we stated earlier,
the number of edges of a network is equal to the number of
residue contacts in the protein tertiary structures. Therefore,
the number of residue contacts can be estimated accurately
from the protein size (number of residues) alone.

The following figure (Fig. 6) presents the estimated re-
sults using this approach:

Figure 6. Correspondence between estimated and actual residue
contact numbers

(3) Average Clustering Coefficient for Vertices Having
the Same Degree

The average clustering coefficient C(k) over all the nodes
having degree k was also calculated. The results are pre-
sented in the following figure (Fig. 7).

Figure 7. The average clustering coefficient for nodes having the
same degree (the red line in the figure is a fitted curve based on the
calculated results).

As has frequently been pointed out [23][24][25], if it is

found that C(k) is proportional to 
1
k in a network, it typi-

cally indicates that the network is highly hierarchically orga-
nized. Fig. 7 shows that our network exhibits this property,
indicating that the residue contact networks in our experi-
ment possess hierarchical architectures, which, in turn, could
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explain why the clustering coefficients of the networks are
much higher than those of random graphs.

Furthermore, the hierarchical architectures of the networks
imply that the networks are, in general, composed of several
physical modules [26], or clusters, within which vertices are
intensively connected, while nodes belonging to different
modules are sparsely linked. A possible reason for the pro-
tein networks exhibiting this architecture is that the modules
contain many functional related residues, which perform the
same function simultaneously; the intense connection among
the residues in a module would be likely to promote the effi-
ciency of their communication.

(4) Network Motif Detection

Network motifs play an important role in the analysis of
networks, since they are believed to be the simple building
blocks of networks, and their character defines the general
categories (families or superfamilies) networks belong to.
Hence, identifying the prevailing network motifs can greatly
facilitate the comparison of the evolution, structure, organi-
zation and function of different networks falling into the
same family or superfamily.

Essentially, motifs are over-represented graphlets of a
network compared with that in random graphs. In our analy-
sis, we have considered 3-node or 4-node graphlets only;
graphlets with more than 4 nodes are not taken into account
in this paper because of the unfeasible computational task
they represent. To discover the motifs, as shown by R. Milo
et al., numerous random graphs with key properties very
similar to the those of real network are generated. In order to
ensure the comparison is fair, only those recurring patterns
with a Z-score greater than 2 are selected as motifs of the
network.

In our analysis of the network derived from protein
chains of heterocomplexes, the program Mfinder (provided
by R. Milo et al. [11]) was implemented. The motifs detected
are as follows:

Three-node motif:

Figure 8. Three-node motif of the networks

Four-node motifs:

  

Figure 8. Four-node motifs of the networks

In total, there are 8 patterns for 3 and 4-node graphlets in
an undirected graph. It is remarkable that only the four kinds
of graphlets shown above occurred frequently. Considering
the fact that the clustering coefficient (which reflects the
possibility that two nodes are adjacent if they have a com-
mon neighbor) is relatively high, as we mentioned earlier, it
is no surprise that the 3-node motif are triangular. As for the
4-node motifs, one conclusion that could be drawn is that, in
the three-dimensional space, the structures of the protein
chains we analyzed are naturally tightly packed, so that each

residue would naturally be in contact with many other resi-
dues in its neighborhood.

4. DISCUSSION AND CONCLUDING REMARKS

We have presented our initial work on analyzing the
structure of complex networks derived from the protein chain
tertiary structures of heterocomplexes. From this perspective,
some novel network characteristics have been revealed.

Networks, or mathematical graphs, are undoubtedly an
effective approach for analyzing complex systems, not just
the protein structures we considered here. Using this ap-
proach, various intrinsic properties of the system can be dis-
cerned, greatly facilitating our understanding of the networks
of interest. Previous studies have shown that the characteris-
tic path length is an effective parameter for investigating the
underlying principles of protein structures [6] [7] [8]. How-
ever, we cannot ignore the other properties of the network if
we hope to understand the protein structure more deeply.

In future research work, further attention could be given
to the quantification of the derived networks, in order to re-
flect the intrinsic character of the protein structures more
completely.
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